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1 Introduction

Many policy analyses rely on panel data in which the dependent variable differs across individuals but

at least some explanatory variables, such as the policies being studied, are constant among all members

of a group. For example, in the typical differences-in-differences model, we regress outcomes at the

individual level (e.g. employment in a firm in state s in year t) on a policy that applies to all individuals

in the group (e.g. the minimum wage in state s in year t). Moulton (1990) shows that in regression

models with mixtures of individual and grouped data, the failure to account for the presence of common

group errors can generate estimated standard errors that are biased downwards dramatically.1 The

differences-in-differences estimator is a special case of this model.

Researchers use a number of standard techniques to adjust for common group effects:

• random-effects feasible GLS estimation which under certain conditions is asymptotically efficient,

• correcting the standard errors using the error covariance matrix based on common group errors as

in Moulton,

• correcting the standard errors using a robust covariance estimator according to a formula developed

by Liang and Zeger (1986) and more commonly known as the Stata cluster command.

This paper makes two simple, but, we believe, important points. First, when applied to variables

that are constant within a group, the t-statistics generated using each of these techniques for correcting

for common group errors are asymptotically normally distributed only as the number of groups goes to

infinity.

Second, under standard restrictions, the efficient estimator can be implemented by a simple two-step

procedure, and the resulting t-statistic may have, under restrictions on the distribution of the group

level error, an asymptotic t-distribution as the number of observations per group goes to infinity. In

addition, under more restrictive assumptions, when the same procedure is used in finite samples, the

t-statistics have a t-distribution.

Consequently, standard asymptotics cannot be applied when the number of groups is small as in

the case where we compare two states in two years, two cities over a small number of years, or self-

employed workers and employees over a small number of years. In such cases, failing to take account

of the group-error structure will not only generate underestimates of the standard errors as in Moulton,

but applying the normal distribution to corrected t-statistics will dramatically overstate the significance

of the statistics. Standard asymptotics should apply to comparisons across all fifty states although other
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problems may arise in common time-series/cross-section estimates based on states and using long panels

(see Bertrand et al, 2004).2

In the next section, we first present an intuitive argument and then formalize the conditions under

which we can derive the distribution of the t-statistic when the number of groups is small. Readers

who are not interested in the details can skip the later part of this section and proceed to the third

section, where we discuss the common two group/two period case and also apply our approach to two

influential papers: the Gruber and Poterba (1994) paper on health insurance and self-employment and

Card’s (1990) study of the Mariel boatlift. We show that analyzing the t-statistic, taking into account

a possible group error component, dramatically reduces our estimate of the precision of their results.

In the fourth section, we consider two other approaches to common group errors, the Moulton correc-

tion and the commonly applied Stata cluster correction. In section five, we present Monte Carlo evidence

regarding the distribution of the t-statistic using a variety of estimators. Our results indicate that the

t-statistics produced by standard estimators have distributions that differ quite substantially from both

the normal and the t-distributions. However, when the theory predicts that they should, the two-step

estimators we propose produce t-statistics with approximately a t-distribution with degrees of freedom

equal to number of groups minus number of group-constant variables. Moreover, one of the two-step

estimators we consider appears to be reasonably robust to the departures from the assumptions needed

to guarantee that the t-statistic has a t-distribution.

2 The Error ComponentsModel with a Small Number of Groups

We begin with a standard time-series/cross-section model of the form

Yis = a+Xsβ + Zisγ + αis + εis. (1)

where αis is an error term that is correlated within group s and εis is an individual-specific term that

is independent of the other errors. With a single cross-section Y might be income, X state laws and

Z characteristics of individuals. In this case it would be natural to follow Moulton and assume that α

is a state effect that does not vary among members in a group, that is that αis = Σiαis/Ns ≡ αs. We

do not require that the error term take the Moulton structure, only that the σ2α (the variance of αs)

depend only on the number of observations from group s and that, as group size gets large, it converge

in probability to some finite value.3
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If the covariance matrix of the error term is known, GLS estimation of (1) is efficient. With some

regularity conditions, feasible GLS is efficient if the covariance matrix can be estimated consistently. De-

pending on the structure of the covariance matrix, GLS can be computationally burdensome. Moreover,

if the exact structure of the dependence is unknown, GLS estimation may be infeasible.

Estimating β in two stages is often computationally simpler. In this case, we use OLS to estimate

y = Zγ +WΓ+ ε (2)

where W is a set of dummy variables indicating group membership. Note that

Γ = Xβ + α. (3)

We then can use the estimated bΓ in GLS estimation of
bΓs = Xsβ + αs + (bΓs − Γs) (4)

where the error term has variance σ2αI + var(bΓ).
Amemiya (1978) shows that if the covariance matrices of α and ε are known, then the two-step

procedure and the GLS procedure applied directly to (1) are numerically identical. If instead feasible

GLS is used, then provided the covariance terms are estimated in the same fashion, numerical equivalence

continues to hold. More commonly, the two approaches lend themselves to different methods for obtaining

consistent estimates of the covariance terms. If so, the equivalence is asymptotic rather than numeric.

Our contribution is twofold. First, we can see from (4) that if the number of groups is small, then

it is not possible to rely on the consistency of estimates of σ2α to justify feasible GLS estimation of (4).

However, if σ2αI + var(bΓ) is homoskedastic and diagonal, by the usual arguments, it is still possible
to obtain an unbiased estimate of the variance of the error term in (4). Under normality assumptions

on αs, the resulting t-statistic will have a t-distribution rather than a normal distribution. We explore

circumstances under which the assumption of homoskedasticity is reasonable. In particular, the error

term will be homoskedastic under at least two circumstances:

1. if the number of observations per group is large, or

2. if there are no within-group varying characteristics and the number of observations is the same for

all groups.

3



Second, when the error term in (4) is homoskedastic, by standard theorems, OLS estimation of (4)

is efficient. Since OLS estimation of (4) is numerically equivalent to feasible GLS estimation of (1), we

have full efficiency of estimation even when the number of groups is small.

We begin our formal treatment with the case where all variables are fixed within groups.

2.1 Only Within-Group-Constant Explanatory Variables

We begin by treating the case where Xs is a scalar and there are no within-group varying explanatory

variables (γ = 0), so that

Yis = a+Xsβ + αis + εis. (5)

This case provides much of the intuition for the more general case.4

Throughout we will assume that the εis are independent of each other and of α for all i and s. We

further assume that αis and αjs0 are independent for s 6= s0, but do not assume that αis and αjs are

uncorrelated.

The two-step estimator in this case has a very simple interpretation. The first-stage is equivalent to

taking group means, bds = PNs

i=1 Yis
Ns

(6)

so that the second stage becomes

bds = Y s = a+Xsβ +

PNs

i=1 αis
Ns

+

PNs

i=1 εis
Ns

(7)

≡ a+Xsβ + αs + εs (8)

≡ a+Xsβ + ηs. (9)

which is just the “between-groups” estimator of β.

A few points follow immediately from the equivalence of GLS estimation of (5) and (9).

1. β can always be estimated efficiently by appropriate weighted least squares estimation of (9) if the

weights are known or by feasible weighted least squares if they can be estimated consistently.

2. If either η is homoskedastic or var(ηs) is uncorrelated with Xs, then the efficient estimator is

the unweighted between estimator. Note that homoskedasticity is a natural assumption whenever

either all groups have the same number of observations (Ns = N,∀s) or when the number of

observations in each group is large.
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The latter point demonstrates that in many circumstances unweighted between-group estimation is

the most efficient estimator5 and that this efficient estimator can be achieved without knowledge of the

exact covariance structure of α, although as noted this does require that the variance of of ηs is constant

across groups.

2.1.1 Inference

It should be apparent that our ability to perform inference on bβ depends primarily on S and not on Ns.

If the number of groups is large, then the standard theorems establish that when η is homoskedastic, bβols
is normally distributed and the t-statistic follows the normal distribution. When η is heteroskedastic,

the same is true either for feasible GLS or for appropriately calculated standard errors.

In many cases it will be natural to treat S as large and the error term as homoskedastic. For example,

studies that use difference in laws across states and have large samples for all fifty states are likely to

meet this requirement approximately. However, in many applications the number of groups is small.

The well-known Card and Krueger (1994) minimum-wage study is a case in point in which there is a

large number of observations per group but only four groups (New Jersey before and after the law and

eastern Pennsylvania before and after the law). Other studies (Gruber and Poterba, 1994; Card, 1990;

Eissa and Liebman, 1996) are based on a small number of group/year cells.

When the number of groups is small, in order to have a standard solution for the distribution of the

t-statistic, we require that η be i.i.d. normally distributed. Below, we present formal sufficient conditions

for this requirement to be satisfied.

If the distribution of η is i.i.d. normal, then it follows from standard theorems that the t-statistic

for bβ has a t-distribution with S − 2 degrees of freedom. In effect, failure to recognize that the variance

of the error term is estimated using very few observations can dramatically overstate the significance of

findings.

Why does the distribution of bT remain t despite the large number of observations? The answer is

quite intuitive. If we relied on published census data to estimate a relation based on the New England

states, we would automatically assume that the resulting t-statistic had a t-distribution. Relying on the

underlying individual data cannot help us if all of the information in the data is included in the mean.

Somewhat more formally, rewrite (9) as

eYs = eXsβ + eηs (10)

5



where ˜ denotes a deviation from the mean. The usual t-statistic for hypotheses concerning β is given

by

T̂ =
β̂ − β

σ̂η(
P

s
eX2
s )
1/2

, σ̂2η =
1

S − 2

SX
s=1

(eYs − eXs
bβ)2. (11)

Given this fact, we can easily see that it will be reasonable to use a t(S − 2) distribution for conducting

inference whenever ηs is exactly or is approximately a homoskedastic normal random variable.

Finite Sample Result: Here for the T̂ statistic to have an exact t(S−2) distribution it is sufficient

that

ηs =

PNs

i=1 αis
Ns

+

PNs

i=1 εis
Ns

∼ N(0, σ2η)

where it is important that σ2η is constant across s. Although there may be a variety of conditions the

most obvious case is where αis = αs ∼ N(0, σ2α) for all i, εis ∼ N(0, σ2ε) and Ns = N for all s so that

ηs ∼ N(0, σ2η) where,

σ2η = σ2α +
σ2ε
N

(12)

This is the standard random effects time-series/cross-section model as well as the specification used by

Moulton. This includes the possibility that there are no group specific effects.

Large Sample Result: For the T̂ statistic to have a distribution that is well approximated by

t(S − 2) it is sufficient that there be large Ns and that,

ηs
A∼ N(0, σ2η) (13)

which requires some form of asymptotic theory regarding ηs with Ns → ∞ but with the number of

groups fixed. Here there are at least two interesting possibilities.

(i) For each s, αis = αs ∼ N(0, σ2α) for all i and εis satisfy conditions for a Law of Large Numbers to

imply that

p lim
Ns→∞

PNs

i=1 εis
Ns

= 0 (14)

In this instance

p lim
Ns→∞

ηs = αs ∼ N(0, σ2α)

so that the condition (13) is met. This does not require that Ns be the same in all groups but for the

approximation to be valid we would need all groups to have large Ns so that (14) is approximately

true.
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(ii) For each s, αis = αs ∼ N(0, σ2α/Ns) for all i, εis satisfy conditions for a Central Limit Theorem

and Ns/Nt → 1 for any s 6= t then,

ηs
A∼ N(0, (σ2α + σ2ε)/Ns)

where the variance asymptotically does not depend on s. This case is possible under a parameter

sequence that keeps σ2α of the same (or smaller) order as σ
2
ε/Ns as might be appropriate when the

group effects are relatively small. Indeed this includes the possibility that αs = 0 so that there are

no group specific effects Also note that in this case we do not require normality for the εis but for

the approximation to be a good one we require that there be similar numbers of observations per

group.

There may be other possibilities in the large sample case although we refrain from giving more explicit

conditions. For instance provided that one can show that if (
P

i αis) /Ns is approximately normal (with

constant variance independent of s asymptotically) and that εis satisfy conditions for a Law of Large

Numbers then the condition in (13) will hold and using a t(S − 2) will provide a good approximation.

There are a variety of possibile assumptions one could use to obtain the approximate normality of

(
P

i αis) /Ns that relate to the dependence across observations within a group — the simplest case is

given in (i) above, but it is apparent that the two-stage technique can accommodate inference even when

the nature of the dependence within groups is unknown provided that there is no correlation of errors

across groups.6 Also, as in case (ii) for this result to hold one would require Ns to be (asymptotically)

constant across groups.

It is worth noting that estimating the between groups estimator is a matter of convenience. When

Ns = N , the between-groups and OLS estimators are identical. If Ns/Nt → 1∀s, t, then OLS converges

to the between-groups estimator. Therefore, it is possible to calculate a corrected standard error for

the OLS estimate and generate a t-statistic that has a t-distribution. The between-groups estimator is,

however, much more convenient.

2.2 Variables that Vary Within-Group

We consider now hybrid models in which some variables differ across observations within groups. For

simplicity we ignore complications associated with nonconstant correlation of the group effect since they

do not add to the analysis. As was seen in the discussion without within-group varying variables, all

that is important is the variance of the mean group error.
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Thus we analyze the standard Moulton model

Yis = a+Xsβ + Zisγ + αs + εis. (15)

We assume for simplicity that Yis and Xs are scalars. The extension to the case of more than one

group-varying or group variable is straightforward.

We further assume that

αs ∼ N(0, σ2α) for all s

εis ∼ N(0, σ2ε) for all i, s

and that these residuals are mutually independent for all i and s.

As before we know that GLS estimation of (15) is efficient and that if we can obtain consistent

estimates of σ2α and σ2ε feasible GLS estimation is asymptotically efficient. Finally, we know from

Amemiya that if these variance terms are estimated in the same way that feasible GLS estimation is

numerically identical to the following estimator — first use OLS to estimate the “within-group” estimate

of γ

Yis = ds + Zisγ + εis. (16)

Then estimate β by feasible GLS estimation of

Ȳs − Z̄0sγ̂ =
bds = a+ βXs + us (17)

where,

Ȳs =

PNs

i=1 Yis
Ns

, Z̄s =
PNs

i=1 Zis
Ns

,

bds is the estimate of ds in (16) and
var(u) = σ2αI +Σd

where Σd is the covariance matrix of the fixed-effect parameter estimates.

Note that estimates of Σd can be obtained by selecting the covariance matrix corresponding to the

fixed effects. σ2a can be estimated by first estimating (17) by OLS and then using

PS
i=1 bu2i

S −K
− 1

S

SX
i=1

var(bdi) = bσ2a
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where var(bdi) is the variance of the ith fixed effect and K is the number of explanatory variables in (17).

Finally, it is worth noting that since the groups are distinct, covariance of the bd0s arises only because
γ is estimated rather than known. If each bγi is calculated from a separate sample, the covariances will

be zero. Thus the covariance problem can be avoided by estimating γ for the sth state as

γ̂(s) = (Z0sMsZs)
−1

Z0sMsYs (18)

where

Ms = INs − ιNs(ι
0
Ns
ιNs)

−1ι0Ns

and ιNs is a vector of 1
0s of length Ns.

Since γ̂W involves the restriction that γ is constant across states, it is more efficient but less robust.7

Our focus, however, is not on estimation of γ but of β.

When the number of groups is large, it is possible to estimate (17) by feasible GLS. If the number of

groups is small, then we can still get efficient estimates and determine the distribution of the t-statistic

if the error term in (17) is i.i.d. normal except possibly for an error term common to all groups. The

following propositions summarize conditions under which this condition holds and the resulting t-statistic

has the t-distribution.

Let bT1 be the t-statistic using bγw and bT2 be the t-statistic using bγ(s).
Proposition 1: If the εis are normally distributed,

(i) T̂1 ∼ t(S − 2) when Ns are identical for all s and either (a) there are no Zis or (b) Z̄s is constant

across s

(ii) T̂2 ∼ t(S−2) when Ns are identical for all s and either (a) there are no Zis or (b) Z̄0s(Z
0
sMsZs)

−1Z̄s

is constant across s

We can also show that the statistics will have asymptotic t(S − 2) distributions under more general

situations so that the t(S − 2) distribution can be used quite generally.

Proposition 2: If the εis are not normally distributed and if σ2α is fixed, then T̂j
A∼ t(S − 2) (for

j = 1, 2) when Ns →∞ for all s.

As in the case where there are no individual specific covariates one can show that the statistics T̂j

will be approximately t(S−2) when the group specific errors are small relative to the idiosyncratic errors.
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The conditions that give rise to this are essentially asymptotic analogs of the conditions in Proposition

1.

Proposition 3: If σ2α is small in the sense that σ2α = O(N
−1/2
s ) then regardless of the distribution of

εis

(i) T̂1
A∼ t(S − 2) when Ns are asymptotically identical8 for all s and either (a) there are no Zis or (b)

p lim Z̄s is constant across s

(ii) T̂2
A∼ t(S − 2) when Ns are asymptotically identical for all s and either (a) there are no Zis or (b)

p lim Z̄0s(Z
0
sMsZs/Ns)

−1Z̄s is constant across s

These situations can be stated with reference to the residuals in the second-stage equation:

Ȳs − Z̄0sγ̂ = a+ βXs + αs + εs + Z̄0s(γ − γ̂). (19)

For the distribution of the t-statistic to be exactly t, we require that the error term be normally

distributed and i.i.d. except possibly for a common component for all observations. When all groups

have the same sample size, we can readily check whether:

Z̄s is identical across groups, in the case where we use the within estimator to obtain bγw, or
var(bγ(s)) is identical for all groups, in the case where γ is estimated separately for each group.
The t(S−2) can be justified as an approximation based on large Ns asymptotics under more general

conditions. This occurs because the error term in (19) converges to the homoskedastic normal error αs

as Ns →∞ because of the consistency of γ̂ and the fact that εs
p→ 0 by the usual Law of Large Numbers.

When σ2α is small, as in Proposition 3, the approximation can be justified because ε̄s and Z̄ 0s(γ − γ̂)

are approximately normally distributed by the Central Limit Theorem so that the error term in (19) is

approximately normal.

While the theory above and the Monte Carlo evidence below suggest that using one of the two-stage

estimators will generally be preferable to using OLS, there are two caveats which must be recognized.

First, when σ2α = 0, OLS is the efficient estimator of equation (15) and the t-statistic has the conventional

distribution. If one knows that σ2α = 0, OLS is the preferred estimator. What Proposition 3 tells us

is that if we proceed under the mistaken belief that σ2α > 0, two-stage estimation will still produce a

statistic with a t-distribution.
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Second, the distinction between two-stage estimation and one-stage estimation is really one of con-

venience. Whenever bT1 has a t-distribution, the same statistic can be produced by relying on the OLS
coefficients. For example, in the case where there are no group-varying covariates and each group has the

same number of observations, the OLS coefficient is identical to the between-groups (two-step) estima-

tor. However, it is more convenient to estimate the standard error of the estimate using between-group

estimation. Similarly, it is easy to show that when Z̄s is identical across groups and all groups have the

same sample size, OLS produces the same bβ as in the case where we use the within estimator to obtain
bγw and estimate β in two steps. Again, however, estimation of the correct standard error is much easier
using the two-step estimator.

3 Examples

In this section, we first review the two by two case, which features prominently in the literature. The

main feature of this case is that we cannot calculate the standard error of the estimate and thus must

exercise considerable caution in drawing conclusions. We then review two prominent papers that provide

at least some differences-in-differences estimates in which there are no covariates that vary within group.

The first case, Gruber and Poterba (1994), shows that accounting properly for error components can

dramatically reduce the implied precision of the estimates in some specifications but that the estimate

remains precise in at least one specification. In the second case we reexamine Card’s (1990) Mariel

boatlift study and suggest that the data cannot exclude large effects of the migration on blacks in

Miami. This is consistent with the results of Angrist and Krueger’s (1999) finding of a large impact of

the “Mariel boatlift that didn’t happen.”

3.1 The Two by Two Case

In the canonical differences-in-differences model, mean outcomes are calculated for groups A (the treat-

ment group) and B (the control group) in each of periods 0 (the pre-treatment period) and 1 (the

post-treatment period). A standard table shows each of these means, plus the difference between groups

A and B in each period and the difference between the pre- and post-treatment outcomes for each

group. Finally the difference between either pair of differences is the classic differences-in-differences

estimate. Classic and recent examples that include tables in this form are Card and Krueger’s study

of the minimum wage (1994), Eissa and Leibman’s study of the effect of the earned-income tax credit

(1996), Meyer et al’s study of workers’ compensation (1995), Imbens et al’s study of lottery winners and
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labor supply (2001), Eberts et al’s study of merit pay for teachers (2002) and Finkelstein’s (2002) study

of tax subsidies and health insurance provision. Each of these studies provides additional analysis, but

in each case, the two by two analysis is an important component of the study.

In a well developed two by two case, the authors make a compelling case that other than the treat-

ment, there is no reason to expect the outcome variable to evolve differently for the treatment and

control groups.

The statistical model is

yigt = αgt + bTgt + εigt (20)

where y is the outcome being measured for individual i in group g in year t, T is a dummy variable for

the treatment group in the post-treatment period. α is a group/year error which may be correlated over

time or across groups and ε is an i.i.d. error term.

Without loss of generality, we can subtract the first period from the second period and rewrite the

equation as

∆yig = ∆ag + b∆Tg + εig1 − εig0. (21)

Now ∆T equals 1 for the treatment group and 0 for the control group. Therefore we can replace ∆T

with A, a dummy variable for group A. And we can rewrite ∆ag = c+ eαA, where eα = ∆αA − ∆αB.
Letting εig2 − εig1 = εig, we have

∆yig = c+ (eα+ b)Ag + εig. (22)

The weighted least squares (where weights are chosen to make the sample sizes identical) coefficient on

A is the differences-in-differences estimator and is numerically identical to taking the difference between

the change in the outcome for the treatment and control groups. It is an unbiased estimate of eα + b.

Since E(eα) = 0, it is also an unbiased estimate of b. However, it is not consistent. No matter how many
observations from either the control or treatment groups we add to the sample, the coefficient will not

converge in probability to b.

The variance reported by econometric packages includes the sampling variance but not that part of

the variance due to the common error. Thus if there are any shocks that are correlated within year/group

cells, the reported t-statistic will be too high. We will tend to find an effect of the treatment even if

none exists.

Unfortunately, if there are common errors, the two by two model has zero degrees of freedom.
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Therefore it is not possible to determine the significance of any estimate solely from within-sample

information. It may be possible to use information from outside the sample to get a plausible estimate

of the magnitude of common within-group errors, but even in this case, we will not know the sampling

distribution of the resulting statistic. Thus analysis of the two by two case requires extreme caution.

3.2 Card (1990)

Card examines the impact of the mass migration of Cubans to Miami during the Mariel boatlift. He

compares, among other outcomes, unemployment rates for whites, blacks and Hispanics in Miami with

unemployment rates of these groups in four comparison cities (Atlanta, Houston, Los Angeles and Tampa-

St. Petersburg). Surprisingly, he finds little evidence that the mass migration significantly affected the

Miami labor market. For example, from 1979 to 1981 black unemployment in Miami increased by 1.3

percentage points compared with 2.6 percentage points in the comparison communities. Angrist and

Krueger (1999) replicate Card’s study for a Cuban boatlift that was anticipated but did not occur. They

find that “the Mariel boatlift that didn’t happen” had a large adverse effect on unemployment in Miami.

Their analysis cast doubt on the power of Card’s original finding.

Our analysis helps to explain why Card found no effect and why it is possible to find a large effect of

a nonexistent event. To understand this, we need to examine the true confidence interval around Card’s

estimates. Because Card provides seven years of data for both Miami and the comparison cities, we can,

with auxiliary assumptions, calculate the variance of his estimate.

We first assume that the difference between the annual unemployment rates in Miami and the com-

parison cities is subject to an i.i.d. shock. This allows for a common year shock which may be persistent

but assumes that any shocks that are idiosyncratic to a city are not persistent. Given this assumption,

we use the data reported by Card to regress the difference between the unemployment rate for blacks

in Miami and the control cities on a dummy for the period after 1980 on all years except 1980. The

resulting coefficient is 1.4 with a standard error of 4.0. Under the assumption that the error terms are

homoskedastic and normal, and given that we have four degrees of freedom, the confidence interval is

from -9.7 to 12.1, effectively including very large positive and negative impacts on blacks.

In sum, while the data certainly provide no support for the view that the Mariel immigration dra-

matically increased unemployment among blacks in Miami, they do not provide much evidence against

this view either. In this case, the differences-in-differences approach lacks power.
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3.3 Gruber and Poterba (1994)

Gruber and Poterba analyze a change in the tax law that they anticipate would increase the purchase of

health insurance by self-employed individuals but not by individuals who work for someone else. They

find that, comparing the period before the tax change with the period after, purchase of health insurance

grew more rapidly among the self-employed than among other employed workers. The differences-in-

differences estimator therefore indicates that the tax law did increase the purchase of health insurance

among the self-employed.

In the simplest version of the Gruber/Poterba model, the authors compare the fraction of the self-

employed who had health insurance in 1985-86 and 1988-89 with the fraction of employed (not self-

employed) workers with health insurance in these years.

Gruber and Poterba report a differences-in-differences estimate of 6.7 with a standard error of .8,

indicating that the effect of the change in tax law is quite precisely measured. To examine the importance

of common group/year effects, we begin by examining “the tax changes that didn’t happen.” We

reproduce Gruber and Poterba’s annual data in Table 1. The fourth column shows the annual differences-

in-differences estimates.

There are a number of points to make about the differences-in-differences. First, the 1986-87 change

stands out. One would be hard-pressed to look at the fourth column of Table 1 and find no evidence

supporting an impact of the tax law change on the insurance rate among the self-employed.

More significantly from the perspective of this paper, it would be easy to look at other years and,

using differences-in-differences, draw strong and possibly erroneous conclusions about the impact of other

policies in those years. Based on information in Gruber and Poterba, the part of the standard error of

the differences-in-differences estimator that is due to sampling error is approximately 1.1.9 Relying on

this standard error, for three of the six years in which no major policy change occurred, there appears to

be a statistically significant change in the relative purchase of health insurance by the self-employed. For

two of the remaining three years, the change falls short of conventional significance levels but remains

sufficiently large relative to its “standard error” to provide support for the hypothesis of a policy effect.

We can get a more accurate estimate of the standard error of the differences-in-differences estimator

if we are willing to make auxiliary assumptions about the distribution of the group/year errors. First

we assume that the difference between the employment rates for the two groups is i.i.d. normal. We

therefore regress the differences in column 3 on a dummy variable for the period after 1986. This

effectively treats 1982-86 as one group (but with different random year errors) and 1987-89 as a second
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group. The results from this estimation are strikingly similar to those obtained by Gruber and Poterba.

The coefficient is 7.1 with a standard error of .9. Because there are only six degrees of freedom in the

second-stage regression, the confidence interval is obtained by multiplying the standard error by 2.45

instead of the more common 1.96. Still, the cost of the group error structure is largely offset by the

increased sample size from using all nine years of data.

If instead we assume that the difference in the differences between the employment rates is i.i.d. (in

other words that the differences are (a possibly correlated) random walk and normal, we can estimate

the regression using differences. We therefore regress the differences-in-differences on a dummy variable

for 1986-87. This produces a differences-in-differences estimate of 6.9 and a standard error of 2.3. Using

OLS and a t-distribution for the parameter estimate, the estimated impact of the policy change has a

confidence interval ranging from .9 to 13.0.

Finally, since the differences-in-differences approach is predicated on the assumption that the ex-

pected difference-in-differences in nonexperimental years is 0, we reestimate the equation without a

constant term. The resulting coefficient is 7.2 with a confidence interval from 2.3 to 12.1.

While the evidence against the hypothesis of no policy effect remains statistically significant, our

confidence in its magnitude is diminished dramatically by taking into account random year effects in

two of our three specifications. Nevertheless, the results demonstrate that it is possible to obtain precise

coefficients in at least in some specifications.

4 OLS and Variance adjustment: Moulton and Cluster

It is interesting to consider the properties of two commonly used approaches to statistical inference in

the context of the model described earlier. To make these procedures easier to follow we consider the

special case where there are no within-group varying variables and the covariance across observations in

the group is constant as represented by the model with a random group effect,

Yis = a+Xsβ + αs + εis (23)

Moulton (1986) suggested that one adjust the standard errors for OLS for the fact that the errors are

correlated within the groups because of the common group effect. Under the assumption that all residuals

are homoskedastic this correlation is given by ρ = σ2α/(σ
2
α + σ2ε) while the variance of the residual is

σ2 = σ2α + σ2ε. Then using the notation X for the (
PS

s=1Ns × 2) regressor matrix in the above model
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(consisting of column of 1’s and a column of Xs) then as shown in Moulton (1986) the variance of OLS

has the form,

V = (X 0X)−1X 0ΣX(X 0X)−1 (24)

where Σ is block diagonal with blocks given by σ2(1 − ρ)INs + σ2ριNsι
0
Ns
. Moulton’s suggestion is to

estimate σ2 and ρ and to use the estimated version of the matrix V to compute standard errors. Given

the definition of ρ and σ2 this can be done as follows

σ̂2 =

P
s

P
i(Yis − â−Xsβ̂)

2

N∗
=

P
s

P
i e
2
is

N∗
(25)

where N∗ =
P

sNs and,

σ̂2ρ̂ =

P
s

P
i

P
j 6=i(Yis − â−Xsβ̂)(Yjs − â−Xsβ̂)/(Ns(Ns − 1))

S − 2

=

P
s(Ȳs − â−Xsβ̂)

2

S − 2 −
P

s

P
i(Yis − â−Xsβ̂)(Yis − Ȳs)/(Ns − 1))

S − 2 (26)

where the latter is an estimator of the within group covariance of the residuals (σ2α) that has been

pooled across the groups.10 Also note that we have included a degrees of freedom adjustment in the

denominator of σ̂2ρ̂.

The “Cluster” adjusted standard error (as performed in programs such as STATA) is aimed at dealing

with the within group correlation structure but does not impose homogeneity of the variances. It takes

the form,

V̂ =
S

S − 1

PS
s=1Ns − 1PS
s=1Ns − 2

(X 0X)−1(
SX
s=1

usu
0
s)(X

0X)−1 (27)

us =

NsX
i=1

eis

⎛⎜⎝ 1

Xs

⎞⎟⎠ (28)

where eis is the OLS residual. This procedure allows for general within group covariance and het-

eroskedasticity.

It is interesting to examine the properties of inference procedures for these approaches in the case

where we have a fixed small number of groups and where there are large (but possibly different) numbers

of observations within each group.11 It is possible to show that the OLS estimator under these conditions

16



satisfies, ⎛⎜⎝ â

β̂

⎞⎟⎠ p→

⎛⎜⎝ a

β

⎞⎟⎠+ (X 0
∗PX∗)

−1
X 0
∗Pα∗ (29)

where X∗ is the S × 2 matrix consisting of a column of 1’s and a column of the different group constant

variables Xs and where P is a diagonal matrix consisting of p(s) = p limNs/N
∗. Thus the OLS estimator

behaves under these asymptotics like a Weighted Least Squares estimator in the model,

p lim Ȳs = a+Xsβ + αs (30)

By contrast the two step estimator discussed above behaves (asymptotically) like OLS in this model and

will be more efficient when αs is homoskedastic. It is also possible to show that the t-statistic based on

the “Moulton” standard error will satisfy,

t
d→ Λ0αq

σ̃2αΛ
0Λ
,

Λ0 = w0 (X 0
∗PX∗)

−1
X 0
∗P , w

0 = (0, 1)

σ̃2α =
α0(I −X∗(X

0
∗X∗)

−1X 0
∗)α

S − 2

There are a few things to note about this distribution. First, assuming normality of α, it is possible to

show that although one can write the limiting random variable as a ratio of a N(0, 1) and a χ2(S − 2),

the two random variables will not be independent unless (I−X∗(X 0
∗X∗)

−1X 0
∗)Λ = 0. This condition will

occur only when the p(s) are all identical. Thus in the case where the number of observations per group

are similar a t(S−2) distribution will provide a good approximation to the t-statistic using the Moulton

correction. It is also worth noting that the scale adjustment suggested for Moulton is crucial for this

result — the scale adjustment results in the estimate of σ2α being asymptotically unbiased as well.
12

For the approach based on the Cluster correction one can show that,

t
d→ Λ0αp

Ṽ22
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where Ṽ22 is the (2, 2) element of

Ṽ =
S

S − 1(X
0
∗PX∗)

−1X 0
∗PAPX∗(X

0
∗PX∗)

−1

A = diag{a2s}

as = αs + (1,Xs) (X
0
∗PX∗)

−1
X 0
∗Pα

which is the (stochastic) limit of the Cluster variance estimator. It is interesting to note that Ṽ is a

scaled version of the Eicker-White variance covariance matrix in the Weighted Least Squares Regression

(30). This interpretation leads to some conclusions. First, the only real justification for the use of these

adjusted standard errors is asymptotic in the sense that S must be large. When S is small the distribution

will generally be unknown and there do not appear to be cases where the t-distribution would be a good

approximation. Moreover, it is well known that there can be substantial small sample downward bias in

the Eicker-White standard errors with evidence suggesting that they lead to over-rejection of true null

hypotheses (see MacKinnon and White, 1985). This suggests that the Cluster approach may be quite

unreliable except in the case where there are many groups.

5 Monte Carlo Evidence

In this section we provide Monte Carlo estimates of the distribution of the t-statistic for a variety of

estimators used with panel data.

Our first set of experiments addresses the four most common estimators applied to grouped data

— ordinary least squares with conventional standard errors, OLS with Eicker-White heteroskedasticity

robust standard errors for grouped data,13 random-effects estimation,14 and two-step estimation in

which the first stage is fixed-effects estimation. We address two-step estimation in which the first-stage

is estimated separately for each group in a later experiment.

For the first set of experiments, we assume that the underlying model is

yis = αs + εis

with the error terms independent normals and 100σ2α = σ2ε = 1. We estimate models of the form

yis = XsB + ZisΓ+ αs + εis
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so that the true parameter values are zero. X takes on the values 1, 2, 3, and 4 with equal numbers

from each group. Z is distributed uniform on the unit interval for each of the four groups. When B is

estimated using the two-step estimator, the second stage takes the form

bds = a+XsB + eαs.
For each case, we simulated 50,000 estimates. We also experimented with including and excluding Z

from the equation.

Within this set of estimates, we experiment with two sample sizes: 250 observations per group (1,000

total) and 2500 observations per group (10,000 total). We note that for the larger sample, we would

expect the large N , fixed variances, asymptotics to apply so that the asymptotic distribution of t-statistic

for the two-step estimator would be the t-distribution. For the smaller sample, the asymptotics with σ2α

proportional to
√
N should apply. Since in this set of experiments E(Zs) = .5,∀s, the t-statistic should

have a t-distribution with two degrees of freedom in all cases.

Tables 2 and 3 report the results of these Monte Carlo experiments.

The first thing to notice from the tables is that they support the theoretical predictions regarding

the distribution of the t-statistic when two-step estimation is used. The .01, .05 and .1 critical values of

the t-distribution with two degrees of freedom are 9.92, 4.30 and 2.92. In all twelve cases, the Monte

Carlo estimates are close to these critical values, and the true critical values lie within the confidence

intervals.

The results for ordinary least squares with conventional standard errors confirm Moulton’s findings.

Even with a relatively modest number of observations and a low covariance across observations within a

group, using the normal distribution to determine the significance of the t-statistic is badly biased. In our

experiments with 250 observations per group, approximately 30% of the estimates obtained with OLS

have conventional t-statistics that would be deemed significant at the .05 level. With 2,500 observations

per group, this fraction rises to 70%.

Since empirical economists have become increasingly aware of Moulton’s critique and since robust

standard errors accounting for group errors are available for some statistical packages, it has become

common for researchers to present these robust standard errors in lieu of conventional standard errors.

As can be seen from tables 2 and 3, the distribution of the t-statistic using Eicker-White standard

errors has the distinct advantage of being unaffected by the number of observations within each group.

However, applying the normal distribution can again give rise to highly misleading inference. The t-
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statistic exceeds 1.96 in about one-third of cases. In fact, the t-statistic divided by about 1.565 seems

to have a t-distribution with two degrees of freedom. We have not yet established why the Eicker-White

t-statistic should have this distribution and hence cannot say whether it should generalize to other

cases.15

Finally, random-effects estimation is asymptotically efficient as both S and N go to infinity. There-

fore, it is natural to estimate such models by feasible GLS. When the random-effects estimator is used,

the distribution of the t-statistic depends not only on sample size, but also on whether Z is included

in the equation. Depending on whether or not Z is included and on the sample size , the bias from

assuming that the t-statistic is normally distributed ranges from modest (14% significant at the .05 level)

to quite large (27% significant at the .05 level).

Having established that with two-step estimation the t-statistic has the t-distribution in those cases

where the theory predicts that it should, we now turn to cases where the theory does not predict that

the distribution will be t. We modify the true model so that

yis = ZisΓ+ αs + εis.

We generate

Zis = Zs + zis

where zis is uniform (0,1). We consider the two cases. In the uncorrelated case, (X,Z) ∈ {(0, 1), (1, 3), (2, 2), (3, 0)}.

In this case, the relation between X and Z has been chosen so that they are uncorrelated. In the corre-

lated case, X=Z.

We again perform 50,000 replications for each case we consider. For each scenario, we assume four

groups and allow both 250 and 2500 observations per group. Finally, we perform our two-step estimation

in two ways. In the first, we follow convention and estimate fixed group effects in the first-stage and

regress the fixed effects on X in the second stage. In the other approach, we estimate the constant and

coefficient on Zi separately for each group and regress the constants from these equations on X.

Table 4 reports the results of this estimation. When there are only 250 observations per group, then

the theoretical analysis suggests that there is no reason to assume that the t-distribution will be a good

approximation to the distribution of the t-statistic. This is confirmed by the first part of the table which

shows that the centiles of the simulated distributions depart quite significantly from the critical values

of the t-distribution with two degrees of freedom. Thus the .05 critical value is 4.30. Except in the
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case where Γ is allowed to vary across groups in the first-stage estimation, the 95th percentile of the

distributions are quite far from this number. Perhaps even more disturbing, the distribution is greatly

affected by the correlation between Xs and Zs, at least in the case where Γ is constrained to be identical

across groups.

We anticipated that with 2,500 observations per group, the large N asymptotics would apply and

that, therefore, the the t-statistic would have have a t-distribution. Apparently convergence to the t-

distribution is slower than we anticipated. Again, except in the case where Γ is allowed to vary across

groups in the first-stage estimation, the 95th percentile of the distributions are quite far from 4.30

although in each case, it is closer than when there are only 250 observations per group.

We note, however, that in no case does the 95th percentile of the t-distribution significantly exceed

4.30 when Γ varies across groups. Moreover, the distribution is considerably less sensitive to the precise

specification of the experiment when Γ varies than when it is constant across groups. It appears that

estimating the first stage separately for each group and using the t-distribution to assess the significance

of the second-stage coefficients is a conservative strategy.

Table 4 does not address the performance of the other estimators evaluated in tables 2 and 3. The poor

performance of the random-effects estimator and uncorrected OLS even under the best of circumstances

makes it pointless to examine them in the presence of another explanatory variables. However, it

appears from tables 2 and 3 that the t-statistic from OLS estimation and Eicker-White standard errors

might provide, with suitable modification, a reliable basis for inference. Unfortunately, this test statistic

turns out to be very sensitive to the inclusion of Z with a non-zero coefficient. Indeed in the experiment

where Z and X are forced to be independent, the lowest Eicker-White statistic (in absolute value) that

we obtained in 50,000 draws was 7.56. Clearly, the Eicker-White standard errors do not provide a reliable

basis for inference.

In our final Monte Carlo exercise, we draw on the example from Gruber and Poterba to assess the

power of the two-step estimator. We assume that there are eight years of data with 50,000 observations

in each year. The first six years are the pre-experiment years and the last two the post-experiment

years. In each year, 4,000 of the observations are from members of the group that will be subject

to the experimental treatment (the self-employed). For the nonexperimental group (employees), each

observation has a probability of .87 of success (being insured). For the potential treatment group,

the probability of success is .71 plus a normally distributed year error. The year error has a standard

deviation of .009, corresponding to our estimate of the variance of the year effect in Gruber and Poterba.16

We provide three sets of estimates. In the first two cases, we estimate linear probability models
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in which we regress whether or not the individual is insured on a constant, a dummy for whether or

not the individual is self-employed, a dummy for being in the experimental period and an interaction

term between being self-employed and being in the experimental period. The first estimator relies on

conventional standard errors while the second uses Huber-White standard errors clustered by year/group.

The third set of estimates uses our two-step estimator.

We check the distribution and significance of the standard errors for two cases. In the first case, the

true experimental effect is zero. In the second case, it is .07, our estimate of the effect size in Gruber

and Poterba. The results in table 5 are based on 60,500 simulations.17 As would be expected with group

sizes of 46,000 and 4,000, the large N results are quite accurate. In the case where the true effect size is

zero, using the two-step technique, the 90th, 95th and 99th percentiles of the t-statistic are very close to

their predicted values of 1.94, 2.45 and 3.71. In contrast, consistent with previous results, OLS rejects

way too frequently. The t-statistic exceeds 1.96 in just about one-third of cases. Using the Stata cluster

command reduces the number of rejections, but the t-statistic still exceeds 1.96 in over one-fifth of the

simulations.

When the true effect size is .07, the two-step estimator is nevertheless powerful. The null hypothesis

of no effect can be rejected at the .05 level in 60,449 out of 60,500 simulations and at the .1 level in every

case.

6 Discussion and Conclusion

This paper makes the following basic points regarding differences-in-differences estimation, or more

generally estimation with grouped data:

1. Moulton’s critique of estimation with grouped data applies to differences-in-differences estimation.

2. When the number of groups is small, t-statistics obtained using standard methods (OLS, OLS

with Eicker-White standard errors, feasible GLS estimation of the random-effects model, two-stage

estimation) are not normally distributed.

3. If the number of members of each group is large, two-step estimation is efficient and t-statistics

from two-step estimation have t-distribution if the underlying common group errors are normally

distributed.

4. If the number of members of each group is small, only under special circumstances are two-step
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estimation efficient and do t-statistics from two-step estimation have t-distributions. The criticism

of inference using other estimators still applies.

While it will not normally be feasible to check whether the underlying distribution of common group

errors is normally distributed, it is relatively straightforward to verify the remaining conditions under

which the t-statistic from the two-step estimators is distributed t. When sample sizes for each group

are similar, it will frequently be the case that the standard errors of first-stage coefficients estimated

separately for each sample will also be similar. In other cases, groups will have similar distributions of

individual-specific variables.

Our reanalysis of two studies suggests that taking these considerations into account is important.

As a practical matter, when there are variables that vary within group, the two-step estimator in

which the first stage is estimated separately for each group seems to us to be promising. It is robust

both in theory and in our simulations. In addition, it is easily used with conventional software packages.

However as noted in footnote 7, in many situations it will not be invariant to the parameterization of

within-group varying variables. In such cases constraining γ to be equal across groups will generally be

necessary. There are other settings, however, in which the estimate will be invariant. For example, if we

are interested in the effect of a law on the black-white wage differential, the estimate of this differential

in each year is invariant to linear reparameterizations of the remaining variables. In such settings,

estimation allowing the remaining parameters to vary across groups is likely to be the most desirable

estimator.
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TABLE 1 
 

AGGREGATE INSURANCE RATES:  
EMPLOYED AND SELF-EMPLOYED WORKERS  

(1982-1989) 
 

 Self-Employed Employed Difference Difference-in-Differences 
(relative to previous year) 

1982 68.9 88.6 -19.7 - 

1983 72.0 88.9 -16.9  2.8 

1984 68.9 88.1 -19.2 -2.3 

1985 68.6 88.0 -19.4 -0.2 

1986 70.1 88.0 -17.9  1.5 

1987 76.1 86.8 -10.7  7.2 

1988 73.2 86.1 -12.9 -2.2 

1989 73.5 84.5 -11.0  1.9 
 
Source: Gruber and Poterba (1994). 
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TABLE 2 
 

MONTE CARLO ESTIMATION 
Distribution of absolute value of t-statistics 

(4 groups, 250 observations per group) 
 

 99th percentile 95th percentile 90th percentile % > 1.645 % > 1.96 

OLS (conventional standard errors) 

No Z 4.83 3.65 3.06 37.8 29.5 

Z 4.83 3.65 3.06 37.8 29.4 

OLS (Eicker-White standard errors) 

No Z 15.29 6.68 4.57 39.4 32.9 

Z 14.92 6.68 4.56 39.3 32.8 

Feasible GLS (random effects) 

No Z 4.03 2.82 2.22 19.0 13.5 

Z 4.30 3.05 2.44 22.6 16.7 

Two-Step 

No Z 9.75 4.29 2.93 24.0 18.8 

Z 9.74 4.29 2.93 24.0 18.8 
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TABLE 3 
 

MONTE CARLO ESTIMATION 
Distribution of absolute value of t-statistics 

(4 groups, 2500 observations per group) 
 

 99th percentile 95th percentile 90th percentile % > 1.645 % > 1.96 

OLS (conventional standard errors) 

No Z 13.01 9.93 8.40 74.5 69.8 

Z 13.01 9.93 8.40 74.5 69.9 

OLS (Eicker-White standard errors) 

No Z 15.56 6.74 4.58 39.6 33.0 

Z 14.58 6.74 4.58 39.6 33.0 

Feasible GLS (random effects) 

No Z 7.34 4.00 2.82 23.8 18.6 

Z 9.74 6.07 4.30 32.7 27.4 

Two-Step 

No Z 9.72 4.28 2.92 24.1 18.9 

Z 9.75 4.28 2.92 24.1 18.9 
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TABLE 4 
 

MONTE CARLO ESTIMATION 
Distribution of absolute value of t-statistics 

(4 groups, Z entering the structural equation) 
 

 99th percentile 95th percentile 90th percentile % > 1.645 % > 1.96 

250 Observations/Group 

Xs and μz(s) uncorrelated 

γ constant 
across groups 

6.55 2.81 1.88 12.4 9.3 

γ varies   
across groups 

8.10 3.69 2.56 21.2 16.1 

 Xs = μz(s) 

γ constant 
across groups 

22.78 9.98 6.76 55.0 48.5 

γ varies   
across groups 

9.09 4.15 2.94 27.4 20.7 

2500 Observations/Group 

Xs and μz(s) uncorrelated 

γ constant 
across groups 

8.46 3.81 2.59 20.4 15.7 

γ varies   
across groups 

8.84 3.86 2.66 21.7 16.6 

 Xs = μz(s) 

γ constant 
across groups 

12.98 5.35 3.63 31.8  25.7 

γ varies   
across groups 

9.83 4.33 2.99 26.3 20.4 
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TABLE 5 
 

MONTE CARLO ESTIMATION 
Distribution of absolute value of t-statistics 

(Mimicking Gruber & Poterba, 1994) 
 

 99th percentile 95th percentile 90th percentile % > 1.645 % > 1.96 

No True Treatment Effect 

Linear Probability 
Model 

5.17 3.98 3.35 41.8 33.5 

Linear Probability 
Model (clustered 
standard errors) 

5.51 3.61 2.83 28.2 21.5 

Two-Stages 
Estimation 

3.73 2.45 1.95 15.2 9.9 

Treatment Effect = .07 

Linear Probability 
Model 

19.67 18.32 17.59 100.0 100.0 

Linear Probability 
Model (clustered 
standard errors) 

30.05 22.09 18.82 100.0 100.0 

Two-Stages 
Estimation 

20.17 14.64 12.48 100.0 100.0 

 



Notes

1See also Kloek (1981) who considered the bias in standard errors, as well as relationship between

OLS in the case where only group level regressors are present.

2For other recent work related to difference-in-difference methodology see Abadie (2005) and Athey

and Imbens (2005).

3Thus in a time-series/cross-section context, we might have αt,s = ραt−1,s+ut,s with 0<ρ < 1 which

would satisfy this requirement.

4Kloek (1981) provides some analysis of this model when the residual in the model is equicorrelated.

5This point is made in a somewhat different context by Dickens (1990).

6For more on this see Andrews (2005) and references therein.

7The greater robustness of the estimator using bγ(s) gives rise to an additional issue. If bγ varies across
groups, then generally bds and thus bβ will not be invariant to linear reparameterization of the Z’s. bγ may
vary across groups because of a) sampling variation, b) differences in γ across groups that are related

to the policy intervention being studied or c) differences in γ across groups that are unrelated to the

policy intervention being studied. The first problem should vanish as the number of observations per

group becomes large. In the second case, it is not meaningful to discuss a single treatment effect that

is constant across groups. This is analogous to the case where the return to schooling differs between

whites and blacks. One cannot then estimate a single black-white wage differential for all schooling

groups. In the last case, we can think of γ(s) as a random variable. As the number of groups gets large,bβ will be independent of the parameterization, but since we are interested in the case where the number
of groups is small, invariance is a problem that can be avoided by relying on bγW .

8We say that the Ns are asymptotically identical provided that p limNs/Nt = 1 for all s and t.

9The standard error reported in Gruber/Poterba is .8. Their differences-in-differences estimator pools

data from two years. The standard error for individual years is therefore approximately
√
2 ∗ .8 or 1.1.

10Moulton (1987) actually uses σ̂2 and ρ̂ obtained from the random effects MLE of the model. The

formulae we have used are similar although they use the OLS residual rather than the residual from the

random effects MLE.

11We note in passing that in contrast to the estimator discussed above, test statistics based on OLS

and using either the “Moulton” or “Cluster” standard errors will not have exact t-distributions under

normality.

12When the groups have different numbers of observations but normality of αs is assumed it should
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be possible to simulate the distribution.

13These are obtained using the “cluster” option in Stata.

14These are obtained using the xtreg command in Stata.

15Bell and McCaffrey (2002) propose an adjustment to the clustered standard error which seems to

work well even when group size is small and there are twenty groups.

16It is easier to assign the error to one group rather than to apportion it between the two groups.

Since we care about the variance of the difference in the group errors, it is irrelevant how we assign the

group error.

17We inadvertently exceeded our inteneded 50,000 simulations and saw no reason to throw away the

extra simulations. Needless to say, the results for the first 50,000 simulations are similar.
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