Ordinary least squares regression

Ernesto F. L. Amaral

February 20–March 6, 2020 Introduction to Social Statistics Using Stata

Outline

Introduction

- Partial slopes (β)
- Standardized coefficients (b*)
- Statistical significance (t-test)
- Multiple correlation (R^2)
- Gauss-Markov theorem
- Meaning of linear regression
 - Example: Income = F(age, education)
- Determining normality
 - Example: In(income) = F(age, education)
- Predicted values
- Residual analysis with graphs
 - Example: OLS with age and age squared
- Dummy variables
 - Example: Full OLS model
- All lecture examples: Texas (2018 American Community Survey)

Introduction

- Ordinary least squares (OLS) regression (linear regression)
 - Important technique to estimate associations of several independent variables (*x*₁, *x*₂, ..., *x_k*) with a dependent variable (*y*) at the interval-ratio level of measurement
 - Variables are at the interval-ratio level, but we can include ordinal and nominal variables as dummy variables
 - Each independent variable has a linear relationship with the dependent variable
 - Independent variables are uncorrelated with each other
 - When these and other requirements are violated (as they often are), this technique will produce biased and/or inefficient estimates

Bivariate and multivariate models

• Bivariate (simple) regression equation

$$y = a + bx = \beta_0 + \beta_1 x$$

- $-a = \beta_0 = y$ intercept (constant)
- $-b = \beta_1 = \text{slope}$
- Multivariate (multiple) regression equation

$$y = a + b_1 x_1 + b_2 x_2 = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- $b_1 = \beta_1$ = partial slope of the linear relationship between the first independent variable (x_1) and y
- $-b_2 = \beta_1 =$ partial slope of the linear relationship between the second independent variable (x_2) and y

Multiple regression $y = a + b_1y_1 + b_2y_2 = \beta_0 + \beta_1y_1 + \beta_2y_2$

- $a = \beta_0$ = the *y* intercept (constant), where the regression line crosses the *y* axis
- $b_1 = \beta_1 = partial slope for x_1 on y$
 - β_1 indicates the change in y for one unit change in x_1 , controlling for x_2
- $b_2 = \beta_2 = partial slope for x_2 on y$
 - β_2 indicates the change in y for one unit change in x_2 , controlling for x_1

Partial slopes (β)

- The partial slopes (β) indicate the effect of each independent variable on y
- While controlling for the effect of the other independent variables

- This control is called ceteris paribus
 - Other things equal
 - Other things held constant
 - All other things being equal

Interpretation of partial slopes

• The partial slopes show the effects of the independent variables (x_1, x_2) in their original units

• These values can be used to predict scores on the dependent variable (y)

• Partial slopes must be computed before computing the *y* intercept (β_0)

Formulas of partial slopes $b_1 = \beta_1 = \left(\frac{s_y}{s_1}\right) \left(\frac{r_{y1} - r_{y2}r_{12}}{1 - r_{12}^2}\right)$ $b_2 = \beta_2 = \left(\frac{s_y}{s_2}\right) \left(\frac{r_{y2} - r_{y1}r_{12}}{1 - r_{12}^2}\right)$

- $b_1 = \beta_1$ = partial slope of x_1 on y $b_2 = \beta_2$ = partial slope of x_2 on y s_y = standard deviation of y s_1 = standard deviation of the first independent variable (x_1) s_2 = standard deviation of the second independent variable (x_2) r_{y1} = bivariate correlation between y and x_1
- r_{y2} = bivariate correlation between y and x_2
- r_{12} = bivariate correlation between x_1 and x_2

Formula of constant

• Once $b_1(\beta_1)$ and $b_2(\beta_2)$ have been calculated, use those values to calculate the *y* intercept (β_0)

$$a = \bar{y} - b_1 \bar{x}_1 - b_2 \bar{x}_2$$

$$\beta_0 = \bar{y} - \beta_1 \bar{x}_1 - \beta_2 \bar{x}_2$$

Income = F(age, education)

. ***No weights

. reg income age educgr

Source	SS	df	MS	Numbe	er of obs	=	127,785
Model Residual	8.2170e+13 4.5425e+14	2 127,782	4.1085e+13 3.5549e+09	Prob R-squ	> F Jared	=	0.0000
Total	5.3642e+14	127,784	4.1979e+09	P Root	MSE	=	59623
income	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
age educgr _cons	724.3054 18177.19 -32363.61	11.11857 140.4437 614.972	65.14 129.43 -52.63	0.000 0.000 0.000	702.513 17901.9 -33568.9	2 2 5	746.0976 18452.45 -31158.28

Source: 2018 American Community Survey.

Summary of Stata weights

WEIGHTS IN FREQUENCY DISTRIBUTIONS

Weight unit of	Expand to	Maintain sample size
Discrete	fweight	
		aweight
Continuous	iweight	

WEIGHTS IN STATISTICAL REGRESSIONS should maintain sample size					
Robust standard error	Adjusted R ² , TSS, ESS, RSS				
pweight	aweight				
reg y x, robust	outreg2				

Example: Coefficients (β)

***Complex survey design
svyset cluster [pweight=perwt], strata(strata)

. ***Use complex survey design
. svy: reg income age educgr
(running regress on estimation sample)

Survey: Linear regression

Number	of	strata	=	212
Number	of	PSUs	=	79,499

Number of obs	=	127,785
Population size	=	13,849,398
Design df	=	79,287
F(2, 79286)	=	5751.26
Prob > F	=	0.0000
R-squared	=	0.1652

income	Coef.	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
age	796.3443	11.73077	67.89	0.000	773.3521	819.3366
educgr	16863.33	179.705	93.84	0.000	16511.11	17215.55
_cons	-31880.99	661.937	-48.16	0.000	-33178.38	-30583.59

Source: 2018 American Community Survey.

Standardized coefficients (b*)

- Partial slopes $(b_1 = \beta_1; b_2 = \beta_2)$ are in the original units of the independent variables
 - This makes assessing relative effects of independent variables difficult when they have different units
 - It is easier to compare if we standardize to a common unit by converting to Z scores
- Compute beta-weights (b*) to compare relative effects of the independent variables
 - Amount of change in the standardized scores of y for a one-unit change in the standardized scores of each independent variable
 - While controlling for the effects of all other independent variables
 - They show the amount of change in standard deviations in y for a change of one standard deviation in each x

Formulas

• Formulas for standardized coefficients

$$b_1^* = b_1\left(\frac{s_1}{s_y}\right) = \beta_1^* = \beta_1\left(\frac{s_1}{s_y}\right)$$

$$b_2^* = b_2 \left(\frac{s_2}{s_y}\right) = \beta_2^* = \beta_2 \left(\frac{s_2}{s_y}\right)$$

Standardized coefficients

• Standardized regression equation

$$Z_y = a_z + b_1^* Z_1 + b_2^* Z_2$$

• Z indicates that all scores have been standardized to the normal curve

$$Z_i = \frac{x_i - \bar{x}}{s}$$

The y intercept will always equal zero once the equation is standardized

$$Z_y = b_1^* Z_1 + b_2^* Z_2$$

Example: Standardized beta (b*)

. ***Standardized regression coefficients

- . ***(i.e., standardized partial slopes, beta-weights)
- . ***It does not allow the use of complex survey design
- ***Use pweight to maintain sample size and estimate robust standard errors
 reg income age educgr [pweight=perwt], beta

. reg income age educyr [pwergnt-perwi], be

(sum of wgt is 13,849,398)

Linear regression

Number of obs	=	127,785
F(2, 127782)	=	5873.56
Prob > F	=	0.0000
R-squared	=	0.1652
Root MSE	=	54147

income	Coef.	Robust Std. Err.	t	P> t	Beta
age	796.3443	11.46129	69.48	0.000	.1943233
educgr	16863.33	177.6256	94.94	0.000	.3368842
_cons	-31880.99	649.8899	-49.06	0.000	

Source: 2018 American Community Survey.

Statistical significance (t-test)

• In a simple linear regression, the test of statistical significance for a β coefficient (*t*-test) is estimated as

$$t = \frac{\hat{\beta}}{SE_{\hat{\beta}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{RSS}{df * S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{\sum_{i}(y_i - \hat{y}_i)^2}{\sqrt{\frac{\sum_{i}(x_i - \bar{x})^2}}}}$$

- SE_{β} : standard error of β
- MSE: mean squared error = RSS / df
- RSS: residual sum of squares = $\sum_{i} (y_i \hat{y}_i)^2 = \sum_{i} \hat{e}_i^2$
- *df*: degrees of freedom = *n*–2 for simple linear regression
 - 2 statistics (slope and intercept) are estimated to calculate sum of squares
- S_{xx} : corrected sum of squares for x (total sum of squares)

Statistical power

- Statistical power for regression analysis is the probability of finding a significant coefficient ($\hat{\beta} \neq 0$), when there is a significant relationship in the population ($\beta \neq 0$)
 - Power is dependent on the confidence level, size of coefficient (magnitude), and sample size
 - Small samples might not capture enough variation among observations
 - If we have large samples, we tend to have statistical significance (as measured by *t*-test), even for coefficients ($\hat{\beta}$) with small magnitude

$$\mathbf{t} = \frac{\hat{\beta}}{SE_{\hat{\beta}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{RSS}{df * S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{2}{\frac{KSS}{df * S_{xx}}}}} = \frac{\hat{\beta}}{\sqrt{\frac{\sum_{i}(y_i - \hat{y}_i)^2}{(n-2)\sum_{i}(x_i - \bar{x})^2}}}$$

t distribution (df = 2)

- Bigger the t-test
 - Stronger the statistical significance

Smaller the *p*-value

- Smaller the probability of not rejecting the null hypothesis
- Tend to accept alternative (research) hypothesis

-3.0

-4.0

-2.0

-1.0

0.0

1.0

Example of an estimated *t*

2.0

p-value

3.0

4.0

Decisions about hypotheses

ρ < α	<i>p</i> > α
Reject	Do not reject
Accept	Do not accept
Significance level (α)	Confidence level (success rate)
0.10 (10%)	90%
0.05 (5%)	95%
0.01 (1%)	99%
0.001 (0.1%)	99.9%
	ρ < α

Example: Statistical significance

. ***Use complex survey design

. svy: reg income age educgr (running regress on estimation sample)

Survey: Linear regression

Number	of	strata	=	212
Number	of	PSUs	=	79,499

Number of obs	=	127,785
Population size	=	13,849,398
Design df	=	79,287
F(2, 79286)	=	5751.26
Prob > F	=	0.0000
R-squared	=	0.1652

income	Coef.	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
age	796.3443	11.73077	67.89	0.000	773.3521	819.3366
educgr	16863.33	179.705	93.84	0.000	16511.11	17215.55
_cons	-31880.99	661.937	-48.16	0.000	-33178.38	-30583.59

Source: 2018 American Community Survey.

Multiple correlation (R^2)

- The coefficient of multiple determination (*R*²) measures how much of the dependent variable (*y*) is explained by all independent variables (*x*₁, *x*₂, *x*₃, ..., *x_k*) combined
- R² is an estimation of the percentage of the variation in y that is explained by variations in all independent variables in the population
- The coefficient of multiple determination is an indicator of the strength of the entire regression equation

R² estimation

 For a regression with two independent variables, this is the equation to estimate R²

$$R^{2} = r_{y1}^{2} + r_{y2.1}^{2} \left(1 - r_{y1}^{2}\right)$$

- $-R^2$ = coefficient of multiple determination
- $-r_{y1}^2$ = coefficient of determination for *y* and x_1 (or amount of variation in *y* explained by x_1)
- $r_{y2,1}^2$ = partial correlation of *y* and *x*₂, while controlling for *x*₁ (or amount of variation in *y* explained by *x*₂, after *x*₁ is controlled)
- $-(1-r_{y1}^2)$ = amount of variation remaining in *y*, after controlling for x_1

Partial correlation of y and x_2

• Before estimating R^2 , we need to estimate the partial correlation of y and x_2 , while controlling for x_1 ($r_{y2.1}$)

$$r_{y2.1} = \frac{r_{y2} - (r_{y1})(r_{12})}{\sqrt{1 - r_{y1}^2}\sqrt{1 - r_{12}^2}}$$

- We need three correlations
 - Bivariate correlation between y and $x_1(r_{y1})$
 - Bivariate correlation between y and $x_2(r_{y2})$
 - Bivariate correlation between x_1 and x_2 (r_{12})

Explaining R^2 estimation $R^2 = r_{y_1}^2 + r_{y_{2,1}}^2 (1 - r_{y_1}^2)$

- If the partial correlation of y and x_2 , while controlling for x_1 ($r_{y2.1}$), is not equal to zero
 - $-R^2$ will necessarily increase by adding x_2
 - Any variable x will have a non-zero correlation with y
 - In real databases, y and any x don't have correlation exactly equal to zero
- Thus, more independent variables (even if not related to theory) will generate higher R²

R² and independent variables

- Selection of independent variables based on R² size might generate unreasonable models
- There is nothing in the hypotheses of linear models that require a minimum value for *R*²
- Models with small R² might mean that we didn't include important independent variables
 - It doesn't mean necessarily that non-observed factors (residuals) are correlated with independent variables
- *R*² size doesn't have influence on the mean of residuals being equal to zero

R^2 in terms of variance

• R^2 can also be written in terms of variance of y in the population (σ_y^2) and variance of error term (residual u) in the population (σ_u^2)

$$R^2 = 1 - \sigma_u^2 / \sigma_y^2$$

 R² is the proportion of variation in y explained by all independent variables

$R^{2} = ESS / TSS$ $R^{2} = 1 - RSS / TSS$ $R^{2} = 1 - (RSS/n) / (TSS/n)$

- Explained sum of squares (ESS), model sum of squares
- Residual sum of squares (RSS)
- Total sum of squares (TSS)

Adjusted R²

• We can replace RSS/*n* and TSS/*n* by nonbiased terms for σ_u^2 and σ_v^2

Adjusted $R^2 = 1 - [RSS/(n-k-1)] / [TSS/(n-1)]$

- Adjusted R^2 doesn't correct for possible bias of R^2 estimating the true population R^2
- But it penalizes for the inclusion of redundant independent variables
- -k is the number of independent variables
- Negative adjusted R^2 indicates a poor overall fit

Adjusted
$$R^2 = 1 - \frac{\frac{1-R^2}{n-1}}{n-k-1}$$

Comparing models

 We can compare adjusted R² of models with different forms of independent variables

$$y = \beta_0 + \beta_1 \log(x) + u$$
$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$$

- We cannot use R² or adjusted R² to choose between different forms of dependent variable
- Different forms of y have different amounts of variation to be explained

Example: *R*², Adjusted *R*²

***Use aweight to estimate adjusted R-squared
 ***pweight and complex survey design omit sum of squares and adjusted R-squared
 reg income age educgr [aweight=perwt]
 (sum of wgt is 13,849,398)

Source	SS	df	MS	Numbe	er of obs	=	127,785
Model	7.4126e+13	2	3.7063e+13	Prob	127782) > F	=	12641.17 0.0000
Residual	3.7465e+14	127,782	2.9319e+09	R-sq	uared	=	0.1652
		407 704		Adj I	R-squared	=	0.1652
lotal	4.4877e+14	127,784	3.5120e+09	Root	MSE	=	54147
income	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
age	796.3443	10.53436	75.59	0.000	775.6972	2	816.9915
educgr	16863.33	128.6752	131.05	0.000	16611.13	3	17115.53
_cons	-31880.99	554.2213	-57.52	0.000	-32967.25	5	-30794.72

Gauss-Markov theorem

- The Gauss-Markov theorem states that if the linear regression model satisfies classical assumptions
 - Then ordinary least squares (OLS) regression produces unbiased estimates that have the smallest variance of all possible linear estimators
 - Best Linear Unbiased Estimators (BLUEs)

Linear in parameters

- The regression model is linear in the coefficients and the error term
 - All terms in the model are either the constant or a parameter multiplied by an independent variable
 - The population model can be written as

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_k x_k + e$$

- $-\beta_0, \beta_1, ..., \beta_k$ represent unknown parameters
- Error term is known as the residual (e, ϵ , or u)
 - It is an unobserved random error
 - It is the variation in y that the model doesn't explain
- We should have a random sample of *n* observations for the population model

Conditional mean equals zero

- The error term has as population mean of zero
 - The expected value (mean) of the unobserved random error (e) is zero, given any values of the independent variables
 - $-\operatorname{\mathsf{E}}(e|x_1,x_2,\ldots,x_k)=0$
- Residuals = $e = y_i \hat{y}_i$
 - Observed minus fitted
 - Observed minus predicted
 - Sum of residuals (population mean) should be zero

All x are uncorrelated with e

- All independent variables (*x*) are uncorrelated with the error term (*e*)
 - If an independent variable is correlated with the error term, the independent variable can be used to predict the error term
 - This violates the notion that the error term represents unpredictable random error
- This assumption is referred to as exogeneity
 - When this type of correlation exists, there is endogeneity
 - There is reverse causality between independent and dependent variables, omitted variable bias, or measurement error

Uncorrelated observations of e

- Observations of the error term (e) are uncorrelated with each other
 - One observation of the error term should not predict the next observation
- Verify by graphing the residuals in the order that the data was collected
 - We want to see randomness in the plot

Example: observations of e are correlated

Source: https://statisticsbyjim.com/regression/ols-linear-regression-assumptions/

No perfect collinearity

- No independent variable is a perfect linear function of other independent variables
 - No independent variable is constant and there are no exact linear relations among independent variables
- Independent variables should be associated among themselves, but there should be no perfect collinearity
 - e.g., one variable should not be the multiple of another one
- High levels of correlation among independent variables and small sample size increase standard errors of β
 - This decreases statistical significance: $t = \beta / SE_{\beta}$
- High correlation (but not perfect) among independent variables is not desirable (multicollinearity)

Homoscedasticity

- The error term has a constant variance (no heteroscedasticity)
 - Variance of errors (e) should be consistent for all observations
 - Variance does not change for each observation or range of observations
 - If this assumption is violated, the model has heteroscedasticity
- Optional: Error terms should be normally distributed
 Homoscedasticity
 Heteroscedasticity

Meaning of linear regression

- Ordinary least squares regression is commonly named linear regression
 - But it allows us to include non-linear associations
 - The model is linear in the parameters: β_0 , β_1 ...
- There are no restrictions of how y and x are associated with the original dependent and independent variables
 - We can use natural logarithm, squared values, squared root, dummy independent variables...
 - The interpretation of coefficients depends of how y and x are estimated and included in the regression

Interpretation of coefficients

• An increase of one unit in x increases y by β_1 units

 $y = \beta_0 + \beta_1 x + e$

• An increase of 1% in x increases y by $(\beta_1/100)$ units

 $y = \beta_0 + \beta_1 log(x) + e$

- An increase of one unit in x increases y by $(100^*\beta_1)\%$
 - Exact percentual change with semi-elasticity $\{[exp(\beta_1) 1]^*100\}$

$$log(y) = \beta_0 + \beta_1 x + e$$

- An increase of 1% in x increases y by β_1 %
 - Constant elasticity model
 - Elasticity is the ratio of the percentage change in *y* to the percentage change in *x*

$$log(y) = \beta_0 + \beta_1 log(x) + e$$

Logarithm functional forms

Model	Dependent variable	Independent variable	Interpretation of β_1
linear	У	Х	Δ y=β 1Δx
linear-log	У	log(x)	∆y=(β₁/100)%∆x
log-linear (semi-log)	log(y)	Х	%∆y=(100β ₁)∆x
log-log	log(y)	log(x)	%∆y=β ₁ %∆x

Income = F(age, education)

. ***Use complex survey design
. svy: reg income age educgr
(running regress on estimation sample)

Survey: Linear regression

Number	of	strata	=	212
Number	of	PSUs	=	79,499

Number of obs	=	127,785
Population size	=	13,849,398
Design df	=	79,287
F(2, 79286)	=	5751.26
Prob > F	=	0.000
R-squared	=	0.1652

income	Coef.	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
age	796.3443	11.73077	67.89	0.000	773.3521	819.3366
educgr	16863.33	179.705	93.84	0.000	16511.11	17215.55
_cons	-31880.99	661.937	-48.16	0.000	-33178.38	-30583.59

Source: 2018 American Community Survey.

Interpretation of coefficients

(income with continuous independent variables)

- Coefficient for <u>age</u> equals 796.34
 - When age increases by one unit, income increases on average by <u>796.34 dollars</u>, controlling for education
- Coefficient for <u>education</u> equals 16,863.33
 - When education increases by one unit, income increases on average by <u>16,863.33 dollars</u>, controlling for age

Standardized coefficients

- . ***Standardized regression coefficients
- . ***(i.e., standardized partial slopes, beta-weights)
- . ***It does not allow the use of complex survey design
- . ***Use pweight to maintain sample size and estimate robust standard errors
- . reg income age educgr [pweight=perwt], beta

(sum of wgt is 13,849,398)

Linear regression

Number of obs	=	127,785
F(2, 127782)	=	5873.56
Prob > F	=	0.0000
R-squared	=	0.1652
Root MSE	=	54147

Beta	P> t	t	Robust Std. Err.	Coef.	income
.1943233	0.000	69.48	11.46129	796.3443	age
.3368842	0.000	94.94	177.6256	16863.33	educgr
	0.000	-49.06	649.8899	-31880.99	_cons

Source: 2018 American Community Survey.

Interpretation of standardized

(income with continuous independent variables)

- Coefficient for <u>age</u> equals 0.1943
 - When age increases by one standard deviation, income increases on average by <u>0.1943 standard</u> <u>deviations</u>, controlling for education
- Coefficient for <u>education</u> equals 0.3369
 - When education increases by one standard deviation, income increases on average by <u>0.3369 standard</u>
 <u>deviations</u>, controlling for age

Adjusted R^2

. ***Use aweight to estimate adjusted R-squared

. ***pweight and complex survey design omit sum of squares and adjusted R-squared
. reg income age educgr [aweight=perwt]

(sum of wgt is 13,849,398)

Source	SS	df	MS	Numbe	er of obs 127782)	; =	127,785 12641,17
Model Residual	7.4126e+13 3.7465e+14	2 127,782	3.7063e+13 2.9319e+09	B Prob R-squ	> F lared	= = ! =	0.0000 0.1652 0.1652
Total	4.4877e+14	127,784	3.5120e+09	Root	MSE	=	54147
income	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
age educgr _cons	796.3443 16863.33 -31880.99	10.53436 128.6752 554.2213	75.59 131.05 -57.52	0.000 0.000 0.000	775.69 16611. -32967.	13 25	816.9915 17115.53 -30794.72

Determining normality

- Some statistical methods require random selection of respondents from a population with normal distribution for its variables
 - OLS regressions require normal distribution for its interval-ratio-level variables
 - We can analyze histograms, boxplots, outliers, quantile-normal plots, and measures of skewness and kurtosis to determine if variables have a normal distribution

Histogram of income

Source: 2018 American Community Survey.

Boxplot of income

Quantile-normal plots

- A quantile-normal plot is a scatter plot
 - One axis has quantiles of the original data
 - The other axis has quantiles of the normal distribution
- If the points do not form a straight line or if the points have a non-linear symmetric pattern
 - The variable does not have a normal distribution
- If the pattern of points is roughly straight
 - The variable has a distribution close to normal
- If the variable has a normal distribution
 - The points would exactly overlap the diagonal line

Quantile-normal plots reflect distribution shapes

Source: Hamilton 1992, p.16.

Quantile-normal plot of income

Skewness

- Skewness is a measure of symmetry
 - A distribution is symmetric if it looks the same to the left and right of the center point
 - Skewness for a normal distribution is zero
 - Negative values for the skewness indicate variable is skewed to the left (left tail is long relative to the right tail)
 - Positive values for the skewness indicate variable is skewed to the right (right tail is long relative to the left tail)
- Rule of thumb
 - Skewness between –0.5 and 0.5: variable is fairly symmetrical
 - Skewness between –1 and –0.5 or between 0.5 and 1: variable moderately skewed
 - Skewness less than –1 or greater than 1: variable is highly skewed

Kurtosis

- Kurtosis is a measure of whether the data are heavytailed or light-tailed relative to a normal distribution
 - Variables with high kurtosis tend to have heavy tails or outliers
 - Variables with low kurtosis tend to have light tails or lack of outliers
 - A uniform distribution would be the extreme case
 - The kurtosis for a standard normal distribution is three
- Excess kurtosis
 - Some sources subtract 3 from the kurtosis
 - The standard normal distribution has an excess kurtosis of zero
 - Positive excess kurtosis indicates a "heavy-tailed" distribution
 - Negative excess kurtosis indicates a "light tailed" distribution

Skewness and Kurtosis

. sum income if income!=0 [fweight=perwt], d

income					
	Percentiles	Smallest			
1%	500	4			
5%	2400	4			
10%	5600	4	Obs	13,849,398	
25%	16000	4	Sum of Wgt.	13,849,398	
50%	34000		Mean	48713.66	
		Largest	Std. Dev.	59261.63	
75%	60000	468000			
90%	100000	468000	Variance	3.51e+09	
95%	136000	468000	Skewness	4.20286	
99%	468000	468000	Kurtosis	27.61478	

Power transformation

• Lawrence Hamilton ("Regression with Graphics", 1992, p.18–19)

 $y^{3} \rightarrow q = 3$ $y^{2} \rightarrow q = 2$ $y^{1} \rightarrow q = 1$ $y^{0.5} \rightarrow q = 0.5$ $\log(y) \rightarrow q = 0$ $-(y^{-0.5}) \rightarrow q = -0.5$ $-(y^{-1}) \rightarrow q = -1$

- *q* > 1: reduce concentration on the right (reduce negative skew)
- q = 1: original data
- q < 1: reduce concentration on the left (reduce positive skew)
- log(x+1) may be applied when x=0. If distribution of log(x+1) is normal, it is called lognormal distribution

Histogram of log of income

Boxplot of log of income

Quantile-normal plot of log of income

Source: 2018 American Community Survey.

Skewness and Kurtosis

. sum lnincome [fweight=perwt], d

		lnincome		
	Percentiles	Smallest		
1%	6.214608	1.386294		
5%	7.783224	1.386294		
10%	8.630522	1.386294	Obs	13,849,398
25%	9.680344	1.386294	Sum of Wgt.	13,849,398
50%	10.43412		Mean	10.22871
		Largest	Std. Dev.	1.233225
75%	11.0021	13.05622		
90%	11.51293	13.05622	Variance	1.520844
95%	11.82041	13.05622	Skewness	-1.123294
99%	13.05622	13.05622	Kurtosis	5.349345

Source: 2018 American Community Survey.

Interpretation of In(income)

(with continuous independent variables)

- With the logarithm of the dependent variable
 - Coefficients are interpreted as percentage changes
- If coefficient of x_1 equals 0.12
 - $-\exp(\beta_1)$ times
 - x₁ increases by one unit, y increases on average <u>1.13 times</u>, controlling for other independent variables
 - $100*[exp(\beta_1)-1]$ percent
 - x₁ increases by one unit, y increases on average by <u>13%</u>, controlling for other independent variables
- If coefficient has a small magnitude: $-0.3 < \beta < 0.3$
 - $-100^*\beta$ percent
 - x₁ increases by one unit, y increases on average
 <u>approximately by 12%</u>, controlling for other independents

In(income) = F(age, education)

. ***Use complex survey design

svy: reg lnincome age educgr

(running **regress** on estimation sample)

Survey: Linear regression

a = 212	Number of obs	=	127,785
= 79,499	Population size	=	13,849,398
	Design df	=	79,287
	F(2, 79286)	=	7451.80
	Prob > F	=	0.0000
	a = 212 = 79,499	a = 212 Number of obs = 79,499 Population size Design df F(2, 79286) Prob > F	a = 212 Number of obs = = 79,499 Population size = Design df = F(2, 79286) = Prob > F =

lnincome	Coef.	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0224959	.0003153	71.35	0.000	.0218779	.0231139
educgr	.3381717	.0032453	104.20	0.000	.331811	.3445324
_cons	8.34881	.0175456	475.84	0.000	8.31442	8.383199

R-squared

0.1932

=

Source: 2018 American Community Survey.

Exponential of coefficients

. ***Automatically see exponential of coefficients
. svy: reg lnincome age educgr, eform(Exp. Coef.)
(running regress on estimation sample)

Survey: Linear regression

Number	of	strata	=	212	Number
Number	of	PSUs	=	79,499	Popula
					Design

Number of obs	=	127,785
Population size	=	13,849,398
Design df	=	79,287
F(2, 79286)	=	7451.80
Prob > F	=	0.0000
R-squared	=	0.1932

lnincome	Exp. Coef.	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
age	1.022751	.0003225	71.35	0.000	1.022119	1.023383
educgr	1.402381	.0045511	104.20	0.000	1.393489	1.41133
_cons	4225.149	74.13273	475.84	0.000	4082.319	4372.976

Source: 2018 American Community Survey.

Interpretation of age

(income with continuous independent variables)

- Coefficient for <u>age</u> equals 0.0225
 - $-\exp(\beta_1)$ times
 - When age increases by one unit, income increases on average by <u>1.0228 times</u>, controlling for education
 - $100*[exp(\beta_1)-1]$ percent
 - When age increases by one unit, income increases on average by <u>2.28%</u>, controlling for education
 - $-100^*\beta_1$ percent
 - When age increases by one unit, income increases on average approximately by 2.25%, controlling for education

Interpretation of education

(income with continuous independent variables)

- Coefficient for <u>education</u> equals 0.3382
 - $-\exp(\beta_1)$ times
 - When education increases by one unit, income increases on average by <u>1.4024 times</u>, controlling for age
 - $100*[exp(\beta_1)-1]$ percent
 - When education increases by one unit, income increases on average by <u>40.24%</u>, controlling for age
 - $100^*\beta_1$ percent
 - When education increases by one unit, income increases on average <u>approximately by 33.82%</u>, controlling for age

Standardized coefficients

- . ***Standardized regression coefficients
- ***(i.e., standardized partial slopes, beta-weights)
- *****It does not allow the use of complex survey design**
- *****Use pweight to maintain sample size and estimate robust standard errors**
- reg lnincome age educgr [pweight=perwt], beta

(sum of wgt is 13,849,398)

Linear regression	Number of obs	=	127,785
	F(2, 127782)	=	7996.52
	Prob > F	=	0.0000
	R-squared	=	0.1932
	Root MSE	=	1.1077

Beta	P> t	t	Robust Std. Err.	Coef.	lnincome
.2637902	0.000	75.76	.0002969	.0224959	age
.3246429	0.000	106.70	.0031694	.3381717	educgr
	0.000	501.41	.0166508	8.34881	_cons

Source: 2018 American Community Survey.

Interpretation of standardized

(income with continuous independent variables)

- Coefficient for <u>age</u> equals 0.2638
 - $-\exp(\beta_1)$ times
 - When age increases by one standard deviation, income increases on average by <u>1.3019 times</u>, controlling for education
 - $100*[exp(\beta_1)-1]$ percent
 - When age increases by one standard deviation, income increases on average by <u>30.19%</u>, controlling for education
 - $-100^*\beta_1$ percent
 - When age increases by one standard deviation, income increases on average <u>approximately by 26.38%</u>, controlling for education

Adjusted R^2

. ***Use aweight to estimate adjusted R-squared
. ***pweight and complex survey design omit sum of squares and adjusted R-squared
. reg lnincome age educgr [aweight=perwt]
(sum of wgt is 13,849,398)

Source	SS	df	MS	Number of obs	=	127,785
	K			F(2, 127782)	=	15298.69
Model	37544.8387	2	18772.4194	Prob > F	=	0.0000
Residual	156796.221	127,782	1.22706031	R-squared	=	0.1932
				Adj R-squared	=	0.1932
Total	194341.059	127,784	1.52085597	Root MSE	=	1.1077

lnincome	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0224959	.0002155	104.39	0.000	.0220735	.0229183
educgr	.3381717	.0026324	128.47	0.000	.3330122	.3433311
_cons	8.34881	.0113381	736.35	0.000	8.326587	8.371032

Predicted values

- We can estimate the predicted values of the dependent variable for each individual in the dataset
- Use the estimated coefficients from the regression model

$$y_i' = \hat{y}_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}$$

Predicted income

Income = F(age, education)

income	Coef.	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
age	796.3443	11.73077	67.89	0.000	773.3521	819.3366
educgr	16863.33	179.705	93.84	0.000	16511.11	17215.55
_cons	-31880.99	661.937	-48.16	0.000	-33178.38	-30583.59

- Use the regression equation to predict income for someone with 45 years of age and college education $\hat{y} = -31,880.99 + 796.34(age) + 16,863.33(educgr)$ $\hat{y} = -31,880.99 + (796.34)(45) + (16,863.33)(4)$ $\hat{y} = 71,407.63$
- Under these conditions, we would predict 71,407.63 dollars for that individual

Source: 2018 American Community Survey.

Predicted income by age

Source: 2018 American Community Survey.

Predicted income by education

Source: 2018 American Community Survey.

Predicted log of income

In(income) = F(age, education)

lnincome	Coef.	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0224959	.0003153	71.35	0.000	.0218779	.0231139
educgr	.3381717	.0032453	104.20	0.000	.331811	.3445324
_cons	8.34881	.0175456	475.84	0.000	8.31442	8.383199

 Use the regression equation to predict log of income for someone with 45 years of age and college education

 $ln(\hat{y}) = 8.3488 + 0.0225(age) + 0.3382(educgr)$

 $ln(\hat{y}) = 8.3488 + (0.0225)(45) + (0.3382)(4)$

$$ln(\hat{y}) = 10.7141$$

 $\hat{y} = 44,985.70$

 Under these conditions, we would predict 44,985.70 dollars for that individual

Source: 2018 American Community Survey.

Predicted In(income) by education

Exponential of predicted In(income) by age

Exponential of predicted In(income) by education

Source: 2018 American Community Survey.

Residual analysis with graphs

- Homoscedasticity assumption
 - The variance of *y* scores is uniform for all values of *x*
 - If the y scores are evenly spread above and below the regression line for the entire length of the line, the association is homoscedastic
- The same assumption applies to residuals
 - Difference between observed value (y) and predicted value (\hat{y})
 - $-e=y-\hat{y}$
 - We can plot residuals against predicted values \hat{y} (which summarize all x variables)

Microdata

	age	educgr	income	predincome	resincome	lnincome	predlnincome	reslnincome
1	21	2	3200	18568.9	-15368.9	8.070906	9.497567	-1.426661
2	20	2	35000	17772.56	17227.44	10.4631	9.475071	.9880321
3	31	2	10000	26532.34	-16532.34	9.21034	9.722527	5121856
4	39	4	30000	66629.76	-36629.75	10.30895	10.57884	2698844
5	18	2	1500	16179.87	-14679.87	7.313221	9.430079	-2.116859
6	25	1	13000	4890.951	8109.049	9.472705	9.249379	.2233258
7	20	3	5600	34635.88	-29035.88	8.630522	9.813243	-1.182721
8	34	2	65000	28921.38	36078.62	11.08214	9.790014	1.292129
9	18	2	4000	16179.87	-12179.87	8.294049	9.430079	-1.13603
10	18	3	1400	33043.2	-31643.2	7.244227	9.768251	-2.524024
11	20	2	5000	17772.56	-12772.56	8.517193	9.475071	9578784
12	18	2	2300	16179.87	-13879.87	7.740664	9.430079	-1.689415
13	20	2	18000	17772.56	227.4432	9.798127	9.475071	.323056
14	19	3	14000	33839.54	-19839.54	9.546813	9.790747	243934
15	20	2	6000	17772.56	-11772.56	8.699514	9.475071	7755568
16	19	2	1800	16976.21	-15176.21	7.495542	9.452576	-1.957033
17	21	3	320	35432.23	-35112.23	5.768321	9.835739	-4.067418
18	22	3	1900	36228.57	-34328.57	7.549609	9.858234	-2.308625
19	46	2	28000	38477.51	-10477.51	10.23996	10.05997	.179995
20	20	3	5000	34635.88	-29635.88	8.517193	9.813243	-1.29605
21	23	3	1000	37024.92	-36024.92	6.907755	9.880731	-2.972975
22	19	2	10000	16976.21	-6976.212	9.21034	9.452576	2422348
23	19	3	600	33839.54	-33239.54	6.39693	9.790747	-3.393817
24	20	3	10000	34635.88	-24635.88	9.21034	9.813243	6029024
25	22	3	7000	36228.57	-29228.57	8.853665	9.858234	-1.004569
26	22	3	4000	36228.57	-32228.57	8.294049	9.858234	-1.564185
27	48	3	11000	56933.53	-45933.53	9.305651	10.44313	-1.137478
28	23	3	140	37024.92	-36884.92	4.941642	9.880731	-4.939088
29	21	3	2000	35432.23	-33432.23	7.600903	9.835739	-2.234836
30	21	3	3600	35432.23	-31832.23	8.188689	9.835739	-1.64705

Source: 2018 American Community Survey.

Residual: $e = Y - \hat{Y}$

Predicted Value: \hat{Y}

Figure 2.10 "All clear" *e*-versus- \hat{Y} plot (artificial data).

Residuals: Income=F(age, education)

Residuals: In(income)=F(age, education)

OLS with age and age squared

• In(income) as a function of age and age squared

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$$

Variation in income due to variation in age

 $\Delta y \, / \, \Delta x \approx \beta_1 + 2\beta_2 x$

- Marginal effect of age on income depends on β₁,
 β₂, and specific age value (x)
- There is a positive value of x, in which the effect of x on y is zero, called the critical point (x*)

$$x^* = |\beta_1/(2\beta_2)|$$

Mean income by age

In(income) = F(age, age squared)

. ***OLS with natural logarithm of income, age, and age squared . svy: reg lnincome age agesq (running regress on estimation sample)

Survey: Linear regression

Number	of	strata	=	212
Number	of	PSUs	=	79,499

Number of obs	=	127,785
Population size	=	13,849,398
Design df	=	79,287
F(2, 79286)	=	7983.37
Prob > F	=	0.0000
R-squared	=	0.2185

lnincome	Coef.	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
age	.1943162	.0017962	108.18	0.000	.1907956	.1978369
agesq	0019721	.0000205	-96.06	0.000	0020123	0019319
_cons	6.009389	.0368055	163.27	0.000	5.937251	6.081528

Source: 2018 American Community Survey.

Association of income with age

Variation in income due to variation in age

 $\Delta ln(income) / \Delta age \approx \beta_1 + 2\beta_2(age)$ $\Delta ln(income) / \Delta age \approx 0.1943 + 2(-0.0020)(age)$ $\Delta ln(income) / \Delta age \approx 0.1943 - 0.0040(age)$

Critical point (curve changes from upward to downward)

age* =
$$|\beta_1/(2\beta_2)|$$
 = $|0.1943/(2*-0.0020)|$
age* = $|-48.57|$ = 48.57

Predicted In(income) by age, age²

Source: 2018 American Community Survey.

Exponential of predicted In(income) by age, age²

Source: 2018 American Community Survey.

Residuals: In(income)=F(age,age²)

Source: 2018 American Community Survey.

Residuals: Exp. In(income)=F(age, age²)

Dummy variables

- Many variables that are important in social life are nominal-level variables
 - They cannot be included in a regression equation or correlational analysis (e.g., sex, race/ethnicity)
- We can create dummy variables
 - Two categories, one coded as 0 and the other as 1

Sex	Male	Female	Race/ ethnicity White	Black	Hispanic	Other	
1	1	0			Brack	mopanio	
2	0	1	1	1	0	0	0
			2	0	1	0	0
			3	0	0	1	0
			4	0	0	0	1

Age in interval-ratio level

Age does not have a normal distribution

Generate age group variable (categorical)
 16–19; 20–24; 25–34; 35–44; 45–54; 55–64; 65+

Source: 2018 American Community Survey.

Age in ordinal level

- Age has seven categories
 - . table agegr, contents(min age max age count age)

agegr	min(age)	max(age)	N(age)
16	16	19	6,337
20	20	24	11,945
25	25	34	26,752
35	35	44	25,575
45	45	54	25,454
55	55	64	22,457
65	65	92	9,265

Generate dummy variables for age...

Dummies for age

Generate dummy variables for age group

Age group	Age 16–19	Age 20–24	Age 25–34	Age 35–44	Age 45–54	Age 55–64	Age 65+
16–19	1	0	0	0	0	0	0
20–24	0	1	0	0	0	0	0
25–34	0	0	1	0	0	0	0
35–44	0	0	0	1	0	0	0
45–54	0	0	0	0	1	0	0
55–64	0	0	0	0	0	1	0
65+	0	0	0	0	0	0	1

Reference category

• Use the category with the largest sample size as the reference (25–34)

. tab agegr, m

agegr	Freq.	Percent	Cum.
16	6,337	4.96	4.96
20	11,945	9.35	14.31
25	26,752	20.94	35.24
35	25,575	20.01	55.26
45	25,454	19.92	75.18
55	22,457	17.57	92.75
65	9,265	7.25	100.00
Total	127,785	100.00	

Or category with large sample and meaningful interpretation for your problem (age group with the highest average income: 45–54)

. table agegr, c(mean income)

mean(income)	agegr
6051.891	16
18397.36	20
42752.68	25
61426.85	35
67367.77	45
65728.8	55
50250.71	65
Educational attainment

Education does not have a normal distribution

- Generate education group variable (categorical)
 - Less than high school; high school; some college; college; graduate school

Education in ordinal level

- Education has five categories
 - . tab educgr, m

educgr	Freq.	Percent	Cum.
Less than high school	12,719	9.95	9.95
High school	40,869	31.98	41.94
Some college	30,360	23.76	65.69
College	28,110	22.00	87.69
Graduate school	15,727	12.31	100.00
Total	127,785	100.00	

Generate dummy variables for education...

Dummies for education

Generate dummy variables for education group

Education group	<high school</high 	High school	Some College	College	Graduate school
Less than high school	1	0	0	0	0
High school	0	1	0	0	0
Some college	0	0	1	0	0
College	0	0	0	1	0
Graduate school	0	0	0	0	1

Reference group

- Use the category with the largest sample size as the reference (high school)
 - . tab educgr, m

educgr	Freq.	Percent	Cum.
Less than high school	12,719	9.95	9.95
High school	40,869	31.98	41.94
Some college	30,360	23.76	65.69
College	28,110	22.00	87.69
Graduate school	15,727	12.31	100.00
Total	127,785	100.00	

log income = F(age, education)

. svy: reg lnincome ib45.agegr ib2.educgr (running regress on estimation sample)

Survey: Linear regression

Number of	strata	=	212	Number of obs	=	127,785
Number of	PSUs	=	79,499	Population size	=	13,849,398
				Design df	=	79,287
				F(10, 79278)	=	2860.65
				Prob > F	=	0.0000

		Linearized				
lnincome	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
agegr						
16	-2.223012	.0227431	-97.74	0.000	-2.267588	-2.178435
20	-1.151434	.0155642	-73.98	0.000	-1.18194	-1.120928
25	3856507	.0104177	-37.02	0.000	4060693	365232
35	0929935	.0104004	-8.94	0.000	1133781	0726089
55	053233	.0111394	-4.78	0.000	0750662	0313998
65	5928305	.0186409	-31.80	0.000	6293667	5562944
educgr						
Less than high school	3066773	.0128821	-23.81	0.000	3319261	2814286
Some college	.1354166	.0097974	13.82	0.000	.1162138	.1546194
College	.5445375	.0101702	53.54	0.000	.524604	.564471
Graduate school	.8187744	.0121	67.67	0.000	.7950584	.8424904
_cons	10.41295	.0092523	1125.44	0.000	10.39482	10.43109

R-squared

0.3129

=

Exponential of coefficients

. ***Automatically see exponential of coefficients

. svy: reg lnincome ib45.agegr ib2.educgr, eform(Exp. Coef.)

(running regress on estimation sample)

Survey: Linear regression

Number of	strata =	=	212	Number of obs	=	127,785
Number of	PSUs =	= 79	, 499	Population size	= :	13,849,398
				Design df	=	79,287
				F(10, 79278)	=	2860.65
				Prob > F	=	0.0000

R-squared

0.3129

=

lnincome	Exp. Coef.	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
agegr						
16	.1082825	.0024627	-97.74	0.000	.1035617	.1132186
20	.316183	.0049211	-73.98	0.000	.3066833	.325977
25	.680008	.0070841	-37.02	0.000	.666264	.6940356
35	.9111994	.0094768	-8.94	0.000	.892813	.9299645
55	.948159	.0105619	-4.78	0.000	.9276821	.969088
65	.5527605	.010304	-31.80	0.000	.5329292	.5733297
educgr						
Less than high school	.735888	.0094797	-23.81	0.000	.7175404	.7547048
Some college	1.145014	.0112182	13.82	0.000	1.123236	1.167214
College	1.723811	.0175315	53.54	0.000	1.68979	1.758517
Graduate school	2.267719	.0274395	67.67	0.000	2.21457	2.322143
_cons	33288.07	307.9918	1125.44	0.000	32689.85	33897.24

Interpretation of age

(log of income with dummies as independent variables)

- 45–54 age group is reference category for <u>age</u>
- Coefficient for 16–19 age group equals –2.2230
 - $\exp(\beta_1)$ times
 - People between 16–19 years of age have on average earnings
 <u>0.1083 times</u> the earnings of people between 45–54 years of age, controlling for the other independent variables
 - $100*[exp(\beta_1)-1]$ percent
 - People between 16–19 years of age have on average earnings
 <u>89.17% lower</u> than earnings of people between 45–54 years of age, controlling for the other independent variables
 - $100^*\beta_1$ percent: result is not good because $\beta_1 > 0.3$
 - People between 16–19 years of age have on average earnings <u>approximately 222.30% lower</u> than earnings of people between 45– 54 years of age, controlling for the other independent variables

Interpretation of education

(log of income with dummies as independent variables)

- High school is reference category for <u>education</u>
- Coefficient for college equals 0.5445
 - $\exp(\beta_1)$ times
 - People with college degree have on average earnings <u>1.7238 times</u> <u>higher</u> than earnings of high school graduates, controlling for the other independent variables
 - $100*[exp(\beta_1)-1]$ percent
 - People with college degree have on average earnings <u>72.38% higher</u> than earnings of high school graduates, controlling for the other independent variables
 - $100^*\beta_1$ percent: result is not good because $\beta_1 > 0.3$
 - People with college degree have on average earnings <u>approximately</u> <u>54.45% higher</u> than earnings of high school graduates, controlling for the other independent variables

Standardized coefficients

. reg lnincome ib45.agegr ib2.educgr [pweight=perwt], beta
(sum of wgt is 13,849,398)

Linear regression

Number of obs	=	127,785
F(10, 127774)	=	3037.91
Prob > F	=	0.0000
R-squared	=	0.3129
Root MSE	=	1.0223

lnincome	Coef.	Robust Std. Err.	t	P> t	Beta
agegr					
16	-2.223012	.022166	-100.29	0.000	3875416
20	-1.151434	.0148555	-77.51	0.000	290206
25	3856507	.0103423	-37.29	0.000	1333188
35	0929935	.0103849	-8.95	0.000	0310561
55	053233	.0110966	-4.80	0.000	0151658
65	5928305	.018443	-32.14	0.000	107231
educgr					
Less than high school	3066773	.0125263	-24.48	0.000	0788327
Some college	.1354166	.0096013	14.10	0.000	.047455
College	.5445375	.0100048	54.43	0.000	.1781623
Graduate school	.8187744	.0120082	68.18	0.000	.2068187
_cons	10.41295	.0091286	1140.69	0.000	

Residuals: In(income)=F(age group, educ. group)

Source: 2018 American Community Survey.

Residuals: Exp. In(income)=F(age group, educ. group)

Source: 2018 American Community Survey.

Full OLS model

- Dependent variable
 - Natural logarithm of income
- Independent variables
 - Sex: female; male (reference)
 - Age group: 16–19; 20–24; 25–34; 35–44; 45–54 (reference); 55–64; 65+
 - Education group: less than high school, high school (reference), some college, college, graduate school
 - Race/ethnicity: White (reference); African American;
 Hispanic; Asian; Native American; Other races
 - Marital status: married (reference); separated, divorced, widowed; never married
 - Migration status: non-migrant (reference); internal migrant; international migrant

Command in Stata

. svy: reg lnincome i.female ib45.agegr ib2.educgr i.raceth i.marital i.migrant (running regress on estimation sample)

Survey: Linear regression

Number	of	strata	=	212
Number	of	PSUs	=	79,499

Number of obs	=	127,785
Population size	=	13,849,398
Design df	=	79,287
F(20, 79268)	=	1818.83
Prob > F	=	0.0000
R-squared	=	0.3577

	lnincome	Coef.	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
	female						
	Female	4374635	.0070675	-61.90	0.000	4513158	4236111
Coofficiente	agegr						
Coemcients	16-19	-1.995369	.0241877	-82.50	0.000	-2.042777	-1.947961
from OLS	20-24	9592868	.0108840	-27 41	0.000	9923800	920193
	35-44		.0100558	-7.95	0.000		
rogrossion for	55-64	0751899	.0107209	-7.01	0.000	0962027	0541771
legiession ioi	65-100	6377643	.0183047	-34.84	0.000	6736413	6018873
natural logarithm							
naturariogantinn	educgr						
ofincome	Less than high school	3148089	.01281	-24.58	0.000	3399165	2897013
	Some college	.1565395	.0096239	16.27	0.000	.1376767	.1754023
	College	.5426535	.0101186	53.63	0.000	.5228211	.562486
	Graduate school	.8081078	.0122256	66.10	0.000	.7841457	.8320698
	raceth			100700	1000000	1000000	
	African American	172703	.012575	-13.73	0.000	19735	148056
	Hispanic	1285316	.0085376	-15.05	0.000	1452652	111798
	Asian	1583612	.0172829	-9.16	0.000	1922356	1244867
	Native American	0/1535	.0555021	-1.29	0.197	1803187	.03/2488
	unter races	1193204	.0302909	-3.94	0.000	1/00902	0599505
	marital						
	Separated, divorced, wid	1364001	.0101838	-13.39	0.000	1563603	11644
	Never married	2696217	.009485	-28.43	0.000	2882122	2510312
	migrant						
	Internal migrant	1211724	.0160131	-7.57	0.000	1525579	0897869
	International migrant	4936644	.0683904	-7.22	0.000	6277092	3596197
	_cons	10.76426	.0105691	1018.47	0.000	10.74355	10.78498

Source: 2018 American Community Survey.

			Linearized				
	lnincome	Exp. Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	female						
	Female	.6456721	.0045633	-61.90	0.000	.6367897	.6546784
	ageor						
Exponential of	16-19	.1359635	.0032886	-82.50	0.000	.1296682	.1425645
	20-24	.3831661	.0064696	-56.81	0.000	.3706932	.3960586
coefficients	25-34	.7467272	.0079555	-27.41	0.000	.7312961	.7624838
	35-44	.9318363	.0093336	-7.05	0.000	.9137209	.9503108
from OLS	55-64	.9275673	.0099443	-7.01	0.000	.9082799	.9472643
	65-100	.5284726	.0096735	-34.84	0.000	.5098487	.5477769
rearession for							
regreeelen ier	educgr						
natural logarithm	Less than high school	.7299283	.0093504	-24.58	0.000	.7118298	.7484871
natararrogantinn	Some college	1.169457	.0112548	16.27	0.000	1.147604	1.191726
of income	College	1.720566	.0174098	53.63	0.000	1.686779	1.75503
	Graduate school	2.243658	.02743	66.10	0.000	2.190535	2.29807
	raceth						
	African American	.8413875	.0105805	-13.73	0.000	.8209033	.8623828
	Hispanic	.8793858	.0075078	-15.05	0.000	.8647929	.8942249
	Asian	.8535415	.0147517	-9.16	0.000	.8251124	.88295
	Native American	.9309637	.0516704	-1.29	0.197	.835004	1.037951
	Ohter races	.8875163	.0268836	-3.94	0.000	.8363582	.9418036
	marital						
	Separated, divorced, widowed	.8724934	.0088853	-13.39	0.000	.855251	.8900835
	Never married	.7636683	.0072434	-28.43	0.000	.7496025	.7779981
	migrant						
	Internal migrant	.8858812	.0141857	-7.57	0.000	.8585092	.9141259
	International migrant	.6103856	.0417445	-7.22	0.000	.5338133	.6979417
					and an an and a state of the		
	_cons	47299.9	499.9155	1018.47	0.000	46330.15	48289.95

Table 1. Coefficients and standard errors estimated with ordinary least squares models for the logarithm of wage and salary income as the dependent variable, United States, 2018

					Model 4	
Independent variables	Model 1	Model 2	Model 3	Model 4	Standardized	
Constant	10.61***	10.70***	10.76***	10.76***	coencients	
	(0.00961)	(0.0106)	(0.0106)	(0.0106)		
Sex						
Male	ref.	ref.	ref.	ref.	ref.	
Female	-0.449***	-0.444***	-0.436***	-0.437***	-0.177	
	(0.00700)	(0.00700)	(0.00707)	(0.00707)		
Age groups						
16-19	-2.195***	-2.204***	-2.007***	-1.995***	-0.348	
	(0.0226)	(0.0228)	(0.0241)	(0.0242)		
20-24	-1.154***	-1.142***	-0.973***	-0.959***	-0.242	
	(0.0155)	(0.0155)	(0.0168)	(0.0169)		
25-34	-0.396***	-0.385***	-0.302***	-0.292***	-0.101	
	(0.0103)	(0.0102)	(0.0106)	(0.0107)		
35-44	-0.100***	-0.0921***	-0.0734***	-0.0706***	-0.0236	
	(0.0101)	(0.0101)	(0.0100)	(0.0100)		
45-54	ref.	ref.	ref.	ref.	ref.	
55-64	-0.0545***	-0.0698***	-0.0737***	-0.0752***	-0.0214	
	(0.0108)	(0.0108)	(0.0107)	(0.0107)		
65+	-0.604***	-0.631***	-0.634***	-0.638***	-0.115	
	(0.0183)	(0.0183)	(0.0183)	(0.0183)		

Note: Coefficients and standard errors were generated with the complex survey design of the American Community Survey. The standardized coefficients were generated with sample weights. Standard errors are reported in parentheses. *Significant at p<0.10; **Significant at p<0.05; ***Significant at p<0.01. Source: 2018 American Community Survey.

Table 1. Coefficients and standard errors estimated with ordinary least squares models for the logarithm of wage and salary income as the dependent variable, United States, 2018

Independent variables	Model 1	Model 2	Model 3	Model 4	Model 4 Standardized coefficients
Education groups					
Less than high school	-0.336***	-0.311***	-0.314***	-0.315***	-0.0809
	(0.0125)	(0.0129)	(0.0128)	(0.0128)	
High school	ref.	ref.	ref.	ref.	ref.
Some college	0.165***	0.156***	0.157***	0.157***	0.0549
	(0.00965)	(0.00971)	(0.00963)	(0.00962)	
College	0.579***	0.551***	0.539***	0.543***	0.178
	(0.0100)	(0.0102)	(0.0101)	(0.0101)	
Graduate school	0.848***	0.826***	0.803***	0.808***	0.204
	(0.0119)	(0.0123)	(0.0122)	(0.0122)	

Note: Coefficients and standard errors were generated with the complex survey design of the American Community Survey. The standardized coefficients were generated with sample weights. Standard errors are reported in parentheses. *Significant at p<0.10; **Significant at p<0.05; ***Significant at p<0.01. Source: 2018 American Community Survey.

Table 1. Coefficients and standard errors estimated with ordinary least squares models for the logarithm of wage and salary income as the dependent variable, United States, 2018

Independent variables	Model 1	Model 2	Model 3	Model 4	Model 4 Standardized coefficients
Race/ethnicity					
White		ref.	ref.	ref.	ref.
African American		-0.211***	-0.172***	-0.173***	-0.0461
		(0.0126)	(0.0126)	(0.0126)	
Hispanic		-0.132***	-0.125***	-0.129***	-0.0503
		(0.00860)	(0.00853)	(0.00854)	
Asian		-0.153***	-0.166***	-0.158***	-0.0288
		(0.0176)	(0.0175)	(0.0173)	
Native American		-0.0988*	-0.0758	-0.0715	-0.00272
		(0.0540)	(0.0549)	(0.0555)	
Other races		-0.140***	-0.124***	-0.119***	-0.0123
		(0.0302)	(0.0301)	(0.0303)	

Note: Coefficients and standard errors were generated with the complex survey design of the American Community Survey. The standardized coefficients were generated with sample weights. Standard errors are reported in parentheses. *Significant at p<0.10; **Significant at p<0.05; ***Significant at p<0.01. Source: 2018 American Community Survey.

Continue...

Table 1. Coefficients and standard errors estimated with ordinary least squares models for the logarithm of wage and salary income as the dependent variable, United States, 2018

Independent variables	Model 1	Model 2	Model 3	Model 4	Model 4 Standardized coefficients
Marital status					
Married			ref.	ref.	ref.
Separated, divorced, widowed			-0.139***	-0.136***	-0.0398
			(0.0102)	(0.0102)	
Never married			-0.270***	-0.270***	-0.104
			(0.00950)	(0.00948)	
Migration status					
Non-migrant				ref.	ref.
Internal migrant				-0.121***	-0.0242
				(0.0160)	
International migrant				-0.494***	-0.0287
				(0.0684)	
R ²	0.346	0.349	0.356	0.358	0.358
Observations	127,785	127,785	127,785	127,785	127,785

Note: Coefficients and standard errors were generated with the complex survey design of the American Community Survey. The standardized coefficients were generated with sample weights. Standard errors are reported in parentheses. *Significant at p<0.10; **Significant at p<0.05; ***Significant at p<0.01. Source: 2018 American Community Survey.

Exponential of age group coefficients

(Example of how to show regression results in conferences. Edited in Excel)

Source: 2018 American Community Survey.

Exponential of age group coefficients

(Example of how to show regression results in conferences. Edited in Excel.)

Source: 2018 American Community Survey.

Source: 2018 American Community Survey.

Source: 2018 American Community Survey.

Predicted income by age and sex

(Using "mgen" command within SPost13 package by Long and Freese, 2014)
mgen, stub(A) at(agegr=(16 20 25 35 45 55 65) female=(0 1) ///
raceth=1 educgr=2 marital=1 migrant=1) allstats

Predicted income by age and sex

(Using "mgen" command within SPost13 package by Long and Freese, 2014. Edited in Excel.)

Source: 2018 American Community Survey.

Residuals:

In(income)=F(sex,age,educ,race/ethnicity,marital,migrant)

Residuals:

Exp.In(income)=F(sex,age,educ,race/ethnicity,marital,migrant)

Stata practice time

 Additional material on introduction to social statistics using Stata

http://www.ernestoamaral.com/stata2020a.html

• You can run all Stata commands that were used in this lecture using this DO-file

http://www.ernestoamaral.com/docs/Stata2020a/Stata05.txt

