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Producing accurate standard errors is essential for both the scholarly research and official 

policy uses of the data because they indicate the precision of the estimates and the 

statistical significance of hypothesis tests (e.g., whether estimates of poverty differ from 

one year to next, or whether one state has a higher poverty rate than another).  Statistical 

significance provides the standard of evidence for statistical arguments, and the errors 

allow us to gauge our level of uncertainty associated with specific estimates.  In theory, 

standard errors are relatively easy to compute if samples have been collected using 

simple random sampling.  However, survey data is often based on a complex, multistage 

sample design whose information needs to be accounted for when calculating standard 

errors.  Failure to account for the stratification, clustering, and weighting used in the 

survey sample design generally results in serious underestimation of standard errors 

(Kish 1992, 1995; Lohr 2000).   

Sample Design, Standard Errors and the Survey Data 

There are three important elements that determine the effect of the complex survey 

sample design on standard errors: clustering, stratification, and weighting.  Cluster 

sampling involves the grouping of the population into convenient aggregations of 
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observations, such as people in households, households in blocks, and blocks in counties.  

The sampled units are drawn from some of these clusters at the exclusion of others (Kish 

1995).  Stratification is also a grouping of elements, or clusters, but in this case elements 

or clusters are drawn from each stratum (that is, all strata are included in the sample), 

sometimes at different sampling rates (Kish 1995).  For example, in a given strata one in 

2,000 households is sampled, whereas in others one in 1,000 households is sampled.  

Finally, weighting is a technique for adjusting sample data to correct for design features 

such as oversampling and design deficiencies such as nonresponse.  Base probability 

weights are the inverse probability of being selected into the sample.  For example, if a 

person has a one in 1,000 probability of selection, the weight is 1,000.  Weights can 

increase the variance of estimates when some population elements have a higher weight 

than others (Kish 1992).  The ratio of an estimated sampling variance that takes these 

components into account to an estimated sampling variance that ignores clustering, 

weighting, and stratification is called the design effect (Kish 1995).  In most cases, the 

standard errors calculated that take clustering, stratification, and weighting into account 

are larger than those that do not; the design effect therefore is usually greater than 1 for 

complex sample surveys.2

The effect of clustering is driven by the intraclass correlation coefficient ρ—

which expresses the correlation between members of a sampled cluster (e.g., household), 

or the percentage of the total variance found between clusters—and by the size of the 

cluster (Kish 1995).  The design effect due to clustering is determined by: 
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 1+ρ(b-1). (1) 

Here ρ is the intraclass correlation and b is the size of the cluster.  In cases where the 

intraclass correlation is 0 the design effect due to clustering is simply 1.  However, when 

the intraclass correlation coefficient is greater than 0 the design effect due to clustering 

will be greater than 1. 

When using information from a survey data set that includes clustered 

observations, the intraclass correlation coefficient will vary across statistics.  For 

example, households function as clusters in the CPS ASEC.  When developing estimates 

for concepts that are highly correlated within a household, such as whether a person is in 

poverty or covered by health insurance, the intraclass correlation will be larger.  For other 

concepts like personal income, the intraclass correlation coefficient may be lower – 

knowing the income of one person in the household does not provide reliable information 

about the earnings of other people in the household.  On the other hand, knowing whether 

one person in the household is in poverty is highly related to whether another person in 

the same household is also in poverty, since entire families are assigned the same poverty 

status.   

The design effect can be decreased under some forms of stratification (Kish 1992, 

1995). Stratification can reduce the design effect when the elements or clusters within a 

stratum tend to be homogeneous (in contrast to the effect of clustering where 

homogeneity within clusters leads to a larger design effect).  For example, if one stratum 

within a study has a group of households that are all very likely to be in poverty and 
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another has households not likely to be in poverty, the design effect for poverty estimates 

will be reduced when stratification is taken into account in variance estimation. 

Weights have components adjusting for differential probabilities of selection, 

nonresponse, and sample noncoverage (e.g., when the sample frame does not perfectly 

cover the population of interest).  To the extent that the weights are heterogeneous, the 

size of the design effect can increase.  Weights become heterogeneous in surveys because 

some elements have higher probabilities of selection than others (by design or by 

circumstances dictated by the sample frame), because some groups have higher response 

propensity than others, or because some subgroups are under-represented by chance 

relative to known external population distributions (Kish 1992).  Kish gives the simple 

formulation of 1+L (the “L” stands for “Loss” of sample efficiency) to approximate the 

effect of the sample weights on the design effect.  In general, the more heterogeneity in 

the weights, the higher the design effect will be. 

 

 1+L=(nΣk2
j)/(Σkj)2. (2) 

 

Here n is the unweighted sample size, and k is the survey weight for the jth person.  In 

effect, the equation is the unweighted sample size multiplied by the sum of the squared 

weights.  This total then is divided by the sum of the weights squared.  The result is an 

approximation effect on sampling variance due to heterogeneity among weights. 

 Overall, weighting and clustering tend to increase the design effect and 

stratification tends to decrease it.  In complex sample surveys, however, the impacts of 
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clustering and weighting tend to be larger than those of stratification, so the design effect 

is greater than 1. 

       

Methods of Standard Error Estimation 

Seven methods of standard error estimation are: 1) the basic “simple random 

sample” approach which assumes that every sampled person is drawn independently and 

completely at random; 2) the Census Bureau’s “design factor” (called generalized 

variance parameters in the Current Population Survey) approach, which is produced and 

used by the Census Bureau (U.S. Census Bureau 2001, 2002a); 3) the “robust variance” 

estimation approach (also known as the sandwich estimator, or the Huber-White 

estimator); 4) a “survey design-based estimator,” which uses both an identified stratum 

and a clustering variable; 5) “random group methods,” which examine variability 

between subsamples; 6) “replicate methods,” which provide multiple sets of perturbed 

sampling weights; and 7) the “Polya Posterior method,” which constitutes a Bayesian 

approach to survey analysis.   

 

Simple Random Sample 

We use two equations to estimate the “simple random sample” standard errors.  

Expression (3) is used for rates and expression (4) is used for averages.  The assumption 

that each element was selected as part of a simple random sample should, in general, 

produce smaller standard errors than any other method considered in this paper.  Standard 

errors based upon simple random sampling do not take into account the clustering of 
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people within sampled households, nor the clustering of households within USUs or 

PSUs for example.  Because observations within clusters are often correlated, clustering 

tends to inflate standard errors.  However, simple random sample standard errors need 

not always be smallest.  In some instances, it is possible for the design-adjusted standard 

error to be smaller than the simple random sample standard error when the effect of 

stratification is more pronounced (Kish 1995).  

For a binomial variable (e.g., poverty versus not in poverty), equation (3) yields  

the simple random sample standard error:   

  

 nPP /)100(1 −=σ ,  (3) 

 

where P is the weighted rate of insurance coverage or poverty and the n is the total 

number of people included in the sample used to calculate the statistic of interest.  Note 

that equation (3) ignores the finite population correction of (1-Q), where Q is the 

proportion of units in the population which were sampled.  When Q is relatively small (as 

is the case with most IPUMS datasets), the finite population correction becomes 

negligible. 

For the continuous variables like income, the standard error is computed using 

Formula 4.  As was the case with the binomial standard error, formula (4) ignores the 

finite population correction: 

 

 )1(/2 −= nS xσ , (4) 
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where Sx is the standard deviation of the continuous variable in question, and n is the total 

number of people over age 15 in the state that were included in the sample. 

 

Design Factor Approach (i.e., Generalized Variance Approach) 

When the Census Bureau produced the first public use microdata samples, computing 

resources were scarce and statistical software was rudimentary and the Census Bureau 

could not release all the sample design information used to select the samples in order to 

protect respondent confidentiality and privacy. It was therefore impractical for 

researchers to calculate standard error estimates that accounted for the complex design of 

the samples. Therefore, the Census Bureau calculated “design factors” (originally termed 

“standard error adjustment factors” and called “generalized variance parameters in the 

Current Population Survey documentation) for specific variables, and researchers were 

advised to multiply their conventional standard errors by the adjustment factor to account 

for the complex sample design (US Census Bureau 2003). The original IPUMS project 

developed comparable adjustment factors for the earlier census years. 

The strategy of using design factors to correct for complex sample designs has several 

serious weaknesses and we do not recommend their use with IPUMS data: 

• The design factors published by the Census Bureau are not always accurate; adjusting 
for the actual sample design used to select cases, we have found errors in the 
published design factors ranging as high as 200 percent in the Current Population 
Survey (Davern et al. 2006; 2007). 

• The needed adjustments are not uniform across categories of the same variable. To 
give just one example, the true design factors for the “Head” and “Spouse” categories 
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of the household relationship variable are always much lower than the design factors 
for “Child” or “Boarder,” since the effects of clustering are much more pronounced 
for the latter categories. The Census Bureau, however, publishes only one design 
factor for this variable, representing the average of all the categories.  

• The design factors are not suitable for multivariate analyses. The Census Bureau 
documentation for the 1980 microdata sample recommended that when adjusting the 
standard errors of a crosstabulation, users should simply choose the largest 
adjustment factor, but there is no theoretical or empirical justification for this 
approach (U.S. Census Bureau 1982).  

The great majority of IPUMS-based research involves complex regression models that 

control for many covariates (http://www.ipums.org/usa/research.php). The Census 

Bureau’s design factors are inappropriate for the exploration of associations among 

variables and are especially problematic when performing complex analyses. It would be 

impossible for the decennial census technical documentation to provide guidance for all 

possible types of analyses and dependent variables. Thus, researchers need to be able to 

produce standard errors tailored to their particular analyses and we do not recommend the 

use of design factors when working with IPUMS data as better alternatives are available.   

 

Robust Variance  

The “robust variance” estimation approach – also known as the sandwich estimator, the 

Huber-White estimator (SAS 1999), or the “first-order Taylor series linearization” 

method – is implemented using SAS version 8.2.  Specifically, we use the “surveymean” 

procedure with states designated as subpopulations.  In using these survey procedures, we 

declare only the survey weights among the survey features, which invokes the robust 

standard error estimator.  Although the robust standard error estimator does not explicitly 

control for any of the clustering features of survey data per se in generating standard 
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errors, we include it as one of our four standard error estimators. This is because it is 

common in the research literature to read that standard errors are calculated using 

STATA (2001), SPSS (2003), or SAS (1999) survey adjustment procedures, but no 

mention is made of clustering or strata adjustments.  If the procedures are used by 

themselves, without a cluster or strata adjustment, then the robust standard error is the 

resulting estimator. 

 

Survey Design-Based Estimator 

The “survey design-based” estimator takes account of the probability weight, clustering, 

and stratification of the survey in estimating the standard errors.  For our analysis, we use 

the survey estimator implemented in SAS version 8.2.  Like the robust estimation 

method, the survey design-based method uses a Taylor Series estimation approach.  But 

unlike the robust estimation technique, this method explicitly controls for both 

stratification and clustering.  In this study, we use a Taylor Series survey design-based 

estimator to compute the variances identifying the highest (i.e., first) level of clustering 

(Hansen, Hurwitz, and Madow 1953; Woodruff 1971; Kalton 1977; Rust 1985).  Even 

though this “ultimate cluster” approach to estimating the design effect is based on the 

sample’s first stage of clustering, it does include, in expectation, any subsequent stages of 

variability as well.8

 
Random Group Methods 
 
Random group methods argue that variability associated with the original sampling 

design can be estimated by the variability between subsamples.  For example, a survey 
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with 10,000 units might be divided into 100 subsamples of size 100.  Each unit from the 

full dataset is randomly assigned to exactly one subsample.   

 
 
General forms of subsample variance estimators are given in equations (7) and (8).  For 

both equations, R represents the number of subsamples into which the original sample is 

divided;μ is the population parameter of interest, μ̂ is the estimate ofμ from the full 

sample, and rμ̂  is the estimate ofμ using only data from the rth subsample.  In general, the 

subsample estimate rμ̂  will have the same algebraic form as μ̂ .  Equation (7) examines 

the variability of the rμ̂ ’s about their mean, ∑
=
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variability of the rμ̂ ’s about the full sample estimate μ̂ .  Either estimator is reasonable, 

although equation (8) will generally yield more conservative (i.e. larger) variance 

estimates (Wolter 1985). 
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The process by which the subsamples are drawn should mirror the original survey design.  

In a complex multistage survey, the subsamples would ideally utilize design information 
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like weights, clustering, and stratification.  However, such information is not available in 

many IPUMS datasets, such the ACS files.  Even if not all the design information is 

available, subsamples should be constructed according to whatever design information is 

made public.    

 

Replicate Methods 

Replicate methods argues that a sample can be conceived as a miniature version of the 

population. Instead of taking multiple samples from the population to construct a 

variance estimator, one may simply resample the full, original sample.  The exact 

meaning of “resample” depends on the particular method employed. 

 

A whole host of methods fall under the category of replication.  Balanced repeated 

replication, the jackknife, and the bootstrap are three popular methods (Lohr 1999).  In 

the 2005 ACS, the Census Bureau implements a replicate technique known as successive 

difference replication (Fay and Train 1995).  The basic idea is to perturb the sampling 

weights in a balanced way and then to calculate new estimates based on each set of 

perturbations.  The variability between the set of new estimates may be used as a variance 

estimate for the original quantity of interest. 

  

Successive difference replication may be executed in the 2005 ACS data, as the user has 

access to 80 sets of perturbed weights.  For each of these 80 sets, the user will estimate 

11 
 



the quantity of interest in the usual way.  Then a variance estimate may be calculated 

with equation (9). 

∑
=

−=
80

1

2)ˆˆ(
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4)ˆ(

r
rSE μμμ   (9) 

In equation (9),μ is the population parameter of interest, μ̂ is the estimate ofμ from the 

full sample, and rμ̂  is the estimate ofμ using the rth set of perturbed weights.  The 

presence of the number “4” in equation (9) may seem mysterious, since most standard 

error formulas take the simple average of each squared deviation from the mean.  

Equation (9) differs from most standard error formulas due to the unique mathematical 

properties of successive difference replication (Fay and Train 1995).   

 

The perturbed weights are produced internally by the Census Bureau, so the weights 

reflect all the relevant design information.  Therefore replicate weights in IPUMS may 

yield better variance estimates than the subsample weights, which are produced without 

full knowledge of the design. 

 

Bayesian Methods 

The hallmark of Bayesian methodology is the assumption of a mathematical model that 

relates the sampled units to the unsampled units.  Design information is not directly used 

in the computation of Bayesian estimates, except when such design information is 

thought to inform the relationship between sampled and unsampled units.  One type of 

Bayesian methodology is based upon the Polya Posterior (Ghosh and Meeden 1997).  The 
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general idea is to simulate—using both prior information about the population and 

information gleaned from the sample—complete copies of the population.  Variability 

between these copies may be used as a variance estimate for any quantity of interest. 

 

The only program which currently can invoke the Polya Posterior is found within a 

freeware statistics program called R (http://cran.r-project.org).  The “polyapost” package 

within R contains the specific commands needed to perform Bayesian variance 

estimation, and this package can be downloaded from  

http://cran.r-project.org/src/contrib/Descriptions/polyapost.html.  Detailed instructions for 

using the “polyapost” package can also be downloaded from the above webpage.   

 

In order for Bayesian variance estimates to perform well, survey design information is 

needed only insofar as it informs the relationship between the sampled and the unsampled 

units.  If one has reason to believe that the sample is representative of the population, 

then no survey design information is necessary.  However, due to the complexity of the 

Census Bureau survey designs, there is good reason to believe that many IPUMS samples 

are not exactly representative of the population at large.  For instance, in those surveys 

where the Census Bureau oversampled African Americans or other minority groups, 

Bayesian variance estimation would require that one know the degree to which the 

sample over-represents those minority groups.  The exact sampling design is irrelevant, 

just so long as one knows the degree of over-representation.  Such information would be 
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formally expressed in a mean constraint: if the true proportion of African Americans in 

the population is 15%, then the relevant mean constraint is  

∑
=

=
n

i
ii wa

1
.15.0   (10) 

Equation 10 assumes a sample of size n, and it lets wi be the proportion of units in the 

population represented by person i.  Furthermore, ai is an indicator variable which equals 

1 if person i is African-American and equals 0 otherwise.  Specific instructions for 

implementing such a constraint in R can be found at  

http://cran.r-project.org/src/contrib/Descriptions/polyapost.html. 

 

Given the large sample size and complexity of IPUMS data, Bayesian methods may not 

yet be practical to implement.  The “polyapost” package operates most efficiently on a 

PC with sample sizes less than 100, whereas many researchers may be studying IPUMS 

datasets having sample sizes in the thousands or millions.  Research is currently 

underway to simplify Bayesian methodology and make it more practical for IPUMS 

users. 

 

Warning about Case Selection Using the IPUMS Data:  The Issue of Domain 

Estimation 

Often it is of interest to estimate facts about a subset of the full population, rather than the 

full population itself.  For example, the full population for the 2005 ACS includes all 

United States residents not living in group quarters, but a researcher might utilize the 
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ACS to study the subpopulation of African American males or American women earning 

a yearly salary greater than $80,000.  When such subpopulations are being studied, 

statistical estimation procedures fall under the category of domain estimation, and 

subpopulations are called domains. 

 

Because the total size of the subpopulation is unknown, it is more complicated to 

estimate the standard error of a domain mean than a full population mean.  Simply 

restricting the dataset to the subpopulation of interest and then invoking a standard error 

formula is not correct, even if weights are properly included in the analysis.  This is due 

to the fact that some clusters may contain no observations from the domain of interest; 

ignoring such clusters generally yields an underestimate of the standard error (Lohr 

1999). 

 

To properly estimate means and standard errors within a domain, one should utilize the 

built-in domain estimation features of statistical packages.  For all mainstream packages, 

it is important to not create a new dataset which only includes the domain of interest.  

Rather, one should apply domain estimation procedures to the full dataset.  In SAS, one 

would invoke a domain statement within proc surveymeans; in Stata, one would use the 

subpopulation command.   

 

Although each statistical package requires different coding to invoke domain estimation, 

all packages perform roughly equivalent statistical operations.  If dy  is the true mean of 
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interest within domain d, then all statistical packages make the following calculations 

(Lohr 1999): 
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In the equations above, wi is the weight for unit i, yi is the value of interest for unit i, and 

the summation is taken over all units in the sample.  The point estimate of dy  is dŷ .  In 

addition, xid is an indicator variable that equals 1 if unit i happens to fall into domain d, 

and it equals 0 otherwise.  Different packages may calculate  [ ]⎟
⎠

⎞
⎜
⎝

⎛
−∑

i
diidi yyxwV ˆˆ  in 

slightly different ways.  SAS, for example, utilizes the variability between strata as a 

variance estimation tool.  
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