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Abstract

We discuss a method for improving causal inferences called “Coarsened Exact Matching” (CEM),

and the new “Monotonic Imbalance Bounding” (MIB) class of matching methods from which

CEM is derived. We summarize what is known about CEM and MIB, derive and illustrate several

new desirable statistical properties of CEM, and then propose a variety of useful extensions. We

show that CEM possesses a wide range of desirable statistical properties not available in most

other matching methods, but is at the same time exceptionally easy to comprehend and use. We

focus on the connection between theoretical properties and practical applications. We also make

available easy-to-use open source software for R and Stata which implement all our suggestions.



1 Introduction

Observational data are often inexpensive to collect, at least compared to randomized experiments,

and so are typically in plentiful supply. However, key aspects of the data generation process —

especially the treatment assignment mechanism — are unknown or ambiguous, and in any event

are not controlled by the investigator. This generates the central dilemma of the field, which we

might summarize as: information, information everywhere, nor a datum to trust (with apologies to

Samuel Taylor Coleridge).

Matching is a nonparametric method of controlling for the confounding influence of pretreat-

ment control variables in observational data. The key goal of matching is to prune observations

from the data so that the remaining data have better balance between the treated and control groups,

meaning that the empirical distributions of the covariates (X) in the groups are more similar. Ex-

actly balanced data means that controlling further for X is unnecessary (since it is unrelated to

the treatment variable), and so a simple difference in means on the matched data can estimate the

causal effect; approximately balanced data requires controlling for X with a model (such as the

same model that would have been used without matching), but the only inferences necessary are

those relatively close to the data, leading to less model dependence and reduced statistical bias

than without matching (Ho et al., 2007).

The central dilemma means that model dependence and statistical bias are usually much bigger

problems than large variances.1 Unfortunately, most matching methods seem designed for the

opposite problem. They guarantee the matched sample size ex ante (thus fixing most aspects of

the variance) and produce some level of reduction in imbalance between the treated and control

groups (hence reducing bias and model dependence) only as a consequence and only sometimes.

That is, the less important criterion is guaranteed by the procedure, and any success at achieving

the most important criterion is uncertain and must be checked ex post. Because the methods are

not designed to achieve the goal set out for them, numerous applications of matching methods fail

the check and so need to be repeatedly tweaked and rerun.

This disconnect gives rise to the most difficult problem in real empirical applications of match-

ing: in many observational data sets, finding a matching solution that improves balance between

the treated and control groups is easy for most covariates, but the result often leaves balance worse

1As Rubin (2006) writes, “First, since it is generally not wise to obtain a very precise estimate of a drastically wrong
quantity, the investigator should be more concerned about having an estimate with small bias than one with small
variance. Second, since in many observational studies the sample sizes are sufficiently large that sampling variances of
estimators will be small, the sensitivity of estimators to biases is the dominant source of uncertainty.”
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for some other variables at the same time. Thus, analysts are left with the nagging worry that all

their “improvements” in applying matching may actually have increased bias.

Continually checking balance, rematching, and checking again until balance is improved on all

variables is the best current practice with most existing matching algorithms. The process needs

to be repeated multiple times because any change in the matching algorithm may alter balance

in unpredictable ways on any or all variables. Perhaps the difficulty in following best practices

in this field explains why many applied articles do not measure or report levels of imbalance at

all, and appear to run some chosen matching algorithm only once. Moreover, even when balance

is checked and reported, at best a table comparing means in the treatment and control groups

is included. Imbalance due to differences in variances, ranges, covariances, and higher order

interactions are typically ignored. This of course is a real mistake, since any one application of

most existing matching algorithms is not guaranteed (without balance checking) to do any good at

all. Of course, it is hard to blame applied researchers who might reasonably expect that a method

touted for its ability to reduce imbalance might actually do so when used once.

The problem stems from the fact that widely used current methods, such as propensity score

and Mahalanobis matching, are members of the class of matching methods known as “Equal Per-

cent Bias Reducing” (EPBR) which does not guarantee any level of imbalance reduction in any

given data set; its properties only hold on average across samples and even then only by assuming

a set of normally unverifiable assumptions about the data generation process. In any application, a

single use of these techniques can increase imbalance and model dependence by any amount.

To avoid these and other problems with EPBR methods, Iacus, King and Porro (In press) intro-

duce a new generalized class of matching methods known as “Monotonic Imbalance Bounding”

(MIB). We discuss a particular member of the MIB class of matching methods which (Iacus, King

and Porro, In press) call “Coarsened Exact Matching” (CEM). CEM works in sample and requires

no assumptions about the data generation process (beyond the usual omnipresent ignorability as-

sumptions). More importantly, CEM, and all MIB methods, invert the process and thus guarantee

that the imbalance between the matched treated and control groups will not be larger than the ex

ante user choice. This level is chosen by the user on the basis of specific, intuitive substantive

information which they demonstrably have. (If you understand the trade-offs in drawing a his-

togram, you will understand how to use this method.) With MIB methods, improvements in the

bound on balance for one covariate can be studied and improved in isolation as it will have no
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effect on the maximum imbalance of each of the other covariates.

CEM-based causal estimates possess a large variety of other powerful statistical properties as

well. Some of these proven in Iacus, King and Porro (In press) and others are demonstrated here

for the first time. In a large variety of real and simulated data sets, including data that meet the

assumptions made by EPBR-methods, Iacus, King and Porro (In press), Iacus, King and Porro

(2009), and King et al. (2011) show that CEM dominates commonly used existing (EPBR and

other) matching methods in its ability to reduce imbalance, model dependence, estimation error,

bias, variance, mean square error, and other criteria. We summarize the properties of CEM here,

and then introduce a variety of extensions that make the method more widely applicable in practice.

CEM can thus be thought of as an easy first line of defense in protecting users from the threats

to validity in making causal inferences. The method can also used with other existing methods so

that the combined method inherits the properties shown here apply to CEM. In what follows, we

introduce our notation and setup (Section 2), describe CEM (Section 3), discuss the properties of

CEM (Section 4), and extend CEM in various useful ways (Section 5). We then offer an empirical

illustration to show how it works in practice (Section 6) and conclude with a discussion of what

can go wrong when using this approach (Section 7). All data and code necessary to replicate the

results in this paper appears in Iacus, King and Porro (2011).

2 Preliminaries

This section describes our setup. It includes our notation, definitions of our target quantities of

interest, some simplifying assumptions, a brief summary of existing matching methods and post-

estimation matching, what to do when some treated units cannot be matched, a general character-

ization of error in estimating the target quantities, and how to measure imbalance.

2.1 Notation

Consider a sample of n ≤ N units drawn from a population of N. Let Ti denote an indicator

variable for unit i that takes on value 1 if unit i is a member of the “treated” group and 0 if i is a

member of the “control” group. The observed outcome variable is Yi = TiYi(1) + (1 − Ti)Yi(0),

where Yi(0) is the potential outcome for observation i if the unit does not receive treatment and

Yi(1) is the potential outcome if the (same) unit receives treatment. For each observed unit, Yi(0)

is unobserved if i receives treatment and Yi(1) is unobserved if i does not receive treatment.

To compensate for the observational data problem where the treated and control groups are not

necessarily identical before treatment (and, lacking random assignment, not the same on average),
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matching estimators attempt to control for pre-treatment covariates. For this purpose, we denote

X = (X1, X2, . . . , Xk) as a k-dimensional data set, where each X j is a column vector of observed

values of pre-treatment variable j for the n sample observations (possibly drawn from a population,

of size N). That is, X = [Xi j, i = 1, . . . , n, j = 1, . . . , k]. Let T = {i : Ti = 1} be the set of indexes

for the treated units and nT = #T be a count of the elements of this set; similarly C = {i : Ti = 0},

nC = #C for the control units, with nT + nC = n. Let Xi = (Xi1, . . . , Xik) be the vector of covariates

for observation i. We denote by mT and mC the number of treated and control units matched by

some method. Let MT ⊆ T and MC ⊆ C be the sets of indexes of the matched units in the two

groups.

2.2 Quantities of Interest

As usual, the treatment effect for unit i, TEi = Yi(1) − Yi(0), is unobserved. Many relevant causal

quantities of interest are averages of TEi over different subsets of units, and so must be estimated.

The most common include the sample (SATT) and population (PATT) average treatment effect on

the treated:

SATT =
1

nT

∑
i∈T

TEi PATT =
1

NT

∑
i∈T ∗

TEi,

where T ∗ is the set of indexes of treated units in the whole population and NT = #T ∗. See Imbens

(2004); Morgan and Winship (2007).

Although SATT is a quantity of interest in and of itself, without regard to a population beyond

the sample data, if the sample is randomly drawn from the relevant population, E(SATT) = PATT

(where the expected value operator averages over repeated samples).

2.3 Simplifying Assumptions

First, we make the standard assumption, known as “no omitted variable bias” in the social sci-

ences or “ignorability” in statistics: conditional on X, the treatment variable is independent of the

potential outcomes: Ti y {Yi(0),Yi(1)}|X.

Second, matching-based estimators tend to focus on SATT (or PATT) so that if they choose to

retain all treated units, and prune only control units, the target quantity of interest remains the same.

Thus, for each observation, Yi(1) is always observed, while Yi(0) is always estimated (by choosing

values from the control units via some matching algorithm or applying some model). Section 2.6

discusses what to do when the analyst chooses to prune treated units when no reasonable match

exists among the pool of available controls.
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2.4 Existing Matching Methods

This section outlines the most commonly used matching methods. To begin, one-to-one exact

matching estimates the unobserved Yi(0), corresponding to each observed treated unit i (with out-

come value Yi and covariate values Xi), with the outcome value of a control unit (denoted Ỹ` with

covariate values X̃`), chosen such that X̃` = Xi. We denote the resulting estimate of Yi(0) as Ŷi(0).

To increase efficiency the alternative exact matching algorithm uses all control units that match

each treated unit (i.e., all Xi such that X̃` = Xi).

Unfortunately, in most real applications with covariates sufficiently rich to make ignorability

assumptions plausible, insufficient units can be exactly matched. Thus, analysts must choose one

of the existing approximate matching methods, the best practice for which involves two separate

steps. The first step drops treated and control units outside the common empirical support of both

groups, since including them would require unreasonable extrapolation far from the data. The

second step then matches the treated unit to some control observation X̃ that, if not exactly X, is

close by some metric. The second step of most existing approximate matching procedures can

be distinguished by the choice of metric. For example, nearest neighbor Mahalanobis matching

chooses the closest control unit to each treated unit (among those within the common empirical

support), using the Mahalanobis distance metric. For another example, nearest neighbor propen-

sity score matching first summarizes the vector of covariate values for an observation by the scalar

propensity score, which is the probability of treatment given the vector of covariates, estimated

in some way, typically via a simple logit model. Then the closest control to each treated unit

is used as a match, with the distance defined by the absolute difference between the two scalar

propensity score values. Other options include optimal, subclassification, genetic algorithm, and

other procedures. Since the second step in existing algorithms do not guarantee an improvement

in balance except under specialized conditions, the degree of imbalance must be measured, the

matching algorithm must be respecified, and imbalance checked again, etc., until a satisfactory

solution is reached. (For example, the correct specification of the propensity score is not indicated

by measures of fit, only by whether matching on it achieved balance.)

An additional problem for existing approximate matching methods is that most of the tech-

nologies used for matching in the second step are unhelpful for completing the first step. For

example, the propensity score can be used to find the area of extrapolation only after we know that

the correct propensity score model has been used. However, the only way to verify that the correct
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propensity score model has been specified is to check whether matching on it produces balance

between the treated and control groups on the relevant covariates. But balance cannot be reliably

checked until the region of extrapolation has been removed. To avoid this type of infinite regress,

researchers could use entirely different technologies for the first step, such as kernel density esti-

mation (Heckman, Ichimura and Todd, 1997) or dropping control units outside the hyper-rectangle

(Iacus and Porro, 2009) or convex hull (King and Zeng, 2006) of the treated units. In practice, most

published applications skip the first step entirely and instead match all treated units, regardless of

whether it is advisable or not. The method we introduce below avoids these problems by satisfying

both steps simultaneously in the same algorithm.

2.5 Post-Matching Estimation

Matching methods are data preprocessing algorithms, not statistical estimators. Thus, after pre-

processing, some type of estimator must be applied to the data to make causal inferences. For

example, if one-to-one exact matching is used, then a simple difference in means between Y in the

treated and control groups provides a fully nonparametric estimator of the causal effect. When the

treated and control groups do not match exactly, the estimator will necessarily incorporate some

modeling assumptions designed to span the remaining differences, and so results will be model-

dependent to some degree (King and Zeng, 2007). Preprocessing via matching can greatly reduce

the degree of modeling necessary and thus also the degree of model dependence (Ho et al., 2007).

Under a matching method that produces a one-to-one match (or in general any match that has

a fixed positive number of treated and control units across strata), any analysis method that might

have been appropriate without matching (such as some type of regression model or specially de-

signed nonparametric methods; Abadie and Imbens 2007) can alternatively be used on the matched

data set with the benefit of having a lower risk of model dependence (Ho et al., 2007).

When different numbers of control units are matched to each treated unit — or in general if

different numbers of treated and control units appear in different strata, as in exact matching — the

analysis model must weight or adjust for the different stratum sizes. In this situation, the simplest

SATT estimator is a weighted difference in means between the treated and control groups, or equiv-

alently a weighted linear regression of Y on T . We can go further by trying to span the remaining

imbalance via a weighted regression of Y on T and X. In either regression, the coefficient on T

is our SATT estimate. Alternatively, to avoid the implicit constant treatment effect assumption of

the regression approach, we can apply a statistical model within each stratum without weights and
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average the results across stratum with appropriate weights; when few observations exist within

each stratum, a Bayesian, empirical Bayes, or random effects model can be applied in the same

way. Finally, nonlinear (or linear) models may also be fit to all the data and used to predict, for

each treated unit, the unobserved potential outcome under control Yi(0) given its observed covari-

ate values Xi, with the treated unit-level estimated causal effects averaged over all treated units.

For an example of an implementation of these approaches, see Iacus, King and Porro (2009).

2.6 When Matches for all Treated Units do not Exist

When one or more treated units have no reasonable matches among the set of available controls,

standard approaches will lead to unacceptably high levels of model dependence. In this situation,

three options are available with any matching method. First, we can decide that the data include

insufficient information to estimate the target causal effect and give up, producing no inference at

all. Second, we can create controls by extrapolating from some given model, although leaving us

with high levels of model dependence. Or finally, we can change the estimand to the local SATT,

that is the treatment effect averaged over only the subset of treated units for which good matches

exist among available controls. This third approach is often used in applications, such as when

applying propensity score or Mahalanobis matching with calipers.

The recognized best practice in the literature currently is to eliminate the extrapolation region

as a separate prior step and then to match. This procedure deletes treated units without good

matches and so is a version of the third option of changing the estimand. This choice is reasonable

so long as one is transparent about the choice and the consequences in terms of the new set of

treated units over which the causal effect is defined (as, e.g., Crump et al., 2009). The same

change in the quantity of interest is common in other methods for observational data, such as local

average treatment effects and regression discontinuity designs (Imbens and Angrist, 1994). The

practice is even similar to most randomized experiments which do not select subjects randomly,

and so have an estimand that is also defined over a somewhat arbitrary set of units (such as patients

who happen to show up at a hospital and agree to be enrolled in a study, or those who fit conditions

researchers believe will demonstrate larger causal effects).

However, most published applications of standard matching methods do not eliminate the ex-

trapolation region, and instead match at all costs regardless of whether reasonable matches exist

among the control units. In these studies, analysts are effectively taking the second option and

producing highly model dependent inferences, but without necessarily even knowing it.
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We also offer here a more general way to think about this problem, following Iacus, King and

Porro (In press). Thus, we first partition the nT treated units into the mT ≤ nT units which can be

matched well from the set of controls and the nT −mT units which involve extreme counterfactuals

(i.e., extrapolations) far from the treated units. (Unlike the matching method we introduce below,

most standard methods require a separate prior step to accomplish this, such as the convex hull

or hyper-rectangle; see Section 2.4.) Then, we match the data in the first subset with acceptable

controls to produce a “local SATT,” say τ̂mT . Then, for the rest of the treated units, we extrapolate

via some model estimated on the matched units to obtain virtual control units for the unmatched

treated units, and produce a (necessarily model dependent) estimate τ̂nT−mT . Finally, we calculate

the overall SATT estimate τ̂nT as the weighted mean of the two estimates:

τ̂nT =
τ̂mT · mT + τ̂nT−mT · (nT − mT )

nT
. (1)

The result is that the SATT is fixed ex ante, with the two components separately estimated and

clearly identified. In practice, analysts may wish to present all three or just the local SATT.

2.7 Quantifying Estimation Error

We derive the precise point of this balance checking here, as well as its connection to the real

goal: accurate estimation of the causal effect. For simplicity, we analyze the case where the

analysis method used after preprocessing is the simple difference in means. Begin by writing the

unobserved potential outcome for each unit as

Yi(0) = g0(Xi) = g0(Xi1, . . . , Xik). (2)

where g0 is an unknown function (cf. Imai, King and Stuart, 2008). If (2) included an error term

that affects Yi(t) but is unrelated to T , it would be implied by the ignorability assumption. Our

results would not be materially changed if it were included, except we would have to add expected

values or probability limits. We omit it here for simplicity and because the concepts of repeated

samples from the same data generation process, and samples that grow without limit, are forced

analogies in many observational data sets.

We now decompose the unit-level treatment effect, TEi, into the estimated treatment effect,

T̂Ei = Yi(1)− Ŷi(0), and the error in estimation. We do this by substituting into the definition of the

true treatment effect Yi(1) = T̂Ei + Ŷi(0) and using (2) as TEi = Yi(1) − Yi(0) = T̂Ei + E0(X̃i,Xi),

where E0(X̃i,Xi) ≡ g0(X̃i) − g0(Xi) = Ŷi(0) − Yi(0) is the unit level treatment effect error (not an

expected value). Then we aggregate this over treated units into SATT = 1
nT

∑
i∈T

TEi = ŜATT + Ē0
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where ŜATT =
∑

i∈T
T̂Ei/nT and the average estimation error is

Ē0 ≡
1

nT

∑
i∈T

E0(X̃i,Xi) =
1

nT

∑
i∈T

[g0(X̃i) − g0(Xi)]. (3)

The ultimate goal of matching-based estimators is to reduce the absolute matching error, |Ē0|.

This goal can be parsed into two (nonadditive) components (Imai, King and Stuart, 2008). The

first component of matching error is the imbalance between the control and treatment groups, or

in other words the difference between the empirical distribution of the pre-treatment covariates for

the control group p(X̃|T = 0) and treated group p(X|T = 1) in some chosen metric (such as those

discussed in Section 2.8). The second component is the importance of each of the variables and

their interactions in influencing Y given T . The two components are formalized in (3), where the

difference between X̃i and Xi represents local imbalance for treated observation i and the unknown

function g0 represents the importance of different parts of the covariate space. If preprocessing

results in exact matches between the treatment and control groups, imbalance is eliminated and

|Ē0| vanishes, no matter what g0 is. When that lucky situation does not occur, the two components

must be considered together.

2.8 Measuring Imbalance

The goal of measuring imbalance is to summarize the difference between the multivariate empir-

ical distribution of the pre-treatment covariates for the treated p(X|T = 1) and matched control

p(X̃|T = 0) groups. Unfortunately, many matching applications do not check balance. Most of

those which do check balance only compare the univariate absolute difference in means in the

treated and control groups:

I1 =
∣∣∣∣X̄w

mT , j − X̄w
mC , j

∣∣∣∣ , j = 1, . . . , k (4)

where X̄w
mT , j

and X̄w
mC , j

denote weighted means of variable X j for the groups of mT treated units

and mC control units matched, with weights appropriate to each matching method.

Sometimes researchers argue that only matching the mean is necessary because most analysis

models used after or in place of matching (such as regression) only adjust for the mean. However,

the purpose of matching is to reduce model dependence, and so it does not make sense to assume

that the analysis model is correct, as implied by this argument; for model independent inferences,

matching as much of the entire empirical distribution as possible is the goal.

A few have measured imbalance in univariate moments, univariate density plots, propensity

score summary statistics, or the average of the univariate differences between the empirical quan-

9



tile distributions (Austin and Mamdani, 2006; Imai, King and Stuart, 2008; Rubin, 2001). Except

for the occasional discussion about using the differences in covariances, most researchers ignore

all aspects of multivariate balance not represented in these simple variable-by-variable summaries.

Unfortunately, improving on current practice by applying existing methods of comparing multi-

variate histograms — such as Pearson’s χ2, Fisher’s G2, or models for contingency tables — would

typically work poorly because of the numerous zero cell values.

An alternative approach introduced in Iacus, King and Porro (In press) is to measure the mul-

tivariate differences between p(X|T = 1) and p(X̃|T = 0) via an L1 distance, fixing the bin size to

that for the median L1 for all possible binnings on the raw data. (If prior information indicates that

some variables are more important than others in predicting the outcome, one might choose to use

more bins for that variable. Either way, the bin sizes must be defined ex ante and not necessarily

related to any matching method, including our proposal.2)

Let H(X1) be the set of distinct values generated by the coarsening on variable X1 — the set of

intervals into which the support of variable X1 has been cut. Then, the multidimensional histogram

is constructed from the set of cells generated by the Cartesian product H(X1)×· · ·×H(Xk) = H(X).

Let f and g be the relative empirical frequency distributions for the treated and control groups. Let

f`1···`k be the relative frequency for observations belonging to the cell with coordinates `1 · · · `k of

the multivariate cross-tabulation of the treated units, and g`1···`k for the control units.

Definition 1 (Iacus, King and Porro (In press)). The multivariate imbalance measure is

L1( f , g) =
1
2

∑
`1···`k∈H(X)

| f`1···`k − g`1···`k |. (5)

Thus the typically huge number of empty cells do not affect L1( f , g), and the summation in

(5) never has more than n nonzero terms. The relative frequencies also control for potentially

different sample sizes between the groups. Denote by f m and gm the empirical frequencies for

matched treated and control groups corresponding to the unmatched f and g frequencies, and use

the same discretization for both the treated and control units. Then a good matching method will

have L1( f m, gm) ≤ L1( f , g). The values of L1 are easily interpetable: if the two distributions of

data are completely separated (up to the fine coarsening of the histogram), then L1 = 1; if the

two distributions overlap exactly, then L1 = 0. In all other cases, L1 ∈ (0, 1). The values of L1

2Although this initial choice poses all the usual issues and potential problems when choosing bins in drawing his-
tograms, we use it only as a fixed reference to evaluate pre and post matching imbalance.
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provide useful relative information; if, for example, L1 = 0.6, then only 40% of the density of the

two histograms overlap.

3 Coarsened Exact Matching

The basic idea of CEM is to coarsen each variable by recoding so that substantively indistinguish-

able values are grouped and assigned the same numerical value (groups may be the same size or

different sizes, depending on the substance of the problem). Then the “exact matching” algorithm

is applied to the coarsened data to determine the matches and to prune unmatched units. Finally,

the coarsened data are discarded and the original (uncoarsened) values of the matched data are

retained.

Put differently, after coarsening, the CEM algorithm creates a set of strata, say s ∈ S, each

with same coarsened values of X. Units in strata that contain at least one treated and one control

unit are retained; units in the remaining strata are removed from this sample. We denote by T s the

treated units in stratum s, and by ms
T = #T s the number of treated units in the stratum, similarly

for the control units, i.e. Cs and ms
C = #Cs. The number of matched units are, respectively for

treated an controls, mT =
⋃

s∈S ms
T and mC =

⋃
s∈S ms

C . To each matched unit i in stratum s, CEM

assigns the following weights

wi =

1, i ∈ T s

mC
mT

ms
T

ms
C
, i ∈ Cs (6)

Unmatched units receive weight wi = 0.

CEM therefore assigns to matching the task of eliminating all imbalances (i.e., differences

between the treated and control groups) beyond some chosen level. Imbalances eliminated by

CEM include all multivariate nonlinearities, interactions, moments, quantiles, co-moments, and

other distributional differences beyond the chosen level of coarsening. The remaining differences

are thus all within small, coarsened strata and so are highly amenable to being spanned by a

statistical model without risk of much model dependence.

Like exact matching, CEM produces variable sized strata. If this is not convenient and enough

data are available, users can produce a one-to-one match by randomly selecting the desired number

of treated and control units from those within each stratum or apply an existing method within

strata (see Section 5.2).

3.1 Coarsening Choices

Coarsening is almost intrinsic to the act of measurement. Even before the analyst obtains the

data, the quantities being measured are typically coarsened to some degree. Just as a photograph
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taken with more powerful lenses produce more detail, so it is with better measurement devices of

all kinds. Data analysts take what they can get, but recognize that whatever they get has likely

been coarsened to some degree first. Variables like gender or the presence of war coarsen away

enormous heterogeneity within the given categories.

But coarsening frequently does not stop once the analyst has the data. Data analysts recognize

that many measures include some degree of noise and, in their ongoing efforts to find a signal

amidst the noise, often voluntarily coarsen the data themselves. For example, political scientists

often recode the 7-point partisan identification scale as Democrat, independent, and Republican;

Likert issue questions into agree, neutral, and disagree; and multi-party vote returns into winners

and losers. Many social scientists use a broad three or four category measure for religion, even

when information is available for numerous specific denominations. Occupation is almost always

coarsened into three or four categories. Economists and financial analysts commonly use highly

coarsened versions of the U.S. Security and Exchange Commission industry codes for firms even

though the same data source offers far more finely grained coding. Epidemiologists routinely

dichotomize all their covariates on the theory that grouping bias is much less of a problem than

getting the functional form right. Coarsening is also common for Polity II democratization scores,

the International Classification of Disease codes, and numerous other variables.

Since the original values can still be used at the analysis stage to estimate the causal effect,

coarsening for CEM involves less onerous assumptions than that made all the time by researchers

who make the coarsening permanent. Of course, although coarsening in CEM is safer than at the

analysis stage, the two procedures are similar in spirit since the coarsened information in both is

thought to be relatively unimportant — small enough with CEM to trust to statistical modeling and

in data analysis to ignore altogether.

Because coarsening is so closely related to the substance of the problem being analyzed and

works variable-by-variable, data analysts understand how to decide how much each variable can be

coarsened without losing crucial information. The CEM procedure requires a coarsening operator

and the values the operator produces, which we now introduce more formally.

3.2 Values of the Coarsened Variables

We recommend that coarsened values be chosen in a customized way based on substantive knowl-

edge of the measurement scale of each variable. The number of adjustable parameters in CEM

is thus at least k, but the tradeoff is normally worth it since these parameters will typically be
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well-known to users (but see Section 5.2). We also offer here reasonable operational defaults for

continuous, nominal, and ordered variables, respectively, and some examples.

For continuous variables, denote the range of X j as R j = maxi=1,...,n Xi j −mini=1,...,n Xi j. Then,

choosing a default coarsening is equivalent to choosing the value ε j for each variable, such that 0 <

ε j ≤ R j, where ε j = R j corresponds to all the observations grouped in a single interval, and ε = 0

corresponds to no coarsening. We denote by θ j the number of non-empty intervals generated, i.e.

the number of distinct values after coarsening variable X j. (If the problem requires different length

size for each interval, as will often be the case in practice when choosing customized coarsenings,

as we recommend) we denote by ε j the maximal length for our proofs.)

If annual income is measured to the penny, then it is difficult to see objections to setting the ε j

interval length to be $1.00. In most applications, however, the interval could be a good deal larger

without any real loss of relevant information. For one, it could reasonably be set to the average

uncertainty a respondent would likely have about his or her income or the daily variability in actual

income. For the wealthy, this can be a large figure. For data with people of many different incomes,

the user may wish to let ε j vary with the value of the variable, presumably with larger values for

larger incomes. Similarly, smaller intervals may be useful for lower incomes and possibly with $0

a logically distinct group.

The second category of variables are nominal, which we do not coarsen unless the user makes

specific choices for how the coarsening would take place. For one example, consider a survey

question about religion that asks about the specific denomination, including say 6 Protestant de-

nominations, 3 Jewish, 1 Catholic, and 2 Muslim. For this example, a reasonable choice for many

applied problems would be to coarsen to these broader categories. Of course, for some problems,

where the differences among the denominations with the broad categories were of substantive

importance, this would not be advisable. Similar examples would include the U.S. Security and

Exchange Commission code for firms, which is published in a hierarchy designed for use by coars-

ening occupation codes, etc.

Our final variable type is ordered factors. Since most ordered variables are intended to be

approximately interval valued, our default procedure is to treat them as such. In any case, for

ordinal or non-ordinal variables, one can group different levels together. For example, most 7-

point Likert scales have a prominent neutral category and so can often be reasonably coarsened

into θ j = 3 groups as: {completely disagree, strongly disagree, disagree}, {neutral}, {agree,
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strongly agree, completely agree}.

4 Properties of Coarsened Exact Matching

We list here several attractive properties of CEM. No other existing matching method would seem

to satisfy more than a subset of these.

4.1 A Monotonic Imbalance Bounding Method

As proven in Iacus, King and Porro (In press), CEM is a member of the MIB class of matching

methods. This result means, first, that when a researcher chooses a coarsening for a variable, the

maximum degree to which that variable can be out of balance between the treated and control

groups is also determined (the more coarsening, the more imbalance is allowed). The degree of

imbalance may be less than the maximum, but we know for certain it cannot be more than this

chosen level.

Second, the coarsening choice for any one variable can have no effect on the imbalance bound

for any of the other variables. The result is that the arduous process in other methods of balance

checking, tweaking, and repeatedly rerunning the matching procedure is therefore eliminated with

CEM, as is the uncertainty about whether the matching procedure will reduce imbalance or instead

reduce imbalance on one variable and make it worse on others. You get what you want rather than

getting what you get. Of course fixing imbalance ex ante in this way means that we learn the

number of observations matched as a consequence of the procedure, rather than determining it

as an input, but bias is more crucial than variance in observational data analyses and choosing

both simultaneously is not currently feasible. In addition, matching will often reduce variance by

removing heterogeneity and model dependent inferences.

4.2 Meeting the Congruence Principle

A crucial problem with many matching methods is that they operate on a metric different from

the original data, and thus violate the congruence principle. This principle requires congruence

between the data space and analysis space. Methods violating this principle lead to less robust

inferences with suboptimal and highly counterintuitive properties (Mielke and Berry, 2007).

The violation of the congruence principle in propensity score and Mahalanobis distance match-

ing methods is easy to see because both project the covariates from their natural k-dimensional

space to a (different) scalar quantity and match on that quantity: because different matching solu-

tions can map into the same place on the one-dimensional projection, reducing imbalance on one

variable will sometimes increase imbalance for others in unpredictable ways.
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In contrast, CEM meets the congruence principle by operating in the space where X was cre-

ated and its variables were measured, and regardless of whether the data are continuous, discrete,

or mixed. This is the space most understood by data producers and analysts and so the technique

should also be easier to understand as well. Examples of other matching methods that meet the

congruence principle include Iacus and Porro (2007, 2008).

4.3 Comparisons with Other Methods

Whereas CEM uses simple, fixed, non-overlapping intervals of local indifference, defined ex ante

based on the metric of each variable one at a time, nearest neighbor caliper matching uses orthog-

onalization and a more complicated geometry of nT overlapping hyper-parallelepipeds centered

around each treated data point (Cochran and Rubin, 1973). The result is not MIB and does not

meet the congruence principle. If we modify the caliper approach by applying it to each variable

separately without orthogonalization, it is MIB. For truly continuous variables, it also meets the

congruence principle. However, a large fraction of variables used in the social sciences are discrete

or mixed in complicated ways, in which case calipers (used separately or with other methods) vi-

olate the congruence principle. For example, CEM can make a variable like “years of education”

respect important milestones, like high school, college, and post-graduate degrees, by appropri-

ate coarsening into these categories. In contrast, caliper matching uses a different grouping for

each treated unit (e.g., ±5 years) that would inappropriately combine some units that span across

these logical category boundaries, such as by matching a college dropout with a first year graduate

student. For another example, the difference in income between Bill Gates and Warren Buffett is

enormous in any one year; with CEM, we could group them together, whereas a caliper for income

would likely leave them unmatched. Similar issues exist for lower levels of income (with different

tax rate thresholds), age (at or near birth, puberty, legality, retirement, etc.), temperature (phase

transitions), and numerous other variables.

CEM is related to a large number of subclassification (or “stratification”) approaches, such as

full matching, frequency matching, subclassification on the propensity score, and others. How-

ever, these other approaches are not MIB. By having the ability to set ε j differently for each

variable, CEM is also similar in spirit, although not methods, to various creative combinations of

approaches, such as Rosenbaum, Ross and Silber (2007).

Although CEM works by setting balance as desired and getting the number of matched units as

a result, and most other methods work in reverse, obtaining similar results with different methods
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will often be possible when the specialized conditions required by previous methods hold. Un-

der these conditions, however, CEM is still considerably easier to use and understand and faster

in computational and human time. When these conditions do not at least approximately hold,

CEM will usually be superior since balance will be guaranteed on all higher order moments and

interactions on all variables, something not addressed by most existing methods.3

4.4 Automatic Restriction to Common Empirical Support

As described in Section 2.4, other approximate matching procedures require a separate step prior

to matching, where the data are restricted to the region of common empirical support of the treated

and control units. This eliminates the region where extrapolations beyond the limits of the data

would be needed. In contrast, users of CEM require no separate step. All observations within a

coarsened stratum for which we have both a treated and control unit by definition do not involve

extrapolating beyond the data and so the observation will be included; otherwise, it will be re-

moved. The process is easy, automatic, and no extra steps are required. Since applied researchers

seem to remove extrapolation regions as infrequently as their scant efforts to check balance, CEM

may enhance compliance with proper data analysis procedures; CEM could instead be used as a

simple way to restrict data to common support to improve other matching methods.

4.5 Approximate Invariance to Measurement Error

Suppose T is ignorable conditional on unobserved pretreatment covariates X∗ = (X∗1, . . . , X
∗
k ),

but we match instead on X, where X j = X∗j + η j given a vector of measurement errors η j for each

covariate j. Commonly used matching methods are directly affected by the degree of measurement

error, even when other conditions they may impose hold, and even if E(η j) = 0. In particular,

balance with respect to X does not imply balance with respect to X∗; the true propensity score

based on X is not a balancing score for X∗; and adjusting based on X instead of X∗ will lead to

biased estimates of the treatment effect (Battistin and Chesher, 2004).

Under CEM, if measurement error is less than ε j, ε j ≥ max(|η j|), and it happens to respect

the resulting strata boundaries, then CEM will produce the same preprocessed data set whether

matching on X or on X∗ and so is invariant to measurement error. If only the first condition holds,

3To illustrate, suppose we run optimal or nearest neighbor matching on the Mahalanobis or propensity score distance
with a fixed number of matched control units, mC . The result would be some level of average imbalance for each
variable. If we use this imbalance to define ε j and apply CEM, we would usually obtain a similar number for mC

as set ex ante. Similarly, consider a method in the equal percent bias reducting class of methods and its associated
data requirements, and run it given some fixed number of control units mC . Assume the maximum imbalance can
be computed explicitly (Rubin, 1976, Equation 2.2), and define γ as one minus this maximum imbalance. In most
situations, we would expect that running CEM would produce a similar number of control units as fixed ex ante by this
existing method.
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CEM(KT ) CEM(KC) PSC(KC) MAH(KC) GEN(KC)
% Common Units 95.3 97.7 70.2 80.9 80.0

Seconds 0.07 0.07 0.08 0.15 126.64

Table 1: Percentage of units present in matched sets both before and after perturbation, averaged
over 5,000 simulations, and computational time. (For all methods but CEM, KT = 100%.)

the second condition will hold for many observations under many conditions and so CEM will

normally be approximately invariant to measurement error, even if not invariant.

We study sensitivity to measurement error (in the sense of Battistin and Chesher 2004) via a

real data set described in Section 6.1. We do this by randomly perturbing the earnings variable

by adding gaussian error N(µ = 1000, σ2 = 10002) and replacing perturbed negative earnings

with zero. We run 5,000 simulations and, at each replication, match before and after perturbation.

Denote by mT and mC the number of matched units before perturbation, and m′T and m′C the

number after perturbation. Then define KT and KC as the number of treated and control units

present in both subsets of matched units before and after perturbation. To measure the sensitivity to

perturbation, we calculate KT/min(mT ,m′T ) · 100% and KC/min(mC ,m′C) · 100%. For all methods

but CEM, mT = m′T while for all matching algorithms mC , m′C . Table 1 shows that CEM is

considerably closer to invariant (i.e., less sensitive) to measurement error. Mahalanobis matching

(MAH) and genetic matching (GEN) preserve 80% of the total matched subset and propensity

score matching (PSC) around 70%. In contrast, CEM preserves 95% of the treated units and 98%

of the control units. Thus, to some extent, coarsening can overcome measurement error problems,

at least for the (preprocessing) matching stage.

4.6 Bounding Model Dependence

To make a causal inference, one must estimate the counterfactual potential outcome Yi(0) for each

treated unit (that is, the value that Yi would take if Ti were 0 when it is in fact 1). To do this, we

could use the value of the outcome variable for a different unit with a good match, say Y j, such

that X j ≈ Xi. However, in the usual case where insufficient exact matches exist, a better estimate

might be obtained by a model, such as some type of regression model: Ŷ(0) ≡ m`(X̃ j), where X̃ j

is the vector of covariates for the control units close to treated i and m`(·) is one of many possible

models. Model dependence is defined by how much m`(X̃ j) varies as a function of the model m` for

a given vector of covariates X̃ j (King and Zeng, 2007). Unfortunately, in many situations, model

dependence is remarkably large, so that apparently small and otherwise indefensible specification
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decisions in the regression can have large effects on causal estimates.

A key advantage of matching is that it should reduce model dependence. In other words,

preprocessing data via matching ought to lead to different modeling choices having considerably

less influence on the estimate of the causal quantity of interest than it would without matching.

This relationship has been illustrated in real data by Ho et al. (2007), but it has never been proven

mathematically for any previous method, EPBR or otherwise. In contrast, MIB methods have

been shown to possess this property (Iacus, King and Porro, In press), and since CEM is an MIB

method, it too possesses this property.

In other words, by choosing the coarsening for each variable, a researcher also controls the

bound on the degree of model dependence possible. Less coarsening directly lowers the maximum

possible level of model dependence.

4.7 Bounding the Average Treatment Effect Estimation Error

Another attractive property of MIB matching methods, and one that distinguishes them from EPBR

and other matching methods, is that their tuning parameters bound not only the model dependence

used to estimate the causal effect, but the causal effect estimation error itself (from Equation 3). In

particular, choosing CEM coarsening to be finer directly reduces the maximum possible estimation

error.

To show this result for CEM, we first introduce a slight constraint on the possible range of

functions g0(·) and then derive the theoretical bound. The following assumption restricts the sen-

sitivity of g0(x1, . . . , xk) to changes in its arguments: along each direction (i.e. along each x j),

g0 behaves like a Lipschitz function. We denote by Ξ− j = Ξ1 × Ξ2 × · · ·Ξ j−1 × Ξ j+1 × · · · × Ξk,

x− j = (x1, x2, . . . , x j−1, x j+1, . . . , xk) and g0(x j|x− j) = g0(x1, x2, . . . , xk).

Assumption 1 (Lipschitz behaviour). For each variable j ( j = 1, . . . , k) there exists a constant L j,

0 < L j < ∞, such that, for any values x′j , x′′j of x j,

max
x− j∈Ξ− j

|g0(x′j|x− j) − g0(x′′j |x− j)| ≤ L jd j(x′j, x
′′
j )

where d j(·, ·) is an appropriate distance for variable x j.

This assumption is very mild and only bounds g0 from taking infinite values on finite sets. Given

two values x′j and x′′j of the variable x j, the maximum excursion of g0, regardless of all possible

values of the remaining variables xi (i , j), is bounded by the distance between x′j and x′′j times

some finite constant. This means that given finite variation in one variable, the function g0 does
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not explode. If this assumption does not hold, g0 could have strange properties, such that even ar-

bitrarily small and otherwise irrelevant imbalance in the covariates could produce arbitrarily large

estimation error in the estimation of the treatment effect. This assumption easily fits essentially all

functional forms used regularly in the social sciences.

Without loss of generality, we measure distance for numerical covariates as d j(x, y) = |x − y|.

For categorical variables we adopt the following definitions for convenience, and without loss of

generality. Let X j be a categorical variable and H be the set of distinct values of X j. Then, if

H ⊂ U, whereU is an abstract set of unordered categories, define the distance as d(x, y) = 1{x,y},

where 1A = 1 for elements in set A and zero otherwise. If, alternatively, H ⊂ O, where O is the

abstract set of ordered categories, the distance is d(x, y) = |rank(x) − rank(y)|, where rank(x) is the

rank/order of category x inH .

Then, the definitions in Section 2.7 imply directly that the estimation error, Ē0 ≡ SATT−ŜATT,

is bounded from above and below by |Ē0|, i.e., −|Ē0| ≤ SATT− ŜATT ≤ |Ē0| and a consequence of

Assumption 1 is that |g0(Xi)−g0(X̃i)| ≤ max j=1,...,k L jε j. Therefore, for the CEM algorithm, which

keeps matched treated and control units for each covariate a maximum of ε j apart, we conclude

that

|Ē0| ≤ max
j=1,...,k

L jε j. (7)

Thus, setting ε j locally for each variable bounds the SATT estimation error, not merely the imbal-

ance between treated and control groups. (We discuss how to estimate this in Section 5.5.2.)

4.8 The Number of Matched Units

If too many treated units are discarded, inferences with CEM may be inefficient. This can be

remedied by widening the degree of maximum imbalance. Of course, we might be concerned

about the curse of dimensionality, where the number of possible strata from the cross-tabulation

of the possible values of X is ordinarily huge. For example, suppose X is composed of 10,000

observations on 20 variables drawn from independent normal densities. Since 20-dimensional

space is so large, no treated unit will likely be anywhere near any control unit. In this situation,

even very coarse bins under CEM will likely produce no matches. For example, with only two

bins for each variable, the 10,000 observations would need to be sorted into more than a million

strata. In data like these, no matching method could do any good.

Fortunately, most real data sets have much more highly correlated data than the independent

draws in the hypothetical example above, and so CEM in practice tends to produce reasonable
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numbers of matches. This has been our recurring experience in the numerous data sets we have

analyzed with CEM. In addition, Iacus, King and Porro (In press) show that if the number of

control units is large enough, the number of cells with unmatched treated units goes to zero at a

fixed and known rate. That is, in practice, if the data are useful for making causal inferences, CEM

will normally produce a well-balanced data set with a reasonable number of observations.

4.9 Computational Efficiency

An attractive feature of CEM is that it is extremely efficient computationally, especially compared

to some other matching methods. Indeed, each observation i with vector of covariates Xi is stored

as a record containing only the coarsened values pasted one after the other in a single string. As

a whole, for n observations, we have only n strings stored. So, the number of covariates do not

affect the dimension of the coarsened data set (its length is always n) and finding observations

in the same multidimensional cell has the same computational complexity of the tabulation of a

distribution of n units (i.e., it is of order n). Thus, even if in principle one should search in the grid

of an exponentially large number of cells, in practice the search is only made on the non-empty

cells, which are at most n. This is important because it means the method works out-of-the-box

on huge data bases using SQL-type queries without the need for statistical software or modeling.

In addition, the computational efficiency and simplicity of CEM this procedure is much easier to

completely automate.

4.10 Empirical Properties

CEM has been compared to most commonly used methods in a large number of real data sets.

These include analyses of FDA drug approval times (Carpenter, 2002), job training programs

(Lalonde, 1986), two large data sets evaluating disease management programs (King et al., 2011),

and the effects of having a daughter on a member of congress’ voting behavior (Washington,

2008). We also extended our empirical experience by sampling from all social science causal

analyses in progress in many fields by advertising help in making causal analyses in return for a

look at researchers’ data, promising to preserve authors rights of first publication (Iacus, King and

Porro, In press). In almost all of these analyses, CEM generated matched data sets with lower

imbalance and a larger sample size than other approaches.

Finally, what may be the the most commonly used method presently, propensity score match-

ing, was shown by King et al. (2011) to approximate random matching, thus increasing imbalance,

in many circumstances. CEM does not have this damaging property.
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5 Extensions of Coarsened Exact Matching

CEM is so simple that it is easy to extend in a variety of productive ways. We offer seven exten-

sions here.

5.1 Multicategory Treatments

Under CEM, we set ε and then match the coarsened data, all without regard to the values of the

treatment variable. This means that CEM works without modification for multicategory treat-

ments: after the algorithm is applied, keep every stratum that contains all desired values of the

treatment variable and discard the rest. This is a simple approach that can be easily used with or

in place of more complicated approaches, such as based on generalizations of the propensity score

(Imai and van Dyk, 2004; Lu et al., 2001; Imbens, 2000).

5.2 Combining CEM with Other Methods

CEM is one of the simplest method with MIB properties (and the additional properties in Section

4) and so may have the widest applicability, but other improved methods could easily be developed

for specific applications by applying existing approaches within each CEM stratum. For example,

instead of retaining all units matched within each stratum and moving to the analysis stage, we

could fine tune local (i.e., sub-ε) imbalance further by selecting or weighting units within each

stratum via distance or other methods. Indeed, non-MIB methods can usually be made MIB if

they operate within CEM strata, so long as the coarsened strata take precedence in determining

matches. Thus, full and optimal matching are not MIB, but if applied within CEM strata would be

MIB and would inherit the properties given in Section 4. Genetic matching as defined in Diamond

and Sekhon (2005) is not MIB, but by choosing a variable-by-variable caliper it would be; if it were

run within CEM strata, it would be MIB and would also meet the congruence principle. Similarly,

one could run the basic CEM algorithm and then use either a synthetic matching approach (Abadie

and Gardeazabal, 2003), nonparametric adjustment (Abadie and Imbens, 2007), or weighted cross-

validation (Galdo, Smith and Black, 2008) within each stratum and the MIB property would hold.

If the user does not know enough about X’s measurement to coarsen, then productive data

analysis seems infeasible. But in some applications, we can partition X into two sets, only the first

of which includes variables known to have an important effect on the outcome (such as in public

health, age, sex, and a few diagnostic indicators). In this case, we may be willing to take good

matches on any subset of the second set and to forgo the MIB property within this second set. To

do this, we merely set ε artificially high for this second set, but small as usual for the first set, and
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then apply a non-MIB method within CEM strata. For example, because the relative importance

of the variables is unknown, the propensity score or any other distance metric, if correctly speci-

fied, could be helpful. When the correct specification is unlikely, one can alternatively leave the

remaining adjustment to the analysis stage, where analysts have more experience assessing model

fit.

5.3 Matching and Missing Data

When it comes to estimating causal effects in data with missing values, divergent messages are

putting applied researchers in a difficult position. One message from methodologists writing on

causal inference in observational data is that matching should be used to preprocess data prior to

modeling. Another message is that missing data should not be listwise deleted, but should instead

be treated via multiple imputation or another proper statistical approach (Rubin, 1987; King et al.,

2001). Although most causal inference problems have some missing data, its not obvious how

to apply matching while properly dealing with missing data. Indeed, we know of no matching

software that allows missing data for anything other than listwise deletion prior to matching, and

no missing data software that conducts or allows for matching. Thus, we now offer two options to

implement both in the same analysis enabled by CEM.

The simplest approach is to treat missing values as a discrete “observed” value, and then

to apply CEM with other coarsening used for the non-missing values. The default operation of

our software uses this approach. In some situations, however, we might wish to customize this

approach to the substance of the problem by coarsening the missing value with a specific observed

value. For example, for survey questions on topics respondents may not be fully familiar with, the

answers “no opinion” and “neutral” may convey similar or in some cases identical information,

and so grouping for the purpose of matching may be a reasonable approach. Since the original

values of these variables would still be passed to the analysis model, special procedures could still

be utilized to distinguish between the effects of the two distinct answers.

Although this first approach to missing data and matching will work for many applications, it

will be less useful when the occurrence of missing values are to some extent predictable from the

observed values of other variables in complicated ways we do not necessarily foresee and include

in our customized coarsening operator. Indeed, this is precisely what the “missing at random”

assumption common in multiple imputation models is designed for. Thus, an alternative is to feed

multiply imputed data into a modified CEM algorithm. The modification works by first placing
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each missing value in whichever coarsened stratum a plurality of the individual imputations falls.

(Alternatively, at some expense in terms of complication, the imputations could stay in separate

strata and weights could be added.) Then the rest of the algorithm works as usual. The key

here is that all the original uncoarsened variable values fed into CEM — in this case including the

multiple uncoarsened imputed values for each missing value — are output from CEM as separately

imputed matched data sets. Then, as usual with multiple imputation, each imputed matched data

set is analyzed separately and the results combined. Thus, unlike with other matching procedures

combined with imputation, multiple imputation followed by this modified CEM algorithm will

produce proper uncertainty estimates.

5.4 Avoiding Consequences of Arbitrary Coarsenings

One seeming inconsistency with the basic CEM algorithm described in Section 3 is that it can be

sensitive to changes in X smaller than ε near stratum boundaries even though it is insensitive to

changes in X within strata. This point is irrelevant for CEM’s intended use, that is when coarsening

chosen based on substantive criteria (such as a college diploma marking a distinct point in an

otherwise continuous education variable), but can be a concern if coarsening is set more arbitrarily

or automatically. In this situation, all the properties of CEM described in Section 4 still hold, but

there may be an opportunity to increase the matched sample size a bit more, given the same chosen

balance level, even without relaxing any assumptions.

In this situation we run the basic CEM algorithm several times, each with a fixed value of ε, and

thus a fixed stratum size, but with values of the cutpoints shifted together by different amounts.

(Our software implements this automatically.) We then use the single coarsening solution that

maximizes the remaining sample size. The number of shifted coarsenings and the size of each

may be chosen by the user, but our default is to try only three since we find that the advantages of

this procedure are small and additional improvements beyond this are not worth the computational

time. Whichever choice the user makes, all the properties of the basic CEM method also apply to

this slightly generalized algorithm.

5.5 Automating User Choices

As described in Section 3, we recommend that users of CEM choose ε based on their knowledge

of the covariate measurement process and other substantive criteria such as the likely importance

of different variables. Although we have shown that making these decisions is relatively easy and

intuitive in most situations, users may sometimes want an automated procedure to orient them or
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to make fast calculations. We offer several such approaches here.

5.5.1 Histogram Bin Size Calculations

When automation is necessary because of the scale of the problem, or to provide some orientation

as a starting point, we note here that choosing ε is very similar to the choice of the bin size

in drawing histograms. Some classic measures of bin size are based on the range of the data,

an underlying normal distribution, or the inter-quartile range. These are, respectively, known as

Sturges, ∆st = (x(n) − x(1))/(log2 n + 1), Scott, ∆sc = 3.5
√

s̄2
nn−1/3 (Scott, 1992), and Freedman

and Diaconis (1981) ∆fd = 2(Q3 − Q1)n−1/3. More recently, Shimazaki and Shinomoto (2007)

developed an approach based on Poisson sampling in time series analysis (in the attempt to recover

spikes), which we find works well. Our software optionally implements these approaches.

5.5.2 Estimating the SATT Error Bound

Assumption 1 is a natural part of standard observational data analysis, but it gives no hint how

big or small the L j’s are. In practice, they can take any finite value, but their ranking implies a

rough order on the importance of each variable in affecting g0. That means that some insight about

the size of ε j in CEM and its effect on the treatment effect may come from information about L j.

Thus, we note that L j, for variable j ( j = 1, . . . , k), may be estimated from the data as:

L̂ j = max
i1,i2∈C

|Yi1(0) − Yi2(0)|
d j(Xi1 j, Xi2 j)

, (8)

These L̂ j are estimates from below of the true L j’s, but they may still give insights about the

relative importance of each variable on g0 for the given data. Under additional assumptions on g0,

the estimators of the L j may have better performance (e.g. g0 is linear or well approximated by

a Taylor expansion, etc.). Equation (7) is independent of the number of matched treated units mT

when L j are known, but in general the L j are not independent and can be estimated via (8). In such

a case, the bound naturally depends on mT . Thus, although knowing that CEM bounds SATT error

is an attractive property in and of itself, we can go further and estimate the value of this bound

with Ê0 given as Ê0 = max j L̂ jε j and use the terms L̂ jε j as a hints during matching about which

covariate may give rise to the largest estimation errors or bias in estimating SATT. Although (8)

uses the outcome variable, it only does so for control units (as in Hansen, 2008), and so inducing

selection bias is not a risk.

5.5.3 Inductive Coarsening Choices

Under CEM, setting balance by choosing ε may yield too few observations in some applications.

Of course, this situation reveals a feature of the data, not a problem with the method, where the
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only real solution is to collect more data. In some circumstances, however, this situation may cause

users to rethink their choices for ε and rerun CEM. Although we prefer users to make these choices

based on the substance, we offer here an automated procedure that may help in understanding data

problems, identify the new types of data that would be most valuable to collect, or help them

rethink their choices about ε.

Thus, we now study systematic ways to relax a CEM solution (that is increase ε j selectively)

by using θ′ = (θ′1, . . . , θ
′
k) such that θ′ � θ, i.e. θ′i = θi for all i but a subset of indexes j such that

θ′j ≤ θ j. When different relaxations or coarsenings, say θ′ and θ′′, lead to the same total numbers

of matched units, mT (θ′)+mC(θ′) = mT (θ′′)+mC(θ′′), then an automated procedure needs a way to

choose among these solutions that are for our purposes equivalent. We discriminate among these

by minimizing the L1 distance. Furthermore, although setting θ j = 1 is equivalent to dropping

X j from the match, we keep X j with θ j = 1 to maintain comparability because the L1 distance

depends on the number of covariates (as with any measure of dissimilarity in multidimensional

histograms). In addition to keeping the number of covariates the same in this way, we also keep

the bins of the multidimensional histogram used to calculate L1 the same.

With these requirements, we adopt a heuristic algorithm which we first describe conceptually,

without regard to computer time, and then what we use in practice. Given the original user choice

of θ, the algorithm relaxes each θ j in increments of two, that is θ′j = θ j − 2, until θ′j < 10 and

then by one or up to a user chosen minimally tolerable number of intervals, θmin
j . (We also shift

each intermediate solution as in Section 5.4.) We then repeat the procedure for pairs of variables,

(θi, θ j), triplets (θi, θ j, θk), etc.4

To illustrate progressive coarsening, we make use of the Lalonde (1986) data (described below

in Section 6.1). Although we recommend choosing ε on the basis of substantive knowledge of the

variables, for our methodological purposes we select ε via Sturges automatic rule. We then relax

each variable sequentially decreasing the number of intervals of the discretization used to coarsen

the data.

It took 7.0 seconds to perform 30 CEM relaxations. Figure 1 summarizes the results, which

both makes it easy to choose new values of ε. The figure gives on the horizontal axis the name

4Combined with shifted coarsenings, an exhaustive procedure with greater than triplets is feasible only via parallel
processing, which happens to be easy to implement with CEM. In practice, however, there no need to explore all these
combinations of different coarsenings because even the basic application of CEM clearly reveals which data are well
matched overall and also with respect to how the treated and control units differ in the multidimensional distribution.
When we use this algorithm, we usually relax only one or two variables at a time.

25



Pre−relax: 163 matched (54.9 %)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

<
st

ar
t>

ed
uc

at
io

n(
8)

hi
sp

an
ic

(1
)

re
74

(7
)

re
74

(6
)

ed
uc

at
io

n(
7)

u7
5(

1)

ag
e(

9)

re
75

(7
)

re
75

(5
)

ed
uc

at
io

n(
5)

ag
e(

7)

ag
e(

6)

ed
uc

at
io

n(
4)

ag
e(

5)

ed
uc

at
io

n(
3)

ag
e(

4)

ag
e(

3)

54.955.2

56.656.957.257.657.958.258.658.959.359.6

61.3
62.0
62.6
63.3

66.7

71.4

163164

168169170171172173174175176177

182
184
186
188

198

212

0.59
0.59

0.60
0.61

0.61
0.61

0.62
0.62

0.61
0.61

0.62
0.63

0.64

0.64

0.64

0.64

0.67

0.69

nu
m

be
r 

of
 m

at
ch

ed

%
 m

at
ch

ed

Figure 1: Relaxation of each covariate.

of the covariate relaxed (with the smaller number of intervals used for the discretization in paren-

theses). The corresponding percentage of treated units matched is reported on the left vertical

axis with the absolute number on the right vertical axis. Each dot on the plot is labeled with the

value of the L1 measure for that particular CEM solution. In this example, we chose minimal

coarsenings to constrain the algorithm (θmin
re74 = 6, θmin

re75 = 5, θmin
age = 3, θmin

education
= 3). The label

“<start>” on the x-axis represents the starting point, and each successive change is listed to its

right. The results are sorted in order from closest to this starting point, on the left, to the biggest

increases in sample size on the right (as is typical, L1 increases with the matched sample size in

these data). The MIB property of CEM can be seen by noting that multiple coarsenings for any

one (color-coded) variable appears farther to the right as the number of coarsened strata decline.

From the largest vertical jumps (on the right side of Figure 1), it is clear that variable age is

the most difficult variable for matching in these data, followed by education. Dots connected

by horizontal lines on the figure reveal different solutions with the same number of matched units,

some of which have different levels of imbalance, L1. In applications, we may also wish to

consider joint relaxation of variables, but we do not pursue this here.

5.6 Blocking in Randomized Experiments

Since “blocking” (i.e., pre-randomization matching) in randomized experiments bests complete

randomization with respect to bias, efficiency, power, and robustness, it should be used whenever
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feasible (Imai, King and Nall, 2009; Imai, King and Stuart, 2008). CEM provides an easy method

of determining the blocks, without modification: After matching the coarsened pre-treatment co-

variates X via CEM, create the treatment variable by randomly assigning one (or more) of the units

within each stratum to receive treatment; the others are assigned to be control units. Multicate-

gory treatments in blocking are also easy to create with CEM by randomly assigning observations

within each stratum to each of the values of the treatment variable. Strata without sufficient obser-

vations to receive at least one possible value of each treatment and control condition are discarded.

5.7 Avoiding the Dangers of Extreme Counterfactuals

In making causal inferences, the best current research practice is to eliminate extreme model de-

pendence by discarding observations outside the region of common empirical support (see Sec-

tion 4.4). Avoiding extreme model dependence is also an issue that applies to any type of coun-

terfactual inference — including causal inferences, forecasts, and what if questions. Typically,

scholars do this by eliminating data in the region requiring extrapolation, outside the convex hull

of the data (King and Zeng, 2006). However, as is widely recognized, the hull may contain voids

with little data nearby where estimation would be model dependent. Similarly, regions may exist

just outside the hull, but near a lot of data just inside, for which a small extrapolation may be safe.

CEM can help avoid these problems as follows. First augment the covariate data set with a

pseudo-observation that represents the values of X for the counterfactual inference of interest and

then run CEM on the augmented data set. Observations that fall in the same stratum as the pseudo-

observation can be used to make a relatively model-free inference about this counterfactual point,

and so the number of such observations is a measure of the reliability of an inference about this

counterfactual. This procedure represents a small generalization (due to coarsening) of a point

emphasized by Manski (1995), who would use ε = 0.

It may also be worth repeating this procedure after widening the definition of ε to include the

largest values you would be willing to extrapolate for your particular choice of dependent variable.

For example, log-mortality for most causes of death is known to vary relatively smoothly with age

(Girosi and King, 2008), and so extrapolating age by 10 or 20 years would normally not be very

model dependent, except for the very young or very old. Thus, we might set εage in this way,

even though it might normally be set much smaller for using the basic CEM algorithm where

the goal would be to eliminate as much dependence on these types of assumptions as possible.

This additional procedure is of course more hazardous because it involves assumptions about a
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specific outcome variable and because of interactions. For example, even if extrapolating age by

10 years is reasonable in one application, and extrapolating education by 4 years is also reasonable,

evaluating a counterfactual that involved simultaneously extrapolating 10 years of age and 4 years

of education beyond the data might well be unreasonable. Examples like these are much less likely

to occur or matter if ε is defined as we do for CEM.

6 Coarsened Exact Matching in Practice

We now offer an illustration of the operation of CEM based on simulations (Section 6.2) and real

data (Section 6.3). We describe the data used in both sections first (Section 6.1).

6.1 Data

Data in this paper come from the National Supported Work (NSW) Demonstration, a U.S. job train-

ing program Lalonde (1986). The program provided training to the participants for 12–18 months

and helped them in finding a job. The goal of the program was to increase participants’ earnings,

and so 1978 earnings (re78) is the key outcome variable. From this experiment, Lalonde (1986)

created an experimental and an observational data set for further analysis. A cleaned subset of

both data sets created by Dehejia and Wahba (2002), which we also analyze, have been widely

used in the matching literature as a benchmark for evaluating methods (e.g. Imbens, 2003; Smith

and Todd, 2005). The experimental data set includes 297 treated and 425 control units from the

experiment which, because of randomization, are easy to match. The observational data set com-

bines the 297 treated units from the experiment with 2,490 control units from an observational

survey, the Panel Study of Income Dynamics. Lalonde and others have shown that one cannot

recover SATT from the observational data set in part because the data are highly imbalanced and

relatively few good matches exist within the control group. We use the experimental data set in

Sections 4.5 and 6.2, and the observational data set in Section 6.3.

Pre-treatment variables in these data were measured for both participants and controls, and

include age (age), years of education (education), marital status (married), lack of a high

school diploma (nodegree), race (black, hispanic), indicator variables for unemployment

in 1974 (u74) and 1975 (u75), and real earnings in 1974 (re74) and 1975 (re75). Some of these

are dichotomous (married, nodegree, black, hispanic, u74, u75), some are categorical

(age and education), and the earnings variables are continuous and highly skewed, with point

masses at zero.
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6.2 Simulations

We now compare CEM to several other methods by using the data generation process chosen by

Diamond and Sekhon (2005) to evaluate their algorithm. This involves using covariates chosen

by Dehejia and Wahba (1999), a subset of the Lalonde data, setting the (homogeneous) treatment

effect to $1,000, and generating Y via this highly nonlinear form:

Y = 1000 · T + 0.1 · exp
(
0.7 · log(re74 + 0.01 + 0.7 · log(re75 + 0.01)

)
+ ε

where ε ∼ N(0, 10). The value of the treatment variable is then assigned to each observation on

the basis of a true propensity score e, given by

ei = logit−1
{
1 + 0.5 · µ̂ + 0.01 · age2 − 0.3 · education2 − 0.01 · log(re74 + 0.01)2

+ 0.01 · log(re75 + 0.01)2
}

where µ̂ is the linear predictor of the following misspecified logistic model used to estimate a

propensity score (as in Dehejia and Wahba 1999):

µ̂ = 1 + 1.428 · 10−4 · age2 − 2.918 · 10−3 · educ2 − 0.2275 · black − 0.8276 · hispanic

+ 0.2071 · married − 0.8232 · nodegree − 1.236 · 10−9 · re742

+ 5.865 · 10−10 · re752 − 0.04328 · u74 − 0.3804 · u75

In each of 5000 replications from this process, we assign the treatment to observation i by

sampling from the Bernoulli with parameter ei, i.e. Ti ∼ Bern(ei), so the number of pre-match

treated and control units in the sample varies over replications. We then compare SATT estimators

based on the difference in means (RAW in Table 2), the nearest neighbor propensity score matching

(PSC), the nearest neighbor Mahalanobis matching (MAH), Genetic Matching (GEN), and CEM

using our automatically selected discretization.

Following Diamond and Sekhon (2005), we report results in terms of the bias (“BIAS”), stan-

dard deviation (“SD”), and root mean square error (“RMSE”) of the SATT estimate over the 5,000

Monte Carlo replications. We also report the average number of matched units, which is lower

for CEM than for other methods, given the automated coarsening we chose. In practice of course,

coarsening should be chosen based on the substance of the variables and so in general the number

could be larger or smaller. Despite this, CEM dominates the other methods on each of the three

evaluative criteria. Table 2 also gives results on computational speed and the L1 balance metric,

which CEM also improves on.
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BIAS SD RMSE Treated Controls Seconds L1

RAW -423.72 1566.49 1622.63 151 293 0.00 1.28
MAH 784.80 737.93 1077.20 151 151 0.03 1.08

PSC 260.45 1025.83 1058.28 151 151 0.02 1.23
GEN 78.33 499.50 505.55 151 143 27.38 1.12
CEM 0.78 111.39 111.38 86 151 0.03 0.76

Table 2: Comparison of bias, standard deviation, root mean square error, computational speed
(seconds) and the L1 measure of imbalance for the original data (RAW), Mahalanobis distance
(MAH), propensity score matching (PSC), genetic matching (GEN), and CEM, with values aver-
aged over 5,000 Monte Carlo Replications. Also given are the number of treated and control units
selected by each method.

Relative to the original data, Mahalanobis matching increases the absolute bias but reduces

the variance, which nets out to reducing the RMSE by about a third. Propensity score matching

reduces the variance (but less than Mahalanobis) and also the bias, which nets to about the same

RMSE. Genetic matching reduces both bias and variance, resulting in about a two-thirds reduction

in RMSE compared to the raw data. In contrast, CEM eliminates 99.8% of the bias, and the vast

majority of the variance, which nets to a 93% reduction in RMSE as compared to the original

data. CEM (programmed in R) is also about 900 times faster than genetic matching (programmed

mostly in C) and is feasible with many more covariates and observations. Of course, each of these

other methods have many potential uses, and the timing differences in particular do not matter

much for smaller data sets, but at a minimum CEM would seem to be very widely applicable.

We ran other Monte Carlo experiments with more difficult, complicated, and heterogeneous

data generation processes — and also allowed the different methods to estimate their own best

estimand, keeping SATT constant, or letting it vary by also matching treated units — and reached

similar conclusions. King et al. (2011) performed similar comparisons while also allowing PSM

and MAH to work with calipers, and showed that CEM still dominates, to some extent even more

strongly than the results here. Even though this section shows that CEM substantially outperforms

other methods, it would be easy to outperform these results using other applications of CEM or

the combined methods discussed in Section 5.2. The usual “ping pong theorem” qualifications

certainly apply.

6.3 Empirical Example

We now present a step-by-step illustration of estimating a causal effect in data from Lalonde

(1986).
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Matching To begin a CEM analysis, we first choose a reasonable coarsening for each variable.

The more coarsening we allow, the more observations we will have, but larger the bound on model

dependence and estimation error. For education, we divide years of education in classes corre-

sponding to different levels: grade school (0–6), middle school (7–8), high school (9–12), college

(13–16), and graduate school (>16). For age, we use standard labor force classes: (15–19), (20–

24), (25–34), (35–44), (45–54), (55–64), (>65) years.

The data includes two indicator variables to identify unemployment in 1974 and 1975 (u74

and u75); we include these or, since the unemployed have 0 earnings, we instead equivalently

add the interval [0, 1) dollars to the coarsening of re74 and re75. We divide earnings into quan-

tiles, calculated on the distributions of positive earnings. The quantiles (25, 50, 75)% of re74 are

(11756, 18925, 26842). So finally we obtain the following cutpoints for variable re74: [0–1),

[1–11756), [11756–18925), [18925–26842), [26842–137149). For variable re75 we have: [0–

1), [1–11069), [11069–18261), [18261–26855), [26855–156653). The initial multidimensional

imbalance is L1 = 0.977.

After running CEM with the above coarsening we obtain mT = 176 treated units matched with

mC = 218 control units, resulting in a multivariate imbalance of L1 = 0.806; this corresponds to a

moderately sized 17.47% imbalance reduction.

We now do a parallel analysis using the most common approach to propensity score matching.

This involves using nearest neighbor matching on the estimated propensity score, where the score

comes from a logistic regression using all pre-treatment variables and all treated units matched.

This produces a multivariate imbalance of L1 = 0.953, which corresponds to a reduction of only

2.48% relative to the raw data and considerably smaller than CEM’s result.

But what about the simpler univariate difference in means imbalance metric, for which the

propensity score was designed? As can be seen in the first three rows of Table 3, or the triangles in

Figure 2 propensity score matching (PSM) reduces imbalance for each variable, but CEM reduces

it more for every one.

In any matching method, the acceptable level of imbalance for a pre-treatment variable de-

pends on its expected effect on the outcome — with lower imbalance being more desirable for

variables with larger expected effects. Unfortunately, changing imbalance in predictable ways is

often impossible with methods, such as the propensity score, that use a scalar imbalance metric.

The problem is complicated by the fact that the usual ways to assess model specification are irrel-
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age education re74 re75 u74 u75 married nodegree black hispanic
RAW −10.22 −1.74 −15857.75 −15997.24 0.35 0.27 −0.70 0.43 0.55 0.06
PSM −3.55 −0.34 −3706.94 −3243.38 0.21 0.15 −0.31 0.16 0.10 0.01
CEM −0.43 −0.10 −1158.83 −1364.83 0.00 0.00 0.00 0.00 0.00 0.00

PSM∗ −3.96 −0.31 −3809.26 −2959.22 0.20 0.13 −0.31 0.15 0.11 0.02
CEM∗ −0.44 −0.13 −1046.94 −1140.66 0.00 0.00 0.00 0.00 −0.00 0.00

Table 3: Imbalance measured by difference in means between treated and control units on the
original data (RAW), after CEM, propensity score matching (PSM); PSM with re742 in the model
(PSM∗); and CEM with 5 quantiles for re74 (CEM∗).
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Figure 2: Percentage of bias left after matching (relative to the RAW data at 100%), for CEM (4),
CEM∗ (×), PSM∗ (+), and PSM (o). This figure offers an alternative visualization of Table 3.

evant here; the only question is whether imbalance is changed as predicted. For example, suppose

we wish to reduce imbalance further for re74 and decide to try adding the term re742 to the

propensity score logit model specification. The result is that the in-sample fit (as measured by the

AIC statistic) is improved, but Row PSM∗ in Table 3, and the + symbol in Figure 2, shows that im-

balance on re74 has increased. Indeed, The direction of change in imbalance is unpredictable for

the other variables as well, as can be seen for example in the reduction in imbalance for variable

re75.

Consider how much easier tightening the imbalance is with CEM. We can, for example, change

the coarsening by splitting re74 into five quantiles instead of the previously used three. Row

CEM∗ of Table 3, and the × symbol in Figure 2, shows that we vastly reduced the imbalance on

this variable and others never exceed the maximum imbalance we specified ex ante. For example,

although the imbalance slightly increases for age and education, this increase respects the MIB

property: for ages we tolerated a maximal imbalance of 5 years, so 0.01 increase of imbalance

where deemed ex ante as irrelevant. Similarly for education.

One can improve propensity score matching by continuing to tweak and rerun the model,
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recheck imbalance, and rerun again, but because the imbalance results generally go in unpre-

dictable directions, finding a specification that improves balance on all variables can often be

challenging. In contrast, because it is a member of the MIB class of methods, CEM produce no

surprises about imbalance, which makes data analysis far easier: reducing maximum imbalance

on one variable never has any effect on the maximum imbalance specified for any of the other

variables.

Estimation Finally, we illustrate ways of estimating the causal effect under CEM. We begin

with the local SATT, using the CEM-matched units via linear regression using all variables in

the data set. The result is an estimate of τ̂mT = −1223.7 and leaves nT − mT = 121 unmatched

treated units. So one option is to extrapolate the model estimated for the mT matched units to the

remaining unmatched treated units to estimate SATT for all treated units. This approach yields

τ̃nT = −554.7$, which is quite far from τ̂mT .

Another approach is to estimate the local SATT on the unmatched nT − mT = 121 treated and

control nC−mC = 2272 units only and then use formula (1) to obtain another estimate of the global

SATT. Doing this, we obtain τ̂nT−mT = −1467.5 and thus another estimate of the global SATT:

τ̂nT =
176 · (−1223.7) + 121 · (−1467.5)

297
= −1323.1.

A somewhat more conservative approach in the extrapolation region of unmatched treated

units is to first prune control units outside the hyper-rectangle of the sub-sample of treated units.

This approach leaves us with 121 treated units and 43 control units. In this case we get τ̂′nT−mT
=

−7494.2$ and

τ̂′nT
=

121 · (−1223.7) + 176 · (−7494.2)
297

= −3778.4.

The differences in the estimates of the global SATT illustrates the unavoidable model dependence

in the extrapolation region. For the local SATT, CEM enables one to produce a highly stable

estimate that is relatively invariant to the estimation method.

Defining the Quantity of Interest In practice, most methods of matching select by treated and

controls and so produce a definition of the estimand as part of the matching procedure. Since

matching is a method of preprocessing, and so the estimand is defined prior to estimation, all the

usual statistical properties, such as bias and efficiency, still apply. However, understanding what

quantity (which “local SATT”) is being estimated is crucial. Methodologists recognize this fact

but rarely do anything about it. We offer here a simple way of defining the estimand, via a parallel
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Figure 3: Parallel plot of non categorical variables for CEM matched units (blue) against un-
matched units (red) in the LL vs PSID data.

plot; see Figure 3. In a parallel plot, each observation in the original data set is represented by a

single line that traces out its values on each of the continuous variables (horizontally) between its

minimum and maximum values (vertically). We adapt this graphic for our purposes by coloring

matched units in blue and unmatched units in red. The estimand is the average treatment effect

for the people who were matched, which we can see from the figure are younger, have middling

levels of education, and receive lower earnings than the full group. This is the group for whom a

relatively stable, not model dependent inference is available. Applications ought to use a parallel

plot like this, or some other approach, to defining the quantity being estimated.

7 Concluding Remarks on What Can Go Wrong

We conclude here with a discussion of what can go wrong in applying CEM and how to avoid

these problems.

Choosing the coarsening (setting ε) appropriately is the primary issue to consider when running

CEM. If an element of ε is set too large, then information that might have been useful to produce

better matches may be missed. This is an issue, but analysts have a second chance to avoid the

consequences of this problem in the analysis after matching. Of course, the less precise the match,

the more burden is put on getting the modeling assumptions correct in the analysis stage.

In contrast, if elements of ε are set too small, then too many observations may be discarded

without a chance for compensation during the analysis stage. If they are set much too small, a

solution may either be unavailable or lead to a low efficiency solution. One must also be careful

allowing selection to occur on the treated units and to recognize and clarify for readers the new

estimand. As we use CEM in practice, we tend to choose higher standards for what constitutes

a match and thus are sometimes left in real observational data sets with fewer observations than
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we might have otherwise, with the result being less covariate imbalance, less model dependence,

and less resulting statistical bias. In many cases, smaller CEM matched data sets eliminate much

heterogeneity, resulting also in causal estimates with smaller variances. With or without these

lower variances, the additional bias reduction means that CEM-based estimates will normally have

lower mean square error as well. Of course, if ε is set as high as you are comfortable with, and

your matched data set is still too small, then no magical method will be able to fix this basic data

inadequacy, and you will be left trying to model your way out of the problem or to collect more

informative data.

When used properly with informative data, CEM can reduce model dependence and bias,

and improve efficiency, across a wide range of potential applications. Even when it is possible

to design a superior matching method specially for a particular data set, the simplicity of CEM

will ordinarily still be far better than the commonly used parametric-only approaches. In these

situations, users may opt for CEM, but they should be aware of the potential gain from delving

more deeply into the increasingly sophisticated methodological literature in this area.

Finally, all the issues with matching in general may also go wrong with CEM. For example,

CEM will not save you if an important covariate is not matched on, unless it is closely related to a

variable that is matched on.
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