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Abstract.

In this paper we discuss the implementation of matching estimators for average
treatment effects in Stata. The match command provides a number of options,
including the number of matches, the choice of estimating the average effect for all
units or only for the treated or control units, the distance metric, a bias adjustment,
and a various options for the variance.
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1 Introduction

In this paper we provide a brief introduction to matching estimators for average treat-
ment effects and describe the new Stata program match that implements these esti-
mators. The program implements nearest neighbor matching estimators for average
treatment effects either for the overall sample or for the subsample of treated or control
units. While simple matching estimators have been widely used in the program evalua-
tion literature, match implements the specific matching estimators developed in Abadie
and Imbens (2002), including their bias-corrected matching estimator. The procedure
match allows individuals to be used as a match more than once. Compared to matching
without replacement this generally lowers the bias but increases the variance.

While match provides many options for fine tuning the estimators, a key feature of
the program is that it can be used with few decisions by the researcher. The default
settings are generally sufficient for many applications. Although theoretically matching
on multi-dimensional covariates can lead to substantial bias, in many cases the combina-
tion of the matching with the bias adjustment implemented in match leads to estimators
with little remaining bias.

This paper draws heavily on the more theoretical discussion about matching by
Abadie and Imbens (2002), and the survey by Imbens (2003). See also Cochran and
Rubin (1973), Rosenbaum and Rubin (1985), Rubin and Thomas (1992), Rosenbaum
(1995) and Heckman et al. (1998). The reader is referred to those papers for more
background on, and formal derivations of, some of the properties of the estimators
described here.
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2 Matching Estimators for Average Treatment Effects

2 Framework

We are interested in estimating the average effect of a binary treatment on a contin-
uous scalar outcome. For individual i, i = 1, . . . , N , with all units exchangeable, let
(Yi(0), Yi(1)) denote the two potential outcomes, i.e. Yi(0) is the outcome of individual
i when she is not exposed to the treatment and Yi(1) is the outcome of individual i when
she is exposed to the treatment. For instance, the treatment could be participation in
a job training program and the outcome could be income or wages. If both Yi(0) and
Yi(1) were observable, then the effect of the treatment on i would be Yi(1)−Yi(0). The
root of the problem is that only one of the two outcomes is observed. Let the observed
outcome be denoted by Yi:

Yi = Yi(Wi) =
{

Yi(0) if Wi = 0,
Yi(1) if Wi = 1,

where Wi, for Wi ∈ {0, 1} indicates the treatment received,

Ignore, for the moment, the problem that we can only observe one of the two out-
comes. What would we want to know, if we could observe both outcomes? In general
we are interested in Average Treatment Effects (ATE’s). Of most interest are the pop-
ulation and sample average treatment effects, PATE and SATE,

τpop = E[Y (1)− Y (0)], and τ sample =
1
N

N∑
i=1

(Yi(1)− Yi(0)) .

Whether one is interested in the average treatment effect in the population (PATE) or
the sample (SATE) does not affect the choice of estimator: the same matching estimator
will estimate both. The choice between PATE and SATE will affect the large sample
variance, and thus the estimator for the variance as will be discussed in more detail
later. In general the variance for SATE is smaller than for PATE. See Abadie and
Imbens (2002) and Imbens (2003) for more details.

Similarly we can define the population and sample average treatment effect for sub-
population of the treated, PATT and SATT,

τpop,t = E[Y (1)− Y (0)|W = 1] and τ sample,t =
1

N1

∑
i|Wi=1

(Yi(1)− Yi(0)) ,

and the population and sample average treatment effect for the controls, PATC and
SATC,

τpop,c = E[Y (1)− Y (0)|W = 0], and τ sample,c =
1

N0

∑
i|Wi=0

(Yi(1)− Yi(0)) ,

where N1 =
∑

i Wi and N0 =
∑

i(1−Wi) are the number of treated and control units,
respectively.

Now consider the problem of estimating the untreated outcome, Yi(0), for person
i with covariates Xi who was exposed to the treatment. If the decision to take the
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treatment is “purely random” for individuals with similar values of the pretreatment
variables or covariates, then one approach would be to use the average outcome of some
similar individuals who were not exposed to the treatment. This is the basic idea behind
matching estimators. For each i, matching estimators impute the missing outcome by
finding other individuals in the data whose covariates are similar but who were exposed
to the other treatment. It is the process of “matching” similar individuals who chose the
opposite treatment that causes these estimators to be known a “matching estimators”.

The intuition above needs to be stated more rigorously. To ensure that the match-
ing estimators identify and consistently estimate the treatment effects of interest, we
assume that assignment to treatment is independent of the outcomes, conditional on
the covariates, and that the probability of assignment is bounded away from zero and
one. For details on the regularity conditions see Abadie and Imbens (2002).

Assumption 2.1 For all x in the support of X,
(i) W is independent of (Y (0), Y (1)) conditional on X = x;
(ii) c < P(W = 1|X = x) < 1− c, for some c > 0.

Part (i) is a rigorous definition of the restriction that the choice of participation be
“purely random” for similar individuals. This assumption is also known as unconfound-
edness, or “selection on observables”.

Part (ii) is an identification assumption. If all the individuals with a given covariate
pattern chose the treatment, then there would be no observations on similar inviduals
who chose not to accept the treatment.

In their seminal article, Rosenbaum and Rubin (1983) define the treatment to be
“strongly ignorable” when both parts of Assumption 2.1 are valid. In addition, Rosen-
baum and Rubin (1983) provide intuition for these two conditions in terms of how
they make data from a non-randomized experiment analyzable as if it had come from
a randomized experiment. These conditions are strong, and in many cases may not
be satisfied. In various studies, however, researchers have found it useful to consider
estimators based on these or similar conditions. In addition, Imbens (2003) argues that
most studies will want to proceed under the Assumption 2.1 at some during the analysis.

3 Estimators

The unit level treatment effect is τi = Yi(1) − Yi(0). However, as discussed above,
only one of the potential outcomes Yi(0) or Yi(1) is observed for each individual and
the other is unobserved or missing. The matching estimators we consider impute the
missing potential outcome by using average outcomes for individuals with “similar”
values for the covariates.

Let ‖x‖V = (x′V x)1/2 be the vector norm with positive definite weight matrix V .
We define ‖z − x‖V to be the distance between the vectors x and z. Let dM (i) be the
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distance from the covariates for unit i, Xi, to the Mth nearest match with the opposite
treatment. Allowing for the possibility of ties, this is the distance such that strictly
fewer than M units are closer to unit i than dM (i), and at least M units are as close as
dM (i). Formally, dM (i) > 0 is the real number satisfying:∑
l:Wl=1−Wi

1
{
‖Xl−Xi‖V < dM (i)

}
< M and

∑
l:Wl=1−Wi

1
{
‖Xl−Xi‖V ≤ dM (i)

}
≥ M,

where 1{·} is the indicator function, equal to one if the expression in brackets is true
and zero otherwise.

Let JM (i) denote the set of indices for the matches for unit i that are at least as
close as the Mth match:

JM (i) =
{

l = 1, . . . , N
∣∣∣Wl = 1−Wi, ‖Xl −Xi‖V ≤ dM (i)

}
.

If there are no ties the number of elements in JM (i) is M . In general it may be larger.
Let the number of elements of JM (i) be denoted by #JM (i). Finally, let KM (i) denote
the sum of the weights unit i has as a match for other units, and K ′

M (i) the sum of the
squared weights in the matches:

KM (i) =
N∑

l=1

1{i ∈ JM (l)} · 1
#JM (l)

. (1)

K ′
M (i) =

N∑
l=1

1{i ∈ JM (l)} ·
(

1
#JM (l)

)2

. (2)

Note that
∑

i KM (i) = N ,
∑

i:Wi=1 KM (i) = N0 and
∑

i:Wi=0 KM (i) = N1.

3.1 The Simple Matching Estimator

The first estimator that we consider, the simple matching estimator, uses the following
approach to estimate the pair of potential outcomes. For each individual i, there are
two potential outcomes, one is observed and the other is not. The observed outcome is
its own estimate. The unobserved outcome is estimated by averaging the outcomes of
the other most similar individuals who did choose this outcome:

Ŷi(0) =


Yi if Wi = 0,

1
#JM (i)

∑
l∈JM (i)

Yl if Wi = 1,

and

Ŷi(1) =


1

#JM (i)

∑
l∈JM (i)

Yl if Wi = 0,

Yi if Wi = 1.
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Table 3.2
A Matching Estimator with Seven Observations, m = 1

i Wi Xi Yi J1(i) Ŷi(0) Ŷi(1) KM (i)

1 0 2 7 {5} 7 8 3
2 0 4 8 {4,6} 8 7 1

2
1

3 0 5 6 {4,6} 6 7 1
2

0
4 1 3 9 {1,2} 7 1

2
9 1

5 1 2 8 {1} 7 8 1
6 1 3 6 {1,2} 7 1

2
6 1

7 1 1 5 {1} 7 5 0

The simple matching estimator we implement is

τ̂ sm
M =

1
N

N∑
i=1

(
Ŷi(1)− Ŷi(0)

)
=

1
N

N∑
i=1

(2Wi − 1) · (1 + KM (i)) · Yi. (3)

The simple matching estimator can easily be modified to estimate the average treatment
effect for the treated:

τ sm,t
M =

1
N1

∑
i:Wi=1

(
Yi − Ŷi(0)

)
=

1
N1

N∑
i=1

(Wi − (1−Wi) ·KM (i)) · Yi. (4)

or the average treatment effect for the controls:

τ sm,c
M =

1
N0

∑
i:Wi=0

(
Ŷi(1)− Yi

)
=

1
N0

N∑
i=1

(Wi ·KM (i)− (1−Wi)) · Yi. (5)

3.2 Some useful examples

In this section, we use a small artificial data set to illustrate the concepts in the previous
sections. The variables for the seven observations are presented in Table 3.2. In this
table we also present the predicted values for the potential outcomes and the set of
matches for each unit for the case with m = 1 (single match). Note that although we
search for the single closest match, for some units there is a tie. Consider the second
unit, a control unit with Xi = 4. Treated units 4 and 6, both with Xi = 3 are equally
close and so the predicted outcome given the treatment for this unit is equal to the
average of the outcomes for units 4 and 6, namely (9 + 6)/2 = 7.5.

Since this dataset is small enough, one can compute that the ATE for this data is
.14285714. Now, let’s compute the estimates using the match command. While the
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complete syntax for match is given in section 5.1, here we note that the basic syntax of
match is given by

match depvar treatvar varlist
[
weight

] [
if exp

] [
in range

] [
, m(#)

tc({satt|satc})

Options

m(#) specifies the number of matches. The default is 1 implying a single match. If one
is estimating the average treatment effect, then any integer less than or equal to
the minimum of the number of treated and controls in the sample can be choosen:
M ≤ min(N0, N1). If the average effect on the treated is specified, then the limit is
the number of controls in the sample: M ≤ N0. If estimating the average effect on
the controls, then the limit is the number of treated in the sample, M ≤ N1.

tc() specifies the estimand. By default, match estimates the the average treatment
effect, ATE. Specifying tc(att) cause match to estimate the sample average treat-
ment effect for the treated, ATT. Specifying tc(atc) causes match to estimate the
sample average effect for the controls ATC.

In the output below we estimate the ATE for the artificial data set.

. use artificial

. match y w x

Matching estimator for the average treatment effect

Number of obs = 7
Number of matches (m) = 1

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

SATE .1428571 .9407699 0.15 0.879 -1.701018 1.986732

Matching variables: x

We note that the standard Stata output says that our hand calculation was correct.

Now let’s consider an example with real data. We use a subset of the data used by
Lalonde (1986). The particular subset is the one constructed by Dehejia and Wahba
(1999) and described there in more detail. The data set is available in STATA format
at http://emlab.berkeley.edu/users/imbens.

In this example, we are interested in the possible effect of participation in a job
training program on individuals’ earnings in 1978, In this dataset, participation in the
job training program is recorded in the variable t and the 1978 earnings of the individuals
in the sample are recorded in the variable re78 in terms of 1978 dollars. The observable
covariates that we use to identify similar individuals are given in Figure 1.



Abadie et al 7
Figure 1:

Variable Description Variable Name
age age
years of education educ
indicator for afro-american black
indicator for hispanic-american hisp
indicator for married married
indicator for more than grade school but nodegree

less than high school education
earnings in 1974(in thousands of 1978 $) re74
earnings in 1975(in thousands of 1978 $) re75
indicator for unemployed in 1974 u74
indicator for unemployed in 1975 u75

In the output below we estimate the ATT using this data.

. use lalonde

. match re78 t age educ black hisp married re74 re75 u74 u75, m(4)

Matching estimator for the average treatment effect

Weighting matrix: inverse variance Number of obs = 445
Number of matches (m) = 4

re78 Coef. Std. Err. z P>|z| [95% Conf. Interval]

SATE 1.903326 .7202149 2.64 0.008 .4917308 3.314921

Matching variables: age educ black hisp married re74 re75 u74 u75

Since 1978 earnings are recorded in thousands of 1978 dollars, this output implies that
for the individuals in our sample, the average effect of participing in the job training
program is an increase an individual’s 1978 earnings by $1,903.

The population and sample average treatment effects are useful for answering differ-
ent questions. For instance, the SATE is useful for judging whether or not this particular
job training program was a success. In contrast, if we were considering launching another
job training program in which we would obtain other sample from the same population,
the PATE would be more useful. For the specification at hand we conclude that the
sample average is significantly different from zero at the 1% level. Since the standard
error of the SATE underestimates the standard error of the PATE, it is possible that
the PATE might not be significantly different from zero at either the 5% nor the 1%
level.

add results for PATE

We also need to point out that the size, as well as the statistical significance, is
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important in interpreting the results in most treatment effects studies. For instance, if
our earnings data was in terms of dollars instead of thousands of dollars, our results
would indicate a statistically significant but economically unimportant impact of the
job training program on the individuals in the current sample.

As discussed in Imbens (2003) and Heckman et al. (1998) the effect of the treatment
on the subpopulation of treated units is frequently more important than the effect on
the population as a whole when evaluating the importance of narrowly targeted labor
market programs. For instance, when evaluating the importance of a program aimed at
increasing the post-graduation earnings of youth from bad neighborhoods, the potential
impact of the program on youth from good neighborhoods is not relevant.

In the output below we use match to estimate SATT using our extract from the
Lalonde data.

. match re78 t age educ black hisp married re74 re75 u74 u75, tc(satt) m(4)

Matching estimator for the average treatment effect for the treated

Weighting matrix: inverse variance Number of obs = 445
Number of matches (m) = 4

re78 Coef. Std. Err. z P>|z| [95% Conf. Interval]

SATT 1.994622 .7127286 2.80 0.005 .5976995 3.391544

Matching variables: age educ black hisp married re74 re75 u74 u75

The output indicates that effect of the job training program on the participants in
this sample is statistically different from zero.

In most of the examples that we do using the dataset, we use 4 matches. We chose
4 matches because it seemed to offer the benefit of not relying on too little information
without incorporating observations that are not sufficiently similar. Like all smoothing
parameters, the final inference can depend on the choice of the number of matches. For
instance, in the output below we show that relying on a single match makes the ATT
become statistically insignificant.

. match re78 t age educ black hisp married re74 re75 u74 u75, tc(satt)

Matching estimator for the average treatment effect for the treated

Weighting matrix: inverse variance Number of obs = 445
Number of matches (m) = 1

re78 Coef. Std. Err. z P>|z| [95% Conf. Interval]

SATT 1.223154 .8529323 1.43 0.152 -.4485624 2.894871

Matching variables: age educ black hisp married re74 re75 u74 u75
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3.3 The Bias Corrected Matching Estimator

The simple matching estimator will be biased in finite samples when the matching is not
exact. Abadie and Imbens (2002) show that with k continuous covariates the estimator
will have a term corresponding to the matching discrepancies (the difference in covariates
between matched units and their matches) that will be of the order Op(N−1/k). In
practice one may therefore attempt to remove some of this bias term that remains after
the matching. The bias-corrected matching estimator adjusts the difference within the
matches for the differences in their covariate values. The adjustment is based on an
estimate of the two regression functions µw(x) = E[Y (w)|X = x]. Following Rubin
(1973) and Abadie and Imbens (2002) we approximate these regression functions by
linear functions and estimate them using least squares on the matched observations.

First suppose we are estimating the average treatment effect. In this case we estimate
the regression functions using only the data in the matched sample:

µ̂w(x) = β̂w0 + β̂′w1x,

for w = 0, 1, where

(β̂w0, β̂w1) = argmin
∑

i:Wi=w

KM (i) · (Yi − βw0 − β′w1Xi)
2
. (6)

If we are interested in estimating the ATT, we only need estimate the regression function
for the controls, µ0(x) and if we are interested in ATC we only need estimate the
regression function for the treated, µ1(x).

We weight the observations in these regressions by KM (i), the number of times the
unit is used as a match, because the weighted empirical distribution is closer to the
distribution of covariates in which we are ultimately interested. For example, when we
are estimating the SATT, control units that are not used as matches have potentially
very different covariate values than the treated units we are trying to match. Hence
using these controls to predict outcomes for the treated units can lead to results that
can be very sensitive to the exact specification applied.

Given the estimated regression functions, we predict the missing potential outcomes
as:

Ỹi(0) =


Yi if Wi = 0,

1
#JM (i)

∑
l∈JM (i)

(Yl + µ̂0(Xi)− µ̂0(Xl)) if Wi = 1, (7)

and

Ỹi(1) =


1

#JM (i)

∑
l∈JM (i)

(Yl + µ̂1(Xi)− µ̂1(Xl)) if Wi = 0,

Yi if Wi = 1,

(8)
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with corresponding estimator for the ATE:

τ̂ bcm
M =

1
N

N∑
i=1

(
Ỹi(1)− Ỹi(0)

)
. (9)

The bias-adjusted matching estimators for ATT and ATC are

τ̂ bcm,t
M =

1
N1

∑
i:Wi=1

(
Yi − Ỹi(0)

)
, and τ̂ bcm,c

M =
1

N0

∑
i:Wi=0

(
Ỹi(1)− Yi

)
.

Now let’s return to our extract from the Lalonde data. In this example, we estimate
the ATT with bias-adjustment.

. match re78 t age educ black hisp married re74 re75 u74 u75, tc(satt) ///
> m(4) bias(bias)

Matching estimator for the average treatment effect for the treated

Weighting matrix: inverse variance Number of obs = 445
Number of matches (m) = 4

re78 Coef. Std. Err. z P>|z| [95% Conf. Interval]

SATT 1.838424 .7160904 2.57 0.010 .434913 3.241936

Matching variables: age educ black hisp married re74 re75 u74 u75
Bias-adj variables: age educ black hisp married re74 re75 u74 u75

The above output indicates that while bias-adjustment reduces the size of the esti-
mated SATE, it does not change our previous conclusion that treatment had an effect
on its participants that is significant at the 5% but quite not at the 1% level.

4 Variance Estimation

In this section we describe the variance estimators implemented in match. First, it is
important to note that the bias-adjustment does not affect the form of the estimator for
the variance, although it may affect the numerical value. For the variance it does matter
whether one is interested in the sample of population average treatment effect (or the
average effect for the treated or controls). In addition there is an option for a robust
estimator that allows for heteroskedasticity. Note that in general there is no theoretical
justification for bootstrapping methods for variance estimation for matching estimators.
For details on the theoretical justification for the various variance estimators see Abadie
and Imbens (2002).

First the estimator for the variance of the sample average treatment effect (SATE):

V̂ sample =
1

N2

N∑
i=1

(
1 + KM (i)

)2

· σ̂2
Wi

(Xi). (10)
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Below we return to the question of estimating the conditional error variance σ2
w(x).

Similarly the variance for the estimator for SATT is

V̂ sample,t =
1

N2
1

N∑
i=1

(Wi − (1−Wi) ·KM (i))2 · σ2
Wi

(Xi), (11)

and for SATC,

V sample,c =
1

N2
0

N∑
i=1

(Wi ·KM (i)− (1−Wi))
2 · σ2

Wi
(Xi). (12)

As an estimator for the variance of the matching estimator for the population average
treatment effect we use:

V̂ POP =
1

N2

N∑
i=1

[(
Ŷi(1)− Ŷi(0)− τ̂

)2

+
(
K2

M (i) + 2KM (i)−K ′
M (i)

)
· σ̂2

Wi
(Xi)

]
(13)

In large samples this will be at least as large as the estimator for the variance of
the matching estimator for SATE, with the difference an estimator for

∑
i(µ1(Xi) −

µ0(Xi))2/N2. In small samples it need not be larger. In practice we therefore take the
maximum of V̂ pop and V̂ sample as the estimator for the variance of the estimator for
the PATE.

As an estimator for the variance of the matching estimator for the population average
treatment effect for the treated we use:

V̂ POP,t =
1

N2
1

N∑
i=1

[
Wi ·

(
Yi(1)− Ŷi(0)− τ̂ t

)2

+ (1−Wi) ·
(
K2

M (i)−K ′
M (i)

)
· σ̂2

Wi
(Xi)

]
.

(14)
Finally, as an estimator for the variance of the matching estimator for the population
average treatment effect for the controls we use:

V̂ POP,c =
1

N2
0

N∑
i=1

[
(1−Wi) ·

(
Ŷi(1)− Yi(0)− τ̂ c

)2

+ Wi ·
(
K2

M (i)−K ′
M (i)

)
· σ̂2

Wi
(Xi)

]
.

(15)

Estimating these variances requires estimation of the conditional outcome variance
σ2

w(x). The matching program offers two options, either assuming this variance σ2
w(x)

is constant for both treatment groups and all values of the covariates, or not.

4.1 Assuming a Constant Treatment Effect and Homoskedasticity

Here we discuss estimating the variance under two assumptions. First, the assumption
that the treatment effect Yi(1) − Yi(0) is constant. Second, the assumption that the



12 Matching Estimators for Average Treatment Effects

conditional variance of Yi(w) given Xi does not vary with either the covariates x nor
the treatment w. In this case we can therefore estimate the outcome variance σ2 as

σ̂2 =
1

2N

N∑
i=1

 1
JM (i)

∑
l∈JM (i)

(Wi · (Yi − Yl − τ̂) + (1−Wi) · (Yl − Yi − τ̂))2
 . (16)

We then substitute σ̂2 for σ̂2
Wi

(Xi) into the relevant variance formula (10) or (13). For
ATT we estimate σ2 as

σ̂2
t =

1
2N1

∑
i:Wi=1

 1
JM (i)

∑
l∈JM (i)

(Yi − Yl − τ̂)2
 ,

and substitute that for σ̂2
Wi

(Xi) into equation (11) or (14). Finally, for ATC we estimate
σ2 as

σ̂2
c =

1
2N0

∑
i:Wi=0

 1
JM (i)

∑
l∈JM (i)

(Yl − Yi − τ̂)2
 ,

and substitute that for σ̂2
Wi

(Xi) into (12) or (15).

4.2 Variance Estimation Allowing for Heteroskedasticity

If σ2
w(x) difffers by w and x, one needs to estimate it for all sample points. In match

this is implemented using a second matching procedure, now matching treated units to
treated units and control units to control units. Define d′M (i) as the distance to the
Mth closest unit with the same treatment indicator. Formally:∑
l:Wl=Wi,l 6=i

1
{
‖Xl−Xi‖V < d′M (i)

}
< M and

∑
l:Wl=Wi,l 6=i

1
{
‖Xl−Xi‖V ≤ d′M (i)

}
≥ M.

Let J ′
M (i) denote the set of indices for the first M matches for unit i:

J ′
M (i) =

{
j = 1, . . . , N

∣∣∣Wj = Wi, j 6= i, ‖Xj −Xi‖V ≤ d′M (i)
}

,

where the number of elements of J ′
M (i) be denoted by #J ′

M (i). Then we estimate the
conditional variance as the sample variance in this set augmented with the outcome for
unit i itself J ′

M (i) ∪ {i}:

σ̃2
Wi

(Xi) =
1

#J ′
M (i)

∑
j∈(J ′

M (i)∪{i})

(
Yj − ȲJ ′

M (i)∪{i}

)2

, (17)

where
ȲJ ′

M (i)∪{i} =
1

#J ′
M (i) + 1

∑
j∈(J ′

M (i)∪{i})

Yj ,
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is the average outcome in this set. The overall variance is estimated by plugging this
unit-level variance estimate into the relevant variance expression (10)-(15)

Now we return to our Lalonde data extract. In the output below we re-estimate the
ATT, but this time we estimate the standard error allowing for heteroskedasticity. We
specify 4 matches in estimating the conditional variance functions for the same reason
that we allow 4 matches in estimating the conditional mean functions; given our data 4
matches seems to include sufficient information without matching unlike individuals.

. match re78 t age educ black hisp married re74 re75 u74 u75, tc(satt) ///
> m(4) bias(bias) robust(4)

Matching estimator for the average treatment effect for the treated

Weighting matrix: inverse variance Number of obs = 445
Number of matches (m) = 4
Number of matches,

robust std. err. (h) = 4

robust
re78 Coef. Std. Err. z P>|z| [95% Conf. Interval]

SATT 1.838424 .7526339 2.44 0.015 .363289 3.31356

Matching variables: age educ black hisp married re74 re75 u74 u75
Bias-adj variables: age educ black hisp married re74 re75 u74 u75

The output indicates that our estimated SATT remains at the 5% level but not at
the 1% level when the standard error is estimated under these weaker conditions. Thus,
in this sample the job training program appears to have had a significant impact on the
1978 earnings of it participants.

5 The match command

Here we discuss the formal syntax of the match command.

5.1 Syntax of match

The basic syntax is as follows:

match depvar treatvar varlist
[
weight

] [
if exp

] [
in range

] [
, m(#)

tc({att|atc}) metric(maha|matrix) biasadj(bias |varlistadj) robust(#)

population exact(varlistexa) keep(filename) replace

pweights are allowed. See the Stata 8 User’s Guide [U] 14.1.6 for more information on

weights. See 5.2 for how match handles weights.
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Description

match estimates the sample average treatment effect, the sample average treatment
effect for the treated and sample average treatment effect for the controls and their
standard errors. The depvar is the outcome variable. The treatvar is a binary variable
treatment indicator. The varlist specifies the covariates that are to be used in the
matching.

Options

m(#) specifies the number of matches. The default is 1 implying a single match. If one
is estimating the average treatment effect, then any integer less than or equal to
the minimum of the number of treated and controls in the sample can be choosen:
M ≤ min(N0, N1). If the average effect on the treated is specified, then the limit is
the number of controls in the sample: M ≤ N0. If estimating the average effect on
the controls, then the limit is the number of controls in the sample.

In practice one should typically choose a fairly small number. In simulations in
Abadie and Imbens (2002) using four matches was found to perform well in terms
of mean-squared error.

tc() specifies the estimand. By default, match estimates the the average treatment
effect, ATE. Specifying tc(att) cause match to estimate the sample average treat-
ment effect for the treated, ATT. Specifying tc(atc) causes match to estimate the
average effect for the controls ATC.

biasadj([varlist) specifies that the bias-corrected matching estimator is to be used. By
default, match uses the simple matching estimator. The first alternative, biasadj(bias),
uses the bias-corrected matching estimator using the same set of covariates as is used
in the matching, entering linearly in the regression function. With many covariates
one may wish to use only some of the covariates for covariate adjustment, thus the
second alternative, biasadj(varlist), is to use the bias-corrected matching estimator
with a set of covariates distinct from the set used in matching.

metric() specifies the metric for measuring the distance between two vectors of covari-
ates. Letting ‖x‖V = (x′V x)1/2 be the vector norm with positive definite weight
matrix V , we define ‖z−x‖V to be the distance between the vectors x and z. There
are three choices for V . First, by default, V is the diagonal matrix constructed
by putting the inverses of the variances of the covariates on the diagonal. Second,
specifing metric(maha) causes match to use to use the Mahalanobis metric in which
V = S−1, where S is the sample covariance matrix of the of the covariates. Third,
specifying metric(matrixname) causes match to use the matrix matrixname. This
third option allows the user to flexibly choose any weight matrix.

robust(#v) specifies that match estimate heteroskedasticty consistent standard errors
using #v matches. The number of matches used in estimating the standard error,
#, does not need to be the same as the number of matches used in estimating the
treatment effect itself. By default, match uses the homoskedastic/constant variance
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estimator.

population specifies whether the estimand is a sample or population average treatment
effect. This only affects the choice of estimator for the variance. By default, match
estimates the the sample average treatment effect, SATE, SATT, or SATC, using one
of the variance estimators from (10)-(12). Specifying pop cause match to estimate
the variance for the population average treatment effect, PATE, PATT, or PATC,
using one from (13)-(15).

exact(varlistexa) allows the user to specify some covariates that match will attemp to
match exactly on. This option is useful if the user wants to ensure that all matches
are exact on some variables. Most of the time this will be a single discrete covariate,
e.g., gender, or employment status. If this option is used this list of variables is
added to the full set of matching variables. A new weight matrix is then calculated
with in the top left submatrix the original weight matrix, zeros on the off-diagonal
parts and in the bottom right submatrix a diagonal matrix with the inverse of the
variances of the variables in varlist multiplied by 1,000. As long as there are not too
many covariates in this list, as long as the original weight matrix is not too far from
the inverse variances, and as long as it is feasible, this will lead the program to match
exactly on these variables. The program output will indicate what percentage of the
matches are exact on these covariates. If one uses this option with a continuous
covariate the result will be that the program attempts to match as well as possible
on this covariate, without leading to exact matches.

5.2 How match handles weights

The procedure match allows probability weights. An observation represents a part of
the population proportional to its weight. For example, if all observations have weight
1, other than observation i which has weight 2, the estimates are identical to those that
would be obtained by using the unweighted estimator on an artificial sample created
from the original sample with observation i duplicated once. The standard errors are
updated to take account of the weighting. The weights are allowed to be non-integer,
but have to be non-negative.

Formally, with the weight for individual i equal to ωi, the estimator is calculated as
follows. The distance dM (i) > 0 is modified to ensure that the sum of the weights of
the matches adds up to M :∑

l:Wl=1−Wi

ωl · 1
{
‖Xl −Xi‖V < dω

M (i)
}

< M

and ∑
l:Wl=1−Wi

ωl · 1
{
‖Xl −Xi‖V ≤ dω

M (i)
}
≥ M.

The definition of the set JM (i) is unchanged. The estimated potential outcomes are
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now:

Ŷi(0) =


Yi if Wi = 0,

1∑
l∈JM (i) ωl

∑
l∈JM (i)

ωl · Yl if Wi = 1,

and

Ŷi(1) =


1∑

l∈JM (i) ωl

∑
l∈JM (i)

ωl · Yl if Wi = 0,

Yi if Wi = 1.

The Km(i) and K ′
M (i) are changed from equations (1) and (2) to

Kω
M (i) =

N∑
l=1

ωl · 1{i ∈ JM (l)} · ωi∑
j∈JM (l) ωj

. (18)

and

Kω′
M (i) =

N∑
l=1

ωl · 1{i ∈ JM (l)} ·

(
ωi∑

j∈JM (l) ωj

)2

. (19)

The simple matching estimator is now defined as:

τ̂ω,sm
M =

1∑N
i=1 ωi

N∑
i=1

ωi ·
(
Ŷi(1)− Ŷi(0)

)
,

with a similar modification for ATT and ATC. The bias correction is as described above,
with the one modification that in equation (6) the weighted version Kω

M (i) is used.

The variance formulas change from (10)-(15) to

V̂ sample =
1

(
∑

i ωi)2

N∑
i=1

(
ωi + KM (i)

)2

· σ̂2
Wi

(Xi).

V̂ sample,t =
1

(
∑

i Wiωi)2

N∑
i=1

(Wi · ωi − (1−Wi) ·KM (i))2 · σ2
Wi

(Xi),

V sample,c =
1

(
∑

i(1−Wi)ωi)2

N∑
i=1

(Wi ·KM (i)− (1−Wi)ωi)
2 · σ2

Wi
(Xi).

V̂ POP =
1

(
∑

i ωi)2

N∑
i=1

[
ωi(
(
Ŷi(1)− Ŷi(0)− τ̂

)2

+
(
(Kω

M (i))2 + 2Kω
M (i)−Kω′

M (i)
)
· σ̂2

Wi
(Xi)

]

V̂ POP,t =
1

(
∑

i Wiωi)2

N∑
i=1

[
Wiωi ·

(
Yi(1)− Ŷi(0)− τ̂ t

)2

+ (1−Wi) ·
(
(Kω

M (i))2 −Kω′
M (i)

)
· σ̂2

Wi
(Xi)

]
.

V̂ POP,c =
1

(
∑

i(1−Wi)ωi)2
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×
N∑

i=1

[
(1−Wi)ωi ·

(
Ŷi(1)− Yi(0)− τ̂ c

)2

+ Wi ·
(
(Kω

M (i))2 −Kω′
M (i)

)
· σ̂2

Wi
(Xi)

]
.

For σ̂2
Wi

(Xi) we modify the earlier estimators. In the homoskedastic case the error
variance estimator is changed from (16) to

σ̂2 =
1

2
∑

i ωi

N∑
i=1

 ωi∑
l∈JM (i) ωl

∑
l∈JM (i)

ωl (Wi · (Yi − Yl − τ̂) + (1−Wi) · (Yl − Yi − τ̂))2
 ,

with similar modifications for the ATT and ATC cases.

In the heteroskedastic case the conditional variance σ2
w(x) is estimated using match-

ing with some modification for the weights. First, dω′
M (x) is defined as:∑

l:Wl=Wi,l 6=i

ωl1
{
‖Xl −Xi‖V < d′M (i)

}
< M,

and ∑
l:Wl=Wi,l 6=i

ωl1
{
‖Xl −Xi‖V ≤ d′M (i)

}
≥ M,

with again the set J ′
M (i) containing the indices for the matches for unit i:

J ′
M (i) =

{
j = 1, . . . , N

∣∣∣Wj = Wi, j 6= i, ‖Xj −Xi‖V ≤ dω′
M (i)

}
.

Then we estimate the conditional variance σ2
Wi

(Xi) as the sample variance in this set
augmented with the outcome for unit i itself J ′

M (i)∪{i}, taking account of the weights:

σ̃2
Wi

(Xi) =
∑

j∈(J ′
M (i)∪{i})

ωj

(
Yj − ȲJ ′

M (i)∪{i}

)2
/ ∑

j∈(J ′
M (i)∪{i})

ωj , (20)

where

ȲJ ′
M (i)∪{i} =

∑
j∈(J ′

M (i)∪{i})

ωjYj

/ ∑
j∈(J ′

M (i)∪{i})

ωj ,

is the average outcome in this set. The overall variance is estimated by plugging this
unit-level variance estimate into the relevant variance expression (10)-(15)
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