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5. Differences-in-Differences and A Brief Introduction to Panel Data 
 
 
Differences-in-Differences 
 
We have already come across the idea of ‘differencing’ as a way to deal with the 
problem of omitted variables.  In the context of the analysis of experimental data the 
simple comparison of the mean of the outcome in treatment and control groups (the 
‘differences’ estimator) is justified on the grounds that the randomization guarantees 
they should not have any systematic differences in any other pre-treatment variable. 
 
This idea of trying to mimic an experiment suggests trying to find equivalents of 
‘treatment’ and ‘control groups’ in which everything apart from the variable of 
interest (or other things that can be controlled for) are assumed to be the same.  But 
this is often a very difficult claim to make as it is rarely possible to do this perfectly in 
which case observed differences between treatment and control groups may be the 
result of some other omitted factors.  
 
But, even if one might not be prepared to make the assumption that the treatment and 
control groups are the same in every respect apart from the treatment one might be 
prepared to make the assumption that, in the absence of treatment, the unobserved 
differences between treatment and control groups are the same over time. 
 
In this case one could use data on treatment and control group before the treatment to 
estimate the ‘normal’ difference between treatment and control group and then 
compare this with the difference after the receipt of treatment.  Perhaps a graph will 
make the idea clearer 

   
 
If one just used data from the post-treatment period then one would estimate the 
treatment effect as the distance AB – this estimate being based on the assumption that 
the only reason for observing a difference in outcome between treatment and control 
group is the receipt of treatment. 
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In contrast the ‘difference-in-difference’ estimator will take the ‘normal’ difference 
between the treatment and control group as the distance CB and estimate the 
treatment effect as the distance AC.  Note that the validity of this is based on the 
assumption that the ‘trend’ in y is the same in both treatment and control group – if, 
for example, the trend was greater in the treatment group then AC would be an over-
estimate of the treatment group.  One can never test this identifying assumption of the 
same trend in the absence of treatment.  But, if there are more than two observations 
on treatment and control group one can see whether in other periods the assumption of 
a common trend seems to be satisfied - I will give examples of this a bit later. 
 
Let’s introduce some notation.  Define itµ  to be the mean of the outcome in group i at 
time t.  Define i=0 for the control group and i=1 for the treatment group.  Define t=0 
to be a pre-treatment period and t=1 to be the post-treatment period (though only the 
treatment group gets the treatment).   
 
The difference estimator we have discussed so far simply uses the difference in means 
between treatment and control group post-treatment as the estimate of the treatment 
effect i.e. it uses an estimate of ( )11 01µ µ− .  However, this assumes that the treatment 
and control groups have no other differences apart from the treatment, a very strong 
assumption with non-experimental data.    A weaker assumption is that any 
differences in the change in means between treatment and control groups is the result 
of the treatment i.e. to use an estimate of ( ) ( )11 01 10 00µ µ µ µ− − −  as an estimate of the 
treatment effect – this is the differences-in-differences estimator. 
 
How can one estimate this in practice?  One way is to write the D-in-D estimator as 
( ) ( )11 10 01 00µ µ µ µ− − −  - note that the first term is the change in outcome for the 
treatment group and the second term the change in outcome for the control group and 
then simply estimate the model: 
 0 1i i iy Xβ β ε∆ = + +  (5.1) 
where: 
 1 0i i iy y y∆ = −  (5.2) 
Note that this is simply the differences estimator applied to differenced data.   
To implement the difference-in-difference estimator in the form in (5.1) requires data 
on the same individuals in both the pre- and post- periods.  But it might be the case 
that the individuals observed in the two periods are different so that those in the pre-
period who are in the treatment group are observed prior to treatment but we do not 
observe their outcome after the treatment.  If we use t=0 to denote the pre-period and 
t=1 to denote the post-period ity  to denote the outcome for individual i in period t 
then an alternative regression-based estimator that just uses the level of the outcome 
variable is to estimate the model:  
 0 1 2 3 *it i t i t ity X T X Tβ β β β ε= + + + +  (5.3) 
where iX  is a dummy variable taking the value 1 if the individual is in the treatment 
group and 0 if they are in the control group, and tT  is a dummy variable taking the 
value 1 in the post-treatment period and 0 in the pre-treatment period.   
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The D-in-D estimator is going to be the OLS estimate of 3β , the coefficient on the 
interaction between iX  and tT .  Note that this is a dummy variable that takes the 
value one only for the treatment group in the post-treatment period. 
 
From what you have done already you should be able to prove the following 
Proposition. 
 
Proposition 5.1: In the estimation of (5.3) we will have that: 
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 (5.4) 

Proof: An Exercize� 
 
Proposition 5.1 implies that 3β̂  is a consistent estimate of the treatment effect. 
 
Where one has repeated observations on the same individuals one can use both 
estimation methods - (5.1) and (5.3) – on the same data and they will give exactly the 
same estimate of the treatment effect.  However the standard error of that estimate 
will be different in the two cases – the class exercize asks you about the reasons for 
that. 
 
Other Regressors 
You can include other regressors in either (5.1) or (5.3).  Note that if you think it is 
the level of some variable that affects the level of y then you should probably include 
the change in that variables as one of the other regressors if one is estimating the 
model (5.1) i.e. in differenced form.  
 
Differential Trends in Treatment and Control Groups 
The validity of the differences-in-differences estimator is based on the assumption 
that the underlying ‘trends’ in the outcome variable is the same for both treatment and 
control group.  This assumption is never testable and with only two observations one 
can never get any idea of whether it is plausible.  But, with more than two 
observations we can get some idea of its plausibility. 
 
To give an example, consider the paper “Vertical Relationships and Competition in 
Retail Gasoline Markets”, by Justine Hastings, published in the American Economic 
Review, 2004.  She was interested in the effect on retail petrol prices as a result of an 
increase in vertical integration when a chain of independent Californian ‘Thrifty’ 
petrol stations were acquired by ARCO, who also have interests in petrol refining.  
She defined a petrol station as being in the ‘treatment’ group if it was within one mile 
of a Thrifty station (i.e. one can think of it as having a competitor that was a ‘Thrifty’) 
and in the ‘control’ group if it did not.  Because there are likely to be all sorts of 
factors that causes petrol prices to differ across locations, this lends itself to a 
difference-in-difference approach.  The basic conclusions can be summarized in the 
following graph.    
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Before the acquisition, prices in the ‘treatment’ group were, on average 2-3 cents 
lower than in the control group, but after the acquisition they were 2-3 cents higher.  
Hence, the difference-in-difference estimate of the effect of the acquisition is 5 cents. 
 
This picture also presents information on prices not just in the periods immediately 
prior to the acquisition and immediately afterwards but also in other periods.  One can 
see that the trends in prices in treatment and control groups are similar in these other 
periods suggesting that the assumption of common trends is a reasonable one. 
 
Lets also give a famous example where the D-in-D assumption does not seem so 
reasonable.  In “Estimating the Effect of Training Programs on Earnings”, Review of 
Economics and Statistics, 1978, Orley Ashenfelter was interested in estimating the 
effect of government-sponsored training on earnings.  He took a sample of  trainees 
under the Manpower Development and Training Act (MDTA) who started their 
training in the first 3 months of 1964.  Their earnings were tracked both prior, during 
and after training from social security records.  A random sample of the working 
population were used as a comparison group.   
 
The average earnings for white males for the two groups in the years 1959-69 
inclusive are shown in the following Figure. 
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There are several points worth noting 
 
First the earnings of the trainees in 1964 are very low because they were training and 
not working for much of this year – we should not pay much attention to this. 
 
Secondly the trainee and comparison groups are clearly different in some way 
unconnected to training as their earnings both pre- and post-training are different.  
This means that the differences estimator based, say, on 1965 data would be a very 
misleading measure of the impact of training on earnings.  This suggests a 
differences-in-differences approach. 
 
A simple-minded approach would be to use the data from 1963 and 1965 to give a 
difference-in-difference estimate the effect of training on earnings.  However 
inspection of the figures suggests that the earnings of the trainees were rather low not 
just in the training year, 1964, but also in the previous year, 19631.  This is what is 
known as ‘Ashenfelter’s Dip’ – the most likely explanation is that the trainees had a 
bad year that year (e.g. they lost a job) and it was this that caused them to enter 
training in 1964. Because the earnings of the trainees are rather low in 1963 a simple 
differences-in-differences comparison of earnings in 1965 and 1963 is likely to over-
estimate the returns to training.  Ashenfelter then describes a number of ways to deal 
with this problem that I am not going to discuss here – the point is that observations 
on multiple years can be used to shed light on whether the assumption underlying the 
use of differences-in-differences is a good one. 
 
 
 
 
 
 

                                                 
1 Note that they are only slightly lower than 1962 earnings but the usual pattern is for earnings growth 
so it is quite a lot lower than what one might have expected to see. 



 6 

Panel Data 
 
I introduced the D-in-D estimator in a situation where we have two observations on 
treatment and control group.  This is the most rudimentary form of panel data – a 
situation used to describe data where we have more than one observation on the same 
individual so the data set has both a cross-section and a time-series dimension.  Whole 
books have been written about the analysis of panel data which sometimes give the 
impression that the analysis of such data requires very different ideas and estimation 
technologies.  But, while there are differences, the basics are not very different from 
standard regression and I will emphasize those similarities here.  
 
Let’s start with some terminology.  I will denote the number of individuals in the data 
set by N and the number of time periods over which we have information on the 
individual by T.  I will restrict attention to balanced panels in which we have the same 
number of observations on every individual – the analysis of unbalanced panels in 
which we have more observations on some individuals than others is not much more 
difficult but the notation is messier.  Denote by ity the outcome variable for individual 
i in period t – similarly define itx . 
 
In total we will have NT observations.  One difference from normal cross-section data 
is that when we do asymptotics and take the number of observations to infinity, we 
can do this in a number of ways – N can go to infinity with T fixed, T can go to 
infinity with N fixed or both could go to infinity.  It is most common to see the ‘large 
N, fixed T case’ because that is felt to be the best approximation to the situation in 
which researchers in microeconomics find themselves.  But in other parts of the 
subject e.g. macroeconomics, it is common to be in a ‘fixed N, large T’ case for which 
the asymptotics can be very different. 
 
A first approach to estimating models using panel data would be to ignore the panel 
nature of the data and simply estimate: 
 'it it ity xβ ε= +  (5.5) 

OLS estimation of this will lead to a consistent estimate of β  if ( ) 0it itE xε = .  

However, unless STATA is told otherwise, the standard errors will be computed 
under the assumption that the itε  are all independent of each other, something that is 
very unlikely.  For example, it is very likely that the outcome variable for the same 
individual is strongly correlated over time.  There are a number of ways in which one 
might capture this idea – I will discuss one of them. 
 
This is to introduce an individual specific component into (5.5) and write:  
 ' 'it it i ity x Dβ θ ε= + +  (5.6) 
Where θ  is an Nx1 vector and iD  is a vector consisting of zeros everywhere except 
for a 1 in the ith position.  (5.6) will often be written more commonly as:  
 'it it i ity xβ θ ε= + +  (5.7) 
You should recognise these models as very similar to the ones we discussed when 
talking about clustered standard errors – the ‘group’ is now a particular individual. 
 
I will discuss a number of different versions of (5.7) that are commonly estimated: 
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 - the fixed effects model 
 - the random effects model 
 - the between-groups model 
 
The Fixed Effects Model 
The first, the fixed effects model, treats iθ  as a parameter to be estimated (similar to 
β ).  The iθ  is often called the individual fixed effect.  Note that there will often be a 
very large number of these individual fixed effects to be estimated as N can often be 
very large.  Although this may cause computational problems (much more in the past 
than now) there is nothing conceptually difficult about this estimator.  In STATA one 
would write a command like 
 
. xtreg y x, fe i(id) 
 
Where id is a variable indicating the individual observation. 
 
The assumption required for the fixed effect estimator to give a consistent estimate of 
β  is contained in the following Proposition: 
 
Proposition 5.2: The fixed effect estimator of β  in (5.7) will be consistent under the 
following assumptions: 
a. ( ) 0it itE xε =         (5.8) 

b. rank(X,D)=N+K 
Proof: This is simple application of what you should know about the linear regression 
model.� 
 
The intuition for the first condition should be obvious but the second may need more 
explanation.  It amounts to the usual condition that the matrix of regressors must be of 
full rank i.e. we do not have perfect multicollinearity among them.  In the context of 
panel data models the main way in which this will fail when using the fixed effects 
estimator is if some regressor varies only across individuals and not over time for a 
given individual.  The fixed effect estimator cannot provide a consistent estimate of 
the coefficient on such a variable as it will be perfectly multicollinear with the 
individual fixed effect. 
 
One could implement the fixed effects estimator by brute force, generating a dummy 
variable for each observation and then including these dummy variables in the 
regression.  But, in practice this estimator is often estimated in mean deviation form – 
define the mean of y for individual i as: 

 
1

i ity y
T

= �  (5.9) 

And then the deviation of each observation from this mean:  
 it it iy y y= −�      (5.10) 

And similarly for x.  Taking means of (5.7) and taking these means away from (5.7), 
we can write the model as:  
 'it it ity xβ ε= + �� �  (5.11) 
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And the iθ  disappear.  The model in (5.11) can simply be estimated by OLS albeit 
without a constant (as all variables will, by construction, have mean zero).  That this 
will give exactly the same estimate of β  (and the same standard errors) as direct 
estimation of (5.7) follows from the Frisch-Waugh Theorem.  
 
This way of writing the fixed effects estimator is also helpful in showing that the only 
variation that is exploited is variation for the same individual – this is the reason it is 
sometimes called the ‘within-groups’ estimator.  Because this variation is often a 
quite small part of the total variation, fixed effect estimators can often have quite low 
precision. 
 
This is also an alternative way to show that the fixed effects estimator cannot be used 
if one wants to estimate the effect of a regressor that is always constant for the same 
individual e.g. gender or (in many applications) education.  The easiest way to see this 
is to think that the deviation of such a variable from the individual-specific mean will 
always be zero.   
 
For these reasons among others, one often sees another estimator – the random  
effects estimator.   
 
The Random Effects Estimator 
In this case iθ  is viewed not as a parameter to be estimated but as a component in the 
error.   
 
The presence of iθ  in the error now allows the residuals to be correlated for 
individual i though still uncorrelated for different individuals.  You should recognise 
this model as essentially the same as the model we introduced for clustered standard 
errors.  
 
Given the assumption of the independence of the iθ  one could simply estimate the 
model (5.7) by OLS and correct the standard errors (essentially using the same 
formula as used for clustered standard errors).   
 
However, this is not the random effects estimator.  This is the feasible GLS estimator 
which can be written as: 

 ( ) 1
1 1ˆ ˆ ˆ' 'RE X X X yβ

−− −= Ω Ω  (5.12) 

Where Ω̂  is an estimate of the covariance matrix of the residuals.  I am not going to 
go into the detail of how Ω̂  is computed – a book like Wooldridge “Econometric 
Analysis of Cross-Section and Panel Data”, ch10, has a good discussion.   
 
Implementation using STATA is straightforward.  Simply type 
 
. xtreg y x, re i(id) 
 
When will the random effects estimator give a consistent estimate of β ? – the 
assumptions are contained in the following Proposition. 
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Proposition 5.3:  The random effects estimator of β  in (5.7) will be consistent under 
the following assumptions: 
a. ( )1 2, ,...., 0it i i iTE x x xε =       (5.13) 

b. ( )1 2, ,...., 0i i i iTE x x xθ =       (5.14) 

c. ( )1'rank X X k−Ω =  

 
Proof: The random effects estimator is a special case of the feasible GLS estimator 
and the conditions for the consistency of that estimator apply also here.  The two 
conditions (5.13) and (5.14) are needed because the error term has two components. 
 
In comparing Proposition 5.3 with Proposition 5.2 there are a number of features to 
note.  First the assumptions about the exogeneity of the errors required for the 
consistency of the random effects estimator are stronger than those for the consistency 
of the fixed effects estimator.  There are two parts to this.  First, we need to assume 
that the individual component iθ  is uncorrelated with the regressors for individual i, 
something we did not need in the case of the fixed effects estimator.  One way of 
understanding this result is to think of the individual fixed effects being omitted 
variables in the random effects model and this leads to inconsistency unless the 
omitted variables are uncorrelated with the regressors. 
 
The second aspect to the strengthening of the exogeneity conditions is (5.13) – it is no 
longer enough to assume that itε  is uncorrelated with the contemporaneous values of 
the regressors – it must be uncorrelated with the whole history for the individual – 
what is sometimes called strict exogeneity.  The reason this is required is that the 
feasible GLS estimator in (5.12) is exploiting the fact that the residuals for an 
individual are serially correlated and when residuals are serially correlated one needs 
to make stronger exogeneity assumptions..  One could weaken (5.13) to (5.8) (though 
one has to maintain (5.14)) if one estimated the model using OLS though one would 
have to use the cluster option to get correct standard errors. 
 
One might wonder from this discussion why anyone ever uses the random effects 
rather than the fixed effects model – there are two possible reasons. 
 
First, the rank condition for consistent estimation of β  is weaker in the random 
effects case than the fixed effects case – essentially this is because one can estimate 
the effects of variables that do not vary for a given individual. 
 
Secondly, if the assumptions needed for the consistency of the random effects 
estimator are satisfied, it will be more efficient than the fixed effects estimator i.e. the 
standard errors will typically be smaller.  Essentially this is an example of the general 
principle that imposing a true restriction on the data leads to greater efficiency.  
Intuitively this is because the random effects estimator uses all the variation in the 
regressors not just the within-group variation as is the case with the fixed effects 
estimator. 
 
Before we leave the discussion of the random effects estimator, we will discuss 
another useful result.  It can be shown (I am not going to do it but a good place to find 
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more information is Wooldridge “Econometric Analysis of Cross-Section and Panel 
Data”, ch10, pp286-7) that the RE estimator can be thought of as is an OLS regression 
of ( )it it iy y yλ= −�  on ( )it it ix x xλ= −�  where  

 
2

2 21
T
ε

ε θ

σλ
σ σ

= −
+

 (5.15) 

This is sometimes referred to as quasi-time demeaning. If λ  is close to one the 
random and fixed effects estimates will be very similar – inspection of (5.15) shows 
that this is the case when 2 2/T θ ελ σ σ=  is large which is when the number of 
observations per individual is large and when the variance in the individual fixed 
effect is large relative to the variance in ε . 
 
The Between-Groups Estimator 
A third estimate is based on using the individual means as defined in (5.9).  If we take 
individual means of (5.7) we end up with:  
 'i i i iy xβ θ ε= + +  (5.16) 
The between-groups estimator is simply the OLS estimate of this model.  It can be 
implemented in stata using the command: 
 
. xtreg y x, be i(id) 
 
The exogeneity assumptions required for the consistency of the between-groups 
estimator are the same as described for the random effects estimator in Proposition 
5.3.  This is simple to understand as consistency requires no correlation between the 
error in (5.16) and the regressors.   
 
But the between-groups estimator does not exploit the variation in the regressors over 
time for a given individual so is less efficient than the random effects estimator.  And 
for variables that do not vary across individuals e.g.  time trend, the between-groups 
estimator cannot identify the effects.  Hence, one might wonder why the between-
groups estimator is of any interest. 
 
One possible reason comes from thinking about the effects of measurement error in 
panel data models. 
 
Measurement Error in Panel Data Models 
Suppose the true model is: 
 *

0 1it it i ity xβ β θ ε= + + +  (5.17) 

Where x* is the true value of x.  Let’s assume that ( )* *
1,...., 0i i iTE x xθ =  and that 

( )* *
1,...., 0it i iTE x xε =  so that both random and between-groups estimators are 

consistent.  To keep things simple assume x is one-dimensional. 
 
However, x* is only observed with measurement error.  Assume the observed value of 
x is given by: 
 * *

it it it i it itx x u x uη= + = + +  (5.18) 
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Where u is classical measurement error *
ix  is average value of x* for individual i and 

itη  is variation around the true value which is assumed to be uncorrelated with *
ix  and 

u and iid. 
 
We know that this type of measurement error is likely to cause attenuation bias.  The 
important point here is that the extent of attenuation bias is likely to vary between 
fixed, random and between-groups estimators.  The results are contained in the 
following Proposition. 
 
Proposition 5.4:  
a. For the fixed effects model the attenuation bias is given by: 

( )
( ) ( )1 1 1

ˆlim FE Var u
p

Var Var u
β β β

η
− = −

+
    (5.19) 

b. For the between-groups model the attenuation bias is given by:  
( )

( ) ( ) ( )1 1 1
ˆlim

*
BE Var u

p
TVar x Var Var u

β β β
η

− = −
+ +

   (5.20) 

c. For the random-effects model the attenuation bias is given by:  
( )

( ) ( ) ( )1 1 1
ˆlim

*
RE Var u

p
Var x Var Var u

β β β
κ η

− = −
+ +

   (5.21) 

Where: 

 
( )

( )

2 2

2 2

1
1

2
1

T

ε

ε θ

λ σκ
σ σλ λ

−
= = <

+−� �
+� �

� �

 

 
Proof: 
The way to prove this is to invoke the result from our earlier discussion of the 
attenuation bias caused by classical measurement error (summarized in Proposition 
4.2) that the bias is measured by the difference in variance between the variance in the 
true variable and the observed (which will be the variance in the measurement error) 
divided by the observed. 
a. We know from the earlier discussion that the fixed effects estimator can be 
written as the OLS estimate on de-meaned data.  Using (5.18) we have that: 

 * 1 1
i i it itx x u

T T
η= + +� �  (5.22) 

And that:  

 * * 1
i i itx x

T
η= + �  (5.23) 

This means that we have:  

 
1 1

it i it it it itx x u u
T T

η η− = + − −� �  (5.24) 

And that:  

 * * 1
it i it itx x

T
η η− = − �  (5.25) 

Taking variances we have that: 
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 ( ) ( ) ( )1 1
it i

T T
Var x x Var Var u

T T
η− −− = +  (5.26) 

and that:  

 ( ) ( )1
* *it i

T
Var x x Var

T
η−− =  (5.27) 

Using (5.26) and (5.27) gives (5.19) as the standard formula for the attenuation bias. 
 
b. Now consider the attenuation bias in the between-groups estimator.  Using 
(5.22) and (5.23) we have that:  

 ( ) ( ) ( ) ( )1 1
*iVar x Var x Var Var u

T T
η= + +  (5.28) 

And that:  

 ( ) ( ) ( )* 1
*iVar x Var x Var

T
η= +  (5.29) 

Using (5.28) and (5.29) gives (5.20) as the standard formula for the attenuation bias. 
 
c. To derive the attenuation bias for the random effects model is bit messier but we 
will use the earlier result of thinking of this estimator as a quasi-time de-meaned i.e. 
an OLS regression of ( )it it iy y yλ= −�  on ( )it it ix x xλ= −�  where λ  is given in (5.15) 
 
The attenuation bias can be written as: 

 
( )
( ) * *

it is it is
it

it
it is it is it is

Var u u Var u u
Var u T T
Var x Var x x Var x x Var u u

T T T

λ λ

λ λ λ

� � � �− −� � � �
� � � �= =
� � � � � �− − + −� � � � � �
� � � � � �

� �

� � �

�

�
(5.30) 

Now: 

 
( )2

2 2 22
1 1it is u uVar u u

T T T T

λ λλ λ λσ σ
−� �� �� �− = + − = +� �� �� �

� � � � � �
�  (5.31) 

And we have: 

 

( )

( ) ( )2 2 2
*

* * 1 *

2
1 1

it is i it is

x

Var x x Var x
T T

Tη

λ λλ η η

λ λ
λ σ σ

� � � �− = − + −� � � �
� � � �

−� �
= − + +� �

� �

� �
 (5.32) 

Hence the attenuation bias is related to: 
( )

( ) ( ) ( )*
Var u

Var x Var Var uκ η+ +
  (5.33) 

Where: 

 
( )

( )

2 2

2 2

1
1

2
1

T

ε

ε θ

λ σκ
σ σλ λ

−
= = <

+−� �
+� �

� �

 (5.34) 

� 
 
This is all rather complicated and you should not worry about the details.  But you 
should note and understand the following.  First, the fixed effects estimator is going to 
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be more vulnerable to attenuation bias than the random or between-groups estimator.  
One can see this because the Var(x*) does not appear in the denominator of the 
expression for attenuation bias.  The intuition for this is simple: the fixed effects 
estimator does not use the variation in x* across individuals – hence a greater part of 
the variation that remains is measurement error. 
 
Secondly, the random effects estimator has more attenuation bias than the between-
groups estimator as we will have T κ> ,  The intuition is that the averaging in the 
between-groups estimator reduces the importance of measurement error. 
 
One should realize that these results are dependent on the particular form of 
measurement error assumed – things would be very different is measurement error 
was an individual effect that did not vary over time.  But the example does make the 
point that measurement error considerations should be taken into account when 
choosing a panel data estimator. 
 
Time Effects   
The discussion so far has treated the individual and time dimensions of panel data 
very differently.  But one might also expect the outcomes of individuals at a particular 
point in time to be correlated because, for example, of the presence of aggregate 
shocks.  The most common way to do this is to include a set of time effects, one 
dummy variable for each period, in the model.  If one does this with individual fixed 
effects as well the only variation in a regressor one will be exploiting is that after 
taking individual and time effects out which effectively means individual-specific 
time trends. 
 
 
The Fixed Effects Estimator in Difference Form 
When estimating the fixed effect estimator, we got ‘rid’ of the individual fixed effects 
by de-meaning every variable.  But an alternative is to take differences.  Write (5.7) 
for the previous period as: 
 1 1 1'it it i ity xβ θ ε− − −= + +  (5.35) 
And then take this away from (5.7) to give: 
 'it it ity xβ ε∆ = ∆ + ∆  (5.36) 
Note that iθ  have disappeared and one could simply estimate this by OLS.  For this to 
deliver consistent estimates you should find it obvious that one requires x∆  and ε∆  
to be uncorrelated.  This is stronger than the exogeneity assumption required for 
consistency of the fixed effects estimator (see (5.8)) but weaker than that required for 
consistency of the random effects estimator (see (5.13)). 
 
If there are only two periods this will give exactly the same estimates of the 
coefficients as the ‘de-meaned’ method – the exercise asks you to show this.  If there 
are more than two periods then the estimated coefficients will be different. 
 
But, in all cases the reported standard errors will be different.  The reason is one issue 
we have not touched upon so far in panel data that is very important.  We have 
worried abut the fact that observations in the same cross-sectional unit might have 
errors that are correlated but we have not worried about the fact that the errors for a 
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given observation might be correlated over time – this is autocorrelation.  Yet this is 
very likely to be the case.   
 
Indeed the difference in the standard errors for the two methods of computing the 
standard errors comes down to this difference.   
 
In the ‘levels’ version the standard errors will be computed using the assumption that: 
 ( ), 0,it isCov t sε ε = ≠  (5.37) 
whereas in the ‘difference’ version they will assume that:  

 ( ), 0,it isCov t sε ε∆ ∆ = ≠    (5.38)    
These are inconsistent as can be seen if we take s=t-1.  Then the covariance on the 
left-hand side of (5.38) can be written as:  

( ) ( ) ( ) ( ) ( )1 1 2 1 2 1, , , ,it it it it it it it it itCov Cov Cov Cov Varε ε ε ε ε ε ε ε ε− − − − − −∆ ∆ = − + − (5.39) 
If (5.37) is satisfied then we will have that:  

( ) ( )1 1, 0it it itCov Varε ε ε− −∆ ∆ = − ≠ (5.40) 
i.e. (5.38) cannot be true.  The converse can also be shown – if (5.38) is satisfied then 
(5.37) cannot be.  Which is the ‘correct’ estimate of the standard error depends on 
which assumption about the errors is correct though it is possible that neither is and 
one would want to compute the standard errors in some other way.  
 
To think about these issues we are going to drop the ‘cross-section’ aspect of our data 
and just focus on the time series.  Although we have arrived at a discussion of time 
series from a discussion of the analysis of cross-sectional and panel data, one should 
not think of this as anything other than an arbitrary route through econometrics.  One 
could just as easily have started from time series and then introduced the other ideas. 
 


