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Bayesian analysis

« Bayesian analysis is a statistical procedure that answers
research questions by expressing uncertainty about
unknown parameters using probabilities

It is based on the fundamental assumption that not only
the outcome of interest but also all the unknown

parameters in a statistical model are essentially random
and are subject to prior beliefs

Observed data sample y is fixed and model parameters 6
are random
— Yy is viewed as a result of a one-time experiment

— A parameter is summarized by an entire distribution of values
instead of one fixed value as in classical frequentist analysis m




How to do Bayesian analysis

Bayesian analysis starts with the specification of a
posterior model

The posterior model describes the probability distribution
of all model parameters conditional on the observed data
and some prior knowledge

The posterior distribution has two components

— Alikelihood, which includes information about model parameters
based on the observed data

— A prior, which includes prior information (before observing the
data) about model parameters

The likelihood and prior models are combined using the
Bayes rule to produce the posterior distribution

Posterior « Likelihood X Prior }W@[




Bayes rule
Prior distribution: p(0) = m7(6)

— Some prior knowledge about 6
— Probability distribution of 6

Likelihood: p(y|6) = f(y;6)
— Observed sample data y about unknown parameter 6
— Probability density function of y given 6

Posterior distribution: p(0]y)
0)p(O6 - 0) (0
o(6ly) _ p(y|0)p(8) _ f(y;6)7(0)

p(y) m(y)

Marginal distribution of y: p(y) = m(y)

— It does not depend on the parameter of interest 6, so equation can

be reduced to

p(Bly) o fly;0)(6) AlM




Markov chain Monte Carlo

» Posterior distributions are rarely available in analytical
forms and often involve multidimensional integrals
— They are commonly estimated via simulation

« Markov chain Monte Carlo (MCMC) sampling is often
used to simulate potentially very complex high-

dimensional posterior distributions

— MCMC is a simulation-based method of estimating posterior
distributions

— It produces a sequence or a chain of simulated values (MCMC
estimates) of model parameters from the estimated posterior
distribution

— If the chain "converges", the sequence represents a sample from
the desired posterior distribution
AlM




MCMC methods in Stata

There are different MCMC methods to estimate the chains
of simulated values

Two more commonly used MCMC methods are
— Metropolis-Hastings (MH) algorithm
— Gibbs algorithm

MCMC methods in Stata

— Adaptive MH

— Adaptive MH with Gibbs updates—hybrid
— Full Gibbs sampling for some models




Stata’s Bayesian commands

Estimation

bayesian estimation Bayesian estimation commands

bayes Bayesian regression models using the bayes prefix
bayesmh Bayesian models using MH

bayesmh evaluators  User-defined Bayesian models using MH

Convergence tests and graphical summaries

bayesgraph Graphical summaries

Postestimation statistics

bayesstats ess Effective sample sizes and related statistics
bayesstats summary  Bayesian summary statistics
bayesstats ic Bayesian information criteria and Bayes factors

Hypothesis testing

bayestest model Hypothesis testing using model posterior probabilities
bayestest interval  Interval hypothesis testing




General syntax

* Built-in models
— Fitting regression models
bayes: stata command ...
— Fitting general models
bayesmh ..., likelihood() prior()

» User-defined models
— Posterior evaluator
bayesmh ..., evaluator()
— Likelihood evaluator with built-in priors
bayesmh ..., llevaluator() prior()

e Postestimation

— Features are the same whether you use a built-in model or
program your own




Bayesian models in Stata

Over 50 built-in likelihoods: normal, lognormal, exponential,
multivariate normal, probit, logit, oprobit, ologit, Poisson, Bernoulli,
binomial, and more

Many built-in priors: normal, lognormal, uniform, gamma, inverse
gamma, exponential, beta, chi square, Jeffreys, multivariate normal,
Zellner's g, Wishart, inverse Wishart, multivariate Jeffreys, Bernoulli,
discrete, Poisson, flat, and more

Continuous, binary, ordinal, categorical, count, censored, truncated,
zero-inflated, and survival outcomes

Univariate, multivariate, and multiple-equation models

Linear, nonlinear, generalized linear and nonlinear, sample-selection,
panel-data, and multilevel models

Continuous univariate, multivariate, and discrete priors

User-defined models: likelihoods and priors }Wﬁ




Bayesian estimation in Stata

Bayesian estimation in Stata is similar to standard
estimation, simply prefix command with “bayes:”

For example, if your estimation command is a linear
regression of y on X

regress y X

Bayesian estimates for this model can be obtained with

bayes: regress y x

You can also refer to “bayesmh” and “bayesmh
evaluators” for fitting more general Bayesian models

The following estimation commands support the bayes

prefix... m




Command

Entry

Description

Linear regression models

regress
hetregress
tobit
intreg
truncreg
mvreg

[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:

Binary-response regression models

logistic
logit
probit
cloglog
hetprobit
binreg
biprobit

[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:

Ordinal-response regression models

ologit
oprobit
zioprobit

[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:

Categorical-response regression models

mlogit
mprobit
clogit

[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:

Count-response regression models

poisson
nbreg
gnbreg
tpoisson
tnbreg
zip

zinb

[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:

regress
hetregress
tobit
intreg
truncreg
mvreg

logistic
logit
probit
cloglog
hetprobit
binreg
biprobit

ologit
oprobit
zioprobit

mlogit
mprobit
clogit

poisson
nbreg
gnbreg
tpoisson
tnbreg
zip

zinb

Linear regression
Heteroskedastic linear regression
Tobit regression

Interval regression

Truncated regression
Multivariate regression

Logistic regression, reporting odds ratios
Logistic regression, reporting coefficients
Probit regression

Complementary log-log regression
Heteroskedastic probit regression

GLM for the binomial family

Bivariate probit regression

Ordered logistic regression
Ordered probit regression
Zero-inflated ordered probit regression

Multinomial (polytomous) logistic regression
Multinomial probit regression
Conditional logistic regression

Poisson regression

Negative binomial regression

Generalized negative binomial regression
Truncated Poisson regression

Truncated negative binomial regression
Zero-inflated Poisson regression
Zero-inflated negative binomial regression




Generalized linear models
glm [BAYES] bayes:

Fractional-response regression models
fracreg
betareg

Survival regression models
streg

Sample-selection regression models
heckman
heckprobit
heckoprobit

Multilevel regression models
mixed
metobit
meintreg
melogit
meprobit
mecloglog
meologit
meoprobit
mepoisson
menbreg
meglm
mestreg

[BAYES] bayes:
[BAYES] bayes:

[BAYES] bayes:

[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:

[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bayes:
[BAYES] bal Go to page 433
[BAYES] bayes: megnm
[BAYES] bayes:

glm

fracreg
betareg

streg

heckman
heckprobit
heckoprobit

mixed
metobit
meintreg
melogit
meprobit
mecloglog
meologit
meoprobit
mepoisson

mestreg

Generalized linear models

Fractional response regression
Beta regression

Parametric survival models

Heckman selection model
Probit regression with sample selection
Ordered probit model with sample selection

Multilevel linear regression

Multilevel tobit regression

Multilevel interval regression

Multilevel logistic regression

Multilevel probit regression

Multilevel complementary log-log regression
Multilevel ordered logistic regression
Multilevel ordered probit regression
Multilevel Poisson regression

Multilevel negative binomial regression
Multilevel generalized linear model
Multilevel parametric survival regression




Summary

Stata provides an entire suite of commands for Bayesian analysis

The bayesmh command and the bayes : prefix are the main
estimation commands

You can use bayesmh to fit built-in models or to program your own

bayesgraph diagnostics produces graphical MCMC diagnostics
including trace and auto-correlation plots

bayesstats ess computes MCMC efficiencies for all model
parameters

bayesstats summary provides MCMS point and interval estimates
for model parameters and their functions

bayestest interval performs interval hypothesis testing

bayestest model computes model posterior probabilities for model
comparison

bayesstats ic computes BFs and DICs for model comparison m




Example of logistic regression

« Study of risk factors of mother (age and smoke)
associated with low birthweight of child (low) from
Hosmer, Lemeshow, and Sturdivant (2013, 24)

. use lbw, clear
(Hosmer & Lemeshow data)

. describe low age smoke

storage
variable name type variable label

low byte birthweight<2500g
age byte age of mother
smoke byte smoked during pregnancy

H Y




Classical logistic regression

. logit low age smoke

Iteration 0: log likelihood -117.336
Iteration 1: log likelihood -113.66733
Iteration 2: log likelihood -113.63815
Iteration 3: log likelihood -113.63815

Logistic regression Number of obs
LR chi2(2)
Prob > chi2
Log likelihood = -113.63815 Pseudo R2

Coef. Std. Err. P>|z]| [95% Conf. Intervall

-.0497792 .031972 0.119 -.1124431 .0128846
.6918486 .3218061 0.032 .0611202 1.322577
.0609051 .7573199 0.936 -1.423415 1.545225

H Y




Bayesian logistic regression

* Fit a Bayesian logistic regression using fairly
noninformative normal priors for all regression coefficients

set seed 14
bayesmh low age smoke, likelihood(logit) prior({low:}, normal(0,10000))

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis—-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs 189

Acceptance rate .1827

Efficiency: min .06358

avg .06847

Log marginal likelihood = -133.87215 max = .07231

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Intervall]

-.0529104 .0320853 .001193 .0534339 -.1167257 .0101978
.7025298 .3220161 .012771 .6947374 .0858349 1.344506
.1201885 .7574915 .028731 .1204548 -1.39823 1.529904




Bayesian logistic regression

« Fit a Bayesian logistic regression with bayes : prefix

set seed 14
bayes: logit low age smoke

Bayesian logistic regression MCMC iterations
Random-walk Metropolis-Hastings sampling Burn-in
MCMC sample size
Number of obs
Acceptance rate
Efficiency: min
avg
Log marginal likelihood = =-133.87215 ma X

Equal-tailed
low Mean Std. Dev. MCSE Median [95% Cred. Interval]

age -.0529104 .0320853 .001193 -.0534339 -.1167257 .0101978
smoke .7025298 .3220161 .012771 .6947374 .0858349 1.344506
_cons .1201885 .7574915 .028731 .1204548 -1.39823 1.529904

Default priors are used for model parameters.




Bayesian logistic results

Results are comparable with the classical logistic regression because
we used fairly noninformative priors

Specifying informative priors may be useful in the presence of perfect
predictors

— E.g. “Logistic regression model: A case of nonidentifiable parameters”
(https://www.stata.com/manuals/bayesbayesmh.pdf)

bayesmh automatically creates parameters associated with the

regression function—regression coefficients—following the style
{depvar.varname}. The intercept {depvar._cons} is automatically
included unless option noconstant is specified

In our example, bayesmh automatically created regression
coefficients {low:age}, {low:smoke}, and {low: cons}

{low:} is a shortcut for all parameters with equation label 1ow

— We used this shortcut in option prior () to apply the same normal prior
distribution to all coefficients A|M




Trace plots

« Atrace plot illustrates the values of the simulated
parameters against the iteration number and connects
consecutive values with a line

For a well-mixing parameter, the range of the parameter
is traversed rapidly by the MCMC chain, which makes the
drawn lines look almost vertical and dense

Sparseness and trends in the trace plot of a parameter
suggest convergence problems

H Y




|deal parameter trace plot  Very good parameter trace plot

Trace plot 1 Trace plot 2
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MCMC convergence

« We can check MCMC convergence for each coefficient
separately

bayesgraph diagnostics {low:age}
bayesgraph diagnostics {low:smoke}

bayesgraph diagnostics {low: cons}

« Or altogether

bayesgraph diagnostics {low:}
bayesgraph diagnostics all




low:age
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low:smoke
Histogram
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Convergence results

« Trace plots looked reasonable (homogenous)

— They depict no trends and traverse the parameter range fairly well

» Autocorrelation plots indicated good convergence
— They reached zero after some lag numbers

— Specifically, autocorrelations become very small after lag 20

* Density plots illustrated good convergence

— We want the overall density, the density for the first half and the
density for the second half to be similar

H Y




Scatterplot matrix

bayesgraph matrix all

« High correlation between constant and age coefficient
— It generates inefficiency and could affect smoke coefficient

low:smoke

low:_cons




MCMC efficiency

We can use bayesstats ess to check MCMC
efficiency of regression coefficients

Effective sample size (ESS)

— It informs the amount of independent observations we have within
MCMC sample size

Efficiency = ESS / MCMC sample size
— Efficiency closer to 1 is better

— Efficiency > 0.1 is good

— Efficiency < 0.01 is a concern

If 0.01 > efficiency < 0.1, we have to look at MCSE (digits
of precision)

— Do we want more digits of precision?

— It depends on the scales of our parameters of estimation




MCMC efficiency results

. bayesstats ess

Efficiency summaries MCMC sample size =

low ESS Corr. time Efficiency

age 723.10 13.83 0.0723
smoke 635.79 15.73 0.0636
_cons 695.13 14.39 0.0695

 All efficiencies look reasonable (none below 0.01)
— Efficiencies decrease if we add more parameters to the model
— We want to keep them above 0.01, at least for main parameters

« ESS informs that posterior estimates are based on at least 600
independent observations for each coefficient




Functions of model parameters

« \We can use bayesstats summary to obtain estimates
of any function of model parameters

« E.g., estimate odds ratios (exponentiated coefficients)

. bayesstats summary (OR_age:exp({low:age})) (OR_smoke:exp({low:smoke}))

Posterior summary statistics MCMC sample size = 10,000

OR_age : exp({low:age})
OR_smoke : exp({low:smoke})

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Intervall

OR_age .9489532 .0304503 .001134 .9479686 .8898292 1.01025
OR_smoke 2.127093 .7120785 .02777 2.003183 1.089626 3.836291




***Chain 1
bayesmh low age

estimates store

***Chain 2
bayesmh low age

estimates store

***Chain 3

bayesmh low age

estimates store

chainl

Multiple chains

« Run multiple chains and compute Gelman-Rubin statistic
to verify convergence to a single stationary distribution

likelihood(logit) ///

prior({low:}, normal(0,10000)) rseed(14)
mcmcsize (20000) saving(chainl_mcmc,
initial ({low:} O0)

likelihood(logit) ///

prior({low:}, normal(0,10000)) rseed(1l4)
mcmcsize (20000) saving(chain2_mcmc,
initial({low:} 10)

likelihood(logit) ///

prior({low:}, normal(0,10000)) rseed(14)
mcmcsize (20000) saving(chain3_mcmc,
initial ({low:} -10)

/1/
replace) ///

/1/
replace) ///

/1/
replace) ///

H Y




Gelman-Rubin statistic

***Install command
net install grubin, from(http://www.stata.com/users/nbalov)

***Estimate Gelman-Rubin statistic
grubin, estnames(chainl chain2 chain3)

Gelman-Rubin convergence diagnostic

MCMC sample size = 20000
Number of chains = 3

age 1.000179 1.000104
smoke 1.000558 1.000161
_cons 1.000346 1.000114

 All estimated Rc values are close to 1, which indicates
that there is convergence

H Y




Increase MCMC sample size

 We can increase MCMC sample size to improve precision of our
posterior estimates (reduce MCSE)

set seed 14

bayesmh low age smoke, likelihood(logit) ///
prior({low:}, normal(0,10000)) ///
mcmcsize (100000)

Bayesian logistic regression MCMC iterations 102,500
Random-walk Metropolis-Hastings sampling Burn-in 2,500
MCMC sample size 100,000

Number of obs 189

Acceptance rate .1887

Efficiency: min .07101

avg .07254

Log marginal likelihood = =-133.81762 max .07434

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Intervall

-.0520744 .0327172 .000379 -.0522821 -.117341 .0109098
.702268 .3242447 .003848 .7017357 .0716997 1.336714
.0954346 .7756196 .009123 .099679 -1.417087 1.625152
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low:_cons
Histogram
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