Introduction to Bayesian models with Stata

Ernesto F. L. Amaral Katherine A. C. Willyard

May 15, 2018

www.ernestoamaral.com/stata2018b.html

Bayesian analysis

- Bayesian analysis is a statistical procedure that answers research questions by expressing uncertainty about unknown parameters using probabilities
- It is based on the fundamental assumption that not only the outcome of interest but also all the unknown parameters in a statistical model are essentially random and are subject to prior beliefs
- Observed data sample y is fixed and model parameters $\boldsymbol{\theta}$ are random
 - y is viewed as a result of a one-time experiment
 - A parameter is summarized by an entire distribution of values instead of one fixed value as in classical frequentist analysis

How to do Bayesian analysis

- Bayesian analysis starts with the specification of a posterior model
- The posterior model describes the probability distribution of all model parameters conditional on the observed data and some prior knowledge
- The **posterior distribution** has two components
 - A likelihood, which includes information about model parameters based on the observed data
 - A prior, which includes prior information (before observing the data) about model parameters
- The likelihood and prior models are combined using the Bayes rule to produce the posterior distribution

Posterior ∝ Likelihood × Prior

Bayes rule

• Prior distribution: $p(\theta) = \pi(\theta)$

- Some prior knowledge about θ
- Probability distribution of θ

• Likelihood: $p(y|\theta) = f(y;\theta)$

- Observed sample data y about unknown parameter θ
- Probability density function of y given θ
- Posterior distribution: $p(\theta|y)$

$$p(\boldsymbol{\theta}|\mathbf{y}) = \frac{p(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{y})} = \frac{f(\mathbf{y};\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{m(\mathbf{y})}$$

- Marginal distribution of y: p(y) ≡ m(y)
 - It does not depend on the parameter of interest θ , so equation can be reduced to

$$p(\theta|\mathbf{y}) \propto f(\mathbf{y}; \theta) \pi(\theta)$$

Markov chain Monte Carlo

- Posterior distributions are rarely available in analytical forms and often involve multidimensional integrals
 - They are commonly estimated via simulation
- Markov chain Monte Carlo (MCMC) sampling is often used to simulate potentially very complex highdimensional posterior distributions
 - MCMC is a simulation-based method of estimating posterior distributions
 - It produces a sequence or a chain of simulated values (MCMC estimates) of model parameters from the estimated posterior distribution
 - If the chain "converges", the sequence represents a sample from the desired posterior distribution

MCMC methods in Stata

- There are different MCMC methods to estimate the chains of simulated values
- Two more commonly used MCMC methods are
 - Metropolis-Hastings (MH) algorithm
 - Gibbs algorithm
- MCMC methods in Stata
 - Adaptive MH
 - Adaptive MH with Gibbs updates-hybrid
 - Full Gibbs sampling for some models

Stata's Bayesian commands

Estimation

bayesian estimation bayes bayesmh bayesmh evaluators Bayesian estimation commands Bayesian regression models using the bayes prefix Bayesian models using MH User-defined Bayesian models using MH

Convergence tests and graphical summaries

bayesgraph

Graphical summaries

Postestimation statistics

bayesstats ess bayesstats summary bayesstats ic

Hypothesis testing

bayestest model
bayestest interval

Effective sample sizes and related statistics Bayesian summary statistics Bayesian information criteria and Bayes factors

Hypothesis testing using model posterior probabilities Interval hypothesis testing

General syntax

- Built-in models
 - Fitting regression models

```
bayes: stata_command ...
```

- Fitting general models

```
bayesmh ..., likelihood() prior() ...
```

- User-defined models
 - Posterior evaluator

```
bayesmh ..., evaluator() ...
```

- Likelihood evaluator with built-in priors

```
bayesmh ..., llevaluator() prior() ...
```

- Postestimation
 - Features are the same whether you use a built-in model or program your own

Bayesian models in Stata

- Over 50 built-in likelihoods: normal, lognormal, exponential, multivariate normal, probit, logit, oprobit, ologit, Poisson, Bernoulli, binomial, and more
- Many built-in priors: normal, lognormal, uniform, gamma, inverse gamma, exponential, beta, chi square, Jeffreys, multivariate normal, Zellner's g, Wishart, inverse Wishart, multivariate Jeffreys, Bernoulli, discrete, Poisson, flat, and more
- Continuous, binary, ordinal, categorical, count, censored, truncated, zero-inflated, and survival outcomes
- Univariate, multivariate, and multiple-equation models
- Linear, nonlinear, generalized linear and nonlinear, sample-selection, panel-data, and multilevel models
- Continuous univariate, multivariate, and discrete priors
- User-defined models: likelihoods and priors

Bayesian estimation in Stata

- Bayesian estimation in Stata is similar to standard estimation, simply prefix command with "bayes:"
- For example, if your estimation command is a linear regression of y on x

regress y x

• Bayesian estimates for this model can be obtained with

bayes: regress y x

- You can also refer to "bayesmh" and "bayesmh evaluators" for fitting more general Bayesian models
- The following estimation commands support the bayes prefix...

Command	Entry	Description
Linear regression m	odels	
regress	[BAYES] bayes: regress	Linear regression
hetregress	[BAYES] bayes: hetregress	Heteroskedastic linear regression
tobit	[BAYES] bayes: tobit	Tobit regression
intreg	[BAYES] bayes: intreg	Interval regression
truncreg	[BAYES] bayes: truncreg	Truncated regression

Binary-response regression models

mvreg

logistic	[BAYES]	bayes:	logistic
logit	[BAYES]	bayes:	logit
probit	[BAYES]	bayes:	probit
cloglog	[BAYES]	bayes:	cloglog
hetprobit	[BAYES]	bayes:	hetprobit
binreg	[BAYES]	bayes:	binreg
biprobit	[BAYES]	bayes:	biprobit

[BAYES] bayes: mvreg

Ordinal-response regression models

ologit	[BAYES] bayes: ologit
oprobit	[BAYES] bayes: oprobit
zioprobit	[BAYES] bayes: zioprobit

Categorical-response regression models

mlogit	[BAYES]	bayes:	mlogit
mprobit	[BAYES]	bayes:	mprobit
clogit	[BAYES]	bayes:	clogit

Count-response regression models

poisson	[BAYES] bayes: poisson
nbreg	[BAYES] bayes: nbreg
gnbreg	[BAYES] bayes: gnbreg
tpoisson	[BAYES] bayes: tpoisson
tnbreg	[BAYES] bayes: tnbreg
zip	[BAYES] bayes: zip
zinb	[BAYES] bayes: zinb

Truncated regression Multivariate regression

Logistic regression, reporting odds ratios Logistic regression, reporting coefficients Probit regression Complementary log-log regression Heteroskedastic probit regression GLM for the binomial family Bivariate probit regression

Ordered logistic regression Ordered probit regression Zero-inflated ordered probit regression

Multinomial (polytomous) logistic regression Multinomial probit regression Conditional logistic regression

Poisson regression Negative binomial regression Generalized negative binomial regression Truncated Poisson regression Truncated negative binomial regression Zero-inflated Poisson regression Zero-inflated negative binomial regression

Generalized linear models

		alm	Generalized linear models
glm	[BAYES] bayes:	giiii	Generalized linear models
Fractional-response re	egression models		
fracreg	[BAYES] bayes:	fracreg	Fractional response regression
betareg	[BAYES] bayes:	betareg	Beta regression
Survival regression m	odels		
streg	[BAYES] bayes:	streg	Parametric survival models
Sample-selection regr	ession models		
heckman	[BAYES] bayes:	heckman	Heckman selection model
heckprobit	[BAYES] bayes:	heckprobit	Probit regression with sample selection
heckoprobit	[BAYES] bayes:	heckoprobit	Ordered probit model with sample selection
Multilevel regression	models		
mixed	[BAYES] bayes:	mixed	Multilevel linear regression
metobit	[BAYES] bayes:	metobit	Multilevel tobit regression
meintreg	[BAYES] bayes:	meintreg	Multilevel interval regression
melogit	[BAYES] bayes:	melogit	Multilevel logistic regression
meprobit	[BAYES] bayes:	meprobit	Multilevel probit regression
mecloglog	[BAYES] bayes:	mecloglog	Multilevel complementary log-log regression
meologit	[BAYES] bayes:	meologit	Multilevel ordered logistic regression
meoprobit	[BAYES] bayes:	meoprobit	Multilevel ordered probit regression
mepoisson	[BAYES] bayes:	mepoisson	Multilevel Poisson regression
menbreg	[BAYES] ba Go	o to page 433	Multilevel negative binomial regression
meglm	[BAYES] bayes:	megim	Multilevel generalized linear model
mestreg	[BAYES] bayes:	mestreg	Multilevel parametric survival regression

Summary

- Stata provides an entire suite of commands for Bayesian analysis
- The **bayesmh** command and the **bayes**: prefix are the main estimation commands
- You can use **bayesmh** to fit built-in models or to program your own
- **bayesgraph diagnostics** produces graphical MCMC diagnostics including trace and auto-correlation plots
- **bayesstats ess** computes MCMC efficiencies for all model parameters
- **bayesstats summary** provides MCMS point and interval estimates for model parameters and their functions
- **bayestest** interval performs interval hypothesis testing
- **bayestest model** computes model posterior probabilities for model comparison
- **bayesstats** ic computes BFs and DICs for model comparison

Example of logistic regression

 Study of risk factors of mother (age and smoke) associated with low birthweight of child (low) from Hosmer, Lemeshow, and Sturdivant (2013, 24)

. use lbw, clear (Hosmer & Lemeshow data)

. describe low age smoke

variable name	storage type	display format	value label	variable label
low	byte	%8.0g	smoke	birthweight<2500g
age	byte	%8.0g		age of mother
smoke	byte	%9.0g		smoked during pregnancy

Classical logistic regression

. logit low age smoke

Iteration	0:	log	likelihood	=	-117.336
Iteration	1:	log	likelihood	=	-113.66733
Iteration	2:	log	likelihood	=	-113.63815
Iteration	3:	log	likelihood	=	-113.63815

Logistic regression	Number of obs	=	189
	LR chi2(2)	=	7.40
	Prob > chi2	=	0.0248
Log likelihood = -113.63815	Pseudo R2	=	0.0315

low	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
age	0497792	.031972	-1.56	0.119	1124431	.0128846
smoke	.6918486	.3218061	2.15	0.032	.0611202	1.322577
cons	.0609051	.7573199	0.08	0.936	-1.423415	1.545225

Bayesian logistic regression

• Fit a Bayesian logistic regression using fairly noninformative normal priors for all regression coefficients

<pre>set seed 14 bayesmh low age smoke, likelihood(logit) prior</pre>	({low:}, normal(0,10000))
Bayesian logistic regression	MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling	Burn-in = 2,500
	MCMC sample size = 10,000
	Number of obs = 189
	Acceptance rate = .1827
	Efficiency: min = .06358
	avg = .06847
Log marginal likelihood = -133.87215	max = .07231

					Equal-	tailed
low	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
age	0529104	.0320853	.001193	0534339	1167257	.0101978
smoke	.7025298	.3220161	.012771	.6947374	.0858349	1.344506
_cons	.1201885	.7574915	.028731	.1204548	-1.39823	1.529904

Bayesian logistic regression

• Fit a Bayesian logistic regression with **bayes**: prefix

set seed 14
bayes: logit low age smoke

Bayesian logistic regression	MCMC iterations =	= 12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	= 2,500
	MCMC sample size =	= 10,000
	Number of obs =	= 189
	Acceptance rate =	1827
	Efficiency: min =	.06358
	avg =	.06847
Log marginal likelihood = -133.87215	max =	.07231

				Equal-	tailed	
low	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
age	0529104	.0320853	.001193	0534339		.0101978
smoke _cons	.7025298 .1201885	.3220161 .7574915	.012771 .028731	.6947374 .1204548	.0858349 -1.39823	1.344506 1.529904

Note: Default priors are used for model parameters.

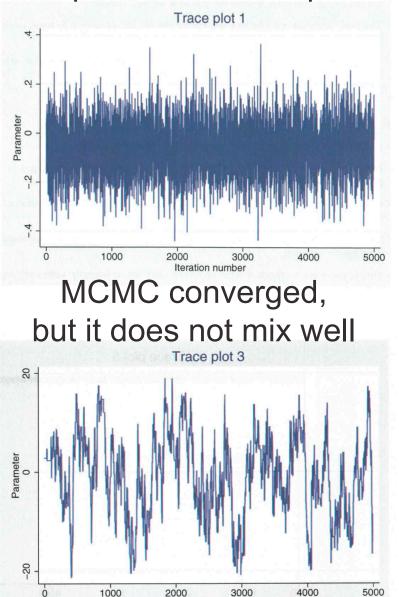
Bayesian logistic results

- Results are comparable with the classical logistic regression because we used fairly noninformative priors
- Specifying informative priors may be useful in the presence of perfect predictors
 - E.g. "Logistic regression model: A case of nonidentifiable parameters" (<u>https://www.stata.com/manuals/bayesbayesmh.pdf</u>)
- bayesmh automatically creates parameters associated with the regression function-regression coefficients-following the style {depvar:varname}. The intercept {depvar:_cons} is automatically included unless option noconstant is specified
- In our example, bayesmh automatically created regression coefficients {low:age}, {low:smoke}, and {low:_cons}
- {low: } is a shortcut for all parameters with equation label low
 - We used this shortcut in option prior() to apply the same normal prior distribution to all coefficients

Trace plots

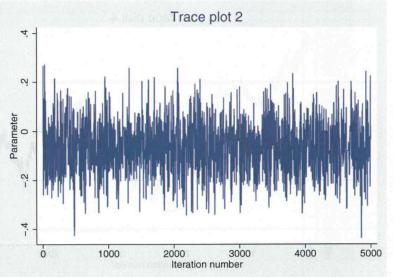
- A trace plot illustrates the values of the simulated parameters against the iteration number and connects consecutive values with a line
- For a well-mixing parameter, the range of the parameter is traversed rapidly by the MCMC chain, which makes the drawn lines look almost vertical and dense
- Sparseness and trends in the trace plot of a parameter suggest convergence problems

Ideal parameter trace plot

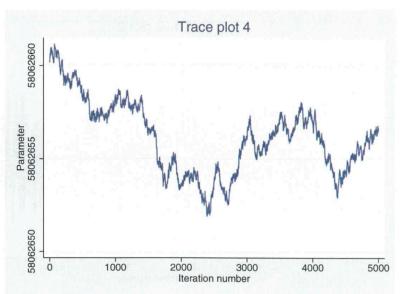


Iteration number

Very good parameter trace plot



MCMC did not converge



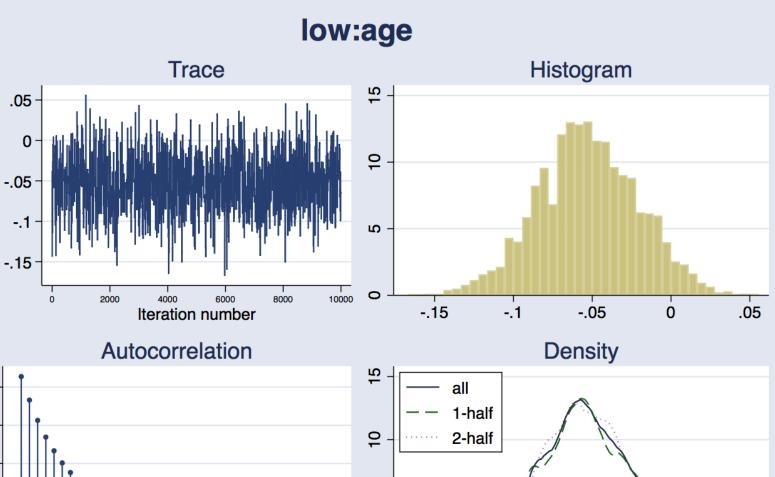
MCMC convergence

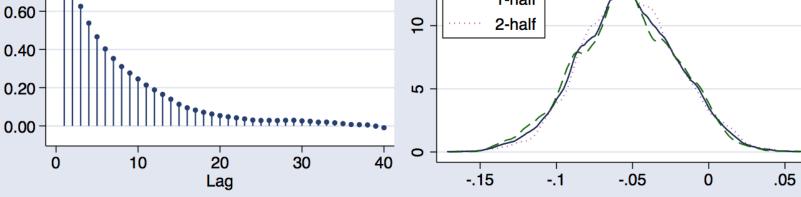
 We can check MCMC convergence for each coefficient separately

bayesgraph diagnostics {low:age}
bayesgraph diagnostics {low:smoke}
bayesgraph diagnostics {low:_cons}

Or altogether

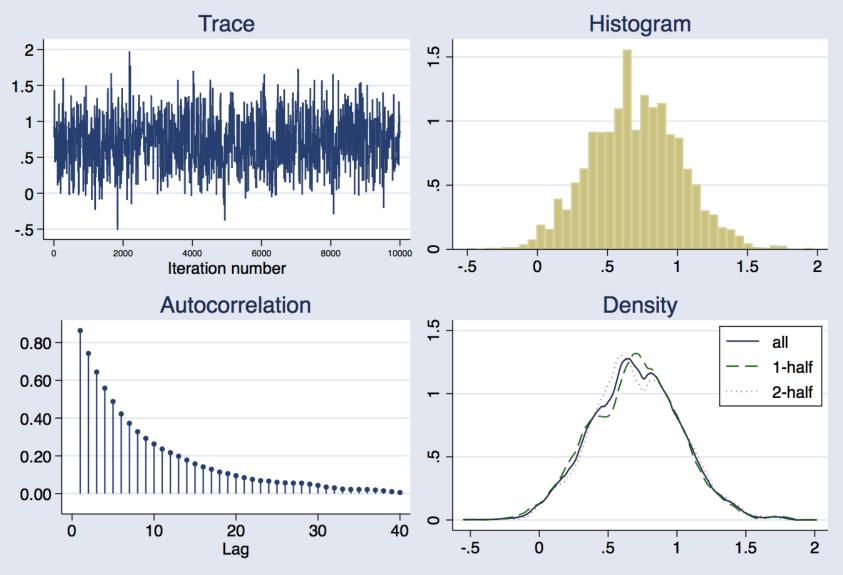
bayesgraph diagnostics {low:}
bayesgraph diagnostics _all



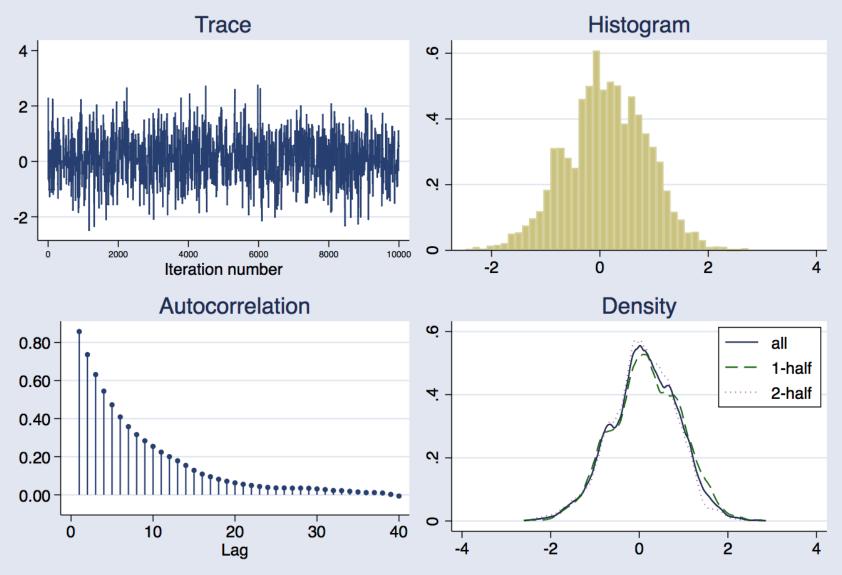


0.80

low:smoke



low:_cons

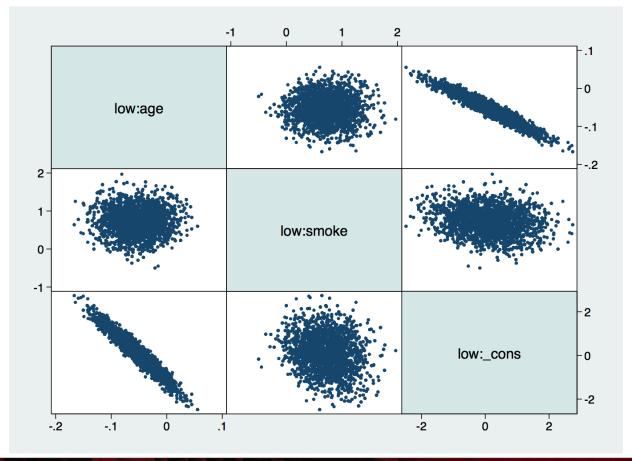


Convergence results

- Trace plots looked reasonable (homogenous)
 - They depict no trends and traverse the parameter range fairly well
- Autocorrelation plots indicated good convergence
 - They reached zero after some lag numbers
 - Specifically, autocorrelations become very small after lag 20
- Density plots illustrated good convergence
 - We want the overall density, the density for the first half and the density for the second half to be similar

Scatterplot matrix _all

- High correlation between constant and age coefficient
 - It generates inefficiency and could affect smoke coefficient



MCMC efficiency

- We can use **bayesstats** ess to check MCMC efficiency of regression coefficients
- Effective sample size (ESS)
 - It informs the amount of independent observations we have within MCMC sample size
- Efficiency = ESS / MCMC sample size
 - Efficiency closer to 1 is better
 - Efficiency > 0.1 is good
 - Efficiency < 0.01 is a concern
- If 0.01 > efficiency < 0.1, we have to look at MCSE (digits of precision)
 - Do we want more digits of precision?
 - It depends on the scales of our parameters of estimation

MCMC efficiency results

. bayesstats ess

Efficiency	summaries	MCMC sample	size =	10,000
------------	-----------	-------------	--------	--------

low	ESS	Corr. time	Efficiency
age	723.10	13.83	0.0723
smoke _cons	635.79 695.13	15.73 14.39	0.0636 0.0695

- All efficiencies look reasonable (none below 0.01)
 - Efficiencies decrease if we add more parameters to the model
 - We want to keep them above 0.01, at least for main parameters
- ESS informs that posterior estimates are based on at least 600 independent observations for each coefficient

Functions of model parameters

- We can use **bayesstats summary** to obtain estimates of any function of model parameters
- E.g., estimate odds ratios (exponentiated coefficients)

```
. bayesstats summary (OR_age:exp({low:age})) (OR_smoke:exp({low:smoke}))
```

```
Posterior summary statistics
```

MCMC sample size = 10,000

OR_age : exp({low:age})
OR_smoke : exp({low:smoke})

					Equal-	tailed
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
OR_age	.9489532	.0304503	.001134	.9479686	.8898292	1.01025
OR_smoke	2.127093	.7120785	.02777	2.003183	1.089626	3.836291

Multiple chains

• Run multiple chains and compute Gelman-Rubin statistic to verify convergence to a single stationary distribution

```
***Chain 1
bayesmh low age smoke, likelihood(logit) ///
                       prior({low:}, normal(0,10000)) rseed(14) ///
                            mcmcsize(20000) saving(chain1 mcmc, replace) ///
                            initial({low:} 0)
estimates store chain1
***Chain 2
bayesmh low age smoke, likelihood(logit) ///
                       prior({low:}, normal(0,10000)) rseed(14) ///
                            mcmcsize(20000) saving(chain2 mcmc, replace) ///
                            initial({low:} 10)
estimates store chain2
***Chain 3
bayesmh low age smoke, likelihood(logit) ///
                       prior({low:}, normal(0,10000)) rseed(14) ///
                            mcmcsize(20000) saving(chain3 mcmc, replace) ///
                            initial({low:} -10)
estimates store chain3
```


Gelman-Rubin statistic

***Install command

net install grubin, from(http://www.stata.com/users/nbalov)

***Estimate Gelman-Rubin statistic
grubin, estnames(chain1 chain2 chain3)

Gelman-Rubin convergence diagnostic

МСМС	sampl	le size	e =	20000	
Numbe	r of	chains	s =	3	

	Rc	95% Ru
low age smoke _cons	1.000179 1.000558 1.000346	1.000104 1.000161 1.000114

 All estimated Rc values are close to 1, which indicates that there is convergence

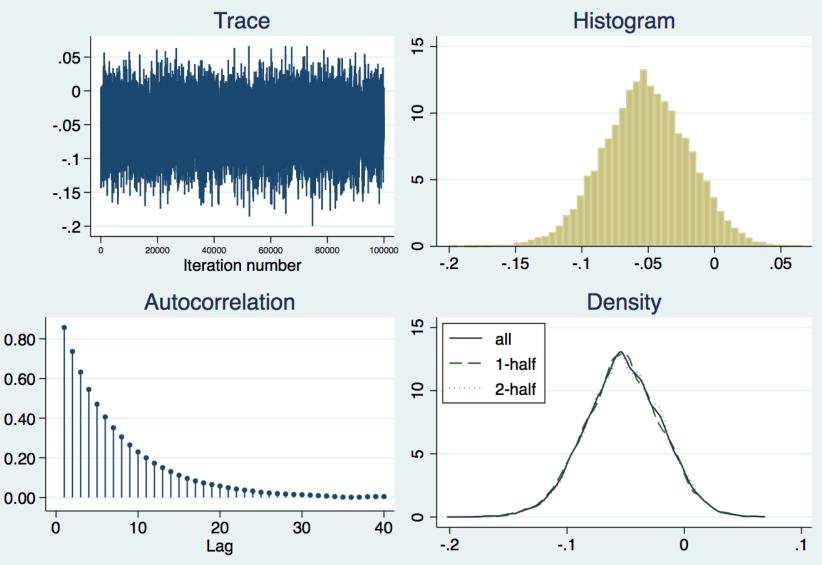
Increase MCMC sample size

 We can increase MCMC sample size to improve precision of our posterior estimates (reduce MCSE)

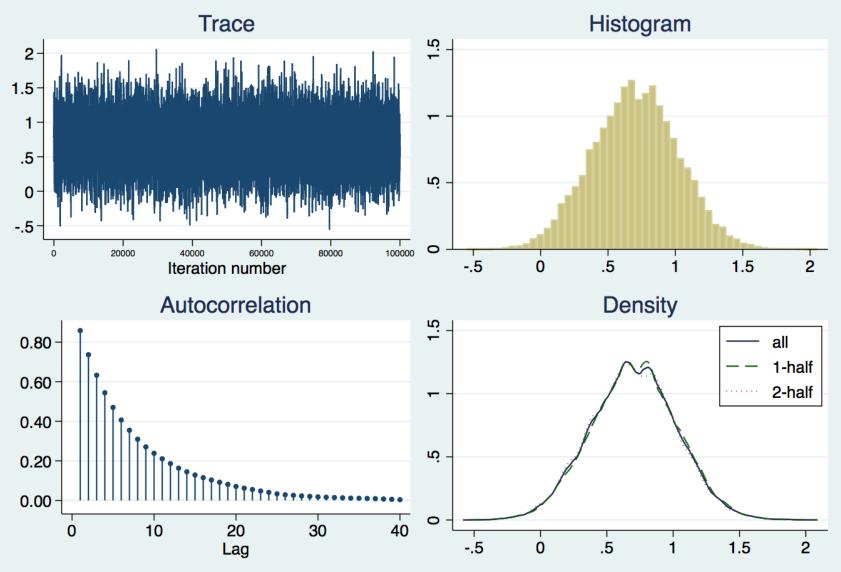
```
set seed 14
bayesmh low age smoke, likelihood(logit) ///
                       prior({low:}, normal(0,10000)) ///
                        mcmcsize(100000)
Bayesian logistic regression
                                                 MCMC iterations =
                                                                       102,500
Random-walk Metropolis-Hastings sampling
                                                                         2,500
                                                 Burn-in
                                                                  =
                                                 MCMC sample size =
                                                                       100,000
                                                 Number of obs
                                                                           189
                                                                  =
                                                 Acceptance rate =
                                                                         .1887
                                                 Efficiency:
                                                                        .07101
                                                              min =
                                                                        .07254
                                                              avg =
Log marginal likelihood = -133.81762
                                                                        .07434
                                                              max =
```

					Equal-tailed		
low	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]	
200	0520744	.0327172	.000379	0522821	117341	.0109098	
age	0520/44	.032/1/2	.000579	0522621	11/341	.0109090	
smoke	.702268	.3242447	.003848	.7017357	.0716997	1.336714	
_cons	.0954346	.7756196	.009123	.099679	-1.417087	1.625152	

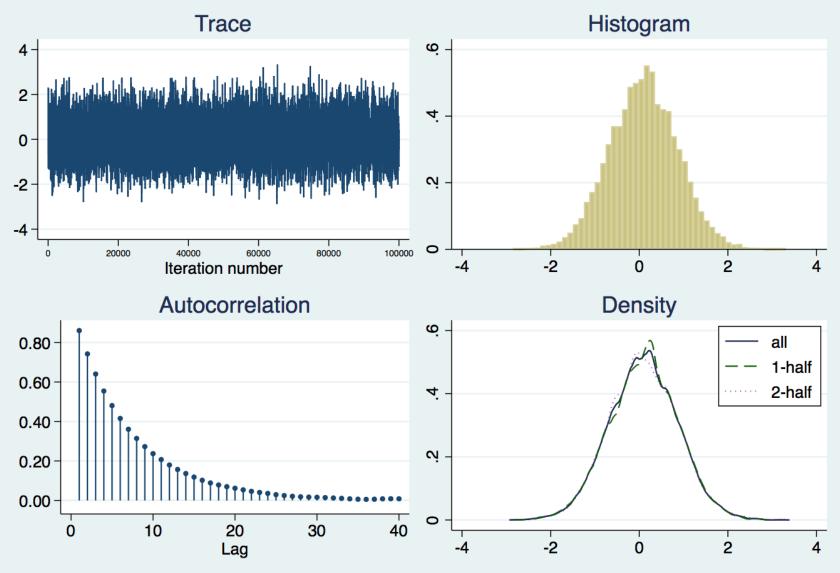
low:age



low:smoke



low:_cons



References

Marchenko, Yulia V. 2018. *Introduction to Bayesian analysis using Stata*. Web-based training, May 1–4. College Station: StataCorp LLC.

StataCorp. 2017. *Stata Bayesian Analysis Reference Manual: Release 15*. College Station: StataCorp LLC. (<u>https://www.stata.com/manuals/bayes.pdf</u>)

