Measures of association

Ernesto F. L. Amaral

February 20-March 6, 2020
Introduction to Social Statistics Using Stata

Outline

- Measure of association for nominal-level variables
- Chi Square
- Measure of association for ordinal-level variables
- Spearman's Rho
- Measures of association for interval-ratio-level variables
- Scatterplots
- Pearson's r
- Analysis of variance (ANOVA)

Measure of association for nominal-level variables

- Chi Square is a test of significance based on bivariate tables
- Bivariate tables are also called cross tabulations, crosstabs, contingency tables
- We are looking for significant differences between
- The actual cell frequencies observed in a table (f_{o})
- And those that would be expected by random chance or if cell frequencies were independent $\left(f_{e}\right)$
. ***Observed frequencies (fo)
. tab migrant sex

migrant	Sex		Male
	Female	Total	
Non-migrant	$\mathbf{1 , 4 6 2 , 3 1 7}$	$\mathbf{1 , 5 3 5 , 0 2 9}$	$\mathbf{2 , 9 9 7 , 3 4 6}$
Internal migrant	$\mathbf{8 8 , 1 5 5}$	$\mathbf{8 1 , 7 1 2}$	$\mathbf{1 6 9 , 8 6 7}$
International migrant	$\mathbf{8 , 4 5 5}$	$\mathbf{8 , 4 3 1}$	$\mathbf{1 6 , 8 8 6}$
Total	$\mathbf{1 , 5 5 8 , 9 2 7}$	$\mathbf{1 , 6 2 5 , 1 7 2}$	$\mathbf{3 , 1 8 4 , 0 9 9}$

. ***Expected frequencies (fe)
. tab migrant sex, exp nofreq

Chi square

$$
\begin{gathered}
f_{e}=\frac{\text { Row marginal } \times \text { Column marginal }}{n} \\
\chi^{2}(\text { obtained })=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}
\end{gathered}
$$

$f_{o}=$ cell frequencies observed in the bivariate table $f_{e}=$ cell frequencies that would be expected if the variables were independent
Degrees of freedom $(d f)=(r-1)(c-1)$
$r=$ number of rows; $c=$ number of columns

Limitations of chi square

- Difficult to interpret
- When variables have many categories
- Best when variables have four or fewer categories
- With small sample size
- We cannot assume that chi square sampling distribution will be accurate
- Small samples are those with a high percentage of cells with expected frequencies of 5 or less
- Like all tests of hypotheses
- Chi square is sensitive to sample size
- As n increases, obtained chi square increases
- Large samples: Trivial relationships may be significant
- Statistical significance (statistical test) is not the same as substantive significance (importance, magnitude)

ACS example: Chi square

- Is migration status different by sex?
- The probability of not rejecting H_{0} is small ($p<0.00$)
- Migration status does depend on respondent's sex
. tab migrant sex, chi col

migrant	Sex		Male
	Female	Total	
Non-migrant	$1,462,317$	$1,535,029$	$2,997,346$
	93.80	94.45	94.13
Internal migrant	88,155	81,712	169,867
	5.65	5.03	5.33
International migrant	8,455	8,431	16,886
	0.54	0.52	0.53
Total	$1,558,927$	$1,625,172$	$3,184,099$
	100.00	100.00	100.00

Source: 2018 American Community Survey.

Percentages, N, missing cases

. tab migrant sex [fweight=perwt], col // percentage \& population size

Key
frequency
column percentage

migrant							
	Male ${ }^{\text {Sex }}$ Female		Total				
Non-migrant	149645178	155097362	304742540				
	93.99	94.38	94.19				
Internal migrant	8660884	8318528	16979412				
	5.44	5.06	5.25				
International migrant	900980	918570	1819550 . tab migrant sex, m // missing cases				
			0.56		Sex		
Total	$\begin{array}{r} 159207042 \\ 100.00 \end{array}$	$\begin{array}{r} 164334460 \\ 100.00 \end{array}$	$\begin{array}{r} 323541502 \\ 100.00 \end{array}$	migrant	Male	Female	Total
				Non-migrant	1,462,317	1,535,029	2,997,346
				Internal migrant	88,155	81,712	169,867
				International migrant	8,455	8,431	16,886
				-	15,691	14,749	30,440
				Total	1,574,618	1,639,921	3,214,539

Edited table

Table 1. Distribution of U.S. population by migration status and sex, 2018

Migration status	Male	Female	Total
Non-migrant	93.99	94.38	94.19
Internal migrant	5.44	5.06	5.25
International migrant	0.57	0.56	0.56
Total	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$
Population size (N)	$159,207,042$	$164,334,460$	$323,541,502$
Sample size (n)	$1,558,927$	$1,625,172$	$3,184,099$
Missing cases	15,691	14,749	30,440
Chi square (df=2)	630.37	p-value $=0.000$	

Source: 2018 American Community Survey.

Measure of association for ordinal-level variables

- Measure of association for ordinal-level variables with a broad range of different scores and few ties between cases on either variable
- Computing Spearman's Rho, Spearman's $\rho\left(r_{s}\right)$

1. It ranks cases from high to low on each variable
2. It uses ranks, not the scores, to calculate Rho

$$
r_{S}=1-\frac{6 \sum D^{2}}{n\left(n^{2}-1\right)}
$$

where $\sum D^{2}$ is the sum of the squared differences in ranks

Interpreting Spearman's Rho

- Spearman's Rho is positive
- As the rank of one variable increases, the rank of the other variable also increases
- Spearman's Rho is negative
- As the rank of one variable increases, the rank of the other variable decreases

ACS example: Spearman's Rho

- Is educational attainment different by age group?
tab educgr agegr, col

Key
frequency column percentage

educgr	agegr								
	0	16	20	25	35	45	55	65	Total
Less than high school	571,701	89,702	10,262	25,198	30,960	35,040	39,879	74,522	877,264
	99.97	52.61	5.51	6.49	8.25	8.52	8.44	11.67	27.29
High school	157	59,928	71,447	119,445	111,837	141,857	184,217	259,161	948,049
	0.03	35.15	38.39	30.78	29.79	34.50	38.97	40.58	29.49
Some college	0	20,766	72,420	93,352	85,507	91,946	107,832	123,053	594,876
	0.00	12.18	38.92	24.05	22.78	22.36	22.81	19.27	18.51
College	0	105	29,469	102,919	85,850	85,309	84,454	98,425	486,531
	0.00	0.06	15.84	26.52	22.87	20.75	17.86	15.41	15.14
Graduate school	0	0	2,495	47,199	61,261	57,053	56,382	83,429	307,819
	0.00	0.00	1.34	12.16	16.32	13.87	11.93	13.06	9.58
Total	571,858	170,501	186,093	388,113	375,415	411,205	472,764	638,590	3,214,539
	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

Source: 2018 American Community Survey.

Spearman's Rho in Stata

. spearman educgr agegr

Number of obs = 3214539
Spearman's rho = 0.4405

Test of Ho: educgr and agegr are independent Prob $>|t|=0.0000$

ACS example: percentages

- Use column percentages from this table
. tab educgr agegr [fweight=perwt], col

Key
frequency column percentage

Source: 2018 American Community Survey.

Edited table

Table 1. Distribution of U.S. population by educational attainment and age group, 2018

Educational attainment	$\mathbf{0 - 1 5}$	$\mathbf{1 6 - 1 9}$	$\mathbf{2 0 - 2 4}$	$\mathbf{2 5 - 3 4}$	$\mathbf{3 5 - 4 4}$	$\mathbf{4 5 - 5 4}$	$\mathbf{5 5 - 6 4}$	$\mathbf{6 5 +}$
Less than high school	99.97	55.79	5.67	6.95	9.59	9.73	9.68	$\mathbf{1 2 . 8 1}$
High school	0.03	33.02	39.11	31.59	30.31	34.20	38.09	39.51
Some college	0.00	11.14	38.86	25.14	23.28	22.69	22.96	19.48
College	0.00	0.05	15.10	25.22	21.84	20.30	17.76	15.44
Graduate school	0.00	0.00	1.27	11.10	14.97	13.09	11.51	12.76
Total	$\mathbf{1 0 0 . 0 0}$							
Population size (N)	$64,950,616$	$17,192,455$	$21,777,990$	$45,277,017$	$41,687,290$	$41,592,338$	$42,282,184$	$52,407,549$
Sample size (n)	571,858	170,501	186,093	388,113	375,415	411,205	472,764	638,590
Spearman's Rho	0.4405	p-value: 0.000						

[^0]
Measures of association for interval-ratio-level variables

- Scatterplots
- Pearson's r
- Analysis of variance (ANOVA)

Scatterplots

- Scatterplots can be used to answer these questions

1. Is there an association?
2. How strong is the association?
3. What is the pattern of the association?

Pattern of the association

- The pattern or direction of association is determined by the angle of the regression line

Positive (a), Negative (b), and Zero (c) Relationships

Source: Healey 2015, p. 345.

Nonlinear associations

- In a nonlinear association, the dots do not form a straight line pattern

Some Nonlinear Relationships

Source: Healey 2015, p. 346.

Income by age

Figure 1. Wage and salary income by age, U.S. 2018

$$
\text { Income }=13,447.38+888.23(\text { Age })
$$

Note: The scatterplot was generated without the ACS complex survey design. The regression was generated taking into account the ACS complex survey design. Only people with some wage and salary income are included.
Source: 2018 American Community Survey (ACS).

Income = F(Age)

***Dependent variable: Wage and salary income (income)
***Independent variable: Age (age)
***Scatterplot with regression line
twoway (scatter income age) (lfit income age) if income!=0, ytitle(Wage and salary income) xtitle(Age)
. svy, subpop(if income!=. \& income!=0): reg income age
(running regress on estimation sample)
Survey: Linear regression

Number of strata	2,351	Number of obs	=	3,214,539
Number of PSUs	$=1,410,976$	Population size	=	327,167,439
		Subpop. no. obs	=	1,574,313
		Subpop. size		163,349,075
		Design df	=	1,408,625
		F(1,1408625)	=	57648.04
		Prob > F	=	0.0000
		R-squared	=	0.0449

income	Linearized				[95\% Conf. Interval]	
age	888.2282	3.699409	240.10	0.000	880.9775	895.479
_cons	13447.38	138.3572	97.19	0.000	13176.21	13718.56

Mean income by age

Figure 1. Mean wage and salary income by age, U.S. 2018

$$
\text { Income }=-73,956.52+5,492.81(\text { Age })-53.36(\text { Age squared })
$$

Note: The line graph was generated taking into account the ACS sample weight. The regression was generated taking into account the ACS complex survey design. Only people with some wage and salary income are included.
Source: 2018 American Community Survey (ACS).

Income $=$ F(Age, Age squared)

***Dependent variable: Wage and salary income (income)
***Independent variables: Age (age), age squared (agesq)
***Generate variable with mean income by age
bysort age: egen mincage=mean(income) if income!=0
***Line graph of income by age
twoway line mincage age [fweight=perwt], ytitle("Mean wage and salary income") ylabel(0(20000)80000)
***Generate age squared
gen agesq=age * age

> svy, subpop(if income!=. \& income!=0): reg income age agesq
> (running regress on estimation sample)

Survey: Linear regression

| Number of strata | $=\mathbf{2 , 3 5 1}$ |
| :--- | :--- | ---: |
| Number of PSUs | $=\mathbf{1 , 4 1 0 , 9 7 6}$ |

Number of obs	$=$	$\mathbf{3 , 2 1 4 , 5 3 9}$
Population size	$=$	$\mathbf{3 2 7 , 1 6 7 , 4 3 9}$
Subpop. no. obs	$=1,574, \mathbf{3 1 3}$	
Subpop. size	$=163, \mathbf{3 4 9 , 0 7 5}$	
Design df	$=$	$\mathbf{1 , 4 0 8 , 6 2 5}$
F(2,1408624)	$=$	$\mathbf{8 5 6 5 2 . 7 8}$
Prob $>$ F	$=$	0.0000
R-squared	$=$	0.0839

| income | Linearized | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] | |
| age | 5492.806 | 20.13499 | 272.80 | 0.000 | 5453.342 | 5532.27 |
| agesq | -53.36376 | .2435244 | -219.13 | 0.000 | $\mathbf{- 5 3 . 8 4 1 0 6}$ | $\mathbf{- 5 2 . 8 8 6 4 6}$ |
| _cons | -73956.52 | 352.3116 | -209.92 | 0.000 | -74647.03 | $\mathbf{- 7 3 2 6 6}$ |

Source: 2018 American Community Survey.

Mean income by age group

. ***Use aweight to get sample size by age group
. table agegr [aweight=perwt] if income!=0, c(mean income sd income n income)

agegr	mean(income)	sd(income)	N (income)
0			0
16	6255.097	10792.61	82,884
20	18744.6	19610.05	146,813
25	42093.8	39527.84	315,787
35	60282.16	65996.67	296,932
45	66337.25	74647.34	315,072
55	63089.86	73052.64	296,653
65	47947.36	72828.89	120,172

Income = F(Age groups)

. ***Reference category: 45-54
. char agegr[omit] 45
. ***Income <- Age groups
. xi: svy, subpop(if income!=. \& income!=0): reg income i.agegr
i.agegr _Iagegr_0-65 (naturally coded; _Iagegr_45 omitted)
(running regress on estimation sample)

Survey: Linear regression

Number of strata	$=2,351$	Number of obs	=	3,214,539
Number of PSUs	$=1,410,976$	Population size	=	327,167,439
		Subpop. no. obs	=	1,574,313
		Subpop. size	=	163,349,075
		Design df	=	1,408,625
		F (6,1408620)	=	62649.13
		Prob > F	=	0.0000
		R-squared	=	0.0808

income	Linearized				[95\% Conf. Interval]	
_Iagegr_0	0	(omitted)				
_Iagegr_16	-60082.15	166.6691	-360.49	0.000	-60408.82	-59755.48
_Iagegr_20	-47592.64	172.1686	-276.43	0.000	-47930.09	-47255.2
_Iagegr_25	-24243.44	181.4771	-133.59	0.000	-24599.13	-23887.76
_Iagegr_35	-6055.089	215.5623	-28.09	0.000	-6477.584	-5632.594
_Iagegr_55	-3247.394	225.8159	-14.38	0.000	-3689.985	-2804.802
_Iagegr_65	-18389.89	299.2292	-61.46	0.000	-18976.37	-17803.41
_cons	66337.25	158.7966	417.75	0.000	66026.01	66648.48

Source: 2018 American Community Survey.

Pearson's r

- Pearson's r is a measure of association for interval-ratio level variables

$$
r=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\left[\sum(X-\bar{X})^{2}\right]\left[\sum(Y-\bar{Y})^{2}\right]}}
$$

- Pearson's r indicate the direction of association
- -1.00 indicates perfect negative association
- 0.00 indicates no association
- +1.00 indicates perfect positive association
- It doesn't have a direct interpretation of strength

Coefficient of determination $\left(r^{2}\right)$

- For a more direct interpretation of the strength of the linear association between two variables
- Calculate the coefficient of determination (r^{2})
- The coefficient of determination informs the percentage of the variation in Y explained by X
- It uses a logic similar to the proportional reduction in error (PRE) measure
-Y is predicted while ignoring the information on X
- Mean of the Y scores: \bar{Y}
-Y is predicted taking into account information on $\mathrm{X} \underset{\mathbf{A}}{\underline{M}}$

ACS example: Pearson's r

. ***Wage and salary income, age, education
. pwcorr income age educ if income!=0 [aweight=perwt], sig

	income	age	educ
income	1.0000		
age	0.2118	1.0000	
	0.0000		
	0.3360	0.6768	1.0000
	0.0000	0.0000	

. $* * *$ Coefficient of determination (r-squared)
. $* * *$ Income and age
. di . 2118^2
.04485924
. $* * *$ Coefficient of determination (r-squared)
. $* * *$ Income and education
. di .3360^2
. 112896

Source: 2018 American Community Survey.

Edited table

Table 1. Pearson's r and coefficient of determination $\left(r^{2}\right)$ for the association of wage and salary income with age and educational attainment, United States, 2018

Independent variable	Pearson's r	Coefficient of determination $\left(\boldsymbol{r}^{2}\right)$
Age	$0.2118^{* * *}$	0.0449
Educational attainment	$0.3360^{* * *}$	0.1129

Note: Pearson's r and coefficient of determination $\left(r^{2}\right)$ were generated taking into account the survey weight of the American Community Survey. *Significant at $p<0.10$; **Significant at $p<0.05$; ${ }^{* * *}$ Significant at $p<0.01$.
Source: 2018 American Community Survey.

Analysis of variance (ANOVA)

- ANOVA can be used in situations where the researcher is interested in the differences in sample means across three or more categories
- How do Protestants, Catholics, and Jews vary in terms of number of children?
- How do Republicans, Democrats, and Independents vary in terms of income?
- How do older, middle-aged, and younger people vary in terms of frequency of church attendance?

Extension of t-test

- We can think of ANOVA as an extension of t-test for more than two groups
- Are the differences between the samples large enough to reject the null hypothesis and justify the conclusion that the populations represented by the samples are different?
- Null hypothesis, H_{0}
$-\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\ldots=\mu_{\mathrm{k}}$
- All population means are similar to each other
- Alternative hypothesis, H_{1}
- At least one of the populations means is different

Between and within differences

- If the H_{0} is true, the sample means should be about the same value
- If the H_{0} is true, there will be little difference between sample means
- If the H_{0} is false
- There should be substantial differences between sample means (between categories)
- There should be relatively little difference within categories
- The sample standard deviations should be small within groups

Likelihood of rejecting H_{0}

- The greater the difference between categories (as measured by the means)
- Relative to the differences within categories (as measured by the standard deviations)
- The more likely the H_{0} can be rejected
- When we reject H_{0}
- We are saying there are differences between the populations represented by the sample

Computation of ANOVA

1. Find total sum of squares (SST)

$$
S S T=\sum X_{i}^{2}-n \bar{X}^{2}
$$

2. Find sum of squares between (SSB)

$$
S S B=\sum n_{k}\left(\bar{X}_{k}-\bar{X}\right)^{2}
$$

- SSB = sum of squares between categories
$-n_{k}=$ number of cases in a category
$-\bar{X}_{k}=$ mean of a category

3. Find sum of squares within (SSW)
SSW = SST - SSB

4. Degrees of freedom

$$
\mathrm{dfb}=k-1
$$

- dfb = degrees of freedom between
- $k=$ number of categories

$$
\mathrm{dfw}=n-k
$$

- dfw = degrees of freedom within
$-n=$ total number of cases
- $k=$ number of categories

Final estimations

5. Find mean square estimates

$$
\begin{aligned}
& \text { Mean square between }=\frac{S S B}{d f b} \\
& \text { Mean square within }=\frac{S S W}{d f w}
\end{aligned}
$$

6. Find the F ratio

$$
F(\text { obtained })=\frac{\text { Mean square between }}{\text { Mean square within }}
$$

Limitations of ANOVA

- Requires interval-ratio level measurement of the dependent variable
- Requires roughly equal numbers of cases in the categories of the independent variable
- Statistically significant differences are not necessarily important (small magnitude)
- The alternative (research) hypothesis is not specific
- It only asserts that at least one of the population means differs from the others

ACS example: ANOVA

- Does at least one category of the race/ethnicity variable have mean income different than the others?
- Not good example for ANOVA, because race/ethnicity variable does not have equal numbers of cases across its categories
. ***Use aweight to get sample size by age group
. table raceth [aweight=perwt] if income!=0, c(mean income sd income n income)

raceth	mean(income)	sd(income)	N(income)
White	55289.18	67964.86	1079026
African American	37183.63	41141.3	138,827
Hispanic	36236.16	40343.66	218,441
Asian	64154.23	75930.09	93,409
Native American	34851.55	38132.45	11,393
Ohter races	44162.79	56520.07	33,217

.
. $* * *$ Total number of cases
. count if raceth!=0 \& income!=. \& income!=0 1,574,313

ANOVA in Stata

- The probability of not rejecting H_{0} is small ($p<0.01$)
- At least one category of the race/ethnicity variable has average income different than the others with a 99\% confidence level
- However, ANOVA does not inform which category has an average income significantly different than the others in 2016
. oneway income raceth if income!=0 [aweight=perwt]

Analysis of Variance				
Source	SS df	MS	F	Prob > F
Between groups	$1.3178 \mathrm{e}+14 \quad 5$	$2.6356 \mathrm{e}+13$	6975.87	0.0000
Within groups	$5.9480 \mathrm{e}+151574307$	$3.7782 \mathrm{e}+09$		
Total	$6.0798 \mathrm{e}+151574312$	$3.8619 \mathrm{e}+09$		
Bartlett's test	equal variances:	chi2(5) = 7	e+04 Pro	chi2 $=0.000$
Source: 2016 Gen	Social Survey.			

Edited table

Table 1. One-way analysis of variance for wage and salary income by race/ethnicity, United States, 2018

Source	Sum of Squares	Degrees of Freedom	Mean of Squares	F-test	Prob > F
Between groups	$1.32 \mathrm{e}+14$	5	$2.64 \mathrm{e}+13$	$6,975.87$	0.0000
Within groups	$5.95 \mathrm{e}+15$	$1,574,307$	$3.78 \mathrm{e}+09$		
Total	$6.08 \mathrm{e}+15$	$1,574,312$	$3.86 \mathrm{e}+09$		

Source: 2018 American Community Survey.

Stata practice time

- Let's run the Stata command file
http://www.ernestoamaral.com/docs/Stata2020a/Stata04.txt

[^0]: Source: 2018 American Community Survey.

