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An easier way?

We have seen many complicated ways of dealing with omitted
variables—IV, control functions, and structural modeling (for
selection on unobservables) to matching and RD (selection on
observables).

Isn’t there an easier way?

Yes—make assumptions and get more data!



Fixed effects

Fixed effects attempt to overcome an omitted variables problem
in panel data. Suppose that an outcome for individual ¢ at time
t Y;; is a function of observed covariates X;;, treatment status
D;;, some unobservable factor A;, and possibly some
unobservable time factor Ly:

Yit = (Xit, Dit, A, Ly).
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Fixed effects

What do we notice?
A; is independent of ¢t and L; is independent of ¢.

This implies that the individual-level unobserved variation does
not change over time (though there may be a time trend in the
data). Specifically we must assume that

E(eit| Dit, Xit, Aiy Ly) = 0.

Without the fixed effects, our estimates would be biased since
the expectation of the error would not be 0.



Fixed effects

Additionally, there can be no selection into treatment, only an
unobserved, time invariant effect on the outcome.



Fixed effects

Now we introduce linearity and assume that the true model is
}/it:a‘i‘Ditﬂ'i‘Xit(s‘i‘Ai‘i‘Lt‘i‘eit

Since A; and L; are not observed, we use a set of indicator
variables for each j € {1,... N}, a; = I(i = j) and each
se{l,...,T}, Iy =I(t = s) and estimate coefficients on these
variables & = A; and Ay = Ly:

Yit = o+ DB+ X6 + ;& + Ly + €5



Fixed effects

The individual fixed effects are estimated consistently if IV stays
fixed while T goes to infinity, but this means that the time fixed
effects are not estimated consistently. This is because the
number of parameters grows with the sample size—the
incidental or nuisance parameters problem. But, we don’t care
about these effects per se—i.e., we only care about (3, which is
estimated consistently as long as the sample size is growing.
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Fixed effects

Suppose that we are estimating the effect of education on wages.
Can we estimate the effect of sex, race, or religion as well?

No, we cannot because the fixed effect is time invariant, so too
are fixed demographic features like sex and race. We cannot
separate multiple fixed effects.



Fixed effects

Notice, too what we are estimating: the effect of education
conditional on a set of covariates and on an individual effect.
Since each individual is different, we cannot make outcome
predictions for individuals outside the sample or even for those
in the sample if the fixed effects are estimated imprecisely.



Fixed effects

We can also ignore the individual fixed effects in estimation by
deviating observations from their means:

Y; = Oz—i—DZ,B—l—X(S—FCLZ&-i—l)\t—FEz
Yie = Yi=a+ (Di — D)+ (Xit — Xi)0 + (a; — @) + (e — DA
+ (€t — &)
Yi—Yi=a+ Dy — D)8+ (Xit — Xi)d + (It — DA\ + (i1 — &)

The first equation gives the between-group estimator, which is
like a cross-section estimator, while the final line gives the
within-group estimator. They differ in the variation they use for
estimation and the efficiency of their standard errors (see, e.g.,
Gibbons et al. 2009).



Fixed effects

We can also difference observations by year:
A}/it = Ath,g + AX,té + ALt + Aeit

Typically the X covariates (e.g., sex, race) are time invariant
and treatment, once on, remains on for the remainder of the
sample. Then we can estimate

5 =B [aYpPY) ~E AP

This is the difference-in-difference estimator.



Fixed effects

Notice that this parameter is identified only when countries
change from control to treatment status (i.e., AD; = 1).

Note that this holds for fixed effects generally—the estimate is
identified based upon changes in the treatment status of
individuals (recall that other “fixed” effects cannot be
identified, so too would be treatment if it is unchanging).

But diff-in-diff allows for more flexibility in the unobserved
individual component, so long as it is time invariant.

Both approaches assume that the time trend is the same across
individuals and that the individual effect is the same across
time.



Fixed effects

Let’s say an author is looking at the effect of education on
wages in a panel data set and uses individual and time fixed
effects. Suppose that he reports the results using both wage and
log wage as the outcomes. Which should you believe? Is there
anything wrong with this?



Fixed effects

Let’s say an author is looking at the effect of education on
wages in a panel data set and uses individual and time fixed
effects. Suppose that he reports the results using both wage and
log wage as the outcomes. Which should you believe? Is there
anything wrong with this?

Remember, the identifying assumption is that trends are
constant across time and individuals. If the expectations of the
log wage trends are constant, then the expectations for the
wage level cannot be constant.



The problem

Suppose that we are looking at the social returns to education
by examining the effect of education on incarceration for
individuals across state-years and are ignoring treatment (i.e.,
years of education) selection. We have the following model:

pi=a+ef+al+LA+sip+e

where p; is whether or not the individual is in prison, e; is
education, a; is age fixed effects in three year increments, [; is
year fixed effects, s; is state fixed effects.



The problem

Let’s estimate 8 using subsets of our data based upon ages of

the included individuals:

Table: Effect of education on imprisonment

Whites  Blacks
All ages -0.078**  -(.298**
(0.002)  (0.012)
60 or younger -0.095** -0.364**
(0.002)  (0.014)
45 or younger -0.139%* -0.547**
(0.004)  (0.019)
30 or younger -0.238%* -0.917**
(0.007)  (0.028)




The problem
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Figure: Reduction in criminal propensity due to a marginal increase in
education for whites (solid) and blacks (dashed) across age subsamples



The problem

Notice that the estimate changes with the subpopulation under
examination.



The problem

Notice that the estimate changes with the subpopulation under
examination.

We expect fixed effects to remove or “control for” the influence
of age on the effect of education but that does not happen here!



Assumptions revisited

Let’s use a simpler model to look at the assumptions that we
are making. Let’s eliminate other covariates:

Yi = a+ Be; +&a; + €.
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Assumptions revisited

So what’s the coefficient estimate of 37

5 Covles Yo)Var(ar) — Cov(ay. ¥))Cov(es, )
a Var(e;) Var(a;) — [Cov(e;, a;)]? '
Suppose that we add more individuals with a different age

distribution. We don’t want the composition of our sample to
alter our estimate. So we need Cov(e;, 4;) = 0.



Assumptions revisited

More generally, we need the fixed effects to be uncorrelated
with the covariates. That is, the fixed effect must only be a
level effect. Otherwise, there will still be an age effect
embedded in our estimate.



Assumptions revisited

More generally, we need the fixed effects to be uncorrelated
with the covariates. That is, the fixed effect must only be a
level effect. Otherwise, there will still be an age effect
embedded in our estimate.

How might we achieve this? Have an estimate of 3 for each
fixed effect; i.e., interact 8 with the fixed effects.



Solution

Now let’s interact 3 and the fixed effects:
Yi=a+ef + (e xai)fa1+ai§ +LA+sip+e

where A is the number of age groups.



Solution
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Figure: Reduction in criminal propensity due to a marginal increase in
education across ages
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Solution

Now the parameters are stable when we change age groups. But
what should our baseline be?

We would like the estimates to be the same as if we ran the
regression separately for each age group. Here, by definition,
each estimate of 8 will not depend upon the underlying age
distribution because each estimate is based upon a single age
group. Using a single regression can reduce standard errors,
hence we would like to estimate using one equation.



Solution
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Solution

The semi-saturated interaction model yields almost the same
estimates as separate regressions. Now our estimates are
unaffected by changes in the age distribution of our subsamples.



Diff-in-diff problems

Bertrand et al. examine the standard errors given in most
applications of diff-in-diff. They use a panel from the CPS and
create random state laws and look for an effect of these made
up laws using diff-in-diff.

Percentage of simulations that should yield a spurious, but
statistically significant result if the standard errors are correct:
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Diff-in-diff problems

Bertrand et al. examine the standard errors given in most
applications of diff-in-diff. They use a panel from the CPS and
create random state laws and look for an effect of these made
up laws using diff-in-diff.

Percentage of simulations that should yield a spurious, but
statistically significant result if the standard errors are correct:

5%.
Actual percentage: 67.5%.
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Diff-in-diff problems

Why?

There is strong serial correlation in the errors—e.g.,

E[A€it] = Eler — €ir—1] £ Eleir—1 — €i4—2] = E[A€jp—1]



Achieving correct coverage

How do we fix this?



Achieving correct coverage

How do we fix this?

Parametric modeling of the autocorrelation is not particularly
effective.



Achieving correct coverage

The best way is via a block bootstrap. Suppose you are observing
N countries over time. To do a studentized block bootstrap:

Calculate the full sample naive OLS t-statistic: ¢ = %
B

Draw N country mini-data sets (outcomes, treatment, fixed
effects, and covariates for all observations across time for a
given country) with replacement.

Run OLS and calculate 3, and ¢, = ﬁé}ff.
b

Reject the null hypothesis of 3 = 0 at the 5% level if 95%
of the |t| are less than [¢].



Achieving correct coverage

Other solutions:

m Ignore the time series aspect by taking averages before and
after treatment and creating a two-period panel.

m Assume no cross-sectional heteroskedasticity and a
common autocorrelation process in all countries. Then
allow for intra-state correlations via clusering in the
covariance matrix.

m Allow for cross-sectional heteroskedasticity and varying
autocorrelation processes using a “White-like” standard
error formula.

The latter two do poorly in small N samples.
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