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1 Introduction

In the evaluation literature, data often do not come from randomized trials but from
(nonrandomized) observational studies. In seminal work, Rosenbaum and Rubin (1983)
proposed propensity score matching as a method to reduce the bias in the estimation of
treatment effects with observational datasets. These methods have become increasingly
popular in medical trials and in the evaluation of economic policy interventions.

Since in observational studies assignment of subjects to the treatment and control
groups is not random, the estimation of the effect of treatment may be biased by the
existence of confounding factors. Propensity score matching is a way to “correct” the
estimation of treatment effects controlling for the existence of these confounding factors
based on the idea that the bias is reduced when the comparison of outcomes is performed
using treated and control subjects who are as similar as possible. Since matching sub-
jects on an n-dimensional vector of characteristics is typically unfeasible for large n,
this method proposes to summarize pretreatment characteristics of each subject into a
single-index variable (the propensity score) that makes the matching feasible.

In this paper, we give a short overview of some propensity score matching estimators
suggested in the evaluation literature, and we provide a set of Stata programs, which
we illustrate using the National Supported Work (NSW) demonstration widely known
in labor economics. In using these programs, it should be kept in mind that they only
allow to reduce, and not to eliminate, the bias generated by unobservable confounding
factors. The extent to which this bias is reduced depends crucially on the richness
and quality of the control variables on which the propensity score is computed and the
matching performed. To be more precise, the bias is eliminated only if the exposure
to treatment can be considered to be purely random among individuals who have the
same value of the propensity score.

c© 2002 Stata Corporation st0026
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2 The propensity score

The propensity score is defined by Rosenbaum and Rubin (1983) as the conditional
probability of receiving a treatment given pretreatment characteristics:

p(X) ≡ Pr(D = 1|X) = E(D|X) (1)

where D = {0, 1} is the indicator of exposure to treatment and X is the multidimensional
vector of pretreatment characteristics. Rosenbaum and Rubin (1983) show that if the
exposure to treatment is random within cells defined by X, it is also random within
cells defined by the values of the one-dimensional variable p(X). As a result, given
a population of units denoted by i, if the propensity score p(Xi) is known, then the
Average effect of Treatment on the Treated (ATT) can be estimated as follows:

τ ≡ E{Y1i − Y0i|Di = 1} (2)

= E
[

E{Y1i − Y0i|Di = 1, p(Xi)}
]

= E
[

E{Y1i|Di = 1, p(Xi)} − E{Y0i|Di = 0, p(Xi)}|Di = 1
]

where the outer expectation is over the distribution of (p(Xi)|Di = 1) and Y1i and
Y0i are the potential outcomes in the two counterfactual situations of (respectively)
treatment and no treatment.

Formally, the following two hypotheses are needed to derive (2) given (1).1

Lemma 1 Balancing of pretreatment variables given the propensity score.
If p(X) is the propensity score, then

D ⊥ X | p(X)

Lemma 2 Unconfoundedness given the propensity score.
Suppose that assignment to treatment is unconfounded; i.e.,

Y1, Y0 ⊥ D | X

Then assignment to treatment is unconfounded given the propensity score, i.e.,

Y1, Y0 ⊥ D | p(X)

If the Balancing Hypothesis of Lemma 1 is satisfied, observations with the same
propensity score must have the same distribution of observable (and unobservable)
characteristics independently of treatment status. In other words, for a given propensity
score, exposure to treatment is random and therefore treated and control units should
be on average observationally identical. Any standard probability model can be used to
estimate the propensity score. For example, Pr(Di = 1|Xi) = F{h(Xi)}, where F (.) is
the normal or the logistic cumulative distribution and h(Xi) is a function of covariates
with linear and higher order terms. The choice of which higher order terms to include

1See Rosenbaum and Rubin (1983) or Imbens (2000) for a proof.
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is determined solely by the need to obtain an estimate of the propensity score that
satisfies the Balancing Hypothesis. Inasmuch as the specification of h(Xi) that satisfies
the Balancing Hypothesis is more parsimonious than the full set of interactions needed
to match cases and controls on the basis of observables, the propensity score reduces
the dimensionality problem of matching treated and control units on the basis of the
multidimensional vector X.2

The program pscore.ado estimates the propensity score and tests the Balancing
Hypothesis (Lemma 1) according to the following algorithm:3

1. Fit the probit (or logit) model:

Pr(Di = 1|Xi) = Φ{h(Xi)}

where Φ denotes the normal (logistic) c.d.f. and h(Xi) is a starting specification
that includes all the covariates as linear terms without interactions or higher order
terms.

2. Split the sample into k equally spaced intervals of the propensity score, where k

is determined by the user and the default is 5.

3. Within each interval, test that the average propensity score of treated and control
units does not differ.

4. If the test fails in one interval, split the interval in half and test again.

5. Continue until, in all intervals, the average propensity score of treated and control
units does not differ.

6. Within each interval, test that the means of each characteristic do not differ
between treated and control units. This is a necessary condition for the Balancing
Hypothesis.4

7. If the means of one or more characteristics differ, inform the user that the balanc-
ing property is not satisfied and that a less parsimonious specification of h(Xi) is
needed.

Steps 2–7 of the algorithm can be restricted to the common support. This restriction
implies that the test of the balancing property is performed only on the observations
whose propensity score belongs to the intersection of the supports of the propensity score
of treated and controls. Imposing the common support condition in the estimation of
the propensity score may improve the quality of the matches used to estimate the ATT.5

2It is important to note that the outcome plays no role in the algorithm for the estimation of the
propensity score. This is equivalent, in this context, to what happens in controlled experiments in
which the design of the experiment has to be specified independently of the outcome.

3Note that the Unconfoundedness Hypothesis of Lemma 2 cannot be tested.
4Note that it is not sufficient in the sense that the balancing may not hold for higher order moments

of the distribution of characteristics. So, to be precise, the program does not test the Balancing
Hypothesis, but only one of its implications. In future versions of the program we plan to add tests for
higher moments of the distribution of characteristics.

5See the next section for further discussion of the common support condition.
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3 Matching estimators of the ATT based on the propen-

sity score

An estimate of the propensity score is not enough to estimate the ATT of interest using
(2). The reason is that the probability of observing two units with exactly the same
value of the propensity score is in principle zero since p(X) is a continuous variable.
Various methods have been proposed in the literature to overcome this problem, and
four of the most widely used are Nearest-Neighbor Matching, Radius Matching, Kernel
Matching, and Stratification Matching.

Beginning with the latter, the Stratification method consists of dividing the range
of variation of the propensity score in intervals such that within each interval, treated
and control units have on average the same propensity score. For practical purposes
the same blocks identified by the algorithm that estimates the propensity score can be
used. Then, within each interval in which both treated and control units are present, the
difference between the average outcomes of the treated and the controls is computed.
The ATT of interest is finally obtained as an average of the ATT of each block with
weights given by the distribution of treated units across blocks.

One of the pitfalls of the Stratification method is that it discards observations in
blocks where either treated or control units are absent. This observation suggests an
alternative way to match treated and control units, which consists of taking each treated
unit and searching for the control unit with the closest propensity score; i.e., the Nearest
Neighbor. Although it is not necessary, the method is usually applied with replacement,
in the sense that a control unit can be a best match for more than one treated unit. Once
each treated unit is matched with a control unit, the difference between the outcome of
the treated units and the outcome of the matched control units is computed. The ATT

of interest is then obtained by averaging these differences.

While in the Stratification method, there may be treated units that are discarded
because no control is available in their block, in the Nearest-Neighbor method, all treated
units find a match. However, it is obvious that some of these matches are fairly poor
because for some treated units the nearest neighbor may have a very different propensity
score, and, nevertheless, he would contribute to the estimation of the treatment effect
independently of this difference. The Radius Matching and Kernel Matching methods
offer a solution to this problem. With Radius Matching, each treated unit is matched
only with the control units whose propensity score falls into a predefined neighborhood
of the propensity score of the treated unit. If the dimension of the neighborhood (i.e., the
radius) is set to be very small, it is possible that some treated units are not matched
because the neighborhood does not contain control units. On the other hand, the
smaller the size of the neighborhood, the better the quality of the matches. With
Kernel Matching, all treated are matched with a weighted average of all controls with
weights that are inversely proportional to the distance between the propensity scores of
treated and controls.

It is clear from the above considerations that these four methods reach different
points on the frontier of the trade-off between quality and quantity of the matches, and
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none of them is a priori superior to the others. Their joint consideration, however, offers
a way to assess the robustness of the estimates.

It should also be noted that with all these methods, the quality of the matches may
be improved by imposing the common support restriction. Note, however, that in this
way high quality matches may be lost at the boundaries of the common support and
the sample may be considerably reduced, so imposing the common support restriction
is not necessarily better (see Lechner 2001). All of our programs allow for the common
support option as discussed below.

We now proceed to a more detailed and formal description of these estimators.
We start with the joint analysis of Nearest-Neighbor Matching and Radius Matching
that can be described in a common framework, moving next to Kernel Matching and
Stratification Matching.

Nearest-Neighbor Matching (attnd.ado and attnw.ado) and Radius
Matching (attr.ado)

Let T be the set of treated units and C the set of control units, and let Y T
i and Y C

j be
the observed outcomes of the treated and control units, respectively. Denote by C(i)
the set of control units matched to the treated unit i with an estimated value of the
propensity score of pi. Nearest-neighbor matching sets

C(i) = min
j

‖ pi − pj ‖

that is a singleton set unless there are multiple nearest neighbors. In practice, the case of
multiple nearest neighbors should be very rare, in particular if the set of characteristics
X contains continuous variables. The likelihood of multiple nearest neighbors is further
reduced if the propensity score is estimated and saved in double precision.

In radius matching,
C(i) = {pj | ‖ pi − pj ‖< r}

i.e., all the control units with estimated propensity scores falling within a radius r from
pi are matched to the treated unit i.

Both nearest neighbor and radius matching denote the number of controls matched
with observation i ∈ T by NC

i and define the weights wij = 1
NC

i

if j ∈ C(i) and wij = 0

otherwise. Then, the formula for both types of matching estimators can be written as
follows:



S.O. Becker and A. Ichino 363
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(where M stands for either nearest-neighbor matching or radius matching, and the
number of units in the treated group is denoted by NT ): where the weights wj are
defined by wj = Σiwij .

To derive the variances of these estimators, the weights are assumed to be fixed and
the outcomes are assumed to be independent across units.
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In the programs attnd.ado, attnw.ado, and attr.ado, standard errors are obtained
analytically using the above formula or by bootstrapping using the bootstrap option.

The difference between attnd.ado and attnw.ado is most easily understood by
briefly describing the way nearest neighbors are computationally determined in the
two programs. To save on computing time, nearest neighbors are not determined by
comparing treated observations to every single control, but rather by first sorting all
records by the estimated propensity score, and then searching forward and backward
for the closest control unit(s). If, for a treated unit, forward and backward matches
happen to be equally good, there are two computationally feasible options to obtain
analytical standard errors while at the same time exploiting the very fast forward and
backward search strategy: attnw.ado gives equal weight (hence, the letters “nw” for
nearest neighbor and equal weight) to the groups of forward and backward matches;
attnd.ado randomly draws either the forward or backward matches (hence, the letters
“nd” for nearest neighbor and random draw). In practice, the case of multiple nearest
neighbors should be very rare, especially if the set of Xs contains continuous variables,
in which case both attnw.ado and attnd.ado should give equal results. The likelihood
of multiple nearest neighbors is further reduced if the propensity score is estimated and
saved in double precision, which is what pscore.ado does by default.
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Kernel matching method (attk.ado)

The kernel matching estimator is given by

τK =
1

NT

∑

i∈T

{

Y T
i −

∑

j∈C Y C
j G(

pj−pi

hn
)

∑

k∈C G(pk−pi

hn
)

}

where G(·) is a kernel function and hn is a bandwidth parameter. Under standard
conditions on the bandwidth and kernel,

∑

j∈C Y C
j G(

pj−pi

hn
)

∑

k∈C G(pk−pi

hn
)

is a consistent estimator of the counterfactual outcome Y0i. In the program attk.ado,
standard errors are obtained by bootstrapping using the bootstrap option. Users can
choose the default Gaussian kernel or the Epanechnikov kernel.

Stratification method (atts.ado)

This method is based on the same stratification procedure used for estimating the
propensity score. Note that by construction in each block defined by this procedure,
the covariates are balanced and the assignment to treatment can be considered random.
Hence, letting q index the blocks defined over intervals of the propensity score, within
each block the program computes

τS
q =

∑

i∈I(q) Y T
i

NT
q

−

∑

j∈I(q) Y C
j

NC
q

where I(q) is the set of units in block q and NT
q and NC

q are the numbers of treated
and control units in block q.

The estimator of the ATT in (2) based on the Stratification method is then computed
using the formula

τS =

Q
∑

q=1

τS
q

∑

i∈I(q) Di
∑

∀i Di

where the weight for each block is given by the corresponding fraction of treated units
and Q is the number of blocks.

Assuming independence of outcomes across units, the variance of τS is

Var(τS) =
1

NT

{

Var(Y T
i ) +

Q
∑

q=1

NT
q

NT

NT
q

NC
q

Var(Y C
j )

}

In the program atts.ado, standard errors are obtained analytically using the above
formula, or by bootstrapping using the bootstrap option.
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4 Syntax

pscore and att* are regression-like commands.

pscore treatment
[

varlist
] [

weight
] [

if exp
] [

in range
]

, pscore(newvar)
[

blockid(newvar) detail logit comsup level(#) numblo(#)
]

attnd outcome treatment
[

varlist
] [

weight
] [

if exp
] [

in range
] [

,

pscore(scorevar) logit index comsup detail bootstrap reps(#) noisily

dots
]

attnw outcome treatment
[

varlist
] [

weight
] [

if exp
] [

in range
] [

,

pscore(scorevar) logit index comsup detail bootstrap reps(#) noisily

dots
]

attr outcome treatment
[

varlist
] [

weight
] [

if exp
] [

in range
] [

,

pscore(scorevar) logit index radius(#) comsup detail bootstrap

reps(#) noisily dots
]

attk outcome treatment
[

varlist
] [

weight
] [

if exp
] [

in range
] [

,

pscore(scorevar) logit index epan bwidth(#) comsup detail bootstrap

reps(#) noisily dots
]

atts outcome treatment
[

varlist
] [

if exp
] [

in range
]

, pscore(scorevar)

blockid(blockvar)
[

comsup detail bootstrap reps(#) noisily dots
]

fweights, iweights, and pweights are allowed with all commands except atts; see
[U] 14.1.6 weight. No weights are allowed with atts.

5 Options

Note the following points:

• It is important to clean up your dataset before running this suite of Stata pro-
grams, in particular to delete observations with missing values.

• In pscore, the option pscore(newvar) is compulsory.

• pscore and the att* programs are closely related in that users will typically
first run pscore to estimate the propensity score and test whether the balancing
property holds, and then proceed to estimate the ATT with one or more of the
att* programs.



366 Estimation of average treatment effects based on propensity scores

• Note, however, that all att* programs are stand-alone programs; i.e., if users
prefer to estimate the propensity score with their own procedure, they can do so,
specifying the name of the estimated propensity score as an input variable in the
att* programs.

• If users are confident about the “correct” specification for the propensity score,
then that specification can be used directly in the att* programs to estimate
the propensity score without first running pscore. This is actually advisable if
bootstrapped standard errors are requested because, when users do not specify
their own previously estimated propensity score, the bootstrap encompasses the
estimation of the propensity score based on the specification given by varlist. Re-
estimating the propensity score at each replication of the bootstrap procedure is
recommended to account for the uncertainty associated with the estimation of
the propensity score. This is especially true when the comsup option is specified,
because in this case the region of common support changes with every bootstrap
sample, and bootstrapped standard errors pick up this uncertainty as well. So, typ-
ically, users would first identify a specification satisfying the balancing property—
using, for example, pscore—and then provide exactly this specification in varlist

and use bootstrapped standard errors.

• For atts, in addition to the estimated propensity score, users must provide a vari-
able containing the block identifier for the estimated propensity score. Therefore,
in the case of atts, it is most convenient to rely on pscore, because it nicely
generates both the estimated propensity score variable and the block identifier.

5.1 Options for pscore

pscore(newvar) is a compulsory option and specifies the variable name for the esti-
mated propensity score.

blockid(newvar) specifies the variable name for the block number of the estimated
propensity score.

detail requests that more detailed output documenting the steps performed to obtain
the final results be displayed.

logit specifies that a logit model to estimate the propensity score be used instead of
the default probit model.

comsup restricts the analysis of the balancing property to all treated plus those controls
in the region of common support. A dummy variable named comsup is added to the
dataset to identify the observations in the common support.

level(#) specifies the significance level of the tests of the balancing property. The
default is 0.01. Note that this significance level applies to the test of each single
variable of the vector X of pretreatment characteristics; i.e., the balancing prop-
erty is not rejected only in the case that it holds for every single X. This is a
relatively conservative approach because of the following argument. Assume that
the significance level is set to 0.05, that X consists of 20 variables, and that the
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tests of the balancing property are mutually independent. Then, with probabil-

ity

(

20
1

)

(0.05)1(0.95)19 = 0.37, one of the tests rejects the balancing property

although it actually holds true.

numblo(#) specifies the number of blocks of equal score range to be used at the begin-
ning of the test of the balancing hypothesis. The default is 5 blocks.

5.2 Options common to all att* commands

comsup restricts the computation of the ATT to the region of common support.

detail requests that more detailed output documenting the steps performed to obtain
the final results be displayed.

bootstrap bootstraps the standard error of the treatment effect.

reps(#) specifies the number of bootstrap replications to be performed. The default
is 50. This option produces an effect only if the bootstrap option is specified.

noisily requests that any output from the bootstrap replications be displayed. This
option produces an effect only if the bootstrap option is specified.

dots requests that a dot be placed on the screen at the beginning of each bootstrap
replication. This option produces an effect only if the bootstrap option is specified.

5.3 Options for attnd and attnw

pscore(scorevar) specifies the name of the user-provided variable containing the esti-
mated propensity score. If this option is not specified, attnd and attnw will estimate
the propensity score with the specification provided in varlist using a probit.

logit requests that a logit estimation of the propensity score be used instead of the
default probit model when the option pscore(scorevar) is not specified by the user.

index requires the use of the linear index as the propensity score when the option
pscore(scorevar) is not specified by the user.

5.4 Options for attr

pscore(scorevar) specifies the name of the user-provided variable containing the es-
timated propensity score. If this option is not specified, attr will estimate the
propensity score with the specification provided in varlist using a probit.

logit requests that a logit estimation of the propensity score be used instead of the
default probit model when the option pscore(scorevar) is not specified by the user.

index requires the use of the linear index as the propensity score when the option
pscore(scorevar) is not specified by the user.

radius(#) specifies the size of the radius. The default is 0.1.
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5.5 Options for attk

pscore(scorevar) specifies the name of the user-provided variable containing the es-
timated propensity score. If this option is not specified, attk will estimate the
propensity score with the specification provided in varlist using a probit.

logit requests that a logit estimation of the propensity score be used instead of the
default probit model when the option pscore(scorevar) is not specified by the user.

index requires the use of the linear index as the propensity score when the option
pscore(scorevar) is not specified by the user.

epan specifies that the Epanechnikov kernel be used rather than the default Gaussian
one.

bwidth(#) specifies the bandwidth to be used when choosing the epan option. The
default is 0.06. This option produces an effect only if the Epanechnikov kernel is
requested.

5.6 Options for atts

pscore(scorevar) is a compulsory option that specifies the name of the user-provided
variable containing the estimated propensity score.

blockid(blockvar) is a compulsory option and specifies the name of the user-provided
variable containing the block identifier of the estimated propensity score.

6 Example: NSW - PSID data

We use data from Dehejia and Wahba (1999), DW for short, which is based on Lalonde’s
(1986) seminal study of the comparison between experimental and nonexperimental
methods for the evaluation of causal effects. The data combine the treated units from
a randomized evaluation of the National Supported Work (NSW) demonstration with
nonexperimental comparison units drawn from survey data. For the purpose of this
section, we restrict our analysis to the so-called NSW-PSID-1 subsample, consisting of
the male NSW treatment units and the largest of the three PSID subsamples (see DW99
for more detail). We use this dataset for two reasons: first, it is widely known in labor
economics (starting with Lalonde (1986), re-analyzed by Dehejia and Wahba (1999 and
2002) and by Smith and Todd (2003)) to illustrate the working of propensity score and
matching techniques. Second, the data are publicly available at Rajeev Dehejia’s web
site under the following address: http://www.columbia.edu/˜rd247/nswdata.html. We
tried to replicate the results produced by Dehejia and Wahba (1999) but—similar to
Smith and Todd (2003)—have not been able to numerically replicate all of their esti-
mates because of lack of detailed information in some crucial instances (e.g., number of
blocks used in stratification, significance levels, exact procedure for testing the balanc-
ing property). However, we get qualitatively similar results. The outcome of interest
is RE78 (real earnings in 1978); the treatment T is participation in the NSW treatment
group. Control variables are age, education, Black (1 if black, 0 otherwise), Hispanic (1
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if Hispanic, 0 otherwise), married (1 if married, 0 otherwise), nodegree (1 if no degree,
0 otherwise), RE75 (earnings in 1975), and RE74 (earnings in 1974). The treatment
group contains 185 observations and the control group contains 2,490 observations, so
the total number of observations is 2,675.

6.1 Output from pscore

The output from running pscore using the DW99 specification is as follows:67

. pscore T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752 blackU74,
> pscore(mypscore) blockid(myblock) comsup numblo(5) level(0.005) logit

****************************************************
Algorithm to estimate the propensity score
****************************************************

The treatment is T

T Freq. Percent Cum.

0 2490 93.08 93.08
1 185 6.92 100.00

Total 2675 100.00

Estimation of the propensity score

Iteration 0: log likelihood = -672.64954
(output omitted )

Iteration 9: log likelihood = -204.97537

Logit estimates Number of obs = 2675
LR chi2(12) = 935.35
Prob > chi2 = 0.0000

Log likelihood = -204.97537 Pseudo R2 = 0.6953

T Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .3316904 .1203295 2.76 0.006 .0958489 .5675318
age2 -.0063668 .0018554 -3.43 0.001 -.0100033 -.0027303
educ .8492683 .3477041 2.44 0.015 .1677807 1.530756
educ2 -.0506202 .0172492 -2.93 0.003 -.084428 -.0168124
marr -1.885542 .2993282 -6.30 0.000 -2.472214 -1.298869
black 1.135973 .3517793 3.23 0.001 .446498 1.825447
hisp 1.96902 .5668567 3.47 0.001 .8580017 3.080039
RE74 -.0001059 .0000353 -3.00 0.003 -.000175 -.0000368
RE75 -.0002169 .0000414 -5.24 0.000 -.000298 -.0001357
RE742 2.39e-09 6.43e-10 3.72 0.000 1.13e-09 3.65e-09
RE752 1.36e-10 6.55e-10 0.21 0.836 -1.15e-09 1.42e-09

blackU74 2.144129 .4268089 5.02 0.000 1.307599 2.980659
_cons -7.474742 2.443502 -3.06 0.002 -12.26392 -2.685566

note: 22 failures and 0 successes completely determined.

6educ2 denotes squared education, RE742 and RE752 denote the square of RE74 and RE75, respec-
tively, and blackU74 is the interaction of black and a dummy for nonemployment (i.e., zero earnings)
in 1974.

7Note that when specifying the detail option, (even) more detailed output is displayed documenting
the steps performed to obtain the final results.
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Note: the common support option has been selected
The region of common support is [.00061067, .9752541]

Description of the estimated propensity score
in region of common support

Estimated propensity score

Percentiles Smallest
1% .0006426 .0006107
5% .0008025 .0006149

10% .0010932 .0006159 Obs 1342
25% .0023546 .000618 Sum of Wgt. 1342

50% .0106667 Mean .1377463
Largest Std. Dev. .2746627

75% .0757115 .974804
90% .6250823 .9749805 Variance .0754396
95% .949302 .9752244 Skewness 2.185182
99% .970598 .9752541 Kurtosis 6.360726

******************************************************
Step 1: Identification of the optimal number of blocks
Use option detail if you want more detailed output
******************************************************

The final number of blocks is 7

This number of blocks ensures that the mean propensity score
is not different for treated and controls in each block

Following the algorithm described in Section 2, blocks for which the average propen-
sity scores of treated and controls differ are split in half. The algorithm continues until,
in all blocks, the average propensity score of treated and controls does not differ. In
our case, this happens for a number of seven blocks. Thereafter, pscore proceeds to
the test of the balancing property for each covariate.

**********************************************************
Step 2: Test of balancing property of the propensity score
Use option detail if you want more detailed output
**********************************************************

The balancing property is satisfied

When the detail option is not specified, the only output produced by pscore is
a statement saying whether the balancing property is satisfied (which is the case for
the DW data with p =0.005) or not. In the latter case, the user is informed for which
variable(s) in which block(s) the balancing property failed, and a message is issued
suggesting that a different specification of the propensity score be tried.

In case the balancing property holds, the final distribution of treated and controls
across blocks is tabulated together with the inferior of each block:
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This table shows the inferior bound, the number of treated
and the number of controls for each block

Inferior
of block T

of pscore 0 1 Total

.0006107 924 7 931
.05 102 4 106
.1 56 7 63
.2 41 28 69
.4 14 21 35
.6 13 20 33
.8 7 98 105

Total 1157 185 1342

Note: the common support option has been selected

*******************************************
End of the algorithm to estimate the pscore
*******************************************

Note that we imposed the common support condition in this example using the
comsup option. Consequently, block identifiers are missing for control observations
outside the common support, and the number of observations in the table is 1,342
instead of 2,675.

After running pscore, users can proceed to estimate average treatment effects using
one of the att* programs.

6.2 Output from attnd and attnw

The typical output from attnd or attnw8 is

. set seed 1221

. attnd RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752 blackU74,
> comsup boot reps(100) dots logit

The program is searching the nearest neighbor of each treated unit.
This operation may take a while.

ATT estimation with Nearest Neighbor Matching method
(random draw version)
Analytical standard errors

n. treat. n. contr. ATT Std. Err. t

185 57 1667.644 2113.592 0.789

Note: the numbers of treated and controls refer to actual
nearest neighbour matches

8Remember that attnd and attnw will generally give the same results (except for bootstrapped
standard errors), unless there are only discrete covariates and multiple nearest neighbors. This is not
the case in our example; therefore, to save space, we report here only the output of attnd.
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Bootstrapping of standard errors

command: attnd RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 R
> E752 blackU74 , pscore() logit comsup
statistic: r(attnd)
(obs=2675)
...............................................................................
> .....................

Bootstrap statistics

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]

bs1 100 1667.644 -85.68572 1211.026 -735.2937 4070.582 (N)
-839.9554 3643.178 (P)
-394.5013 4064.472 (BC)

N = normal, P = percentile, BC = bias-corrected

ATT estimation with Nearest Neighbor Matching method
(random draw version)
Bootstrapped standard errors

n. treat. n. contr. ATT Std. Err. t

185 57 1667.644 1211.026 1.377

Note: the numbers of treated and controls refer to actual
nearest neighbour matches

Note that in this example, only 57 different controls have been matched to the 185
treated. These results are very close to the ones obtained by Dehejia and Wahba (1999).

6.3 Output from attr

For attr with radius r = 0.0001 we obtain

. attr RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752 blackU74,
> comsup boot reps(100) dots logit radius(0.0001)

The program is searching for matches of treated units within radius.
This operation may take a while.

ATT estimation with the Radius Matching method
Analytical standard errors

n. treat. n. contr. ATT Std. Err. t

23 66 -5546.140 2388.723 -2.322

Note: the numbers of treated and controls refer to actual
matches within radius
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Bootstrapping of standard errors

command: attr RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE
> 752 blackU74 , pscore() logit comsup radius(.0001)
statistic: r(attr)
(obs=2675)
...............................................................................
> .....................

Bootstrap statistics

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]

bs1 100 -5546.14 425.988 4657.081 -14786.8 3694.519 (N)
-13867.87 5668.455 (P)
-13867.87 5668.455 (BC)

N = normal, P = percentile, BC = bias-corrected

ATT estimation with the Radius Matching method
Bootstrapped standard errors

n. treat. n. contr. ATT Std. Err. t

23 66 -5546.140 4657.081 -1.191

Note: the numbers of treated and controls refer to actual
matches within radius

The large difference with respect to the caliper matching results of Dehejia and
Wahba (2002) comes from the fact that caliper matching differs from radius matching
in that the nearest control is used as a match if a treated unit has no control units
within radius r. Whereas caliper matching uses all treated units, our method only uses
those treated that have control matches within radius r (here, 23 out of 185 treated).
This example illustrates the sensitivity of the results to extreme assumptions used in
the matching procedure. If the radius is chosen to be very small, many treated units are
not matched and the results are no longer representative of the population of treated.
For a more detailed discussion of this issue, see Smith and Todd (2003).

6.4 Output from attk

For attk, the results are as follows:9

. attk RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752 blackU74,
> comsup boot reps(100) dots logit

The program is searching for matches of each treated unit.
This operation may take a while.

9Note that Dehejia and Wahba do not present results for kernel matching.



374 Estimation of average treatment effects based on propensity scores

ATT estimation with the Kernel Matching method

n. treat. n. contr. ATT Std. Err. t

185 1157 1537.943 . .

Note: Analytical standard errors cannot be computed. Use
the bootstrap option to get bootstrapped standard errors.

Bootstrapping of standard errors

command: attk RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE
> 752 blackU74 , pscore() comsup logit bwidth(.06)
statistic: r(attk)
(obs=2675)
...............................................................................
> .....................

Bootstrap statistics

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]

bs1 100 1537.943 -51.50918 1016.874 -479.755 3555.642 (N)
-439.9654 3601.629 (P)
-343.8961 3826.322 (BC)

N = normal, P = percentile, BC = bias-corrected

ATT estimation with the Kernel Matching method
Bootstrapped standard errors

n. treat. n. contr. ATT Std. Err. t

185 1157 1537.943 1016.874 1.512

In kernel matching, all treated, as well as all controls (in the common support which
has been imposed here), are used. The estimate of the ATT is quite close to the one
obtained with nearest-neighbor matching.

6.5 Output from atts

Finally, for atts with the blocks obtained in pscore:10

10Note that there are two special cases as concerns the computation of the ATT and its analytical
standard error. First, if there is no treated and/or no control unit in one (or more) of the blocks,
the ATT is computed on the remaining blocks that practically amounts to imposing a (block-based)
common support condition. Second, if there is exactly one treated and/or one control in one (or more)
of the blocks, the ATT in that block can still be computed but the standard error cannot. In this case,
atts will produce missing values for the standard error. However, bootstrapped standard errors can
still be computed.
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. atts RE78 T, pscore(mypscore) blockid(myblock) comsup boot reps(100) dots

ATT estimation with the Stratification method
Analytical standard errors

n. treat. n. contr. ATT Std. Err. t

185 1157 2208.600 777.866 2.839

Bootstrapping of standard errors

command: atts RE78 T , pscore(mypscore) blockid(myblock) comsup
statistic: r(atts)
(obs=2675)
...............................................................................
> .....................

Bootstrap statistics

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]

bs1 100 2208.6 96.6845 850.9957 520.0395 3897.16 (N)
570.5178 4012.478 (P)
778.2358 4184.918 (BC)

N = normal, P = percentile, BC = bias-corrected

ATT estimation with the Stratification method
Bootstrapped standard errors

n. treat. n. contr. ATT Std. Err. t

185 1157 2208.600 850.996 2.595

Here, the difference with respect to the DW99 results is slightly bigger than for
nearest-neighbor matching. This might be explained by a different number of blocks
used in stratification, different significance levels, or a different procedure for testing the
balancing property (see general remark at the beginning of the section 6). But overall,
the results obtained by attnw, attk, and atts are quite close to each other, and taken
together give evidence of a positive ATT in the range of 1500–2200 associated with the
NSW demonstration (when evaluated with nonexperimental comparison groups), which
is close to the experimental estimates of about 1700.

(Continued on next page)
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7 Saved Results

The att* commands save in r():

Scalars
r(nt*) number of treated used in the computation of att*
r(nc*) number of controls used in the computation of att*
r(att*) ATT obtained by att*
r(seatt*) analytical standard error for att*
r(tsatt*) analytical t statistic for att*
r(bseatt*) bootstrapped standard error for att*
r(btsatt*) bootstrapped t statistic for att*

r(mean1) mean outcome of matched treated for attk
r(mean0) mean outcome of matched controls for attk
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