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Bayesian analysis
• Bayesian analysis is a statistical procedure that answers 

research questions by expressing uncertainty about 
unknown parameters using probabilities

• It is based on the fundamental assumption that not only 
the outcome of interest but also all the unknown 
parameters in a statistical model are essentially random 
and are subject to prior beliefs

• Observed data sample y is fixed and model parameters θ
are random
– y is viewed as a result of a one-time experiment
– A parameter is summarized by an entire distribution of values 

instead of one fixed value as in classical frequentist analysis
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How to do Bayesian analysis
• Bayesian analysis starts with the specification of a 

posterior model
• The posterior model describes the probability distribution 

of all model parameters conditional on the observed data 
and some prior knowledge

• The posterior distribution has two components
– A likelihood, which includes information about model parameters 

based on the observed data
– A prior, which includes prior information (before observing the 

data) about model parameters

• The likelihood and prior models are combined using the 
Bayes rule to produce the posterior distribution

Posterior ∝ Likelihood × Prior
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Bayes rule
• Prior distribution: p(θ) = π(θ)

– Some prior knowledge about θ
– Probability distribution of θ

• Likelihood: p(y|θ) = f(y;θ) 
– Observed sample data y about unknown parameter θ
– Probability density function of y given θ

• Posterior distribution: p(θ|y) 

• Marginal distribution of y: p(y) ≡ m(y) 
– It does not depend on the parameter of interest θ, so equation can 

be reduced to
p(θ|y) ∝ f(y;θ)π(θ) 
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Markov chain Monte Carlo
• Posterior distributions are rarely available in analytical 

forms and often involve multidimensional integrals
– They are commonly estimated via simulation

• Markov chain Monte Carlo (MCMC) sampling is often 
used to simulate potentially very complex high-
dimensional posterior distributions
– MCMC is a simulation-based method of estimating posterior 

distributions
– It produces a sequence or a chain of simulated values (MCMC 

estimates) of model parameters from the estimated posterior 
distribution

– If the chain "converges", the sequence represents a sample from 
the desired posterior distribution
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MCMC methods in Stata
• There are different MCMC methods to estimate the chains 

of simulated values

• Two more commonly used MCMC methods are
– Metropolis-Hastings (MH) algorithm
– Gibbs algorithm

• MCMC methods in Stata
– Adaptive MH
– Adaptive MH with Gibbs updates–hybrid
– Full Gibbs sampling for some models

6



Stata’s Bayesian commands

7



General syntax
• Built-in models

– Fitting regression models
bayes: stata_command ...

– Fitting general models
bayesmh ..., likelihood() prior() ...

• User-defined models
– Posterior evaluator

bayesmh ..., evaluator() ...
– Likelihood evaluator with built-in priors

bayesmh ..., llevaluator() prior() ...

• Postestimation
– Features are the same whether you use a built-in model or 

program your own
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Bayesian models in Stata
• Over 50 built-in likelihoods: normal, lognormal, exponential, 

multivariate normal, probit, logit, oprobit, ologit, Poisson, Bernoulli, 
binomial, and more

• Many built-in priors: normal, lognormal, uniform, gamma, inverse 
gamma, exponential, beta, chi square, Jeffreys, multivariate normal, 
Zellner's g, Wishart, inverse Wishart, multivariate Jeffreys, Bernoulli, 
discrete, Poisson, flat, and more

• Continuous, binary, ordinal, categorical, count, censored, truncated, 
zero-inflated, and survival outcomes

• Univariate, multivariate, and multiple-equation models

• Linear, nonlinear, generalized linear and nonlinear, sample-selection, 
panel-data, and multilevel models

• Continuous univariate, multivariate, and discrete priors

• User-defined models: likelihoods and priors
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Bayesian estimation in Stata
• Bayesian estimation in Stata is similar to standard 

estimation, simply prefix command with “bayes:”

• For example, if your estimation command is a linear 
regression of y on x

regress y x

• Bayesian estimates for this model can be obtained with

bayes: regress y x

• You can also refer to “bayesmh” and “bayesmh
evaluators” for fitting more general Bayesian models

• The following estimation commands support the bayes
prefix...
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Summary
• Stata provides an entire suite of commands for Bayesian analysis
• The bayesmh command and the bayes: prefix are the main 

estimation commands
• You can use bayesmh to fit built-in models or to program your own
• bayesgraph diagnostics produces graphical MCMC diagnostics 

including trace and auto-correlation plots
• bayesstats ess computes MCMC efficiencies for all model 

parameters
• bayesstats summary provides MCMS point and interval estimates 

for model parameters and their functions
• bayestest interval performs interval hypothesis testing
• bayestest model computes model posterior probabilities for model 

comparison
• bayesstats ic computes BFs and DICs for model comparison
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Example of logistic regression
• Study of risk factors of mother (age and smoke) 

associated with low birthweight of child (low) from 
Hosmer, Lemeshow, and Sturdivant (2013, 24)
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Classical logistic regression
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Bayesian logistic regression
• Fit a Bayesian logistic regression using fairly 

noninformative normal priors for all regression coefficients
set seed 14
bayesmh low age smoke, likelihood(logit) prior({low:}, normal(0,10000))
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Bayesian logistic regression
• Fit a Bayesian logistic regression with bayes: prefix
set seed 14
bayes: logit low age smoke
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Bayesian logistic results
• Results are comparable with the classical logistic regression because 

we used fairly noninformative priors

• Specifying informative priors may be useful in the presence of perfect 
predictors

– E.g. “Logistic regression model: A case of nonidentifiable parameters” 
(https://www.stata.com/manuals/bayesbayesmh.pdf)

• bayesmh automatically creates parameters associated with the 
regression function–regression coefficients–following the style 
{depvar:varname}. The intercept {depvar:_cons} is automatically 
included unless option noconstant is specified

• In our example, bayesmh automatically created regression 
coefficients {low:age}, {low:smoke}, and {low:_cons}

• {low:} is a shortcut for all parameters with equation label low
– We used this shortcut in option prior() to apply the same normal prior 

distribution to all coefficients
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Trace plots
• A trace plot illustrates the values of the simulated 

parameters against the iteration number and connects 
consecutive values with a line

• For a well-mixing parameter, the range of the parameter 
is traversed rapidly by the MCMC chain, which makes the 
drawn lines look almost vertical and dense

• Sparseness and trends in the trace plot of a parameter 
suggest convergence problems
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Ideal parameter trace plot Very good parameter trace plot

MCMC converged,
but it does not mix well

MCMC did not converge



MCMC convergence
• We can check MCMC convergence for each coefficient 

separately
bayesgraph diagnostics {low:age}

bayesgraph diagnostics {low:smoke}

bayesgraph diagnostics {low:_cons}

• Or altogether
bayesgraph diagnostics {low:}

bayesgraph diagnostics _all
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Convergence results
• Trace plots looked reasonable (homogenous)

– They depict no trends and traverse the parameter range fairly well

• Autocorrelation plots indicated good convergence
– They reached zero after some lag numbers
– Specifically, autocorrelations become very small after lag 20

• Density plots illustrated good convergence
– We want the overall density, the density for the first half and the 

density for the second half to be similar
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Scatterplot matrix
bayesgraph matrix _all

• High correlation between constant and age coefficient
– It generates inefficiency and could affect smoke coefficient
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• We can use bayesstats ess to check MCMC 
efficiency of regression coefficients

• Effective sample size (ESS)
– It informs the amount of independent observations we have within 

MCMC sample size

• Efficiency = ESS / MCMC sample size
– Efficiency closer to 1 is better
– Efficiency > 0.1 is good
– Efficiency < 0.01 is a concern

• If 0.01 > efficiency < 0.1, we have to look at MCSE (digits 
of precision)
– Do we want more digits of precision?
– It depends on the scales of our parameters of estimation

MCMC efficiency
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• All efficiencies look reasonable (none below 0.01)
– Efficiencies decrease if we add more parameters to the model
– We want to keep them above 0.01, at least for main parameters

• ESS informs that posterior estimates are based on at least 600 
independent observations for each coefficient

MCMC efficiency results
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• We can use bayesstats summary to obtain estimates 
of any function of model parameters

• E.g., estimate odds ratios (exponentiated coefficients)

Functions of model parameters
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Multiple chains
• Run multiple chains and compute Gelman-Rubin statistic 

to verify convergence to a single stationary distribution

***Chain 1
bayesmh low age smoke, likelihood(logit) ///

prior({low:}, normal(0,10000)) rseed(14) ///
mcmcsize(20000) saving(chain1_mcmc, replace) ///
initial({low:} 0)

estimates store chain1

***Chain 2
bayesmh low age smoke, likelihood(logit) ///

prior({low:}, normal(0,10000)) rseed(14) ///
mcmcsize(20000) saving(chain2_mcmc, replace) ///
initial({low:} 10)

estimates store chain2

***Chain 3
bayesmh low age smoke, likelihood(logit) ///

prior({low:}, normal(0,10000)) rseed(14) ///
mcmcsize(20000) saving(chain3_mcmc, replace) ///
initial({low:} -10)

estimates store chain3
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Gelman-Rubin statistic
***Install command
net install grubin, from(http://www.stata.com/users/nbalov)

***Estimate Gelman-Rubin statistic
grubin, estnames(chain1 chain2 chain3)

• All estimated Rc values are close to 1, which indicates 
that there is convergence
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Increase MCMC sample size
• We can increase MCMC sample size to improve precision of our 

posterior estimates (reduce MCSE)
set seed 14
bayesmh low age smoke, likelihood(logit) ///

prior({low:}, normal(0,10000)) ///
mcmcsize(100000)
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