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Abstract

We address a major discrepancy in matching methods for causal inference in observational data.
Since these data are typically plentiful, the goal of matching is to reduce bias and only secondarily
to keep variance low. However, most matching methods seem designed for the opposite problem,
guaranteeing sample size ex ante but limiting bias by controlling for covariates through reductions
in the imbalance between treated and control groups only ex post and only sometimes. (The
resulting practical difficulty may explain why many published applications do not check whether
imbalance was reduced and so may not even be decreasing bias.) We introduce a new class of
“Monotonic Imbalance Bounding” (MIB) matching methods that enables one to choose a fixed
level of maximum imbalance, or to reduce maximum imbalance for one variable without changing
it for the others. We then discuss a specific MIB method called “Coarsened Exact Matching”
(CEM) which, unlike most existing approaches, also explicitly bounds through ex ante user choice
both the degree of model dependence and the causal effect estimation error, eliminates the need
for a separate procedure to restrict data to common support, meets the congruence principle, is
approximately invariant to measurement error, works well with modern methods of imputation for
missing data, is computationally efficient even with massive data sets, and is easy to understand
and use. This method can improve causal inferences in a wide range of applications, and may be
preferred for simplicity of use even when it is possible to design superior methods for particular
problems. We also make available open source software for R and Stata which implements all our
suggestions.



1 Introduction
Observational data are often inexpensive to collect, at least compared to randomized experiments,
and so are typically in plentiful supply. However, key aspects of the data generation process —
especially the treatment assignment mechanism — are unknown or ambiguous, and in any event
are not controlled by the investigator. This generates the central dilemma of the field, which
we summarize as: information, information everywhere, nor a datum to trust (with apologies to
Samuel Taylor Coleridge).

Matching is a nonparametric method of controlling for some or all of the confounding influ-
ence of pretreatment control variables in observational data. The key goal of matching is to prune
observations from the data so that the remaining data have better balance between the treated and
control groups, meaning that the empirical distributions of the covariates (X) in the groups are
more similar. Exactly balanced data means that controlling further for X is unnecessary (since it
is unrelated to the treatment variable), and so a simple difference in means on the matched data can
estimate the causal effect; approximately balanced data requires controlling for X with a model
(such as the same model that would have been used without matching), but the only inferences nec-
essary are only those relatively close to the data, leading to less model dependence and reduced
statistical bias than without matching.

The central dilemma of matching in observational data means that model dependence and
statistical bias are usually much bigger problems than large variances.1 The key problem we
address is that most matching methods seem designed for the opposite problem. They guarantee
the matched sample size ex ante (thus fixing most aspects of the variance) and produce some level
of reduction in imbalance between the treated and control groups (hence reducing bias and model
dependence) only as a consequence and only sometimes. That is, the less important criterion is
guaranteed by the procedure, and any success at achieving the most important criterion is uncertain
and must be checked ex post. Because the methods are not designed to achieve the goal set out
for them, numerous applications of matching methods fail the check and so need to be repeatedly
tweaked and rerun.

This disconnect gives rise to the most difficult problem in real empirical applications of match-
ing: In many observational data sets, finding a matching solution that improves balance between
the treated and control groups is easy for most covariates, but the result often leaves balance
“slightly” worse for some other variables at the same time. Thus, analysts are left with the nag-
ging worry that all their “improvements” in applying matching may actually have increased bias.

Continually checking balance, rematching, and checking again until balance is improved on
all variables is the best current practice with existing matching algorithms. The process needs
to be repeated multiple times because any change in the matching algorithm may alter balance
in unpredictable ways on any or all variables. Perhaps the difficulty in following best practices
in this field explains why many applied articles do not measure or report levels of imbalance at
all, and appear to run some chosen matching algorithm only once. Moreover, even when balance
is checked and reported, at best a table comparing means in the treatment and control groups
is included. Imbalance due to differences in variances, ranges, covariances, and higher order
interactions are typically ignored. This of course is a real mistake, since any one application of
most existing matching algorithms is not guaranteed (without balance checking) to do any good
at all. Of course, its hard to blame applied researchers who might quite reasonably expect that a
method touted for its ability to reduce imbalance might actually do so when used once.

We introduce a new Monotonic Imbalance Bounding (MIB) class of matching methods, and
1As Rubin (2006) writes, “First, since it is generally not wise to obtain a very precise estimate of a drastically wrong

quantity, the investigator should be more concerned about having an estimate with small bias than one with small
variance. Second, since in many observational studies the sample sizes are sufficiently large that sampling variances of
estimators will be small, the sensitivity of estimators to biases is the dominant source of uncertainty.”
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discuss a simple and widely applicable method from the class, that inverts the process and thus
guarantees a fixed level of balance ex ante between the treated and control groups. This level is
chosen by users on the basis of specific, intuitive substantive information which they demonstrably
have. (If you understand the trade-offs in drawing a histogram, you will understand how to use
this method.) Improvements in the bound on balance for one covariate can be studied in isolation
with our approach because they are known to have no effect on the maximum imbalance in each
of the other covariates. We show that our method controls, up to specified levels, for all imbal-
ances in central absolute moments, comoments, coskewness, interactions, nonlinearities, and other
multidimensional distributional differences between treated and control groups, which most other
methods do not address. In fact, the method controls not only covariate imbalance; it also explic-
itly controls the degree of model dependence and, more importantly, the size of estimation error
(and statistical bias) in the causal quantity of interest. Although most matching methods attempt to
approximate a classic experiment with complete randomization, our approach produces additional
local balance (and the resulting efficiency) by attempting to approximate the superior randomized
block experimental design.

Whereas most prior matching methods must be preceded by an entirely different algorithm
limiting covariates to areas of common empirical support, our approach does this automatically
as a natural part of the same matching algorithm. The method is approximately invariant to mea-
surement error and the global multivariate differences between treated and control groups are
controllable by easy-to-understand local decisions about specific variables and their measurement
characteristics. The method avoids the troubling difficulty in existing matching methods of work-
ing with modern methods of imputation for missing data. The algorithm is fast and efficient, even
with extremely large data sets, with speed scaling linearly with the number of variables. The same
algorithm can be used for binary or multi-category treatments, and for pre-randomization blocking
in experiments. With this paper, we make available free, open source, and easy-to-use software
that implements these methods.

Our approach can improve causal inferences across a very wide range of applications, and thus
is designed as an easy default choice or first line of defense in protecting users from the threats to
validity in making causal inferences. The method is not necessarily optimal in every application
and may be out-performed in specific cases by methods designed or tuned for specific data sets in
ways we discuss, usually at the cost of more work designing special procedures. In what follows,
we introduce our notation and setup (Section 2), describe the method we introduce (Section 3),
characterize the new class of matching methods into which our method falls (Section 4), discuss
the methods other properties (Section 5), and extend it in various ways (Section 6). We then show
in simulated and real data how it works in practice (Section 7) and conclude with a discussion of
what can go wrong when using this approach (Section 8).

2 Preliminaries
This section describes our setup. It includes our notation, definitions of our target quantities of
interest, some simplifying assumptions, a brief summary of existing matching methods and post-
estimation matching, a general characterization of error in estimating the target quantities, and
how to measure imbalance.

2.1 Notation
Consider a sample of n units randomly drawn from a population of N units, where n ≤ N . For
unit i, denote Ti as an indicator variable with value Ti = 1 if unit i receives the treatment (and so
is a member of the “treated” group) and Ti = 0 if not (and is therefore a member of the “control”
group). The outcome variable is denoted Y , where Yi(0) is the potential outcome for observation i
if the unit does not receive treatment and Yi(1) is the potential outcome if the (same) unit receives
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treatment. For each observed unit, the observed outcome is Yi = TiYi(1) + (1− Ti)Yi(0) and so
Yi(0) is unobserved if i receives treatment and Yi(1) is unobserved if i does not receive treatment.

To compensate for the observational data problem where the treated and control groups are not
necessarily identical before treatment (and, lacking random assignment, not the same on average),
matching estimators attempt to control for pre-treatment covariates. For this purpose, we denote
X = (X1, X2, . . . , Xk) as a k-dimensional data set, where eachXj is a column vector of observed
values of pre-treatment variable j for the n sample observations (possibly drawn from a population,
of size N ). That is, X = [Xij , i = 1, . . . , n, j = 1, . . . , k].

2.2 Quantities of Interest
As usual, the treatment effect for unit i, TEi = Yi(1) − Yi(0), is unobserved. All relevant causal
quantities of interest are functions of TEi, for different groups of units, and so must be estimated.
The most common include the sample (SATE) and population (PATE) average treatment effect:

SATE =
1
n

n∑
i=1

TEi PATE =
1
N

N∑
i=1

TEi,

and the sample (SATT) and population (PATT) average treatment effect on the treated:

SATT =
1
nT

∑
i∈T

TEi PATT =
1
NT

∑
i∈T ∗

TEi,

where nT =
∑n

i=1 Ti and T = {1 ≤ i ≤ n : Ti = 1} and NT =
∑N

i=1 Ti and T ∗ = {1 ≤ i ≤
N : Ti = 1}. See Imbens (2004); Morgan and Winship (2007).

Although SATE and SATT are quantities of interest in and of themselves, without regard to a
population beyond the sample data, if the sample is randomly drawn from the relevant population,
E(SATE) = PATE and E(SATT) = PATT (where the expected value operator averages over
repeated samples). Separately, if T is randomly assigned, E(SATT) = SATE (where the expected
value operator here averages over different random assignments of T ).

2.3 Simplifying Assumptions
First, we make the standard assumption, known as “no omitted variable bias” in the social sciences,
“ignorability” in statistics, and “unconfounding” in epidemiology, that X is defined such that con-
ditional onX , the treatment variable is independent of the potential outcomes: P (T |X,Y (0), Y (1)) =
P (T |X).

Second, as with most matching-based estimators, we focus on SATT (or PATT) so that, by
retaining all treated units and matching on controls, the process of pruning observations does not
necessarily change the target quantity of interest, as would not be the case for SATE or PATE
(which prune both treated and control units). This convention in the methodological literature is a
reasonable but practical decision, chosen because SATE or PATE are not amenable to straightfor-
ward matching-based estimation. Of course, the initial set of units in observational data is almost
always arbitrary to some degree anyway. This decision implies that, for each observation, Yi(1)
is always observed, while Yi(0) is always estimated (usually by choosing values from the control
units via some matching algorithm or applying some model).

And finally, another common practical decision is to go another step and match both treated
and control units. The result changes the estimand, which is not unreasonable so long as one is
transparent about the choice and the consequences in terms of the new set of units over which
the causal effect is defined. We thus also follow this convention and recommend it to users for
applications (as, e.g., Crump et al., 2006), although all methods and results we discuss below
also hold if we keep all treated units and thus retain a fixed target quantity of interest. The same
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change in the quantity of interest is common in other methods for observational data, such as local
average treatment effects and regression discontinuity designs. The practice is even similar to most
randomized experiments which do not select subjects randomly, and so have an estimand that is
also defined over a somewhat arbitrary set of units (such as patients who happen to show up at a
hospital and agree to be enrolled in a study, or those who fit conditions researchers believe will
demonstrate larger causal effects).

2.4 Overview of Existing Matching Methods
This section outlines the most commonly matching methods. To begin, one-to-one exact matching
estimates the unobserved Yi(0), corresponding to each observed treated unit i (with outcome value
Yi and covariate values Xi), with the outcome value of a control unit (denoted Ỹ` with covariate
values X̃`), chosen such that X̃` = Xi. We denote the resulting estimate of Yi(0) as Ŷi(0). To
increase efficiency the alternative exact matching algorithm uses all control units that match each
treated unit (i.e., all Xi such that X̃` = Xi).

Unfortunately, in most real applications with covariates sufficiently rich to make ignorability
assumptions plausible, insufficient units can be exactly matched. Thus, analysts must choose one
of the existing approximate matching methods, the best practice for which involves two separate
steps. The first step drops control units (and sometimes treated units) outside the common empir-
ical support of both groups or in the sample region requiring extrapolation. The second step then
matches the treated unit to some control observation X̃ that, if not exactly X , is close by some
metric. The second step of most existing approximate matching procedures can be distinguished
by the choice of metric. For example, nearest neighbor Mahalanobis matching chooses the closest
control unit to each treated unit (among those within the common empirical support), using the
Mahalanobis distance metric. For another example, nearest neighbor propensity score matching
first summarizes the vector of covariate values for an observation by the scalar propensity score,
which is the probability of treatment given the vector of covariates, estimated in some way, typ-
ically via a simple logit model. Then the closest control to each treated unit is used as a match,
with the distance defined by the absolute difference between the two scalar propensity score val-
ues. Other options include optimal, subclassification, full genetic, and other procedures.) Since
the second step in existing algorithms do not guarantee an improvement in balance except under
specialized conditions, the degree of imbalance must be measured, the matching algorithm must
be respecified, and imbalance checked again, etc., until a satisfactory solution is reached. (For
example, the correct specification of the propensity score is not indicated by measures of fit, only
by whether matching on it achieved balance.)

An additional problem for existing approximate matching methods is that most of the tech-
nologies used for matching in the second step are unhelpful for completing the first step. For
example, the propensity score can be used to find the area of extrapolation only after we know that
the correct propensity score model has been used. However, the only way to verify that the correct
propensity score model has been specified is to check whether matching on it produces balance
between the treated and control groups on the relevant covariates. But balance cannot be reliably
checked until the region of extrapolation has been removed. To avoid this type of infinite regress,
researchers use entirely different technologies for the first step, such as kernel density estimation
(Heckman, Ichimura and Todd, 1997) or dropping control units outside the hyper-rectangle (Iacus
and Porro, 2008, forthcoming) or convex hull (King and Zeng, 2006) of the treated units. The
method we introduce below avoids these problems by satisfying both steps simultaneously in the
same algorithm.

2.5 Post-Matching Estimation
Matching methods are data preprocessing algorithms, not statistical estimators. Thus, after pre-
processing, some type of estimator must be applied to the data to make causal inferences. For
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example, if one-to-one exact matching is used, then a simple difference in means between Y in the
treated and control groups provides a fully nonparametric estimator of the causal effect. When the
treated and control groups do not match exactly, the estimator will necessarily incorporate some
modeling assumptions designed to span the remaining differences, and so results will be model-
dependent to some degree (King and Zeng, 2007). Preprocessing via matching can greatly reduce
the degree of modeling necessary and thus also the degree of model dependence (Ho et al., 2007).

Under a matching method that produces a one-to-one match (or in general any match that has
a fixed positive number of treated and control units across strata), any analysis method that might
have been appropriate without matching can alternatively be used on the matched data set with
the benefit of having a lower risk of model dependence (Ho et al., 2007) including for example
specially designed nonparametric methods (Abadie and Imbens, 2007).

When different numbers of control units are matched to each treated unit — or in general
if different numbers of treated and control units appear in different strata, as in exact matching
— the analysis model must weight or adjust for the different stratum sizes. In this situation, the
simplest SATT estimator is a weighted difference in means between the treated and control groups,
or equivalently a weighted linear regression of Y on T , (using weights defined in Appendix A).
We can go further by trying to span the remaining imbalance via a weighted regression of Y on T
and X . In either regression, the coefficient on T is our SATT estimate. Alternatively, to avoid the
implicit constant treatment effect assumption of the regression approach, we can apply a statistical
model within each stratum without weights and average the results across stratum with appropriate
weights; when few observations exist within each stratum, a Bayesian, empirical Bayes, or random
effects model can be applied in the same way. Finally, nonlinear (or linear) models may also be fit
to all the data and used to predict, for each treated unit, the unobserved potential outcome under
control Yi(0) given its observed covariate values Xi, with the treated unit-level estimated causal
effects averaged over all treated units.

2.6 Quantifying Estimation Error
We derive the precise point of this balance checking here, as well as its connection to the real
goal: accurate estimation of the causal effect. For simplicity, we analyze the case where the
analysis method used after preprocessing is the simple difference in means. Begin by writing the
unobserved potential outcome for each unit as

Yi(0) = g0(Xi) = g0(Xi1, . . . , Xik). (1)

where g0 is an unknown function (cf. Imai, King and Stuart, 2008). If (1) included an error term
that affects Yi(t) but is unrelated to T , it would be implied by the ignorability assumption. Our
results would not be materially changed if it were included, except we would have to add expected
values or probability limits. We omit it here for simplicity and because the concepts of repeated
samples from the same data generation process, and samples that grow without limit, are forced
analogies in many observational data sets.

We now decompose the unit-level treatment effect, TEi, into the estimated treatment effect,
T̂Ei = Yi(1) − Ŷi(0), and the error in estimation. We do this by substituting into the definition
of the true treatment effect Yi(1) = T̂Ei + Ŷi(0) and using (1) as TEi = Yi(1) − Yi(0) = T̂Ei +
E0(X̃i, Xi), where E0(X̃i, Xi) ≡ g0(X̃i) − g0(Xi) = Ŷi(0) − Yi(0) is the unit level treatment
effect error (not an expected value). Then we aggregate this over treated units into SATT =
1
nT

∑
i∈T TEi = ŜATT + Ē0 where ŜATT =

∑
i∈T T̂Ei/nT and the average estimation error is

Ē0 ≡
1
nT

∑
i∈T
E0(X̃i, Xi) =

1
nT

∑
i∈T

[g0(X̃i)− g0(Xi)]. (2)
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The ultimate goal of matching-based estimators is to reduce the absolute matching error, |Ē0|.
This goal can be parsed into two (nonadditive) components. The first component of matching error
is the imbalance between the control and treatment groups, or in other words the difference be-
tween the empirical distribution of the pre-treatment covariates for the control group p(X̃|T = 0)
and treated group p(X|T = 1) in some chosen metric (such as those discussed in Section 2.7). The
second component is the importance of each of the variables and their interactions in influencing
Y given T . The two components are formalized in (2), where the difference between X̃i and Xi

represents local imbalance for treated observation i and the unknown function g0 represents the
importance of different parts of the covariate space. If preprocessing results in exact matches be-
tween the treatment and control groups, imbalance is eliminated and |Ē0| vanishes, no matter what
g0 is. When that lucky situation does not occur, the two components must be considered together.

2.7 Measuring Imbalance
The goal of measuring imbalance is to summarize the difference between the multivariate empir-
ical distribution of the pre-treatment covariates for the treated p(X|T = 1) and matched control
p(X̃|T = 0) groups. Unfortunately, many matching applications do not check balance. Most
of those which do check balance only compare the univariate absolute difference in means in the
treated and control groups:

I
(j)
1 =

∣∣∣X̄(j)
mT ,w

− X̄(j)
mC ,w

∣∣∣ , j = 1, . . . , k (3)

where X̄(j)
mT ,w and X̄(j)

mC ,w denote weighted means of the group ofmT treated units andmC control
units matched, with weights appropriate to each matching method.

Sometimes researchers argue that only matching the mean is necessary because most analysis
models used after or in place of matching (such as regression) only adjust for the mean. However,
the purpose of matching is to reduce model dependence, and so it does not make sense to assume
that the analysis model is correct, as implied by this argument; for model independent inferences,
matching as much of the entire empirical distribution as possible must be the goal.

A few have measured imbalance in univariate moments, univariate density plots, propensity
score summary statistics, or the average of the univariate differences between of the empirical
quantile distributions (Austin and Mamdani, 2006; Imai, King and Stuart, 2008; Rubin, 2001).
Except for the occasional discussion about using the differences in covariances, most researchers
ignore all aspects of multivariate balance not represented in these simple variable-by-variable sum-
maries. Unfortunately, improving on current practice by applying existing methods of comparing
multivariate histograms — such as Pearson’s χ2, Fisher’s G2, or models for contingency tables —
would typically work poorly because of the numerous zero cell values.

Our alternative idea is to measure the multivariate differences between p(X|T = 1) and
p(X̃|T = 0) via an L1-type distance. We first choose the number of bins for each continuous
variable via standard automated univariate histogram methods and with categorical variables left
as is (see Section 6.6.1). (If prior information indicates that some variables are more important
than others in predicting the outcome, one might choose to use more bins for that variable. Either
way, the bin sizes must be defined ex ante and not necessarily related to any matching method, in-
cluding our proposal.2) Then, we cross-tabulate the discretized variables as X1× · · · ×Xk for the
treated and control groups separately, and record in each cell the k-dimensional relative frequency
for the treated f`1···`k and control g`1···`k units, where the number of bins or levels of categorical
variables `j may vary for each Xj . Then our measure of imbalance is the absolute difference over

2Although this initial choice poses all the usual issues and potential problems when choosing bins in drawing his-
tograms, we use it only as a fixed reference to evaluate pre and post matching imbalance.
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all the cell values:
L1(f, g) =

∑
`1···`k

|f`1···`k − g`1···`k | (4)

where the summation is over all cells of the multivariate histogram. An important property is that
the typically numerous empty cells do not affect L1(f, g), and so the summation in (4) has at
most n nonzero terms. The relative frequencies also control for potentially different sample sizes
between the treated and control groups. Equation 4 is similar to Cochran and Rubin (1973) except
that we directly compute the empirical density and require no normality assumption.

Denote fm and gm as the empirical frequencies for treated and control units after the match
corresponding to f and g before, and use the same discretization for both the treated and control
units. Then a good matching method will result in matched sets such that L1(fm, gm) ≤ L1(f, g).
We also sometimes use L(j)

1 for each covariate separately in order understand how the overall
imbalance L1 projects onto each dimension.

Since the units of L1 are not on the scale of the original variables, we also recommend exam-
ining variable-level measures such as the first few moments and several quantiles of each variable,
but this is primarily to get a feel for the data. We also propose a more sensitive variable-level mea-
sure for use in comparing matching solutions, as follows. (It is not defined in the original data and
so cannot be used to study the reduction in imbalance.) Because any matching method produces a
set of S strata, we define a measure of local imbalance as

I
(j)
2 =

1
S

S∑
s=1

∣∣∣X̄(j)
ms

T
− X̄(j)

ms
C

∣∣∣ , j = 1, . . . , k (5)

where s = 1, . . . , S are the strata generated by the matching method and X̄(j)
ms

T
and X̄(j)

ms
T

are the
empirical means of variable Xj for the treated and control units in strata s and ms

T and ms
C are the

numbers of treated and control units matched in stratum s.

3 Coarsened Exact Matching
Because the method we offer here is so simple, we describe it here, before characterizing the
general class of MIB methods into which it falls. The method is also part of the diverse set
of approaches based on subclassification (aka “stratification” or “intersection” methods). We
call our particular method CEM for “Coarsened Exact Matching” (or “Cochran Exact Match-
ing” since, although variants of it had already been used for decades, the first formal analysis of
any subclassification-based method appeared in Cochran 1968). As we show, it has always been
available, requires no complicated concepts, algorithms, or mathematics, and ameliorates a wide
range of causal inference problems and can improve many existing methods.

The basic idea is to coarsen each variable by recoding so that substantively indistinguishable
values are grouped and assigned the same numerical value (groups may be the same size or dif-
ferent sizes, depending on the substance of the problem). Then the “exact matching” algorithm is
applied to the coarsened data to determine the matches. Finally, the coarsened data are discarded
and the original (uncoarsened) values of the matched data are retained. This procedure there-
fore assigns to matching the task of eliminating all differences between the treated and control
groups beyond some chosen level. Differences eliminated include all multivariate nonlinearities,
interactions, moments, quantiles, and other distributional differences beyond the chosen level of
coarsening. The remaining differences are thus all within small, coarsened strata and so are highly
amenable to being spanned by a statistical model without risk of much model dependence.

CEM produces variable sized strata. If this is not convenient and enough data are available,
users can produce a one-to-one match by randomly selecting the desired number of treated and
control units from those within each stratum or apply an existing method within strata (see Sec-
tion 6.3).
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3.1 Coarsening Choices
Coarsening is almost intrinsic to the act of measurement. Even before the analyst obtains the
data, the quantities being measured are typically coarsened to some degree. Just as a photograph
taken with more powerful lenses produce more detail, so it is with better measurement devices of
all kinds. Data analysts take what they can get, but recognize that whatever they get has likely
been coarsened to some degree first. Variables like gender or the presence of war coarsen away
enormous heterogeneity within the given categories.

But coarsening frequently does not stop once the analyst has the data. Data analysts recognize
that many measures include some degree of noise and, in their ongoing efforts to find a signal
amidst the noise, often voluntarily coarsen the data themselves. For example, political scientists
often recode the 7-point partisan identification scale as Democrat, independent, and Republican;
Likert issue questions into agree, neutral, and disagree; and multi-party vote returns into winners
and losers. Many social scientists use a broad three or four category measure for religion, even
when information is available for numerous specific denominations. Occupation is almost always
coarsened into three or four categories. Economists and financial analysts commonly use highly
coarsened versions of the U.S. Security and Exchange Commission industry codes for firms even
though the same data source offers far more finely grained coding. Epidemiologists routinely
dichotomize all their covariates on the theory that grouping bias is much less of a problem than
getting the functional form right. Coarsening is also common for Polity II democratization scores,
the International Classification of Disease codes, and numerous other variables.

Since the original values can still be used at the analysis stage to estimate the causal effect,
coarsening for CEM involves less onerous assumptions than that made all the time by researchers
who make the coarsening permanent. Of course, although coarsening in CEM is safer than at the
analysis stage, the two procedures are similar in spirit since the coarsened information in both is
thought to be relatively unimportant — small enough with CEM to trust to statistical modeling and
in data analysis to ignore altogether.

Because coarsening is so closely related to the substance of the problem being analyzed and
works variable-by-variable, data analysts understand how to decide how much each variable can be
coarsened without losing crucial information. The CEM procedure requires a coarsening operator
and the values the operator produces, which we now introduce more formally.

3.2 The Coarsening Operator
Denote by Ξj the set on which variable Xj takes values, which may be the real line, the set of
integers, or another abstract set (such as labels for nominal variables, ordered labels for ordinal
variables, etc.), and let Ξ = Ξ1×Ξ2×· · ·×Ξk be the product space on which the data setX lives,
i.e. X ∈ Ξ. Denote the number of distinct observed values of variable Xj as θ∗j , where we collect
the set of all these counts as θ∗ = {θ∗1, . . . , θ∗k}. Whether Xj is categorical or continuous, Xj will
never have more than n distinct values and so θ∗j ≤ n. We also define a set Θj = {1, . . . , θ∗j}
(j = 1, . . . , k), as well as the k-dimensional set of indexes Θ = Θ1 ×Θ2 × · · · ×Θk.

Define θj as the number of distinct values the user chooses variable Xj to have when coars-
ened, where θj ≤ θ∗j ≤ n for all j and θ = {θ1, . . . , θk}. Then define the coarsening operator
as Gθ(X) = G(X; θ) : Ξ × Θ 7→ Ξ, where the amount of coarsening is determined by θ. Of
course, if the number of distinct values for all variables is the same as the original data set then
Gθ∗(X) = X . Although written in matrix form, this operator works variable by variable, with the
result being a copy of the original data set in which each value is recoded.

3.3 Values of the Coarsened Variables
We recommend that coarsened values be chosen in a completely customized way based on substan-
tive knowledge of the measurement scale of each variable. The number of adjustable parameters
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in CEM is thus at least k, but the tradeoff is normally worth it since these parameters will typically
be well-known to users (but see Section 6.3).

We offer here reasonable operational defaults for continuous, nominal, and ordered variables,
respectively, and some examples. For continuous variables, denote the range of Xj as Rj =
Mj − mj where Mj = max

i=1,...,n
Xij and mj = min

i=1,...,n
Xij . Then, the user chooses ε such that

0 < εj ≤ Rj . The case εj = Rj corresponds to all the observations grouped in a single interval,
and, ε∗j = Rj/θ

∗
j is the initial coarsening level. The relationship between the number of distinct

values Xj is coarsened into by choosing θj , and the length of each interval ε, is

θj ≤ min
(
θ∗j ,

⌈
Rj
εj

⌉)
(6)

where dxe is the ceiling function. For a fixed θj , the corresponding value of εj is such that εj ≤
Rj/θj , if 1 ≤ θj < θ∗j and εj = ε∗j for θj = θ∗j . But of course, in applications, we choose εj or θj
by (6).

For example, denote θ = (θ1, θ
∗
2, . . . , θ

∗
k) and let X1 be a numeric variable. Define Gθ(X) =

X̃ , where X̃ is a data set X̃ = (X ′1, X2, . . . , Xk) with X ′1 obtained from X1 by grouping it into
θ1 < θ∗1 intervals, each of length εj . If annual income is measured to the penny, then it is difficult
to see objections to setting the εj interval length to be $1.00. In most applications, however, the
interval could be a good deal larger without any real loss of relevant information. For one, it
could reasonably be set to the average uncertainty a respondent would likely have about his or her
income or the daily variability in actual income. For the wealthy, this can be a large figure. For
data with people of many different incomes, the user may wish to let εj vary with the value of the
variable, presumably with larger values for larger incomes. Similarly, smaller intervals may be
useful for lower incomes and possibly with $0 a logically distinct group. In these situations, our
proofs below change only slightly (replacing ε with its maximum).

The second category of variables are nominal, which we do not coarsen unless the user makes
specific choices for how the coarsening would take place. For one example, imagine a survey
question about religion that asks for about the specific denomination, including say 6 protestant
denominations, 3 Jewish, 1 catholic, and 2 Muslim. For this example, a reasonable choice for some
applied problems would be to coarsen to these broader categories. Of course, for some problems,
where the differences among the denominations with the broad categories were of substantive
importance, this would not be advisable. Similar examples would include the U.S. Security and
Exchange Commission code for firms, which is published in a hierarchy designed for use by
coarsening occupation codes, etc.

Our final variable type is ordered factors. Since most ordered variables are intended to be
approximately interval valued, our default procedure is to treat them as such. We thus use our
procedure for coarsening continuous variables and set θj to some smaller value than θ∗j , such as
[θ∗j/2]. Like any default, this is not universally applicable, and better choices may be available in
some applications. For example, most 7-point Likert scales have a prominent neutral category and
so can often best be coarsened into θj = 3 groups as: {completely disagree, strongly disagree,
disagree}, {neutral}, {agree, strongly agree, completely agree}.

4 Classes of Matching Methods
The matching literature includes many methods, but only a single class of methods has been char-
acterized, the so-called Equal Percent Bias Reducing (EPBR) methods. In introducing EPBR,
Rubin (1976c) wrote “Even though nonlinear functions of X deserve study. . . , it seems reason-
able to begin study of multivariate matching methods in the simpler linear case and then extend
that work to the more complex nonlinear case. In that sense then, EPBR matching methods are the
simplest multivariate starting point.” Thus, in addition to EPBR, we describe a new class, called
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Monotonic Imbalance Bounding (MIB) methods, which covers this multivariate nonlinear case
and other features.

Each class of matching methods is designed to avoid, in different ways, the problem of making
balance worse on some variables while trying to improve it for others — EPBR by changing
the imbalance on all variables at the same time by the same amount, and MIB by changing one
variable’s imbalance while not affecting maximum imbalance on the others. In addition, whereas
EPBR methods fix the matched sample size ex ante and balance is computed ex post, MIB methods
fix the maximal imbalance ex ante and produce a matched sample size ex post. Satisfying EPBR
requires a matching method with certain properties as well as data of a special type, whereas
satisfying MIB requires a matching method with different properties but no restrictions on data
types. CEM is the simplest method within the MIB class.

4.1 Equal Percent Bias Reducing Methods
Suppose X is the realized value of a random matrix X which is drawn from a density with ex-
pected values µt ≡ E(X|T = t), (for t = 0, 1). Denote by nT and nC , respectively, the number
of treated and control units in the original data. Let mC denote the number of control units chosen
ex ante to be remaining after matching from the nC available control units, such that mC/nC ≤ 1
(and as per Section 2.3, mT = nT .) Then:

Definition 1 (Equal Percent Bias Reducing (EPBR); Rubin (1976b)). An EPBR matching solution
satisfies

E(X̄mT − X̄mC ) = γ(µ1 − µ0), (7)

where X̄mT = 1
mT

∑
i∈T∩M Xi and X̄mC = 1

mC

∑
i∈C∩M Xi are random variables repre-

senting the sample means in the matched data set, M ⊂ (T ∪ C) is the subset of indexes of the
matched treated and control units, γ ≤ 1 is a scalar interpreted as the proportionate reduction in
mean-imbalance, and X̄mT , X̄mC , µ0, and µ1 are k-dimensional vectors.

A condition of EPBR is that the number of matched control units be fixed ex ante (Rubin,
1976a, p.110) and the particular value of γ be calculated ex post, which we emphasize by writing
γ ≡ γ(mC). (The term “bias” in EPBR violates standard statistical usage and refers instead to the
equality across variables in the reduction in covariate imbalance.)

If the realized value of X is sampled randomly from its density, then (7) can be expressed as

E(X̄mT − X̄mC ) = γE(X̄nT − X̄nC ) (8)

where X̄nT = 1
nT

∑
i∈T Xj and X̄nC = 1

nC

∑
i∈C Xi. The right side of (8) is the average mean-

imbalance in the population that gives rise to the original data, and the left side is the average
mean-imbalance in the population subsample of matched units. The EPBR property means that
improving balance in the difference in means on one variable also improves it on all others and
their linear combinations.

One limitation of EPBR is that it only controls the means of the covariates and says nothing
about other moments, interactions, or nonlinear relationships. Another issue is that no method of
matching meets EPBR in general. To address these issues, Rosenbaum and Rubin (1985a) consider
special conditions where controlling the means enables one to control all expected differences
between the multivariate treated and control population distributions. For this property to hold, we
require the following additional conditions

(a) X is drawn randomly from a specified population X ,

(b) The population distribution for X is an ellipsoidally symmetric density (Rubin and Thomas,
1992) or a discriminant mixture of proportional ellipsoidally symmetric densities (Rubin and
Stuart, 2006), and
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(c) The matching algorithm applied is invariant to affine transformations of X .

Under these special conditions, there is no risk of decreasing any type of expected imbalance in
some variables while increasing it in others. Checking balance in this situation involves checking
only the difference in means between the treated and control groups for only one (and indeed,
any one) covariate. (Under some further conditions, Rubin and Thomas (1992) give the maximum
level of imbalance reduction possible for an EPBR method. Although it is not known in general
which EPBR method attains this bound, an estimate of the maximum value may provide useful
guidance about how well the search is going.)

Rubin and Thomas (1996) give some simulated examples where certain violations of these
conditions still yield the desired properties. The common violations of the condition that occur
in practice are of course why the best researchers work (and why they have to work) so hard
to try to improve balance on all variables, rather than checking just one. When observational
data sets are not drawn randomly, condition (a) is violated. Only rare observational data sets
in many fields are composed solely of continuous variables, and relatively few applications would
entirely fit this particular class of densities, thus violating (b) (although see Rubin and Stuart (2006)
on conditionally discriminant mixtures of proportional ellipsoidally symmetric distributions). Of
course, researchers can ensure condition (c) by choosing an algorithm appropriately, such as based
on nearest neighbor applications of the propensity score, Mahalanobis distance (without weights),
or discriminant matching. Since these methods satisfy Definition 1 only in data where conditions
(a) and (b) happen to hold, we describe the methods as potentially EPBR.

In practice, even if conditions (a)-(c) hold, EBPR compliant methods are more useful for
applications that also satisfy two additional conditions:

(d) All covariates in X are equally important in their effect on the outcome Y ; and

(e) Y is a linear function of X .

Without these additional conditions, we can reduce imbalance equally across all variables, but
only with these conditions do we also know that this equal reduction in mean-imbalance translates
into an equal reduction in bias in estimating the ultimate quantity of interest. The problem of
course is that very few applications have equally important covariates and only a subset have
linear functions.

4.2 Monotonic Imbalance Bounding Methods
We now introduce our alternative class of matching methods by generalizing and modifying EPBR
in five steps. First, we drop EPBR’s associated data conditions so that our class applies to all data
types. Second, note that balancing only the expected value of the population distribution of the
treated and control groups under (8), rather than the observed values, can lead to inefficient estima-
tion (which explains the otherwise counterintutive result that matching on the estimated propensity
score is more efficient than the true score; Hirano, Imbens and Ridder 2003). Thus, consider a
slightly modified version of (8) where the random variables and expected values are replaced by
their sample counterparts, and in addition (for later convenience) the equality is replaced by an
inequality: |X̄mT − X̄mC | ≤ γ|X̄nT − X̄nC |, which we write more simply as

|X̄mT − X̄mC | ≤ δ (9)

where δ = γ|X̄nT − X̄nC |. Equation (9) states that the maximum imbalance between treated
and control units, as measured by the absolute difference in means, is bounded from above by
some constant δ. Analogous to EPBR, one would usually prefer when the bound on imbalance is
reduced due to matching, γ = δ/|X̄nT − X̄nC | < 1, but dropping EPBR’s associated conditions
implies (for now) that this is not guaranteed.
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Third, we generalize (9) to allow for any measure of imbalance, rather than merely the mean.
Denote by XnT and XnC the subset of treated and control units in the original data and by XmT

and XmC the subsets of treated and control units produced by the matching algorithm. Then, for
clarity at this intermediate step, we define formally:

Definition 2 (Imbalance Bounding (IB)). A matching method is Imbalance Bounding with respect
to a function f and a distance D, or simply IB(f,D), if

D (f (XmT ) , f (XmC )) ≤ δ (10)

where δ is some constant.

Thus, EPBR is a version of IB whereD(x, y) = E(x−y), f is the sample mean of the marginal
distribution of Xj (for j = 1, . . . , k), δ = γD (f (XnT ) , f (XnC )), the inequality replaces the
equality, and γ < 1.

Although quite abstract, IB becomes natural when f andD are specified. Assume f(·) = fj(·)
is a function solely of the marginal empirical distribution of Xj . Then consider the following
special cases:

• Let D(x, y) = |x− y| and fj(X ) denote the sample mean for the variable Xj of the obser-
vations in the subset X . Then, (10) becomes |X̄(j)

mT ,w − X̄
(j)
mC ,w| ≤ δ, which is a bound on

the imbalance as measured by I1 of (3). The analogous result holds if fj(·) is the sample
variance, the k-th centered moment, the q-th quantile, etc.

• If fj(·) is a univariate histogram of Xj , then consider the mean absolute difference of the
frequencies between the distributions of treated and control units. This is equivalent to defin-
ing D as L(j)

1 in (4) one covariate at time, and so (10) represents a bound on the imbalance
in the full one-dimensional distribution.

• If D(x, y) is the average absolute difference over the strata and fj(X ) = Xj , with a slight
abuse of notation, we obtain a bound on the measure of local imbalance I(j)

2 from (5).

• Let D(x, y) = |x| and f(·) = fjk(·) is the covariance of Xj and Xk and δ = δjk we have
|Cov(Xj , Xk)| ≤ δjk.

• The full global imbalance L1 for the k-dimensional distribution can also be obtained by
taking D equal to (4) and f(x) = x.

A matching method can be IB for all, some of the above, or other different specifications of D
and f . However, the bound δ in (10) is not always meaningful per se, because most match-
ing methods bound some form of imbalance, so some comparison with the initial imbalance
D (f (XnT ) , f (XnC )) should be considered.

Fourth, IB methods may be of interest when δ/D (f (XnT ) , f (XnC )) ≡ γ < 1, but IB does
not require it to hold. To avoid this problem, we allow the maximum imbalance to be controlled
ex ante and monotonically instead of being calculated after the match. When this is the case, one
can fine choose or tune δ in order to guarantee that γ < 1. We now introduce this generalization.

Finally, consider the class of matching methods which produces subsets X πmT
and X πmC

on the
basis of a given vector π = (π1, π2, . . . , πk) of tuning parameters (such as ε in CEM or some sort
of caliper), corresponding to the k covariates, such that πj > 0 for j = 1, . . . , k. As in Definition
2, let f be any function of the empirical distribution of covariate Xj of the data (such as the mean,
variance, quantile, histogram, etc). Let π and π′ be two k-dimensional vectors and let the notation
π′ ≺ π denote that the two vectors π and π′ are equal on all components but one, which we denote
j, for which π′j < πj and analogously for π′ � π.
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Let J = {j1, j2, . . . , jm1} be a subset of {1, 2, . . . , k} covariates and H = {h1, h2, . . . , hm2}
the complementary subset, with m1 +m2 = k, i.e.

J ∪H = {1, . . . , k} and J ∩H = ∅ . (11)

Denote by γJ(πJ) = γj1j2,...,jm(πj1 , πj2 , πjm1
), fJ(XJ) = fj1j2,...,jm1

(Xj1 , Xj2 , . . . , Xjm1
) and

similarly for γH(πH) and fH(XH). Then we define:

Definition 3 (Monotonic Imbalance Bounding (MIB)). A matching method is Monotonic Imbal-
ance Bounding with respect to a vector function f = (fJ , fH)′ and a distance D, or simply
MIB(f,D), if for any J and H as in (11) there exists a monotonically increasing vector function
γ(π) = (γJ(πJ), γH(πH))′ — i.e. if π′ ≺ π then γ(π′) ≤ γ(π) — such that

D(fJ(X πJ,mT
), fJ(X πJ,mC

)) ≤ γJ(πJ)

D(fH(X πH,mT
), fH(X πH,mC

)) ≤ γH(πH)
(12)

with mT = mT (π) and mC = mC(π).

(In CEM, π = ε; in exact matching, π = 0.) Thus, the tuning parameter π of an MIB
method bounds ex ante and monotonically the maximum imbalance in the difference of one or
more features of the empirical distribution of treated and control units matched without altering
the maximum imbalance in the complementary set of covariates and the number of treated and
matched units is obtained ex post as a result of the match. An MIB method is an IB method, with
the additional capabilities of controlling the inequality (10) ex ante, monotonically, and indepen-
dently for a subset of covariates without hurting on the rest. The converse is not true: an EPBR
method is not an MIB method because mT and mC are fixed ex-ante. A matching method can be
MIB for all, some, or alternative specifications of D and f given above. (A special case of (12) in-
volves separability in bounding selectively on each single variable, i.e. for J = {j}, j = 1, . . . , k
and H = {1, 2, . . . , j − 1, j + 1, . . . , k}.)
4.3 Comparing EPBR and MIB
EPBR methods help with mean-imbalance in a linear context, whereas MIB methods help with
all forms of linear and nonlinear multivariate imbalance. Methods can only be potentially EPBR
given its associated data assumptions, whereas methods can be MIB, regardless of the data to
which it is applied. When EPBR and its associated conditions hold, the number of matched units
(mT andmC) are fixed ex ante and mean-imbalance is calculated only ex post, whereas under MIB
all chosen forms of maximum imbalance are fixed ex ante and monotonically by a simple tuning
parameter and the number of matched units are calculated ex post. (A class of methods could
be constructed which enabled one to bound both imbalance and the number of matched units ex
ante, but then many user choices would produce no results.) In EPBR, reducing imbalance on
one variable reduces population imbalance on all other variables by the same amount; under MIB,
one can reduce maximum in-sample imbalance on one variable without affecting the maximum
multivariate in-sample imbalance on the others. (See also Rubin 1976a, p.112.)

Choosing what to balance on can be crucial. In some situations, matching only the mean
is irrelevant, in which case EPBR methods can be hazardous. For example, Figure 1 portrays
a covariate that is unimodal among treated units (see the solid line) but bimodal among control
units (see the dashed line), but for which the mean of both groups is zero. For this covariate,
mean-imbalance is irrelevant, since the distributions do not overlap in the region near the mean.
Instead, this variable should be matched in the areas of common empirical support, indicated by
the shaded areas. Applying an MIB method with these data enables one to increase the bound on
mean-imbalance on this variable in order to match other more relevant features of the distributions,
without hurting mean-imbalance or other types of imbalance on other variables.
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Figure 1: An example of a covariate for which minimizing mean-imbalance may be harmful. The example
also shows that increasing mean-imbalance for this variable under MIB can be used to match more relevant
features of the distributions (such as the shaded areas), without hurting mean-imbalance on other variables.
This would be impossible under EPBR.

EPBR is defined for expected values of the covariates whereas MIB is defined for the observed
values in each sample. One way to think about this difference is that potentially EPBR methods
represent an attempt to approximate with observational data the classic complete randomization
experimental design. In this design, observations are randomly selected, and each unit is ran-
domly assigned a value of the treatment variable. In contrast, MIB methods like CEM attempt to
approximate the randomized block experimental design, where values of the treatment variable are
assigned within strata defined by the covariates. Randomized block designs have perfect balance
in each data set on all observed covariates, whereas complete randomization designs are balanced
only on average across experiments. Both are unbiased. Randomized block designs, as a result,
are thus considerably more efficient, powerful, and robust than complete randomization designs
(see Box, Hunger and Hunter 1978, p.103 and Imai, King and Stuart 2008); in an application by
Imai, King and Nall (2008), complete randomization gives standard errors as much as six times
larger than the corresponding randomized block design.3

Finally, we offer some examples. CEM is MIB, as we show in the next section. While match-
ing exactly on the Mahalanobis distance or propensity score are potentially EPBR under specified
distributional assumptions, they are not MIB. This can be seen because as EBPR methods they
require the number of matched observations (mT ,mC) to be fixed ex ante, while MIB requires
that the number of matched observations be an outcome of the method rather than a tuning param-
eter. Nearest neighbor matching methods, including those based on Mahalanobis and propensity
score metrics, are also not MIB, and these methods applied within a scalar caliper, even when
(mT ,mC) is an outcome of the method, are not MIB because the dimension of the tuning param-
eter π in the definition has to be k in order to have separability as in (12). Caliper matching as
defined in Cochran and Rubin (1973) is not MIB because of the orthogonalization and overlapping
regions; without orthogonalization, it is MIB if applied variable by variable (although applications
of it typically violate the congruence principle; see Sections 5.1-5.2). For other MIB methods, see
Section 6.3.

3The increased efficiency of MIB methods can be seen in CEM by its ability to match all aspects of the distribution
of the treated and control units (greater than ε). That is, even if we somehow knew that in an observational study
E(X̄mT −X̄mC ) = 0, we could increase efficiency and reduce estimation error by continuing to improve the matching
solution until the realized values were such that X̄mT − X̄mC = 0 and so that all other aspects of the empirical
distributions of treateds and controls match as well as possible. For another example, supposeX is composed of 10,000
observations on 20 variables drawn jointly from independent normal densities. Since 20-dimensional space is enormous,
odds are that no treated unit is anywhere near any control unit. Thus, some aspects of the empirical balance will almost
surely be very poor, meaning that estimation error can be very large, even if the data generating process satisfies EPBR’s
conditions by being ellipsoidally symmetric. The only issue in trying to approximate a randomized block design with
observational data is that observations may not be available for some strata, in which case the estimand may change or
be inestimable.
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4.4 CEM as an MIB Method
We prove here that CEM has the MIB property with respect to many important definitions ofD and
f from Section 4.2. To do this, we merely need to prove that CEM bounds important univariate and
multivariate aspects of the difference between the the treated and control groups. For simplicity,
but (unlike in EPBR) without loss of generality, suppose X is composed solely of continuous
variables. Then, within each strata, the difference in means of the original uncoarsened variable
Xj (for all j) is at most εj . Our results apply for one-to-one, j-to-k, and js-to-ks matching for
strata s. We discuss the one-to-one case here and the more complicated situations in Appendix A.

Setting ε in one-to-one CEM immediately implies a bound on the global difference in means
for Xj between the treated and control groups. (That is, the strata-level difference in means, each
of which is no longer than εj , averaged over strata is also bounded from above by εj .) Setting ε
also bounds many other features of the global difference in distributions between the treated and
control groups. We give evidence for this claim in two steps.

Local Imbalance Bounds For the difference in variance between the treated and control groups,
denote the variance of z as S̄2 = 1

n

∑n
i=1(zi − z̄n)2, where z̄n is the arithmetic mean of the zi’s.

Then, we use the upper bound of the von Szökefalvi Nagy-Popoviciu inequality (Popoviciu, 1935):
(R2/2n) ≤ S̄2 ≤ (R2/4), where R is the range of z. For our problem, this result implies that
the maximum variance between the treated and control units within each strata after application
of CEM is ε2j/4. Then it follows immediately that the difference in two variances, each bounded
between 0 and ε2j/4, is itself bounded from above by ε2j/4.

The same approach applies to covariances: within each strata we know that X̄j−Xij is always
bounded by εj , because the mean is internal, and the covariances are bounded in absolute value
by the product of the coarsening levels: |Cov(Xj , Xk)| ≤ [S̄2(Xj)S̄2(Xk)]1/2 ≤

εjεk
4 , where

S̄2(Xj) and S̄2(Xk) are the variances of variables Xj and Xk respectively. It is also easy to show
that the k-th centered absolute moment, E|X − X̄|k, is bounded by εk and, as a result, so is the
difference in all centered absolute moments between the treated and control groups. For the same
reason, measures of joint variation like co-skewness, co-kurtosis and comoments are also bounded.
And of course, the local imbalance I2 in (5) is monotonically controlled by ε as well.

Global Imbalance Bounds We now use the results just derived to show how setting εj bounds
the global differences. In CEM, θj is the number of strata, as in (6). We denote by wi the weight
for unit i where wi = (mC/mT )(ms

T /m
s
C) if i ∈ Cs and wi = 1 if i ∈ Ts. In addition, mC and

mT are the total numbers of controls and treated units matched and ms
C and ms

T are the number
of control and treate) units matched in stratum s. The weighted mean for the control units is
X̄w
mC ,j

= 1
mC

∑θj

s=1

∑
i∈CS

Xiwi and similarly for the treated units.

Proposition 1. CEM in MIB with respect to difference in means for each variable Xj , j =
1, . . . , k. ∣∣X̄w

mT ,j
− X̄w

mC ,j

∣∣ ≤ εj
Proposition 2. CEM is MIB with respect to the difference in the weighted centered moments for
each variable Xj . Let D(x, y) = |x− y|,

fj(XmT ) =
1
mT

θj∑
s=1

∑
i∈Ts

∣∣XT
i,j − X̄w

mT ,j

∣∣k wi
and

fj(XmC ) =
1
mC

θj∑
s=1

∑
i∈Cs

∣∣Xi,j − X̄w
mC ,j

∣∣k wi .
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Then,
D(fj(XmT ), fj(XmC )) ≤ εkj (θ∗j + 1)k, j = 1, . . . , k.

In the case of ks-to-ks matching, with ks eventually varying in each strata, the bound is εkj
(

(θ∗j + 2)k − θ∗j
k
)

.

(See the Appendix A for a proof.) In Proposition 2 the function γ(ε) = εkj ((θ
∗
j + 2)k − θ∗j

k) is
monotonic with respect to the tuning parameter εj . Since εj is chosen ex ante and fixed, and θ∗j is
the maximal number of strata for variable Xj in a given data set, the inequality above establishes
a bound on the difference in centered moment after the match, which decreases with εj .

A corollary of Proposition 2 is that, in the case of ks-to-ks matching, for a given sample
and a fixed value of θ∗j , a decreasing εj also decreases the bound on the difference of variances:
|S2
mC ,j

− S2
mT ,j
| ≤ ε2j (4 + 2θ∗j ), for j = 1, . . . , k.

A similar logic shows CEM is MIB with respect to the univariate quantiles:

Proposition 3. Assume one-to-one matching. Let D(x, y) = |x − y|, f(XmT ) = QmT ,j , q
th

denote the empirical quantile of the distribution of the treated units for covariateXj , and similarly
f(XmC ) = QmC ,j . Then, D(f(XmT ), f(XmC )) = |QmT ,j −QmC ,j | ≤ εj , for j = 1, . . . , k. The
same result holds for ks-to-js matching with weights.

(See the Appendix A for a proof.)
A final, but crucial, property of CEM is that the complete k-dimensional weighted histograms

for the treated and control groups, with bins at subsume εj on each covariate Xj (j = 1, . . . , k),
are exactly equal. Similarly, so long as the automated method of computing histogram bin sizes
in Section 2.7 uses bin sizes larger than ε, CEM will produce L1(f, g) = 0 (assuming the bin size
is a multiple of ε; otherwise L1 will be approximately 0). This result shows that setting ε locally
for each variable bounds all multivariate differences, for all levels of interaction, up to the chosen
level.

5 Other Properties of Coarsened Exact Matching
The most important property of CEM is that it enables one to choose imbalance ex ante, on the
scale of the variables one at a time, to be certain of the level of (global) balance you will get out
at the end, and so that changes in balance on one variable do not affect maximum imbalance on
others. Balance checking and uncertainty about what balance you will get is eliminated. You
get what you want rather than getting what you get. Although of course fixing imbalance ex ante
means that we learn the number of observations matched as a consequence, but bias is more crucial
than variance in observational data analyses, and because matching can improve variance too by
removing heterogeneity. We now discuss additional advantages of CEM, including a comparision
to existing approaches.

5.1 Meeting the Congruence Principle
A crucial problem with many matching methods is that they operate on a metric different from
the original data, and thus violate the congruence principle. This principle requires congruence
between the data space and analysis space. Methods violating this principle lead to less robust
inferences with suboptimal and highly counterintuitive properties (Mielke and Berry, 2007).

The violation of the congruence principle in propensity score and Mahalanobis distance match-
ing methods is easy to see because both project the covariates from their natural k-dimensional
space to a (different) one-dimensional quantity and match on that quantity: because different
matching solutions can map into the same place on the one-dimensional projection, reducing im-
balance on one variable will sometimes increase imbalance for others in unpredictable ways.

In contrast, CEM meets the congruence principle by operating in the space where X was cre-
ated and its variables were measured, and regardless of whether the data are continuous, discrete,

16



or mixed. This is the space most understood by data producers and analysts and so the technique
should also be easier to understand as well. Examples of other matching methods that meet the
congruence principle include Iacus and Porro (2007, 2008).

5.2 Comparisons with Other Methods
Whereas CEM uses simple, fixed, non-overlapping intervals of local indifference, defined ex ante
based on the metric of each variable one at a time, nearest neighbor caliper matching Cochran
and Rubin (1973) uses orthogonalization and a more complicated geometry of nT overlapping
hyper-parallelepipeds centered around each treated data point. The result is not MIB and does
not meet the congruence principle. If we modify the caliper approach by applying it to each
variable separately without orthogonalization, it is MIB. For truly continuous variables, it also
meets the congruence principle. However, a large fraction of variables used in the social sciences
are discrete or mixed in complicated ways, in which case calipers (used separately or with other
methods) violate the congruence principle. For example, CEM can make a variable like “years
of education” respect important milestones, like high school, college, and post-graduate degrees,
by appropriate coarsening into these categories. In contrast, caliper matching uses a different
grouping for each treated unit (e.g., ±5 years) that would inappropriately combine some units
that span across these logical category boundaries, such as by matching a college dropout with a
first year graduate student. For another example, the difference in income between Bill Gates and
Warren Buffett is enormous in any one year; with CEM, we could group them together, whereas
a caliper for income would likely leave them unmatched. Similar issues exist for lower levels of
income (with different tax rate thresholds), age (at or near birth, puberty, legality, retirement, etc.),
temperature (phase transitions), and numerous other variables.

CEM is related to a large number subclassification (or “stratification”) approaches, such as
full matching, frequency matching, subclassification on the propensity score, and others. These
approaches are not MIB. By having the ability to set εj differently for each variable, CEM is
also similar in spirit, although not methods, to various creative combinations of approaches, such
as Rosenbaum, Ross and Silber (2007). The core of the algorithm in CEM was first studied
formally in Cochran (1968), although we use it in different ways — such as by setting εj to
substantively meaningful values related to the metric of each variable rather than a minimal and
arbitrary number, using all available variables rather than only the major confounders, proving
many different properties, assuming finite rather than infinite samples, and introducing a range of
practical extensions.

Although CEM works by setting balance as desired and getting the number of matched units as
a result, and most other methods work in reverse, obtaining similar results with different methods
will often be possible when the specialized conditions required by previous methods hold (see Sec-
tion 4.1). Under these conditions, however, CEM is still considerably easier to use and understand
and faster in computational and human time. When these conditions do not at least approximately
hold, CEM will usually be superior since balance will be guaranteed on all higher order moments
and interactions on all variables, something not addressed by methods that are potentially EPBR
unless their specialized data restrictions hold.

To illustrate, suppose we run optimal or nearest neighbor matching on the Mahalanobis or
propensity score distance with a fixed number of matched control units, mC . The result would
be some level of average imbalance for each variable. If we use this imbalance to define εj and
apply CEM, we would usually obtain a similar number formC as set ex ante. Similarly, consider a
method and data that meet EPBR and its associated data requirements, and run it given some fixed
number of control unitsmC . Assume the maximum imbalance can be computed explicitly (Rubin,
1976a, Equation 2.2), and define γ as one minus this maximum imbalance. In most situations, we
would expect that running CEM would produce a similar number of control units as fixed ex ante
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by the EPBR method.

5.3 Automatic Restriction to Common Empirical Support
As described in Section 2.4, all existing approximate matching procedures require a separate step
prior to matching, where the data are restricted to the region of common empirical support of the
treated and control units. This eliminates the region where extrapolations beyond the limits of
the data would be needed. In contrast, users of CEM require no separate step. All observations
within a coarsened stratum for which we have both a treated and control unit by definition do
not involve extrapolating beyond the data and so the observation will be included; otherwise, it
will be removed. The process is easy, automatic, and no extra steps are required. Since applied
researchers seem to remove extrapolation regions as infrequently as their scant efforts to check
balance, CEM may enhance compliance with proper data analysis procedures; alternatively, CEM
can also be used as a simple way to restrict data to common support to improve other matching
methods.

5.4 Approximate Invariance to Measurement Error
Suppose T is ignorable conditional on unobserved pretreatment covariates X∗, and so we match
instead on X , where Xj = X∗j + ηj given a vector of measurement errors ηj for each covariate j.
Commonly used matching methods are directly affected by the degree of measurement error, even
when other conditions they may impose hold, and even if E(ηj) = 0. In particular, balance with
respect to X does not imply balance with respect to X∗; the true propensity score based on X is
not a balancing score forX∗; and adjusting based onX instead ofX∗ will lead to biased estimates
of the treatment effect (Battistin and Chesher, 2004).

Under CEM, if measurement error is less than εj , εj ≥ max(|ηj |), and it happens to respect
the resulting strata boundaries, then CEM will produce the same preprocessed data set whether
matching onX or onX∗ and so is invariant to measurement error. If only the first condition holds,
the second condition will hold for many observations under many conditions and so CEM will
normally be approximately invariant to measurement error, even if not invariant.

We study sensitivity measurement error (in the sense of Battistin and Chesher 2004) via a
real data set described in Section 7.1 and randomly perturb the earnings variable by adding with
gaussian error N(µ = 1000, σ2 = 10002) and replacing perturbed negative earnings with zero.
We run 5,000 simulations and at each replication match before and after perturbation. Denote
by mT and mC the number of matched units before perturbation, and m′T and m′C the number
after perturbation. Then define KT and KC as the number of treated and control units present in
the both subsets of matched units before and after the perturbation. To measure the sensitivity to
perturbation, we calculate the percentages KT /min(mT ,m

′
T ) · 100% and KC/min(mC ,m

′
C) ·

100%. For all methods but CEM, mT = m′T while for all matching algorithms mC 6= m′C
in general. Table 1 shows that CEM is considerably closer to invariant (i.e., less sensitive) to
measurement error. Mahalanobis matching (MAH) and genetic matching (GEN) preserve 80%
of the total matched subset and propensity score matching (PSC) around 70%. In contrast, CEM
preserves 95% of the treated units and 98% of the control units. Thus, to some extent, coarsening
can overcome measurement error problems, at least for the (preprocessing) matching stage.

5.5 Bounding the Average Treatment Effect Estimation Error
We first introduce a slight constraint on the possible range of functions g0(·) and then derive the
theoretical bound. The following assumption restricts the sensitivity of g0(x1, . . . , xk) to changes
in its arguments: along each direction (i.e. along each xj), g0 behaves like a Lipschitz function.
Following the notation of Section 3.2, denote by Ξ−j = Ξ1 × Ξ2 × · · ·Ξj−1 × Ξj+1 × · · · × Ξk,
x−j = (x1, x2, . . . , xj−1, xj+1, . . . , xk) and g0(xj |x−j) = g0(x1, x2, . . . , xk).
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CEM(KT ) CEM(KC) PSC(KC) MAH(KC) GEN(KC)
% Common Units 95.3 97.7 70.2 80.9 80.0

Seconds 0.07 0.07 0.08 0.15 126.64

Table 1: Percentage of units present in matched sets both before and after perturbation, averaged
over 5,000 simulations, and computational time. (For all methods but CEM, KT = 100%.)

Assumption 1 (Lipschitz behaviour). For each variable j (j = 1, . . . , k) there exists a con-
stant Lj , 0 < Lj < ∞, such that, for any values x′j 6= x′′j of xj , maxx−j∈Ξ−j |g0(x′j |x−j) −
g0(x′′j |x−j)| ≤ Ljdj(x′j , x′′j ) where dj(·, ·) is an appropriate distance for variable xj .

This assumption is very mild and only bounds g0 from taking infinite values on finite sets. Given
two values x′j and x′′j of the variable xj , the maximum excursion of g0, regardless of all possible
values of the remaining variables xi (i 6= j), is bounded by the distance between x′j and x′′j times
some finite constant. This means that given finite variation in one variable, the function g0 does
not explode. If this assumption does not hold, g0 could have strange properties, such that even
arbitrarily small and otherwise irrelevant imbalance in the covariates could produce arbitrarily
large estimation error in SATT. This assumption easily fits all functional forms used regularly in
the social sciences.

Without loss of generality, we measure distance for numerical covariates as dj(x, y) = |x−y|.
For categorical variables we adopt the following definitions for convenience, and without loss of
generality. Let Xj be categorical variable and H be the set of distinct values of Xj . Then, if H ⊂
U , where U is an abstract set of unordered categories, define the distance as d(x, y) = 1{x 6=y},
where 1A = 1 for elements in set A and zero otherwise. If, alternatively, H ⊂ O, where O is the
abstract set of ordered categories, the distance is d(x, y) = |rank(x) − rank(y)|, where rank(x)
is the rank/order of category x inH.

Then, the definitions in Section 2.6 imply directly that the estimation error, Ē0 ≡ SATT −
ŜATT, is bounded from above and below by |Ē0|, i.e., −|Ē0| ≤ SATT − ŜATT ≤ |Ē0| and a
consequence of Assumption 1 is that |g0(Xi) − g0(X̃i)| ≤ maxj=1,...,k Ljεj . Therefore, for the
CEM algorithm, which keeps matched treated and control units for each covariate a maximum of
εj apart, we conclude that

|Ē0| ≤ max
j=1,...,k

Ljεj . (13)

Thus, setting εj locally for each variable bounds the SATT estimation error, not merely the imbal-
ance between treated and control groups. (We discuss how to estimate this in Section 6.6.2.)

5.6 Bounding Model Dependence
A key advantage of matching done well is that it should reduce model dependence. However, aside
from exact matching the relationship has never been proven directly. Thus, we prove here that the
maximum degree of model dependence is controlled by setting ε in CEM.

When exact matching is feasible, we estimate Yi(0) ≡ g0(Xi) via observed values of Y` for
which X̃` = Xi. When its infeasible, we resort to using a parametric or nonparametric statistical
model m` to span the remaining imbalance by estimating Yi(0) ≡ g0(Xi) via model extrapolation
or interpolation, conditional on the matched data set as Ŷ (0) ≡ m`(X̃). Model dependence is
how much m`(X̃) varies as a function of the model m`. Without loss of generality, consider the
case where X is a one dimensional numerical covariate. We restrict the attention to the set of
competing Lipschitz models, as an analogy to Assumption (1), such that

Definition 4 (Competing models). Let m`, ` = 1, 2, . . ., be models estimated on the matched data
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X̃ and consider the following class

Mh =
{
m` : |m`(x)−m`(y)| ≤ K`|x− y|, such that |mi(X̃)−mk(X̃)| ≤ h, i 6= k

}
with exogenous choices of a small prescribed nonnegative value for h and 0 < K` <∞.

In Mh, the Lipschitz constants K` are proper constants of the models m` and, given the
specification of m`, need not be estimated. The classMh represents competing models which fit
the observed data about as well, or in other words do not yield very different predictions for the
same observed values X̃; if this were not the case, we could rule out a model based on the data
alone.

In this framework, for any two models m1,m2 ∈ Mh, we define model dependence as
|m1(X̃i)−m2(X̃i)| (King and Zeng, 2007). This leads to our key result:

|m1(X̃)−m2(X̃)| =|m1(X̃)±m1(X)±m2(X)−m2(X̃)|
≤|m1(X)−m1(X̃)|+ |m2(X)−m2(X̃)|+ |m1(X)−m2(X)|
≤(K1 +K2)|X − X̃|+ h ≤ (K1 +K2)ε+ h

Thus, the degree of model dependence is directly bounded by the choice of ε in CEM.

5.7 Computational Efficiency
The most important computational efficiency of CEM is setting rather than checking balance.
Even when multiple steps are required to ensure sufficient observations, the number of steps will
normally be very few in comparison, and assessing the number of observations is trivial compared
to ex post balance checks. In addition, each run is fast because it scales linearly in the number of
variables, and is about as complex as a simple tabulation procedure.

Consider the most computationally difficult case of continuous covariates. Assume a given ε
vector, which coarsens each variable Xj into θj ≤ n intervals labeled with integers (1, . . . , θj).
This operation is of computational order n and so for k variables is of order kn. More specifically,
coarsening produces a matrix of integers Gθ(X) in kn steps. Each row of Gθ(X) is collapsed
into a character string, S(Gθ(X))4, which requires n additional operations. Finally, we tabule
S(Gθ(X)) in n additional steps. The total number of computations in CEM is thus (k + 2)n.

In contrast, Mahalanobis matching requires the inversion of a k×k matrix, with computational
order k3, and propensity score matching requires this inversion for each iteration of fitting the
logistic or other regression. This is just for the matrix inversion step, without regard to the other
matrix computations to obtain the final distance, which are of order n. For a large k and moderate
n (e.g., k = 35 and n = 1000), merely the construction of the distance matrix is of computational
order comparable to the whole CEM algorithm. In addition, once the distance matrix is available,
the nearest neighbor algorithm must be applied to determine matches, which requires additional
computational steps. Other methods require even heavier burdens.

Similarly, simple implementations of common methods require the storage of the entire k × k
matrix, and a final n × n distance matrix, or its triangular version of length n(n − 1)/2. In
contrast, CEM requires an n × k data matrix of integers and a subsequent vector of strings of
length n. Even for large data sets, these objects may be accessed sequentially on disk in CEM
whereas with Mahalanobis or propensity score matching, continuous non-sequential access to the
distance matrix must be maintained, most likely in RAM. These computational efficiency and

4For example, we transform the row (1, 3, 6, 15, 1) into “1*3*6*15*1”. This procedure may be further optimized
by replacing the strings with fixed size binary allocations in 64 bit implementations, but we do not pursue this additional
efficiency here.
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memory requirements for distance based methods are approximately the same for caliper-based
methods.

An example, with CEM programmed in R and the key parts of other methods programmed in
C is given in Table 1. In larger applications — such as microarray analyses with k in the thousands
and n in the dozens, or unstructured text analyses with k also in the thousands, but n ranging from
the thousands to the millions — CEM should work well even though most prior approaches seem
infeasible or at least not amenable to automation.

6 Extensions of Coarsened Exact Matching
6.1 Shifted Coarsenings
One seeming inconsistency with the basic CEM algorithm described in Section 3 is that it can be
sensitive to changes in X smaller than ε near stratum boundaries even though it is insensitive to
changes in X within strata. This does not matter if ε is set based on substantive criteria, but can
be a concern if set without as much thought. In this situation, all the properties of CEM described
in Section 5 still hold, but there may be an opportunity to increase the matched sample size a bit
more, given the same chosen balance level, even without relaxing any assumptions.

Thus our software runs the basic CEM algorithm several times, each with a fixed value of
ε, and thus a fixed stratum size, but with values of the cutpoints shifted together by different
amounts. We then output the single coarsening solution that maximizes the remaining sample
size. The number of shifted coarsenings and the size of each may be chosen by the user, but
our default is to try only three since we find that the advantages of this procedure are small and
additional improvements beyond this are not worth the computational time. Whichever choice
the user makes, all the properties of the basic CEM method also apply to this slightly generalized
algorithm.

6.2 Matching and Missing Data
When it comes to estimating causal effects in data with missing values, divergent messages are
putting applied researchers in a difficult position. One message from methodologists writing on
causal inference in observational data is that matching should be used to preprocess data prior to
modeling. Another message is that missing data should not be listwise deleted, but should instead
be treated via multiple imputation or another proper statistical approach (Rubin, 1987; King et al.,
2001). Although most causal inference problems have some missing data, its not obvious how
to apply matching while properly dealing with missing data. Indeed, we know of no matching
software that allows missing data for anything other than listwise deletion prior to matching, and
no missing data software that conducts or allows for matching. We offer two options here enabled
by CEM.

The simplest approach is to treat missing values as a discrete “observed” value, and then
to apply CEM with other coarsening used for the non-missing values. The default operation of
our software uses this approach. In some situations, however, we might wish to customize this
approach to the substance of the problem by coarsening the missing value with a specific observed
value. For example, for survey questions on topics respondents may not be fully familiar with, the
answers “no opinion” and “neutral” may convey similar or in some cases identical information,
and so grouping for the purpose of matching may be a reasonable approach. Since the original
values of these variables would still be passed to the analysis model, special procedures could still
be utilized to distinguish between the effects of the two distinct answers.

Although this first approach to missing data and matching will work for many applications,
it will be less useful when the occurrence of missing values are to some extent predictable from
the observed values of other variables in complicated ways we do not necessarily foresee and
include in our customized coarsening operator. Indeed, this is precisely what the “missing at
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random” assumption common in multiple imputation models is designed for. Thus, an alternative
is feed multiply imputed imputed data into a modified CEM algorithm. The modification works
by first placing each missing value in whichever coarsened stratum a plurality of the individual
imputations falls. (Alternatively, at some expense in terms of complication, the imputations could
stay in separate strata and weights could be added.) Then the rest of the algorithm works as
usual. The key here is that all the original uncoarsened variable values fed into CEM — in this
case including the multiple uncoarsened imputed values for each missing value — are output from
CEM as separately imputed matched data sets. Then, as usual with multiple imputation, each
imputed matched data set is analyzed separately and the results combined. Thus, unlike with other
matching procedures combined with imputation, multiple imputation followed by this modified
CEM algorithm will produce proper uncertainty estimates.

6.3 Combining CEM with Other Methods
CEM is the simplest method with MIB properties (and those in Section 5) and so may have the
widest applicability, but other improved methods could easily be developed for specific applica-
tions by applying existing approaches within each CEM stratum. For example, instead of retaining
all units matched within each stratum and moving to the analysis stage, we could fine tune local
(i.e., sub-ε) imbalance further by selecting or weighting units within each stratum via distance
or other methods. Indeed, non-MIB methods can usually be made MIB if they operate within
CEM strata, so long as the coarsened strata take precedence in determining matches. Thus, full
and optimal matching are not MIB, but if applied within CEM strata would be MIB and would
inherit the properties given in Section 5. Genetic matching as defined in Diamond and Sekhon
(2005) is not MIB, but by choosing the variable-by-variable caliper option in GenMatch (Sekhon,
2008) it would be MIB, and when operating within CEM strata (as GenMatch now implements)
it would be MIB and would also meet the congruence principle. Similarly, one could run the
basic CEM algorithm and then use either a synthetic matching approach (Abadie and Gardeaz-
abal, 2003), nonparametric adjustment (Abadie and Imbens, 2007), or weighted cross-validation
(Galdo, Smith and Black, 2008) within each stratum.

If the user does not know enough about X’s measurement to coarsen, then productive data
analysis seems infeasible. But in some applications, we can partitionX into two sets, only the first
of which includes variables known to have an important effect on the outcome (such as in public
health, age, sex, and a few diagnostic indicators). In this case, we may be willing to take good
matches on any subset of the second set and to forgo the MIB property within this second set. To
do this, we merely set ε artificially high for this second set, but small as usual for the first set, and
then apply a non-MIB method within CEM strata. For example, because the relative importance of
the variables is unknown, the propensity score other distance metric, if correctly specified, could
be helpful. When the correct specification is unlikely, one can alternatively leave the remaining
adjustment to the analysis stage, where analysts have more experience assessing model fit.

6.4 Multicategory Treatments
Under CEM, we set ε and then match the coarsened data, all without regard to the values of the
treatment variable. This means that CEM works without modification for multicategory treat-
ments: after the algorithm is applied, keep every stratum that contains all desired values of the
treatment variable and discard the rest. This is a simple approach that can be easily used with or
in place of more complicated approaches, such as based on generalizations of the propensity score
(Imai and van Dyk, 2004; Lu et al., 2001; Imbens, 2000).

6.5 Blocking in Randomized Experiments
Since “blocking” (i.e., pre-randomization matching) in randomized experiments bests complete
randomization with respect to bias, efficiency, power, and robustness, it should be used whenever
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feasible (Imai, King and Nall, 2008; Imai, King and Stuart, 2008). Fortunately, CEM also works
for blocking without modification: After matching the coarsened pre-treatment covariates X via
CEM, create the treatment variable by randomly assigning one (or more) of the units within each
stratum to receive treatment; the others are assigned to be control units. CEM also works with
multicategory treatments in blocking by randomly assigning observations within each stratum each
of the values of the treatment variable. Strata without sufficient observations to receive at least one
possible value of each treatment and control condition are discarded.

6.6 Automating User Choices
As described in Section 3, we recommend that users of CEM choose ε based on their knowledge
of the covariate measurement process and other substantive criteria such as the likely importance
of different variables. Although we have shown that making these decisions is relatively easy and
intuitive in most situations, users may sometimes want an automated procedure to orient them or
to make fast calculations. We offer several such approaches here.

6.6.1 Histogram Bin Size Calculations

When automation is necessary because of the scale of the problem, or to provide some orientation
as a starting point, we note here that choosing ε is very similar to the choice of the bin size
in drawing histograms. Some classic measures of bin size are based on the range of the data,
an underlying normal distribution, or the inter-quartile range. These are, respectively, known as
Sturges, ∆st = (x(n)−x(1))/(log2 n+1), Scott, ∆sc = 3.5

√
s̄2
nn
−1/3 (Scott, 1992), and Freedman

and Diaconis (1981) ∆fd = 2(Q3 −Q1)n−1/3. More recently, Shimazaki and Shinomoto (2007)
developed an approach based on Poisson sampling in time series analysis (in the attempt to recover
spikes), which we find works well. Our software implements these approaches but also provides
a way to specify non-constant bins for each variable, in which case the corresponding ε for our
proofs is the maximal bin size.

6.6.2 Estimating the SATT Error Bound

Assumption 1 is a natural part of standard observational data analysis, but it gives no hint how big
or small the Lj’s are. In practice, they can take any finite value, but their ranking implies a rough
order on the importance of each variable in affecting g0. That means that some insight about the
size of εj in CEM (or πj in any MIB method) and its effect on the treatment effect may come from
information about Lj . Thus, we note that Lj , for variable j (j = 1, . . . , k), may be estimated from
the data as:

L̂j = max
i1 6=i2∈C

|Yi1(0)− Yi2(0)|
dj(Xi1j , Xi2j)

, (14)

where C = {i : 1 ≤ i ≤ n ∩ Ti = 0}. These L̂j are estimates from below of the true Lj’s, but
they may still give insights about the relative importance of each variable on g0 for the given data.
Under additional assumptions on g0, the estimators of the Lj may have better performance (e.g.
g0 is linear or well approximated by a Taylor expansion, etc.). Equation (13) is independent of the
number of matched treated unitsmT when Lj are known, but in general the Lj are not independent
and can be estimated via (14). In such a case, the bound naturally depends on mT . Thus, although
knowing that CEM bounds SATT error is an attractive property in and of itself, we can go further
and estimate the value of this bound with Ê0 given as Ê0 = maxj L̂jεj and use the terms L̂jεj as a
hints during matching about which covariate may give rise to the largest estimation errors or bias
in estimating SATT. Although (14) uses the outcome variable, it only does so for control units (as
in Hansen, 2008), and so inducing selection bias is not a risk.
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6.6.3 Progressive Coarsening

Under CEM, setting balance by choosing ε may yield too few observations in some applications.
Of course, this situation reveals a feature of the data, not a problem with the method, where the
only real solution is to collect more data. In some circumstances, however, this situation may cause
users to rethink their choices for ε and rerun CEM. Although we prefer users to make these choices
explicitly, we offer here an automated procedure that may help in understanding data problems,
identify the new types of data that would be most valuable to collect, or help them rethink their
choices about ε.

Thus, we now study systematic ways to relax a CEM solution (that is increase εj selectively)
by using θ′ such that θ′ ≺ θ (using notation from Section 4.2). When different relaxations or
coarsenings, say θ′ and θ′′, lead to the same total numbers of matched units, mT (θ′) +mC(θ′) =
mT (θ′′) + mC(θ′′), then an automated procedure needs a way to choose among these solutions
that are for our purposes equivalent. We discriminate among these by minimizing the L1 distance.
Furthermore, although setting θj = 1 is equivalent to dropping Xj from the match, we keep Xj

with θj = 1 to maintain comparability because the L1 distance depends on the number of covari-
ates (as with any measure of dissimilarity in multidimensional histograms). In addition to keeping
the number of covariates the same in this way, we also keep the bins of the multidimensional
histogram used to calculate L1 the same.

With these requirements, we adopt a heuristic algorithm which we first describe conceptually,
without regard to computer time, and then what we use in practice. Given the original user choice
of θ, the algorithm relaxes each θj in increments of two, that is θ′j = θj − 2, until θ′j < 10 and
then by one or up to a user chosen minimally tolerable number of intervals, θmin

j . (We also shift
each intermediate solution as in Section 6.1.) We then repeat the procedure for pairs of variables,
(θi, θj), triplets (θi, θj , θk), etc. Combined with shifted coarsenings, an exhaustive procedure
with greater than triplets is feasible only via parallel processing, which happens to be is easy
to implement with CEM. In practice, however, there no need to explore all these combinations
of different coarsenings because even the basic application of CEM clearly reveals which data
are well matched overall and also with respect to how the treated and control units differ in the
multidimensional distribution. When we use this algorithm, we usually relax only one or two
variables at a time. We then also use the MIB property of CEM to provide convenient graphical
summaries of the results (see Section 7.1).

6.7 Avoiding the Dangers of Extreme Counterfactuals
In making causal inferences, the best current research practice is to eliminate extreme model de-
pendence by discarding observations outside the region of common empirical support (see Sec-
tion 5.3). Avoiding extreme model dependence is also an issue that applies to any type of coun-
terfactual inference — including causal inferences, forecasts, and what if questions. Typically,
scholars do this by eliminating data in the region requiring extrapolation, outside the convex hull
of the data (King and Zeng, 2006). However, as is widely recognized, the hull may contain voids
with little data nearby where estimation would be model dependent. Similarly, regions may exist
just outside the hull, but near a lot of data just inside, for which a small extrapolation may be safe.

CEM can help avoid these problems as follows. First augment the covariate data set with a
pseudo-observation that represents the values of X for the counterfactual inference of interest and
then run CEM on the augmented data set. Observations that fall in the same stratum as the pseudo-
observation can be used to make a relatively model-free inference about this counterfactual point,
and so the number of such observations is a measure of the reliability of an inference about this
counterfactual. This is thus a small generalization due to coarsening of a point emphasized by
Manski (1995), who would use ε = 0.

It may also be worth repeating this procedure after widening the definition of ε to include the
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largest values you would be willing to extrapolate for your particular choice of dependent variable.
For example, log-mortality for most causes of death is known to vary relatively smoothly with age
(Girosi and King, 2008), and so extrapolating age by 10 or 20 years would normally not be very
model dependent, except for the very young or very old. Thus, we might set εage in this way,
even though it might normally be set much smaller for using the basic CEM algorithm where
the goal would be to eliminate as much dependence on these types of assumptions as possible.
This additional procedure is of course more hazardous because it involves assumptions about a
specific outcome variable and because of interactions. For example, even if extrapolating age by
10 years is reasonable in one application, and extrapolating education by 4 years is also reasonable,
evaluating a counterfactual that involved simultaneously extrapolating 10 years of age and 4 years
of education beyond the data might well be unreasonable. Examples like these are much less likely
to occur or matter if ε is defined as we do for CEM.

7 Coarsened Exact Matching in Practice
Although the main advantage of CEM compared to other approaches may be the way it closely
connects the substance of each variable with the ultimate match, we compare the methods on other
grounds here. We start in Section 7.1 by showing how CEM reduces imbalance and illustrating
its MIB property via our progressive coarsening algorithm. We then show how CEM compares on
imbalance, bias, root mean square error, and computational time in data that fits (in Section 7.2)
and does not fit (in Section 7.3) EPBR’s associated data conditions.

Results here are meant to show that CEM performs very well with minimal effort, using only
our automated algorithms, and without optimizing CEM based on the substance of the variables
(as we recommend for practice). Even though we show that CEM substantially outperforms other
methods, it would be easy to outperform these results using CEM or the combined methods dis-
cussed in Section 6.3. The usual “ping pong theorem” qualifications certainly apply.

7.1 Empirical Evidence on Achieving Balance
Data Our data are from the National Supported Work (NSW) Demonstration, a U.S. job training
program Lalonde (1986). Although a unique experimental target result is not easily defined due to
the apparent failure of random treatment assignment, we use these data here to assess the degree
to which CEM can balance the data relative to other methods. The program provided training to
the participants for 12-18 months and helped them in finding a job. The goal of the program was
to increase participants’ earnings, and so 1978 earnings (re78) is the key outcome variable. Pre-
treatment variables were measured for both participants and controls, including age (age), years of
education (education), marital status (married), lack of a high school diploma (nodegree),
race (black, hispanic), indicator variables for unemployment in 1974 (u74) and 1975 (u75),
and real earnings in 1974 (re74) and 1975 (re75). Some of these are dichotomous (married,
nodegree, black, hispanic, u74, u75), some are categorical (age and education), and
the earnings variables are continuous and highly skewed, with point masses at zero. The conditions
for EPBR to hold are violated.

Basic Analysis Table 2 reports several measures of the degree of imbalance in the original un-
matched data, including the difference in means I1, the variable-by-variable distributional differ-
ence Lj1, and differences for the 25th, 50th, and 75th percentiles. The overall imbalance between
the treated and control groups in the original data is the distance between multidimensional his-
tograms, L1 = 1.149 (We discretize re74, re75, age and education according to intervals
of size 5000, 5000, 5 and 1, respectively). Table entries that are exactly zero are left blank. An
exact match returns 74 controls against 55 treated units.

We then match with CEM by defining ε for the variables re74, re75, age and education
via Sturges formula which returns, respectively, the values εre74 = 3957.1, εre75 = 3743.2,
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L1 I1 25% 50% 75%
age 0.01 0.18 1.00 1.00

education 0.20 0.19 1.00 1.00
black 0.00 0.00

married 0.02 0.01
nodegree 0.17 0.08 1.00

re74 101.49 69.73 584.92
re75 39.42 294.18 660.69

hispanic 0.04 0.02
u74 0.04 0.02
u75 0.09 0.05

Table 2: Measures of absolute imbalance in the distributions of treated and control units in the
original data. The global imbalance is L1 = 1.149, with nT = 297, nC = 425. An entry of
“0.00” indicates that at least the third decimal digit is nonzero; a blank entry denotes the number
is exactly zero.

L1 I1 25% 50% 75% I2

age -100.00 0.02 -2.63 0.03
education -89.58 -1.40 -7.69 -7.69 0.00

black -100.00 -0.13
married -100.00 -1.07

nodegree -100.00 -8.35 -100.00
re74 -0.24 -0.18 -1.30 0.01
re75 -0.07 -0.16 -1.39 0.01

hispanic -100.00 -1.87
u74 -100.00 -2.01
u75 -100.00 -4.51

Table 3: Imbalance reduction due to CEM compared to the original data (in Table 2), as a percent
of the range of each variable. Positive values for L1, I1, and the three quantiles means imbalance
increased (but by an amount less than the bound). The local imbalance, I2, is also reported.
Number of matched units: mT = 163, mC = 222. Global imbalance: L1 = 0.34.

εage = 3.8 and εedu = 1.3. The result gives 163 treated units matched with 222 control units,
with an overall imbalance of L1 = 0.62. A summary of the percentage imbalance reduction due
to CEM, as compared to the absolute imbalance in the original data (reported in Table 2), is given
in Table 3.5

Although CEM only guarantees imbalance in the matched sample to be less than or equal to
the bound set by the chosen ε, actual imbalance can be a good deal smaller for any one variable
because of the effects on this variable on bounding other variables or because the observations
within the chosen strata happen to contain better matches. We can see this if we rescale the ε’s to
the length of the support of each variable. For example, for variable age we have: εage = 3.8 and
|Rage| = 38, hence εage/|Rage| · 100% = 10 which is considerably larger than the number 0.03
appearing in column I2 of Table 3. Finally, we apply Mahalanobis nearest neighbor matching to

5Denote imb0 the imbalance in the original data and imb the imbalance left after the match. Then, for column L1,
Table 3 reports imb/imb0 · 100%, columns I1, 25%, 50% and 75% report |imb− imb0|/|R| · 100%, and column I2
gives I2/|R| · 100%, where |R| is the range of the corresponding variable.
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L1 I1 25% 50% 75% I2

age -100.00 1.41 -2.63 6.59
education -31.37 -0.99 3.50

black 400.00 0.54 0.67
married 151.67 1.62 3.37

nodegree -51.60 -4.31 6.73
re74 0.08 0.40 3.36
re75 0.24 -0.63 0.66 3.23

hispanic -100.00 -1.87
u74 -16.24 -0.33 2.36
u75 -70.13 -3.16 2.02

Table 4: Imbalance reduction due to Mahalanobis matching from the original data (in Table 2) as
a percent of the range of each variable. Positive values for L1, I1, and the three quantiles means
imbalance increased. The local imbalance, I2, is also reported. Global imbalance: L1 = 1.06,
mT = 297, mC = 297.

the original data, which gives a global imbalance of L1 = 1.06. Other imbalance measures are
given in Table 4.

With CEM, the L1 imbalance is greatly improved overall and for each variable and is always
better than the corresponding value for Mahalanobis matching. The difference in global imbal-
ance when comparing multidimensional histograms, as measured by L1, is almost unchanged by
Mahalanobis matching but greatly improved as a result of CEM.

Progressive coarsening We now illustrate the progressive coarsening extension of CEM intro-
duced in Section 6.6.3, which is useful when the number of matched units are fewer than desired,
and you are willing to consider alternative values for ε. Although we recommend choosing ε on
the basis of substantive knowledge of the variables, for our methodological purposes we begin
this illustration by selecting ε via Sturges automatic rule. We then relax each variable sequentially
decreasing the number of intervals of the discretization used to coarsen the data.

It took 3.2 seconds to perform 30 CEM relaxations. Figure 2 summarizes the results, which
both makes it easy to choose new values of ε. The figure gives on the horizontal axis the name of
the covariate relaxed (with the smaller number of intervals used for the discretization in parenthe-
ses). The corresponding percentage of treated units matched is reported on the left vertical axis
with the absolute number on the right vertical axis. Each dot on the plot is labeled with the value
of the L1 measure for that particular CEM solution. In this example, we chose minimal coars-
enings to constrain the algorithm (θmin

re74 = 6, θmin
re75 = 5, θmin

age = 3, θmin
education = 3). The label

“<start>” on the x-axis represents the starting point, and each successive change is listed to its
right. The results are sorted in order from closest to this starting point, on the left, to the biggest
increases in sample size on the right (as is typical, L1 increases with the matched sample size in
these data). The MIB property of CEM can be seen by noting that multiple coarsenings for any
one (color-coded) variable appears farther to the right as the number of coarsened strata decline.

From the largest vertical jumps (on the right side of Figure 2), it is clear that variable age is
the most difficult variable for matching in these data, followed by education. Dots connected
by horizontal lines on the figure reveal different solutions with the same number of matched units,
some of which have different levels of imbalance, L1. In applications, we may also wish to
consider joint relaxation of variables, but we do not pursue this here.
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Figure 2: Relaxation of each covariate.

7.2 EPBR Data
We consider here EPBR-compliant data. First, we draw two data sets from multivariate normal
distributions: XT ∼ N5(µT ,Σ) and XC ∼ N5(µC ,Σ), with with common variances (6, 2, 1, 2, 1)
and covariances, (2, 1, 0.4,−1,−0.2, 1,−0.4, 0.2, 0.4, 1), and means vectors µT = (0, 0, 0, 0, 0)
and µC = (1, 1, 1, 1, 1). We randomly sample nT = 1, 000 treated units from XT and nC = r ·nT
control units from XC with r = 1, 2, 3. In this experiment, we compare Mahalanobis (MAH) and
propensity score (PSC) matching and CEM. For CEM, each covariate is coarsened into 8 intervals
of equal length. We also allow PSC and MAH the advantage of matching with replacement,
in order to help them avoid trivial solutions. That is, MAH and PSC match mT = 1, 000 treated
units against a variable numbermC of control units, whereas CEM selects both treated and control
units (see Section 2.3).

Mahalanobis and propensity score matching should perform optimally in the sense of minimiz-
ing the difference in means I1 after the match on average (Rosenbaum and Rubin, 1985b). CEM
is designed to constrain the local imbalance, that is, the maximum distance between a treated unit
and the corresponding matched control units, which we can measure with L1 overall and I2 for
each variable. (See Section 2.7 for definitions; For L1 we divide each covariate into 11 equispaced
intervals to evaluate the k-dimensional histogram.)

Overall, we find that CEM is as good as the other methods in terms of the difference in means
(I1) for which these other methods were designed, but CEM is clearly superior in matching all
other local aspects of the treated and control distributions, as measured by I2 and L1.

These results can be seen in Tables 5 and 6, which report results for 1,000 and 3,000 control
units, respectively, with I1 reported in the top panel and I2 and L1 reported in the bottom panel of
each table. The tables also show that MAH is systematically worse than PSC and CEM. As would
be expected when there is more to the data than just the mean, CEM is better than PSC on the first
two covariates (which have much larger variances) whereas the contrary is true for the remaining
covariates. All these differences are relatively small. The tables also show that CEM is as fast
or faster than the other methods computationally, and this is with CEM programmed in R and the
others in native C.
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In terms of local imbalance, measured by I2 (in the bottom panel of each table), CEM is
considerably better than PSC on all covariates. We can also see that PSC is consistently worse
than MAH. So in terms of I2, CEM clearly dominates MAH which in turn dominates PSC. The
same ordering is produced by L1. Although L1 is not linear, and should primarily be used for
comparisons, it is evident that the imbalance reduction, as measured by L1, is very small for MAH
and PSC and quite large for CEM. This means that CEM is indeed greatly reducing the distance
between the two k-dimensional distributions of treated and control units.

X1 X2 X3 X4 X5 mT mC Seconds
initial imb. 1.00 1.00 1.00 1.00 1.00 1000 1000 0.00

CEM 0.04 0.02 0.06 0.06 0.04 341 340 0.08
MAH 0.20 0.20 0.20 0.20 0.20 1000 408 0.28

PSC 0.11 0.06 0.03 0.06 0.03 1000 616 0.16

X1 X2 X3 X4 X5 L1

CEM 0.42 0.26 0.17 0.22 0.19 0.78
MAH 0.56 0.36 0.29 0.36 0.29 1.13

PSC 2.38 1.25 0.74 1.25 0.74 1.18

Table 5: Imbalance in means I1 (top panel) and local imbalance I2 (bottom panel) remaining after
matching for each variable listed, X1, . . . , X5. Also reported are the number of treated mT and
control mC units remaining after the match (top) and the multivariate L1 measure of imbalance
(bottom). Results are averaged over 5,000 replications, with nT = 1, 000, nC = 1, 000. The
initial global imbalance is L1 = 1.24. (Computational times are in seconds on a 2.00 GHz Intel
Core 2 Duo machine.)

X1 X2 X3 X4 X5 mT mC Seconds
initial imb. 1.00 1.00 1.00 1.00 1.00 1000 3000 0.00

CEM 0.04 0.02 0.05 0.06 0.04 513 921 0.15
MAH 0.14 0.14 0.14 0.14 0.14 1000 625 0.60

PSC 0.07 0.04 0.02 0.04 0.02 1000 2157 0.40

X1 X2 X3 X4 X5 L1

CEM 0.38 0.24 0.16 0.21 0.17 0.75
MAH 0.51 0.32 0.25 0.32 0.25 0.89

PSC 2.40 1.26 0.75 1.26 0.75 0.99

Table 6: See caption to Table 5, which holds here except nC = 3000 and the initial global imbal-
ance L1 = 1.17.

Other regularities emerges from this analysis as well: all methods performs about as well as
the reservoir of control units (drawn from the same population) grows. Mahalanobis matching and
CEM agrees on the fact that not all the control units are good counterfactuals, and the numbers
of control units selected do not differ drastically. These results are also consistent with how the
methods were designed: PSC is designed to make means of the distributions closer but is not
intended to make any other aspect of the distributions match well. MAH matching takes into
account the local characteristics of the data and so it is a better measure of local closeness and thus
matches more than just the mean. CEM is designed to look for the best counterfactuals locally and
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match all aspects of the distributions. Only MAH behaves like a real EPBR method in reducing
the initial imbalance by (almost) the same amount on each covariate in terms of I1.

Thus, given data drawn to meet EPBR conditions, the optimal approach would be to choose
a method based on the nature of the g0 function (i.e. linear/non linear, smooth/non-smooth, etc.)
and the relative importance of different covariates, if they are known, based on whether one needs
matching of more than the mean. The conservative approach, which is appropriate when little is
known about the real nature of g0, seems to apply CEM, as it performs almost as the best EPBR
method under EPBR conditions in terms of what EPBR methods are designed for, and performs
much better for what CEM is designed for, at the cost of loosing some treated units. We show in
the next section that this cost is not binding in this decision.6.

7.3 Non-EPBR Data
We now evaluate CEM in data that violate the EPBR assumptions. To do this, we use the data
generation process chosen by Diamond and Sekhon (2005) to evaluate their genetic matching
algorithm. This involves using covariates chosen by Dehejia and Wahba (1999), a subset of the
Lalonde data, setting the (homogeneous) treatment effect to $1,000, and generating Y via this
highly nonlinear form:

Y = 1000 · T + 0.1 · exp (0.7 · log(re74 + 0.01 + 0.7 · log(re75 + 0.01)) + ε

where ε ∼ N(0, 10). The value of the treatment variable is then assigned to each observation on
the basis of a true propensity score e, given by

ei = logit−1

{
1 + 0.5 · µ̂+ 0.01 · age2 − 0.3 · education2 − 0.01 · log(re74 + 0.01)2

+ 0.01 · log(re75 + 0.01)2

}
where µ̂ is the linear predictor of the following misspecified logistic model used to estimate a
propensity score (as in Dehejia and Wahba 1999):

µ̂ = 1 + 1.428 · 10−4 · age2 − 2.918 · 10−3 · educ2 − 0.2275 · black− 0.8276 · hispanic
+ 0.2071 · married− 0.8232 · nodegree− 1.236 · 10−9 · re742

+ 5.865 · 10−10 · re752 − 0.04328 · u74− 0.3804 · u75

In each of 5000 replications from this process, we assign the treatment to observation i by
sampling from the Bernoulli with parameter ei, i.e. Ti ∼ Bern(ei), so the number of pre-match
treated and control units in the sample varies over replications. We then compare SATT estimators
based on the difference in means (RAW in Table 7), the nearest neighbor propensity score matching
(PSC), the nearest neighbor Mahalanobis matching (MAH), Genetic Matching (GEN), and CEM
using our automatically selected discretization.

As in Diamond and Sekhon (2005), we report results in terms of the bias (“BIAS”), standard
deviation (“SD”), and root mean square error (“RMSE”) of the SATT estimate over the 5,000
Monte Carlo replications. We also report the average number of matched units, which is lower

6We include genetic matching in our simulations in the next section, but skip it here because of unrealistic com-
putational times. Each genetic matching run takes about 2.5 minutes with 1,000 controls and about 4–6 minutes for
3000, which would mean about 75 hours to complete 1,000 replications only for genetic matching, compared to a total
of less than 2 hours for the total run time for all remaining methods taken together. We did run a small number of
genetic matching runs and find that it selects the same number of control units as Mahalanobis matching, with CEM
outperforming in terms of I1. CEM is also better in terms of I2 most of the time in each replication, although for some
variables (X3 and X5), the methods provide the same level of local imbalance.
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BIAS SD RMSE Treated Controls Seconds L1

RAW -423.72 1566.49 1622.63 151 293 0.00 1.28
MAH 784.80 737.93 1077.20 151 151 0.03 1.08

PSC 260.45 1025.83 1058.28 151 151 0.02 1.23
GEN 78.33 499.50 505.55 151 143 27.38 1.12
CEM 0.78 111.39 111.38 86 151 0.03 0.76

Table 7: Comparison of bias, standard deviation, root mean square error, computational speed
(seconds) and the L1 measure of imbalance for the original data (RAW), Mahalanobis distance
(MAH), propensity score matching (PSC), genetic matching (GEN), and CEM, with values aver-
aged over 5,000 Monte Carlo Replications. Also given are the number of treated and control units
selected by each method.

for CEM than for other methods, given the automated coarsening we chose (in practice of course,
coarsening should be chosen based on the substance of the variables and so in general the number
could be larger or smaller). Despite this, CEM dominates the other methods on each of the three
evaluative criteria. Table 7 also gives results on computational speed and the L1 balance metric,
which CEM also improves on.

Relative to the original data, Mahalanobis matching increases the absolute bias but reduces
the variance, which nets out to reducing the RMSE by about a third. Propensity score matching
reduces the variance (but less than Mahalanobis) and also the bias, which nets to about the same
RMSE. Genetic matching reduces both bias and variance, resulting in about a two-thirds reduction
in RMSE compared to the raw data. In contrast, CEM eliminates nearly all bias, and the vast
majority of the variance, which nets to a 93% reduction in RMSE as compared to the original data.
CEM (programmed in R) is also about 900 times faster than genetic matching (programmed mostly
in C). Of course, each of these other methods have many potential uses, and the timing differences
in particular do not matter much for smaller data sets, but at a minimum CEM would seem to be
very widely applicable. (We ran other Monte Carlo experiments with more difficult, complicated,
and heterogeneous data generation processes — and also allowed different methods to estimate
their own best estimand, keeping SATT constant, and then letting it vary by also matching treated
units — and reached similar conclusions.)

8 Concluding Remarks on What Can Go Wrong
Our main goal in this paper has been to introduce the new class of MIB matching methods for
making causal inferences from observational data. We demonstrate the usefulness of this class of
methods by developing CEM as the simplest method with MIB properties. We conclude here with
a discussion of what can go wrong and how to avoid it.

Setting ε appropriately is the primary issue to consider when running CEM. If an element of
ε is set too large, then information that might have been useful to produce better matches may
be missed. This is an issue, but analysts have a second chance to avoid the consequences of this
problem in the analysis after matching. Of course, the less precise the match, the more burden is
put on getting the modeling assumptions correct in the analysis stage.

In contrast, if elements of ε are set too small, then too many observations may be discarded
without a chance for compensation during the analysis stage. If they are set much too small, a
solution may either be unavailable or lead to a low efficiency solution. One must also be careful
allowing selection to occur on the treated units and to recognize and clarify for readers the new
estimand. As we use CEM in practice, we tend to choose higher standards for what constitutes
a match and thus are sometimes left in real observational data sets with fewer observations than
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we might have otherwise, with the result being less covariate imbalance, less model dependence,
and less resulting statistical bias. In many cases, smaller CEM matched data sets eliminate much
heterogeneity, resulting also in causal estimates with smaller variances. With or without these
lower variances, the additional bias reduction means that CEM-based estimates will normally have
lower mean square error as well. Of course, if ε is set as high as you are comfortable with, and
your matched data set is still too small, then no magical method will be able to fix this basic data
inadequacy, and you will be left trying to model your way out of the problem or to collect more
informative data.

When used properly with informative data, CEM can reduce model dependence and bias,
and improve efficiency, across a wide range of potential applications. Even when it is possible
to design a superior matching method specially for a particular data set, the simplicity of CEM
will ordinarily still be far better than the commonly used parametric-only approaches. In these
situations, users may opt for CEM, but they should be aware of the potential gain from delving
more deeply into the increasingly sophisticated methodological literature in this area.

Finally, all the issues with matching in general may also go wrong with CEM. For example,
CEM will not save you if an important covariate is not matched on, unless it is closely related to a
variable that is matched on.

A Proofs of Propositions
To simplify the notation, we drop the index j everywhere in the proofs of this section. For the
notation refer to Section 4.4.

Proof of Proposition 1. Let us introduce the means by strata
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summation
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∑
i∈Ts

wi = 1. Hence, each centered k-th moment is bounded by the
positive quantity εk(θ∗ + 1)k, so it their absolute difference∣∣∣∣∣ 1

mC

θ∑
s=1

∑
i∈Cs

|Xi − X̄w
mC
|kwi −

1
mT

θ∑
s=1

∑
i∈Ts

|Xi − X̄w
mT
|kwi

∣∣∣∣∣ ≤ εk(θ∗ + 1)k

In the case of k-to-j matching, where k and j do not vary over the strata or for one-to-one match-
ing, weights can be discarded and the result simplifies to∣∣∣∣∣ 1

mC

∑
i∈C
|Xi − X̄mC |

k − 1
mT

∑
i∈T
|Xi − X̄mT |

k

∣∣∣∣∣ ≤ εk(θ∗ + 1)k

but it is possible to obtain a better bound as follows in the case of one-to-one or ks-to-ks matching.
We focus on stratum s and denote byXC

s the control units in that stratum andXT
s the treated ones.

The proof is presented for one-to-one matching, but the results also apply to ks-to-ks matching.

|XC
s − X̄mC |

k = |XC
s −XT

s +XT
s − X̄mT + X̄mT − X̄mC |

k

≤ (|XC
s −XT

s |+ |XT
s − X̄mT |+ |X̄mT − X̄mC |)

k

≤
(
|XT

s − X̄mT |+ 2εj
)k

(by local bounds)

= |XT
s − X̄mT |

k +
k−1∑
h=0

(
k

h

)
|XT

s − X̄mT |
h (2ε)k−h (by bin. exp.)

≤ |XT
s − X̄mT |

k + εk
k−1∑
h=0

(
k

h

) ∣∣∣∣XT
s − X̄mT

ε

∣∣∣∣h 2k−h

≤ |XT
s − X̄mT |

k + εk
k−1∑
h=0

(
k

h

)
θ∗h2k−h (by (6))

≤ |XT
s − X̄mT |

k + εk((θ∗ + 2)k − θ∗k) (by bin. exp.)
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Hence
1
mT

(
θ∑
s=1

|XC
s,j − X̄mC ,j |

k − |XT
s,j − X̄mT ,j |

k

)
≤ εk

(
(θ∗ + 2)k − θ∗k

)
The two bounds are equivalent for large k but for k = 2 the above bound becomes linear in θ∗,
i.e., ε2

(
(θ∗ + 2)2 − θ∗2

)
= ε2(4 + 2θ∗).

Proof of Proposition 3. Consider the qth empirical quantiles of the distribution of the treated and
control units, QmT ,j and QmC ,j . That is, QmT ,j is the qth ordered observation of the subsample
of mT matched treated units, and similarly for QmC ,j . In one-to-one matching, the first treated
observation is matched against the first control observation in the first strata, and in general, the
corresponding quantiles belong to the same strata. Therefore, |QmT ,j −QmC ,j | < εj .

A similar proof holds for the ks-to-js matching. First define the weighted empirical distribu-
tion functions for treated FwmT

(x) and control groups FwmC
(x) as

FwmT
(x) =

∑
xi≤x,i∈T

wi
mT

and FwmC
(x) =

∑
xi≤x,i∈C

wi
mC

.

Consider the generic stratum s (s = 1, . . . , θ), say [as, bs], where as is the left-most cutpoint of
the discretization and bs = as + ε. For simplicity, take s = 1, so that FwmT

(a1) = FwmC
(a1) = 0.

Then FwmT
(b1) = ms=1

T /mT because there are at most ms=1
T treated units less than or equal to b1.

Similarly, for the weighted distribution of the control units we have

FwmC
(b1) =

ms=1
C

mC
· mC

mT

ms=1
T

ms=1
C

=
ms=1
T

mT

Thus, for each stratum, FwmT
(bs) = ms

T /mT = FwmC
(bs), and hence the difference between

weighted empirical distribution functions at the end points of each stratum [as, bs] is always zero.
Therefore, if we define the weighted empirical quantile of size q as the first observation x such that
F (x) ≥ q (where F is either FwmC

or FwmT
), the weighted quantiles of the same order for treated

and control units always belong to the same stratum and hence the difference between the quantile
x for the treated and control units, given q is at most ε.
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