
Causality: Some Statistical Aspects

D. R. Cox

Journal of the Royal Statistical Society. Series A (Statistics in Society), Vol. 155, No. 2. (1992),
pp. 291-301.

Stable URL:

http://links.jstor.org/sici?sici=0964-1998%281992%29155%3A2%3C291%3ACSSA%3E2.0.CO%3B2-O

Journal of the Royal Statistical Society. Series A (Statistics in Society) is currently published by Royal Statistical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/rss.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Apr 2 14:32:23 2008

http://links.jstor.org/sici?sici=0964-1998%281992%29155%3A2%3C291%3ACSSA%3E2.0.CO%3B2-O
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/rss.html


J. R. Statist. Soc. A (1992) 
155, Part 2, pp. 291-301 

Causality: Some Statistical Aspects 

By D. R. COXt 

Nuffield College, Oxford, UK 

[Received May 19911 

SUMMARY 
After some brief historical comments on statistical aspects of causality two current views are 
outlined and their limitations sketched. One definition is that causality is a statistical 
association that cannot be explained away by confounding variables and the other is based 
on a link with notions in the design of experiments. The importance of underlying processes 
or mechanisms is stressed. Implications for empirical statistical analysis are discussed. 
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1. INTRODUCTION 

There is a very extensive philosophical literature on causality, some of it rather 
negative in tone. The object of the present paper is to review recent more statistical 
thinking on the topic, taking the viewpoint that there is certainly some sense in which 
causality is central to the scientist's efforts to understand the real world. The 
implications will be pointed out for statistical analysis, especially for the empirical 
study of dependences via regression analysis, using that term in a broad sense to 
include logistic regression, regression analysis of survival data, etc. 

In Section 2 a brief historical review is given of some statistical work on causality. 
Section 3 discusses attempts to define causality as statistical association which cannot 
be explained away via confounding variables, stressing both the value and the 
limitations of that approach. Section 4 outlines a way in which notions from 
experimental design are applied in an extended context. The remainder of the paper 
deals with some miscellaneous issues connected with applied statistical work. For a 
general introduction to the topic, see the encyclopaedia article of Barnard (1982). 

2. SOME HISTORICAL COMMENTS 

Yule (1903) (see also Stuart (1971)) made a careful analysis of the relations between 
several variables, both discrete and continuous, developed a notation for partial and 
total regression coefficients which is again coming into favour, introduced the term 
nonsense or spurious correlation and discussed what is now often called Simpson's 
paradox, i.e. the notion that there can marginally be a positive association between 
two binary variables C and B, even though conditional on a third variable A the 
association between C and B may be negative (at both levels of A) .  These issues 
underlie much later discussion especially that summarized in Section 3. 
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Bradford Hill (1937, 1965) discussed the circumstances under which an effect 
obtained in an observational study is relatively likely to have a causal interpretation. 
Such conditions include that the effect 

(a) 	 is large, 
(b) 	 is reproduced in independent studies, 
(c) 	 shows a monotone relation with 'dose', 
(d) 	 corresponds to a 'natural experiment', 
(e) 	 behaves appropriately when the potential cause is applied, removed and then 

reinstated, 
(f) 	 is consistent with subject-matter knowledge or 
(g) 	 is, for example, predicted by reasonably well-established theory. 

Cochran in a series of papers (in particular Cochran (1965, 1972)) described in 
largely qualitative terms the design and analysis of observational studies and in 
particular discussed what is often called Fisher's dictum. Cochran reports that R. A. 
Fisher, asked at a conference for his comments on the step from association to 
causation, replied: make your theories elaborate. We return to this below. 

The work reviewed above provides important qualitative background to 
discussions of causality. We turn now to more specific developments beginning with 
two rather contrasting definitions. In some ways it is remarkable how relatively little 
causality is mentioned in the general statistical literature, except in a social science 
context, perhaps because causality is regarded as an essentially subject-matter issue. If 
there is a general statistical view on the matter, it is presumably that causal inference is 
possible from randomized experiments and that if attempted from observational 
studies these had better be longitudinal rather than cross-sectional. 

3. CAUSALITY VIA ASSOCIATION 

One definition of causality used in the philosophical literature requires that, if Cis 
to be the cause of an effect E, then Cmust happen if Eis to be observed. This is clearly 
inappropriate in, for example, most epidemiological contexts, settings where some 
probabilistic notion seems essential, involving usually also some idea of multiple 
causes. Thus smoking is neither a necessary nor a sufficient condition for lung cancer. 

The first such notion that we shall discuss is essentially that causation is a statistical 
association that cannot be explained as in fact a dependence on other features. This 
can be formalized in various ways and arises in particular in the work of Good, 
Suppes, Wiener and Granger, the last two in a time series context, in the last 
specifically econometric; for references on these and other sources, see the important 
review by Holland (1986). 

For the simplest form of the above notion, let C and Ebe binary events and B be a 
third variable or collection of variables. We may say that Cis a candidate cause of Eif 
C and E are positively associated, i.e. if 

P(E I C) > P(E 1 not C). 

We can regard the cause as spurious if B explains the association in that 

P (E  I C and B) = P(E  I not C, and B), 
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i.e. if E and Care conditionally independent given B. The cause is confirmed if Cis a 
candidate cause that is not spurious, i.e. which cannot be so explained via any B. 

More generally a variable xc is a cause of the response yEif it occurs in all regression 
equations for y, whatever other variables x~ are included. This is an important notion 
and corresponds closely to common statistical practice. Nevertheless the use of the 
word causal seems unwise, because of a considerable gap between this and common 
scientific interpretation. Apart from questions of terminology, there are at least two 
major qualifications to be made. 

First in any particular application B is restricted to features observed. To some 
extent this point is alleviated by the notion of propensity score (Rosenbaum and 
Rubin, 1983; Rosenbaum, 1984a, b, 1987) in which, in effect, the properties are 
judged that an unobserved variable would need to provide an explanation of the effect 
under study. 

Secondly and crucially it is necessary to restrict the variables C, E and B, not least to 
express the essential asymmetry between cause and effect. There are various ways in 
which this can be done. The simplest is to insist that Boccurs before Cin time which in 
turn occurs before E. We leave aside the difficult issue of simultaneous causality, 
noting only its central role in discussions connected with the bases of quantum theory. 
The strict temporal ordering condition serves both to establish a clear asymmetry 
between cause and effect and also to ensure that a causal effect of say Cis not removed 
by some subsequent B that was itself a consequence of C. Some such restriction on the 
allowable B is clearly essential. 

Sometimes spatial proximity can be used as a basis for ordering effects instead of 
temporal ordering. 

A third possibility is that specific subject-matter knowledge is used to establish a 
presumed causal ordering of variables. For example, in a psychological study 
measurements of trait and state may be available for properties such as anxiety and it 
would be natural to treat trait as prior to state. Again in a study of hypertensive 
patients data might be available for each patient on biochemical variables, on blood 
pressure, on performance in some 'objective' physical exercise test and on subjective 
self-assessed well-being (quality of life). We might then treat those four kinds of 
variable as in the stated order causally, although clearly non-trivial assumptions are 
involved in so doing. 

These approaches all involve the injection of external information to assess the 
direction of causality. Another approach is to use simplicity of structure to achieve 
that end. This is the approach of Pearl and Verma (1991); they have developed a 
powerful computer algorithm to examine the conditional independence structures 
among a large number of binary variables to find the simplest graph-theoretic repre- 
sentation of the conditional independences involved, thereby in particular making 
causal inference in their sense possible from cross-sectional data without a priori 
assumptions about the nature of the variables. 

As a simpler although different example of the same kind of argument, suppose 
that in several independent studies each with a bivariate normal distribution of two 
variables i the regression lines of y on x are identical throughout whereas the 
regression lines of xon y, although parallel, require a separate intercept for each set of 
data. The dependence of y on xis thus simpler than that of x on y and might be claimed 
to show that y causes x rather than vice versa. 

An even more extreme example is provided by some simple non-linear systems 
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which are deterministic in one direction of time and stochastic in time reversed 
(Rosenblatt, 1980) and which might, if the simplicity argument were to be applied, be 
claimed to show the direction of the 'arrow of time'. The view taken here is that, 
although it may be of considerable interest to establish these simplicities of structure, 
use of the word causal is unwise for the reason stated above. 

There are several morals for statistical analysis. First we should aim for models that 
are at least potentially causal. For this, account should be taken of the nature of 
variables as explanatory, intermediate response variables (possibly at several stages) 
and response variables, i.e. to recognize relations between variables of the type 
discussed above whenever it is reasonable on subject-matter grounds to take these 
relations as at least a provisional basis for interpretation. 

Further it seems reasonable that models should be specified in a way that would 
allow direct computer simulation of data, the argument being that if we cannot 
simulate data directly from the model how can nature have used this form to generate 
the data under analysis? This, for example, precludes the use of y2 as an explanatory 
variable for y1 if at the same time y, is an explanatory variable for y2. Or again, 
specification of a multivariate normal set of variables by their mean and covariance 
matrix is, from this particular viewpoint, unacceptable. Of course, in both cases 
mathematically equivalent acceptable specifications are possible. The point, 
however, is that, if the model equations themselves and the individual coefficients in 
them are to be given substantive interpretations, then different mathematically 
equivalent specifications are not scientifically equivalent. There is an extensive 
discussion of alternative formulations of models in the econometrics literature. 

Care in the simultaneous use of variables of the same status arises even when these 
are purely explanatory, i.e. at the same conceptual level, especially when the variables 
are of very similar nature. For example, suppose that log-systolic and log-diastolic 
blood pressures are used as explanatory variables in a regression equation, say for 
survival time. Then the regression coefficient on, say, log-diastolic blood pressure 
gives the effect of a unit increase in log-diastolic pressure with systolic pressure held 
fixed. This interpretation is, however, very artificial because of the intimate relation 
(not the same as high correlation) between the two components. 

We may perhaps re-express the equation in derived explanatory variables, such as 
the average and difference of the log-systolic and log-diastolic pressures, hoping that 
way to capture all or most of the dependence on the first and easily interpreted 
component. If this does not work we may have to abandon a meaningful inter- 
pretation of the individual coefficients and concentrate on the combined dependence. 

In other contexts, it may be that the ratio of regression coefficients is more easily 
interpreted than the regression coefficients themselves. For example, the ratio of the 
regression coefficients on x2 and on xl specifies the increase necessary in xl to achieve 
the same effect as a unit increase in x2, in each case all other variables being fixed. This 
may sometimes be more directly interpretable than the regression coefficients them- 
selves and is in any case relatively insensitive to the detailed specification of the model. 
An example (Solomon, 1984; Struthers and Kalbfleisch, 1986) is that fitting a propor- 
tional hazards regression model to survival data when an accelerated life regression 
model is appropriate gives virtually proportional regression coefficients when the 
same explanatory variables are used, as Gore et a/. (1984) had found empirically in a 
study of survival of breast cancer patients, taking as explanatory variables tumour 
size, menopausal state, etc. This suggests that ratios of coefficients may sometimes be 
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a valuable guide in trying to bridge the gap between empirical studies of the kind just 
described and causal processes. 

Aims of the study of associations include the obtaining of bases for empirical pre- 
diction, an aspect not discussed here, and the isolation of conditional independence 
structures which may prove the basis for developing causal explanations. 

4. CAUSALITY VIA QUASI-EXPERIMENTS 

We now turn to a different approach to causality based on ideas from the theory of 
randomized experimental design. See Rubin (1974) and for an introductory account 
and discussion see Holland (1986). 

Suppose initially that we have a single potential causal variable C, sometimes called 
a treatment or quasi-treatment, which can take one of two forms 0 and 1, say, and that 
there are individuals or units each of whom experiences one of the forms of C 
followed by the measurement of a response y. To begin with, we suppose y to be a 
continuous variable. Now suppose that conceptually any unit might have received 
either level of C and that it is reasonable to assume unit-treatment additivity, i.e. the 
response that would be observed on any unit under C =  1 differs by a constant A from 
the response that would be observed on that same unit were it to receive C=O. 
Especially if C =  0 represents a control, it is convenient to call the hypothetical 
response at C =  0 the base-line response. We can then call A, the difference between 
the response at C =  1 and the base-line response, the causal effect of changing C from 
0 to 1. For some of the considerations in a comparable discussion for binary 
responses, see Copas (1973). There are many generalizations, such as to C with more 
than two levels or having factorial structure, the incorporation of explanatory 
variables and multivariate responses, and so on, but the essential points are best 
illustrated in the simplest situation as will be done in the following. 

The assumption of unit-treatment additivity is not directly checkable, i.e. it 
involves non-observables, because it is of the essence that the response can be 
observed on any unit only for one level of C. The estimation of A involves the 
comparison of different units; note, for example, that in a crossover design a unit is a 
combination of a physical individual (patient or experimental animal etc.) and a time 
slot. There are thus two rather different initial issues. Is the assumption of 
unit-treatment additivity reasonable and, even if it is, can A be estimated from the 
data available? 

Over the first issue, although the unit-treatment additivity is not directly check- 
able, it is at least partly so. If suitable explanatory variables are available on each 
individual, a check for treatment by explanatory variable interaction can be carried 
out. Even without such additional variables, under unit-treatment additivity, the 
variance of response should be the same in the two treatment arms and indeed the 
distribution functions should be translations of one another. If that condition is not 
satisfied, a non-linear transformation of the response will be called for if 
unit-treatment additivity is to be achieved, although if the distribution functions 
intersect the failure of the assumption is not correctable by transformation. 

The more difficult aspect concerns the estimation of A. By a familiar argument, in a 
randomized trial in which the allocation of units to treatments is under the investi- 
gator's control and involves appropriate randomization, the two groups of 
individuals receiving different treatments differ only by the accidents of random 
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sampling and the associated uncertainty in the standard estimate of A can be 
calculated. There is a very powerful qualitative argument for randomization as a 
device for achieving initial comparability of groups of individuals to be treated 
differently. 

If the allocation of individuals to treatments is under the investigator's control and 
is done in a clearly defined way not involving randomization, then again estimation of 
A is possible, a general subject-matter judgment being necessary that the allocation 
procedure is equivalent to randomization or at least involves no serious bias. The 
standard probability calculations do not cover this other than by assumption. In an 
observational study, however, the process determining treatment allocation will 
typically be largely or wholly unknown. Some strong and largely untestable 
assumption is therefore necessary if a parameter representing a causal effect is to be 
estimated, so that the uncertainty in any final estimate exceeds, often substantially, 
that assessed by the usual statistical calculations. More precisely, the usual procedure 
is to adjust the comparison between treatment arms for imbalance on explanatory 
variables x and then the assumption involved is that treatment allocation is condi- 
tionally independent of base-line response given x. Essentially this amounts to saying 
that there is no further explanatory variable, possibly unobserved, which differs 
appreciably between treatment arms and which is residually correlated with the base- 
line response after adjustment for x. When this condition is satisfied to a reasonable 
approximation, estimation of the causal parameter A is possible. 

In this discussion, only those variables which in the context in question can con- 
ceptually be manipulated are eligible to represent causes, i.e. it must make sense, 
always in the context in question, that for any individual the causal variable might 
have been different from the value actually taken. Thus in most situations gender is 
not a causal variable but rather an intrinsic property of the individual. The study of 
sex-change operations and of possible discriminatory employment practices would be 
exceptions. Again, the passage of time as such is not a causal variable. For example, in 
the study of the stress-strain-time relation in textile fibres, to say what would have 
been the response (strain) at the end of a period of time if time had not passed is 
meaningless; to ask what the response would have been after that time if certain 
processes of molecular rearrangement had been inhibited would, however, be 
sensible, i.e. processes going on in time can in this sense be regarded as causal. 

Often it clarifies the interpretation in studies of dependence to classify the 
explanatory variables as 

(a) 	 treatments (or quasi-treatments), i.e. as potentially causal, 
(b) 	 intrinsic properties of the individuals under study or 
(c) 	 non-specific, representing blocks, replicates, centres, countries, etc. likely to 

correspond to differences but typically having many different identifying 
features. 

When intermediate response variables are used as explanatory variables the same 
classification may be useful. The terminology used in making such distinctions varies 
quite widely. 

The classification depends strongly on the context. For example, in a randomized 
trial comparing alternative treatments for hypertension, response being the 
occurrence of a critical event in say 2 years, blood pressure at entry would be an 
intrinsic variable characterizing individual patients and possibly as a basis for study of 
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treatment x patient interaction. In-study blood pressure would be an intermediate 
response variable and might also be regarded as a quasi-treatment pointing towards 
but not providing a definitive answer to the role of blood pressure control in avoiding 
critical events, i.e. it would aim to answer questions about the possible effect on the 
occurrence of a critical event of an individual's blood pressure being changed. 

The definition of causality in this section, with its interventionist emphasis, seems 
to capture a deeper notion than that outlined in Section 3.  Nevertheless there remains 
a major limitation and a major lack of clarity. 

The limitation concerns the absence of an explicit notion of an underlying process 
or understanding at an observational level that is deeper than that involved in the data 
under immediate analysis. This seems to be an important part of the general scientific 
notion of causality. It is not that such an explanation will be 'ultimate' but rather that 
it should relate the phenomenon under study with some knowledge at a different level, 
for example an epidemiological finding to some biochemical or immunological 
process. It is at least in part this thought that presumably lies behind Fisher's dictum 
mentioned in Section 2. 

The lack of clarity arises from the need to specify what is being held constant when 
the hypothetical change in causal variable is made. This is, of course, directly con- 
nected with the question of what variables are included in a regression equation in 
addition to the variable representing the potential causal variable. Several choices 
may be needed. For example, if the causal variable represents some aspect of alcohol 
intake, the question of food changes when the alcohol intake changes is clearly 
relevant. In a randomized clinical trial the usual 'intention to treat' analysis assesses 
the effect of one treatment compared with another, where the imposition of a 
treatment carries with it any other changes that the experimental set-up allows. For 
example, if supplementary medication is not controlled and is very different in the 
different treatment arms, then the causal effect of a treatment includes the con- 
sequences of the supplementary medication associated with that treatment. The issue 
of what is allowed to vary as treatment varies can be crucial to the interpretation. 

In summary, we have discussed in a little detail two definitions of causality. The 
first, that developed in Section 3 ,  is very useful as a guide to the kind of empirical 
model that is suitable for summarizing especially of observational studies; it has, 
however, been argued that it is too far from the underlying explanation for the use of 
the word causal to be wise. The second based on a notion of hypothetical intervention 
is closer to the physical notion of causality. My preference, however, is to restrict the 
term to situations where some explanation in terms of a not totally hypothetical 
underlying process or mechanism is available. As noted above, the need to specify 
precisely the nature of the intervention contemplated is, in any case, often of key 
importance. 

5 .  SOME MISCELLANEOUS ISSUES 

The previous sections have been devoted to rather general issues and to their 
immediate statistical implications. We now turn to some more detailed matters. 

5 . 1 .  Latent Variables 
It is a consequence of the wish to establish a link with underlying mechanisms that it 

may often be necessary to invoke latent explanatory variables, i.e. variables that are 
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not directly observed. These are of broadly two types: variables measured with an 
error that is so large that a non-trivial distortion of the dependence on the underlying 
notional true value is introduced and variables that are constructs from several 
sources and in the data under analysis not observable even with error. 

An allowance for measurement error is a technical statistical issue that is relatively 
straightforward for standard linear models provided that information is available 
about the covariance matrix of the errors. In other situations similar corrections are 
more complicated; see, for example, Armstrong (1985), Stefanski and Carroll (1987) 
and the brief discussion by Cox and Snell (1989). 

In all cases two rather different effects are involved. Individual regression coeffi- 
cients are attenuated and, more seriously for qualitative interpretation, the relative 
importance of different explanatory variables may be distorted, the importance of 
variables measured with relatively high error being downgraded in favour of 
correlated variables with relatively smaller error. Dr Valerie Beral has pointed out a 
possible instance of this. In some of the early work on Aids, numbers of sexual 
partners and the use of 'poppers' (amyl nitrite pills) were used as explanatory 
variables for the progression to Aids and the second variable appeared, presumably 
wrongly, as the predominant one in a logistic regression analysis (Vandenbroucke and 
Pardoel, 1989). It is conceivable that this effect was obtained because of very different 
measurement errors in the two variables. 

The second type of latent variable is a construct usually from a linear combination 
of observed variables with unknown coefficients plus an error term. Such variables 
are then considered the basis for relationships that are usually linear; see, for example, 
Joreskog (1977). Such models are sometimes called causal, but it should be clear that 
they are causal only by explicit prior assumption and do not establish causality 
empirically from data. Care is also needed in the interpretation of the coefficients in 
the derived latent variables in that they are not in general regression coefficients. 

Another important role for latent variables is in the provision of hypothetical 
processes for the explanation of particular patterns of conditional independence that 
may be observed empirically but which have no simple direct interpretation in terms 
of recursive systems of regression relations (Wermuth and Cox, 1991). 

5 .2 .  Hierarchical Variation 
In some situations, observational and experimental, variation is encountered at 

several levels. For example, in an epidemiological, sociological or educational study, 
data might be obtained on individuals, grouped by areas within countries and by 
countries. The relation between response and explanatory variables might then be 
different between individuals within areas, between areas within countries and 
between countries. This raises two different issues. The first is that in the presence of 
hierarchical error structure, typically unbalanced, an efficient estimation of 
regression parameters and variance components requires special techniques and 
software and raises technical problems if the analysis is not essentially based on 
normal theory. Note, however, that simpler methods in which in effect each stratum 
of error is given a separate unweighted analysis will often give insight and be a 
valuable starting point for a notionally more efficient analysis. 

A more important matter, however, is that it will quite often be wise to see whether 
the regression coefficient on a particular explanatory variable takes the same value in 
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the various strata. There can be many reasons why differences in regression 
coefficient between the strata might arise, e.g. because of unmeasured explanatory 
variables operating at the higher levels or because measurement errors in the 
explanatory variables could have different effects on the different variables at 
different levels. Other things being equal, covariation at a low hierarchical level is 
most likely to be linked to a causal process. The overinterpretation of a regression at a 
high hierarchical level is sometimes called the ecological fallacy. 

5.3. Causality in Randomized Experiments 
If the ideal conditions of randomization theory are closely realized in practice then 

the causal effect of treatments in the sense of Section 4 can be estimated giving what in 
clinical trial terminology is called the analysis by intention to treat. This is a powerful 
argument in favour of randomization. However, the causal consequences of a 
treatment arm stem from all the effects of being allocated to that arm. Thus if, in a 
clinical trial comparing two treatments, compliance is very poor in a new treatment it 
may well be required to separate the effect of non-compliance from the genuine 
biological effect of the new treatment but, because non-compliance is a non-
controlled intermediate response that is unlikely to be independent of the main end 
response of the clinical trial, assumptions will be involved that are very similar to 
those involved in analysing observational studies. See, for example, Efron and 
Feldman (1 99 1). 

5.4. Generalizability 
Somewhat connected with the issue of causality is that of the generalization of 

conclusions especially in a somewhat applied context. Yates and Cochran (1938), in a 
thorough examination of the principles of combining evidence from several studies, 
stressed the importance of independent replication, in their case of replication across 
sites and years. This emphasizes the significance at an empirical level of establishing 
stability of effect across studies and more broadly of, if possible, showing the absence 
of an important interaction with intrinsic explanatory variables as a basis for 
generalization; if important non-removable interactions are found these may 
establish explicit limits on some otherwise superficially broadly applicable conclusion 
or recommendation. Even if homogeneity is established across replicate studies, it is 
possible that the effect of interest is very heterogeneous with respect to an important 
but unobserved explanatory variable. Thus it is possible that a treatment effect shows 
no interaction with observed intrinsic variables and is stable across replicate studies, 
yet has a strong interaction with an unobserved explanatory variable. If further that 
variable has a distribution in a target population that is very different from that in the 
data, then seriously misleading conclusions will result. 

The relevance of causal processes is that, if one such is reasonably well understood 
for the situation under study, it is likely to give a clearer understanding of when 
conclusions from a study or set of studies can be applied more widely. 

5.5. Role of Regression Analysis 
In the statistical discussion above, primary emphasis has been placed on regression 

analysis in the study of the dependence of one or more response variables on 
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explanatory variables. This includes the use of chains of relations in which certain 
variables enter first as (intermediate) response variables and then as explanatory 
variables for the final responses. The object of such analyses is broadly to examine 
and in some cases to suggest substantive research hypotheses (Wermuth and 
Lauritzen, 1990) concerning dependences and independences. From these, 
suggestions may arise about potential causal relations. 

In regression analysis the explanatory variables are regarded as held fixed at their 
observed values, even if they are randomly distributed, as indeed they normally would 
be in an observational study, i.e. the distribution of explanatory variables is not used 
in the analysis, except for its role in determining the precision of the estimated 
regression coefficients. In fact, however, some consideration of the distribution of the 
explanatory variables is desirable, in particular to obtain an idea of the conditions 
under which the validity of primary conclusions has been established. Thus any dis- 
crepancy between the distribution of explanatory variables as between replicate sets of 
data or between the data and known features of a target population should be noted. 
In particular an appreciable discrepancy may point to selection biases in the data 
having major implications for interpretation. 
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