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General Motivation

Two or more groups, two or more periods. In some periods

some groups are exposed to the treatment.

Here mainly two-group/two-period case:

Gi ∈ {0,1} (group indicator), Ti ∈ {0,1} (time indicator)

Treatment indicator:

Wi =

{
1 if Gi = 1, Ti = 1
0 otherwise.

Data are from repeated cross-sections, not panels. (still works

with panels, but other things are possible, e.g., assuming un-

confoundedness)
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Examples I (David Card, 1990)

Muriel boatlift caused increase in low-educated labor supply in

Miami.

Card compares labor market outcomes in Miami before and

after the boatlift with changes in labor market of comparable

cities.

Groups: individuals in Miami vs individuals in other cities

Treatment: Inflow of labor
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Examples II (Eissa and Liebman, 1996)

Eissa and Liebam evaluate a tax reform. Only some groups are

affected by tax change. They compare changes in outcomes

for group affected by tax reform with changes in outcomes for

groups not affected by reform.

Groups: individual affected by reform (defined partly by spousal

income)

Treatment: change in tax rate
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Examples III (Jin and Leslie, 2001)

Jin and Leslie evaluate effect of information disclosure law on

restaurant profitability and sales: restaurants in LA county

need to post hygiene score cards in the window.

Groups: restaurants in LA County versus restaurants in neigh-

bouring counties.

Treatment: information disclosure requirement
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Example IV: (Meyer, Viscusi, Durbin 1995)

MVD evaluate effect of increase in disability payments. This
was affected through change in maximum disability payments.
This applies only to workers with high earnings (who would
otherwise hit the maximum), not to low earners.

Groups: high and low earners

Treatment: change in disab. payment

Mean Duration in Levels Mean Dur in Logs

T = 0 T = 1 T = 0 T = 1

G = 0 6.27 7.03 1.27 1.33
G = 1 11.18 12.89 1.38 1.58
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Standard DID

Unconfoundedness would suggest comparing the (G = 1, T =
1) and (G = 1, T = 0) data, or the (G = 1, T = 1) and (G =
0, T = 1) data.

DID suggests comparing the (G = 1, T = 1) and (G = 0, T =
1), but adjusting for differences we see in the initial, pre-
program, period between the (G = 1, T = 0) and (G = 0, T =
0).
Standard DID:

Yi = β0 + β1 · Gi + β2 · Ti + τ · Gi · Ti + εi,

with ε independent of G and T , leading to

τ = E[Y |G = 1, T = 1] − E[Y |G = 0, T = 1]

− (E[Y |G = 1, T = 0] − E[Y |G = 0, T = 0]) .
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Problems with Standard DID

1. Functional form dependent:

MVD data in levels: 0.951 (s.e. 1.26)

MVD data in logs: 0.191 (s.e. 0.068)

Different models, different assumptions.

2. What if heterogeneity in effect of treatment?

3. What is effect for group that was not treated?
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Alternative Approach, Athey-Imbens, 2004

Model outcome under control treatment:

Y (0) = h(U, T )

Outcome under control treatment depends on time period T ,

and on unobserved individual component U .

Assumptions:

1. U ⊥ T |G (distribution of U does not vary over time within a

group

2. h(u, t) is monotone in u.

3. The support of U |G = 1 is a subset of the support of

U |G = 0.
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Comparison with Standard DID Model

Standard DID also assumes:

1. (additivity) U − E[h(U, T )|G] ⊥ G

2. (single index) h(u, t) = φ(u + δ · t)
3. (identity function) φ(a) = a

All assumptions are difficult to justify here. They make the

results functional form dependent.
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Identification of the Distribution of Y N |G = 1, T = 1

FY (w),gt(y) is the cumulative distribution function of Y (w) given

T = t, G = g.

FY,gt(y) is the cumulative distribution function of Y = WY (1)+

(1 − W )Y (0) given T = t, G = g.

Given the three assumptions:

FY (0),11(y) = FY,10(F
−1
Y,00(FY,01(y))).
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Figure 1: Illustration of Transformations



Interpretation

Take a person in the first period treatment group, with out-

come y. What would happen to that person in the second

period without the exposure to the treatment.

1. Look at someone with the same value of y in the control

group first period. This person must have had the same u.

2. Someone with that value of u in the second period control

group would have an outcome y′ at the same quantile (y′ =

F01
01 (F00(y)).)

3. So, outcome distribution Y N
11 ∼ F−1

01 (F00(Y10))
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Interpretation of Transformation

So, under this model

Y N
11 ∼ k(Y10),

where

k(y) = F−1
01 (F00(y)).

Standard DID model:

kDID(y) = y + E[Y01] − E[Y00].
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Advantages Relative to Standard DID Model

• Standard DID depends on functional form: it can hold in

levels or logs, but not in both at the same time.

This model is invariant to monotone transformations. If

assumptions 1-3 hold for y, than they hold for z = g(y) if

g(·) is strictly monotone. The function h(u, t) changes to

h′(u, t) = g(h(u, t)), but this still satisfies all assumptions.

• The model is just identified (nothing testable).
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Asymptotic Properties

τ̂ =
1

N

N11∑

i=1

Y11,i −
N10∑

i=1

F̂01
01 (F̂00(Y10,i))

Then: (i) τ̂ − τ = Op

(
N−1/2

)
,

and (ii)
√

N (τ̂ − τ)
d−→ N (0, V p/α00 + V q/α01 + V r/α10 + V s/α11) .

An initial step in the argument is to linearize the estimator by
showing that

τ̂ = τ +
1

N00

N00∑

i=1

p(Y00,i) +
1

N01

N01∑

i=1

q(Y01,i)

+
1

N10

N10∑

i=1

r(Y10,i) +
1

N11

N11∑

i=1

s(Y11,i) + op

(
N−1/2

)
.
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Effect of Treatment on Control Group

Model: Y (1) = h1(U, T ),

1. U ⊥ T |G (dist. of U does not vary over time within group)

2. h1(u, t) is monotone in u.

3. The supp of U |G = 0 is a subset of the supp of U |G = 1.

Then

FY (1),01(y) = FY,00(F
−1
Y,10(FY,11(y))).
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Binary Case

In the binary case monotonicity is not an attractive assumption:

U ∈ {0,1}, then Pr(Y01 = 1) = Pr(Y00 = 1), or no change over

time in control group. This is directly testable.

Standard DID model is not attractive either:

E[Y (0)|G = 1, T = 1] = E[Y (0)|G = 1, T = 0]

+(E[Y (0)|G = 0, T = 1] − E[Y (0)|G = 0, T = 0])

Suppose E[Y00] = 0.8, E[Y01] = 0.2, E[Y10] = 0.5. Then

E[Y (0)|G = 1, T = 1)] = −0.1 which is impossible.
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Modification for Binary (and Discrete) Data

1. h(u, t) is weakly monotone in u

2. U |G is continuous

3. U ⊥ G|Y, T (conditional independence)

The last assumption is key. It is trivially true in the case with

h(u, t) monotone in u because U and Y are one-to-one. With

weak monotonicity it has content.

Without this assumption we can only infer bounds for τ .
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Result for Binary Case

E[Y N
11] =





E[Y01]
E[Y00]

E[Y10] if E[Y01] ≤ E[Y00]

1 − 1−E[Y01]
1−E[Y00]

(1 − E[Y10]) if E[Y01] > E[Y00]

Without the conditional independence assumption:

τ ∈





[E[Y I
11] − 1, E[Y I

11] − E[Y10]] if E[Y01] > E[Y00]
E[Y I

11] − E[Y10] if E[Y01] = E[Y00]
[E[Y I

11] − E[Y10], E[Y I
11]] if E[Y01] < E[Y00].
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Extension to General Discrete Case

The results for the binary case can be extended to the general

discrete case. This includes lower/upper bound, and condi-

tional independence case.

With many points of support all three discrete estimators will

get close to continuous case.
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Figure 2: Bounds and the Conditional Independence Assumption in the Discrete Model
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Estimates for Meyer-Viscusi-Durbin Data

percentiles
mean (s.e.) mean (s.e.) 25th 50th 75th 90th
weeks logs

DID-level 0.95 (1.27) – – -0.77 0.23 1.23 5.23
DID-logs 1.63 (1.26) 0.19 (0.07) -0.02 0.97 1.94 5.87
CIC ci 0.39 (1.57) 0.18 (0.07) 0.00 1.00 2.00 5.00
CIC lower 0.07 (1.60) 0.14 (0.11) 0.00 1.00 1.00 4.00
CIC upper 1.08 (1.64) 0.58 (0.14) 1.00 2.00 2.00 5.00
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