AULAS 08, 09 E 10 Metodologia da avaliação

Ernesto F. L. Amaral

06, 08 e 13 de setembro de 2011 Avaliação de Políticas Públicas (DCP 046)

Fonte:

Cohen, Ernesto, e Rolando Franco. 2000. "Avaliação de Projetos Sociais." São Paulo, SP: Editora Vozes. pp.137-151 (capítulo 8).

DEFINIÇÃO DA AVALIAÇÃO

- Para realizar avaliação de um projeto é preciso definir:
 - 1) Universo do projeto.
 - 2) Unidades de análise.
 - 3) Hipóteses.
 - 4) Modelo amostral.
 - 5) Plano de análise.
 - 6) Contextos e formas de coleta de dados.
 - 7) Instrumentos de coleta de dados.
 - 8) Formas e passos do processamento.
 - 9) Técnicas de análise.

1) UNIVERSO DO PROJETO

UNIVERSO DO PROJETO

- População ou universo do projeto é o conjunto de pessoas, famílias ou organizações que sejam receptoras dos serviços ou bens dos projetos.
- Atributos ou características ou variáveis são as qualidades observáveis na população do projeto.
- Os atributos variam em magnitude e sua expressão numérica é uma medida.
- Variáveis contínuas apresentam mudanças infinitesimais (peso, renda...).
- Variáveis discretas possuem mudanças abruptas (número de membros de uma família, nível de educação obtido...).

TIPOS DE DADOS

- Dados são observações coletadas de um determinado grupo de interesse.
- Dados quantitativos são números que representam contagens ou medidas (renda, anos de escolaridade...).
 - Dados discretos são aqueles em que o número de valores possíveis são finitos ou "enumeráveis" (número de cômodos em um domicílio...).
 - Dados contínuos resultam de infinitos valores possíveis em uma escala contínua (renda per capita...).
- Dados qualitativos (ou categóricos ou de atributos)
 podem ser separados em diferentes categorias que se
 distinguem por alguma característica não-numérica (sexo,
 ideologia política).

NÍVEIS DE MEDIÇÃO

- Variáveis sociais possuem diferentes níveis de medição.
- Nominal: distingue as categorias que compõem uma variável (sexo, religião, região de residência...). As categorias da variável nominal são mutuamente excludentes.
- Ordinal: as categorias de uma variável são ordenadas em uma escala (classe social, religiosidade, alienação...). Os números têm significado somente de indicação de ordem.
- Intervalo: usa números para descrever uma variável e distâncias entre pontos têm significado real. Diferença entre 20 e 40 graus Fahrenheit é a mesma que entre 60 e 80.
 Mas 40 não é necessariamente duas vezes mais quente que 20.
- Razão: é o mesmo que a medição de intervalo, mas tem zero real. Uma pessoa de 20 anos tem dobro de idade de uma pessoa de 10 anos.

NÍVEIS DE MENSURAÇÃO DE DADOS

- Nível nominal de mensuração possui dados que informam nomes, rótulos ou categorias:
 - Os dados não são ordenados e não devem ser usados para cálculos de médias.
 - Raça e código postal, por exemplo.
- Nível ordinal de mensuração engloba dados que podem ser organizados em alguma ordem:
 - Sabemos que há diferenças relativas entre os valores dos dados, mas não sabemos as magnitudes das diferenças.
 - Na escala de frequência (pouco/médio/muito), é possível ordenar os dados, mas não sabemos se a diferença entre "pouco" e "médio" é o mesmo que "médio" e "muito".

NÍVEIS DE MENSURAÇÃO DE DADOS (cont.)

- Nível intervalar de mensuração é similar ao ordinal, mas sabemos as magnitudes das diferenças entre dois valores:
 - Os dados não possuem um ponto inicial zero natural.
 - Sabemos as magnitudes das diferenças entre os anos censitários (1970, 1980, 1991 e 2000), mas o tempo não começou em zero.
- Nível de mensuração de razão é similar ao intervalar, mas há um ponto inicial zero natural:
 - Como há um zero que indica nenhuma quantidade, é possível dizer que uma quantidade é maior que outra em X vezes (razões significativas).
 - 30 anos de idade é 6 vezes maior do que 5 anos de idade, por exemplo.

RESUMO DOS NÍVEIS DE MENSURAÇÃO DE DADOS

Exigência Iógica	Nível / escala	Resumo	Exemplo
Classificação (comparação sem ordem)	Nominal	Apenas categorias. Os dados não podem ser arranjados em um esquema de ordem. Há categorias ou nomes apenas.	Município de residência.
Ordenação (comparação com ordem)	Ordinal	As categorias são ordenadas, mas as diferenças não podem ser encontradas ou não têm significado.	Frequência à igreja: pouco, médio, muito.
Ordenação (comparação com ordem)	Intervalar	As diferenças são significativas, mas não existe ponto inicial zero natural e as razões não têm sentido.	Ano censitário (não há tempo zero).
Quantificação (comparação métrica)	Razão	Há um ponto inicial zero natural e as razões são significativas.	Taxa de desemprego.

2) UNIDADES DE ANÁLISE

UNIDADES DE ANÁLISE

- Unidades de análise são o objeto da avaliação:
- Absoluta ou global: realizada em referência a si mesma, não requerendo conhecimentos sobre subunidades, superunidades...
- Comparativa: é realizada em referência a outras unidades do mesmo conjunto que comparte atributos.
- Relação: vinculação que uma unidade tem com outras na estrutura do conjunto, tais como rede de interações do indivíduo no grupo social.
- Subunidades: realizada em referência à distribuição ou estrutura do conjunto. Ex.: indivíduos de um domicílio.
- Superunidades: unidade é membro da superunidade da qual faz parte. Ex.: domicílio de indivíduos.

UNIDADES DE ANÁLISE (mais um pouco)

- Em uma pesquisa de survey, dados são coletados para descrever cada unidade que está sendo analisada.
- As unidades de análise são tipicamente pessoas, mas podem ser domicílios, bairros, municípios, Estados, países, empresas, universidades...
- Os dados são agregados e manipulados, permitindo descrever a amostra estudada, além de realizar análises explicativas.
- Um mesmo survey pode envolver mais de uma unidade de análise, como é o caso da Pesquisa Nacional por Amostra de Domicílios (PNAD) do Instituto Brasileiro de Geografia e Estatística (IBGE), que coleta dados de pessoas e domicílios.

FALÁCIA ECOLÓGICA

- Unidades de análise num survey podem ser descritas com base em seus componentes.
- Se o objeto da pesquisa for descrever os municípios e agregar as várias descrições para descrever todos municípios, a unidade básica de análise é o município.
- Pesquisador pode selecionar unidade de análise incorreta, incorrendo em falácia ecológica:
 - Ao analisar taxas de criminalidade por raça, o correto seria ter dados por indivíduos.
 - Se utilizarmos dados municipais, poderíamos concluir que negros possuem maiores taxas de criminalidade.
 - Porém, crimes podem ser realizados por brancos que residem em municípios com maioria negra.

IDENTIFICAÇÃO DAS UNIDADES DE ANÁLISE

 É importante que as unidades de análise sejam identificadas no momento da montagem dos bancos de dados.

 O mais seguro é que em pesquisas que possuam mais de uma unidade de análise, sejam criados arquivos separados de dados para cada unidade.

3) HIPÓTESES

HIPÓTESES

- Na avaliação ex-ante, procura-se descrever a realidade que o projeto pretende modificar e explicar.
- Mudanças previstas estão no futuro e requerem hipóteses sobre condições a serem produzidas.

- Na avaliação ex-post, características das unidades são descritas e causas de êxito do projeto são explicadas.
- Para explicar, deve-se utilizar teoria que dê significado aos fatos observados.
- São utilizadas teorias parciais ou hipóteses articuladas.

ALGUNS CONCEITOS IMPORTANTES

Teorias são conceitos relacionados (hipóteses)
 coerentemente integrados entre si.

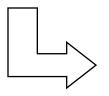
 Hipótese é afirmação conjectural (suposição) sobre relação existente entre duas ou mais variáveis.

 Variável é conceito que pode ter diversos valores, os quais podem ser conhecidos com processo de coleta.

Para elaborar hipóteses, é preciso transformar
 conceitos abstratos em variáveis mensuráveis,
 relacionar variáveis e especificar a forma da conexão.

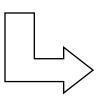
CONDIÇÕES FORMAIS PARA HIPÓTESES

- Oferecer resposta ao problema que originou a avaliação.
- Enunciar as hipóteses não verificáveis diretamente, de modo que possam ser analisadas com suas implicações lógicas.
- Estar bem formuladas (formalmente corretas) e significativas (não variem semanticamente).
- É igualmente importante aceitar hipóteses como recusálas, já que em ambos os casos há aumento da capacidade de adotar medidas corretivas pertinentes.


 Agora um pouco mais sobre estatísticas públicas, indicadores sociais e sistema de indicadores sociais, com base em Jannuzzi (2001)...

ESTATÍSTICAS PÚBLICAS E INDICADORES SOCIAIS

- Estatísticas públicas são o dado social na forma bruta, parcialmente preparado para uso na interpretação empírica da realidade.
- Constituem essas estatísticas os censos demográficos, pesquisas amostrais e registros administrativos.
- Tais estatísticas são utilizadas para construção de indicadores sociais, os quais permitem contextualizar e comparar a realidade social.
- Indicadores sociais possuem um conteúdo informacional (um valor contextual baseado em uma teoria social ou finalidade programática) que os difere das estatísticas públicas.

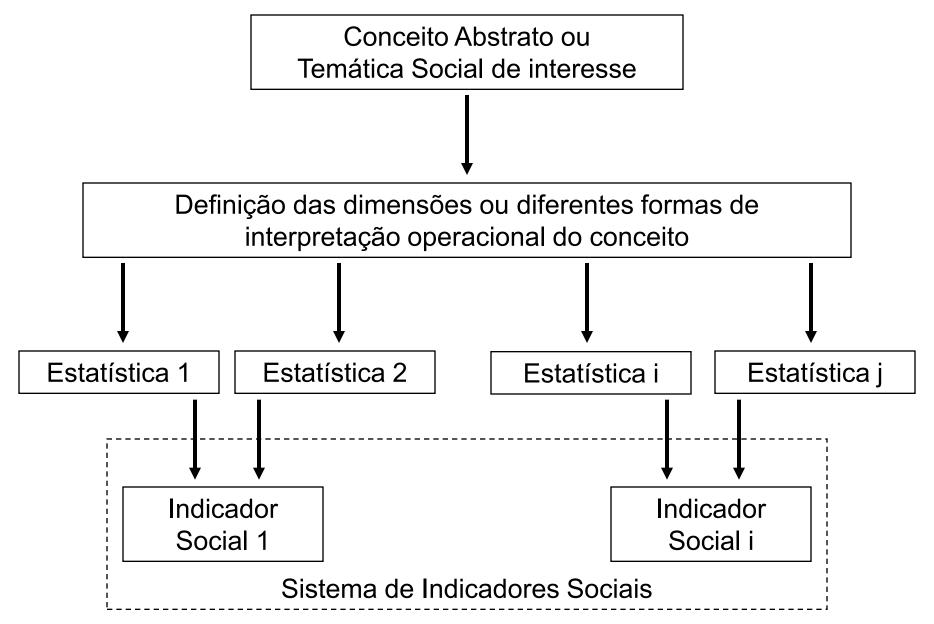

PROCESSO DE AGREGAÇÃO DE VALOR INFORMACIONAL NO INDICADOR

Eventos empíricos da realidade social

Dados brutos levantados:

Estatísticas Públicas

Informação para análise e decisões de política pública:


Indicador Social

Fonte: Jannuzzi 2001, p.16.

SISTEMA DE INDICADORES SOCIAIS

- É um conjunto de indicadores sociais referentes a um determinado aspecto da realidade social ou área de intervenção programática. Envolve decisões metodológicas:
- 1) Definição operacional do **conceito abstrato ou temática** a que refere o sistema em questão, com base em um interesse teórico ou programático específico.
- 2) **Especificação das dimensões** do sistema, das diferentes formas de interpretação operacional do conceito, o que possibilita quantificar o objeto específico.
- 3) Obtenção de estatísticas públicas pertinentes.
- 4) Indicadores são computados com uma **combinação orientada das estatísticas** disponíveis, originando um sistema de indicadores sociais.

CONSTRUÇÃO DE UM SISTEMA DE INDICADORES SOCIAIS

Fonte: Jannuzzi 2001, p.18.

EXEMPLO DE SISTEMA DE INDICADORES SOCIAIS

- 1) Conceito abstrato ou temática: "condições de vida" pode ser visto como nível de atendimento das necessidades materiais básicas para sobrevivência e reprodução social.
- 2) **Especificação das dimensões**: condições de saúde, habitação, trabalho e educação dos indivíduos/comunidade.
- 3) Obtenção de estatísticas públicas: atendimento médico, óbitos registrados, matrículas realizadas, quantidade de domicílios com acesso à infra-estrutura de serviços urbanos, volume de empregados e desempregados...
- 4) Combinação orientada das estatísticas: computação de uma ou mais medidas (taxa de mortalidade infantil, taxa de cobertura escolar, taxa de desemprego) para operacionalizar o conceito de "condições de vida".

4) MODELO AMOSTRAL (ver Babbie 1999, p.77-158)

MODELO AMOSTRAL

- A avaliação ex-post pretende estabelecer o grau de eficiência do desempenho do projeto e determinar em que medida as metas estão sendo atingidas (eficácia).
- Primeiro, precisamos determinar o universo do projeto.
- Em geral, é impossível analisar a população.
- Por isso, examinamos um subconjunto do universo (amostra) e fazemos inferências para a população total.
- A amostra deve:
- 1) Permitir testar as hipóteses: estimar relações entre variáveis para verificar eficiência ou impacto do projeto.
- 2) Possibilitar que resultados da amostra sejam extrapolados para universo.

ENTÃO AMOSTRA DEVE...

 Ser heterogênea, apresentando alta dispersão nas variáveis dependentes e independentes.

 Ser representativa da população (amostragem probabilística): possuir unidades de análise representadas em proporção semelhante à do universo.

 Ser aleatória para que seja possível determinar o grau de incerteza (margem de erro) das inferências obtidas.

REPRESENTATIVIDADE ≠ ALEATORIEDADE

- Representatividade está relacionada com composição da amostra:
 - Quando composição é igual ou similar à do universo, amostra é representativa.

- Aleatoriedade é a forma ou procedimento de seleção dos indivíduos que compõem a amostra.
 - Ao aumentar o tamanho das amostras escolhidas ao acaso: (1) elas serão representativas; e (2) aumentará probabilidade da média amostral coincidir com média populacional.

SELEÇÃO DA AMOSTRA

- Seleção da amostra requer:
- 1) Marco amostral: uma vez definido universo, deve ser elaborada lista com todas unidades da população.
- 2) Unidades elementares da amostragem (elementos): determinar pessoas ou grupos que possuem variáveis que definiram a população.
- 3) **Unidades de amostragem:** escolher as unidades que servem de base para tomar amostra (setores censitários, domicílios, pessoas...).
- 4) Seleção de amostras: (1) amostra não probabilística não possibilita generalizar os resultados; e (2) amostra probabilística permite generalizar resultados e estimar grau de incerteza, já que há cálculo da probabilidade das unidades serem selecionadas.

CONCEITOS E TERMINOLOGIA DE AMOSTRAGEM Babbie, 1999: 113-158 (capítulo 5)

- Elemento (unidade de análise) é a unidade sobre a qual a informação é coletada e que serve de base para a análise (pessoas, famílias, corporações, países...).
- Universo é a agregação teórica e hipotética de todos elementos definidos num survey. O universo não é especificado quanto a tempo e lugar.
- População é a agregação teoricamente especificada de elementos do survey. É a coleção completa de todos os elementos a serem estudados. É preciso definir o elemento e o referencial de tempo da pesquisa. É a especificação teórica do universo.
- População do survey é a agregação de elementos da qual a amostra do survey é de fato selecionada. Nem todos elementos da população terão chance de ser selecionados para a amostra.

CONCEITOS E TERMINOLOGIA DE AMOSTRAGEM (cont.)

- Unidade de amostra é o elemento ou conjunto de elementos considerados para seleção em alguma etapa da amostragem.
 - Numa amostra simples, as unidades de amostra são o mesmo que os elementos.
 - Em outros casos, uma amostra pode ter diferentes unidades de amostra (setores censitários, domicílios, pessoas), mas só as pessoas são elementos.
- Moldura de amostragem é a lista de unidades de amostra da qual a amostra é selecionada.
 - Na amostra de etapa única, a moldura de amostragem é a lista dos elementos compondo a população de survey.
 - Muitas vezes, são as molduras que definem as populações de survey, e não o contrário.

CONCEITOS E TERMINOLOGIA DE AMOSTRAGEM (cont.)

- Unidade de observação (unidade de coleta de dados)
 é um elemento (ou agregação de elementos) do qual se coleta dados.
 - Unidade de análise (elemento) e unidade de observação podem ser a mesma coisa (indivíduo, por exemplo).
 - Mas em uma pesquisa podemos entrevistar chefes de domicílio (unidades de observação) para coletar informação sobre todos membros (unidades de análise).
- Variável é um conjunto de características mutuamente excludentes, como sexo, idade, emprego...
 - Podemos descrever os elementos de uma população com base nas características individuais das variáveis.

CONCEITOS E TERMINOLOGIA DE AMOSTRAGEM (cont.)

- Parâmetro é uma medida numérica que descreve alguma característica de uma população.
- Estatística é uma medida numérica que descreve alguma característica de uma amostra.
- Erro amostral: pesquisa de survey busca estimar parâmetros com base em amostras, o que gera erros.
 - Teoria da probabilidade permite estimar o grau de erro.
- Níveis de confiança indicam a taxa de sucesso de que o intervalo de confiança de sua estatística (amostral) contém o parâmetro (populacional).
- Intervalo de confiança é estimado usando o erro amostral e nível de confiança.

TAMANHO DA AMOSTRA

- Em amostras probabilísticas, é preciso estabelecer o nível do erro amostral, com base nos objetivos e orçamento da pesquisa.
- Ao aumentar o tamanho da amostra, há diminuição do erro da amostragem.
- Tamanho da amostra não é função do tamanho da população, mas da variância existente nas principais variáveis.
- Depende das técnicas estatísticas a serem utilizadas.
- Supõe a definição do número de variáveis que serão analisadas conjuntamente, além do número de valores de cada uma delas.

DEFININDO TAMANHO DA AMOSTRA

 Geralmente, um estatístico propõe o tipo de amostra mais adequado aos objetivos perseguidos, assim como o erro amostral, com base nos recursos disponíveis.

 Porém, avaliador deve preparar plano de análise e selecionar técnicas que utilizará, o que será útil para o estatístico determinar o tamanho da amostra.

5) PLANO DE ANÁLISE

PLANO DE ANÁLISE

- Plano de análise tem como funções:
- 1) Sintetizar a informação disponível em indicadores.
- 2) **Escolher os métodos e técnicas** que permitam utilizar informação para alcançar resultados procurados.
- 3) Apreciar natureza dos indicadores e escalas aplicáveis aos mesmos (razão, intervalar, ordinal, nominal) e selecionar ferramentas estatísticas apropriadas.
- Decidir sobre: (1) quantidade de informação necessária;
 (2) tipos de informação a analisar; (3) tipos de análise para cada tipo de informação; (4) recursos necessários;
 (5) combinação de informação, análises e recursos, em análise temporal; e (6) forma como análise será apresentada.

6) CONTEXTOS E FORMAS DE COLETA DE DADOS

CONTEXTO

- Todo projeto é avaliado em seu contexto sócio-cultural.
- É preciso avaliar fatores físicos e sócio-econômicos que o influenciaram.
- Contexto afeta projeto e pode determinar seu êxito.
- Aspectos dos contextos devem ser considerados nas unidades de análise e na especificação das hipóteses.
- Especificar contexto no modelo de avaliação.

FORMAS DE COLETA DE DADOS

 Estados dos objetos analisados podem ser captados por atos verbais (orais ou escritos) e não verbais.

Coleta é feita sobre unidades de análise:

Indagação > Resultado da indagação > Dado

TIPOS DE CONTEXTOS

 Contexto macro: inclui fatores sócio-culturais, tais como sistema político, atitudes frente ao projeto, importância dos serviços, funções dos agentes que podem contribuir ou impedir uso do serviço, influência de diferentes grupos.

 Contexto micro: ambiente no qual avaliação é produzida, que pode ser...

Indagação não sistemática	Resultado da indagação
Informal	Resultados não sistemáticos
Impossível	Resultados sistemáticos

Indagação sistemática	Resultado da indagação	
Formal não estruturado	Resultados não sistemáticos	
Formal estruturado	Resultados sistemáticos	

CONTEXTOS MICROS

- Existem três contextos micros de coleta de informação.
- Há três tipos de resultados da indagação.

Contoxtos	Resultados da indagação			
Contextos	Tipos	Atos verbais	Atos orais	Atos escritos
Contextos informais	Não sistemático	Observação participante	Utilização de informantes chaves	Cadernos de campo
Contextos formais não estruturados	Não sistemático	Observação sistemática	Entrevistas com perguntas abertas	Questionários com perguntas abertas
Contextos formais estruturados	Sistemático	Técnicas experimentais	Entrevistas com perguntas pré- codificadas	Questionários estruturados

7) INSTRUMENTOS DE COLETA DE DADOS

QUESTIONÁRIO

- Questionários são instrumentos para coleta de informação, aplicáveis a qualquer tipo de unidade de análise, que contenham variáveis para a avaliação.
- Avaliação: (1) descreve projeto a ser analisado; (2) apresenta hipóteses para verificar eficácia, eficiência e efetividade.
- Para verificar hipóteses, são usados instrumentos de coleta, os quais possuem manuais de uso para aumentar validade e confiabilidade dos dados.
- Instrumento é elaborado tendo em vista o processamento da informação (codificação, tabulação).

TESTE PRÉVIO (PRÉ-TESTE)

- Teste prévio é etapa para determinar viabilidade e adequação dos instrumentos e do pessoal encarregado do levantamento da informação.
- Deve avaliar correspondência entre relevância teórica das variáveis e resultados de sua aplicação.
- É aplicado em sub-amostra da amostra selecionada.
- Esta sub-amostra deve cobrir a variação das unidades de análise e dos valores das variáveis.
- Este teste permite: (1) modificar conteúdo dos instrumentos, em relação às unidades de análise e objetivos; (2) mudar manual e treinamento; e (3) elaborar instrumentos definitivos.
- Também chamado de piloto, quando teste segue toda logística de coleta de informação da amostra final.

8) FORMAS E PASSOS DO PROCESSAMENTO

PASSOS DO PROCESSAMENTO

- Após coleta, é realizado processamento da informação.
- Codificação:
- 1) Atribuir números às variáveis e aos valores que estas possam assumir.
- 2) Fixar alternativas das perguntas abertas.
- 3) Cada unidade de análise possui apenas um valor para cada variável.
- Análise de consistência das variáveis: verificar se valores se encontram dentro da faixa de variação e sejam consistentes.
- Análise da distribuição e relação entre variáveis: determinar agrupamento dos valores da variável, segundo sua distribuição, e testar hipóteses.

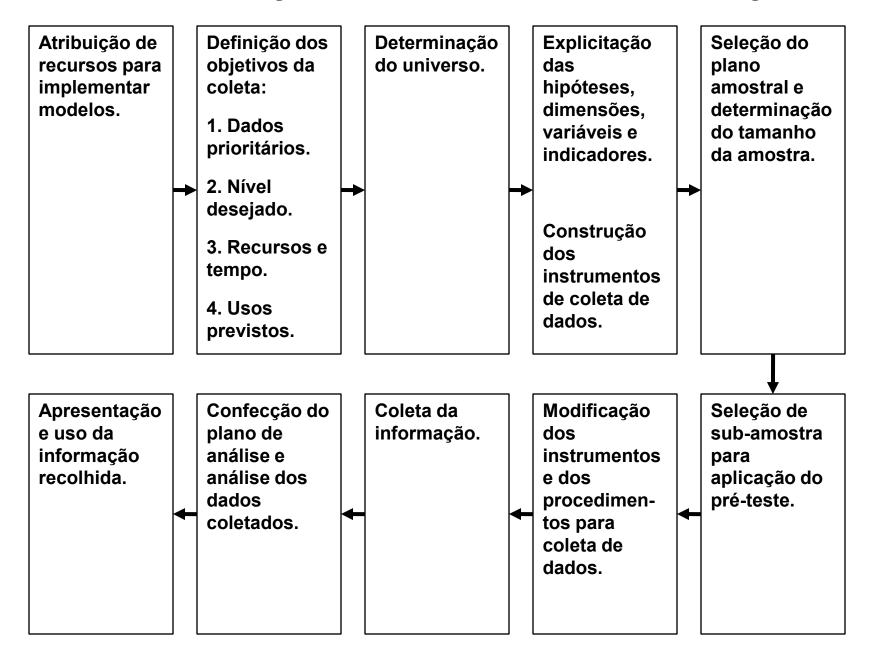
9) TÉCNICAS DE ANÁLISE

TÉCNICAS DE ANÁLISE

- Técnicas dependem do nível de medição que pode ser aplicado às variáveis das unidades de análise.
- Teoria da medição:
- 1) Medição utiliza números no sentido quantitativo (operações algébricas) e qualitativo (denominação arbitrária ou estabelecimento de ordem).
- 2) Medida é procedimento empírico que atribui símbolos aos objetos, de acordo com regras pré-determinadas.
- 3) Para ligar teoria com experiência, é preciso conectar conceitos teóricos (inobserváveis) com indicadores (operacionalização), o que permite efetuar medição (correspondência entre indicadores e números, de acordo com regras teóricas ou empíricas).
- 4) Medida será mais confiável com regras apropriadas.

TÉCNICAS DE ANÁLISE

- Princípios e etapas da medição:
- 1) Definir objetos do universo de estudo.
- 2) Estabelecer variáveis que vão ser consideradas.
- 3) Alocar e contar elementos em cada subconjunto.
- Regras para atribuir números aos elementos definem tipo de escala de medição (nominais, ordinais, intervalares e de razão).
- Tipo de escala define instrumental estatístico a ser utilizado.


NÍVEIS DE MEDIÇÃO E TÉCNICA ESTATÍSTICA

Nível de medição	Relações entre pontuações	Tipo apropriado de técnica estatística	Exemplo
Nominal	Equivalência	Somente técnicas não paramétricas	Frequência; Moda; Qui-quadrado
Ordinal	Equivalência; Maior que	Somente técnicas não paramétricas	Média; Percentil
Intervalar	Equivalência; Maior que; Intervalos iguais	Técnicas paramétricas e não paramétricas	Média; Desvio padrão; Correlação de Pearson; R-quadrado; t de Student; Análise de variância
Razão	Equivalência; Maior que; Intervalos iguais; Verdadeiro zero	Técnicas paramétricas e não paramétricas	Média geométrica; Coeficiente de variação

QUATRO REQUISITOS PARA MEDIR CIENTIFICAMENTE

- Estabelecer critério de definição claros para identificação das unidades de análise, separando-as das que não são objeto da pesquisa.
- Possibilitar que variáveis contextuais sejam transformadas em variáveis de controle para possibilitar elaboração de modelos adequados.
- Determinar procedimentos para coleta de dados, tendo em vista escala de medição adequada à avaliação.
- Definir dados que devem ser coletados da unidade de análise em cada dimensão teórica pré-estabelcida.

IMPLEMENTAÇÃO DE MODELOS DE AVALIAÇÃO

