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CHARACTERIZING SELECTION BIAS USING
EXPERIMENTAL DATA!

By JamMEs HECKMAN, HIDEHIKO ICHIMURA, JEFFREY SMITH,
AND PETRA TODD

Semiparametric methods are developed to estimate the bias that arises from using
nonexperimental comparison groups to evaluate social programs and to test the identify-
ing assumptions that justify matching, selection models, and the method of difference-
in-differences. Using data from an experiment on a prototypical social program and data
from nonexperimental comparison groups, we reject the assumptions justifying matching
and our extensions of it. The evidence supports the selection bias model and the
assumptions that justify a semiparametric version of the method of difference-in-dif-
ferences. We extend our analysis to consider applications of the methods to ordinary
observational data.

KEYWORDS: Selection bias, program evaluation, training programs, semiparametric
estimation.

1. INTRODUCTION

A STANDARD METHOD FOR EVALUATING social programs uses the outcomes of
nonparticipants to estimate what participants would have experienced had they
not participated. The difference between participant and nonparticipant out-
comes is the estimated gross impact of a program reported in many evaluations.
The outcomes of nonparticipants may differ systematically from what the
outcomes of participants would have been without the program, producing
selection bias in estimated impacts. A variety of nonexperimental estimators

! A previous version of this paper appeared under the title “Nonparametric Characterization of
Selection Bias Using Experimental Data: A Study of Adult Males in JTPA. Part I. Definitions,
Applications and Empirical Results.” An earlier version of it appeared in August, 1994, under the
title “Evaluating the Impact of Training on the Earnings and Labor Force Status of Young Women:
Better Data Help A Lot.” This research was supported by NSF SBR 91-11-455, NSF SBR 93-21-048
and by a grant from the Russell Sage Foundation. This paper was presented as an invited lecture at
the Latin American Econometric Society Meeting, Caracas, Venezuela, August 1994. We have
benefited from comments received from workshops in September, October, and November 1994 at
Yale, Princeton, Chicago, UC-San Diego, USC, Rand-UCLA, UC-Irvine, UC-Riverside, Northwest-
ern, and U.C. London, and workshops in the Winter and Spring of 1995 at UC-Berkeley, Oslo,
Washington-St. Louis, Tel Aviv, and Virginia and an NSF-sponsored conference on econometrics
held in Madison, Wisconsin in June 1995. We also presented this paper in the Malinvaud Workshop
in Paris, March, 1995. We are grateful to three anonymous referees, a co-editor, Derek Bandler,
Lars Hansen, Bo Honoré, Lance Lochner, Thierry Magnac, Christopher Taber, Ed Vytlacil and
Adonis Yatchew for helpful comments and Derek Bandler, Jingjing Hsee, Lance Lochner, and
Annie Zhang for programming assistance.
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adjust for this selection bias under different assumptions.? Under certain
conditions, randomized social experiments eliminate this bias.®

Social experiments are costly and the identifying assumptions required to
justify them are not always satisfied.* However, it is widely held that there is no
valid alternative to experimentation as a method for evaluating social programs
(see, e.g., Burtless, 1995). In an important paper, LaLonde (1986) combines data
from a social experiment with data from nonexperimental comparison groups to
evaluate the performance of many commonly-used nonexperimental estimators.
For the particular group of parametric estimators that he investigates, and for
his particular choices of regressors, he finds that the estimators chosen by
econometric model selection criteria produce a range of impact estimates that is
unacceptably large.

This paper uses data from a social experiment on a prototypical social
program combined with data on comparison groups of persons who chose not to
participate in the program evaluated by the experiment. As documented by
Heckman, LaLonde, and Smith (1999), many programs in place around the
world are very similar to the program we analyze in this paper.

Our analysis is based on the following principles. Neither the experimental
control group nor the comparison group we analyze receives treatment, so that
differences in measured outcomes between the two groups can be attributed
solely to selection bias. Instead of examining the performance of specific
parametric estimators based on specific sets of regressors in eliminating selec-
tion bias, as LaLl.onde (1986) and scholars who follow him have done, we use
semiparametric econometric methods to estimate the functional form of the
selection bias directly using a variety of regressors and data sets. We use the
estimated bias functions to test identifying assumptions that have been main-
tained in the literature, and to suggest estimators that might be effective in
eliminating selection bias in future evaluations of similar programs. Our method
for characterizing bias is general and can be applied in a variety of settings,
including the study of the analytically similar problem of sample attrition.

By characterizing the bias nonparametrically, and by examining the sensitivity
of the estimated bias to many alternative sets of conditioning variables, we
analyze the suitability of entire classes of estimators, rather than trying out a
few parametric members of those classes with a limited set of conditioning
variables. Evidence that a particular estimator with a particular set of regressors
“works” in a particular data set is properly discounted by most serious analysts.
There is always the suspicion that the success of an estimator in a particular
instance is the consequence of a diligent specification search. We avoid that

% These estimators and the identifying assumptions that justify them are summarized in Heckman
and Robb (1985, 1986), Heckman (1990a), Heckman and Smith (1996), and Heckman, Smith, and
LaLonde (1999).

3See Heckman (1992), Heckman and Smith (1993; 1995a), and Heckman, Smith, and LaLonde
(1999) for statements of those assumptions.

*See Torp, et al. (1993), Heckman, Khoo, Roselius, and Smith (1996) and Heckman, Hohmann,
Khoo, and Smith (1997).
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difficulty in this paper by presenting the identifying assumptions that justify
broad classes of estimators in a nonparametric setting, by testing the identifying
assumptions using both nonparametric and semiparametric methods, by using
two separate comparison groups drawn from different data sources, and by using
a rich variety of conditioning variables.

In particular, we test the nonparametric identifying assumptions that justify
three widely-used types of estimators for eliminating selection bias. The first
type of estimator is the class of “index-sufficient” models introduced in Heck-
man (1980), which assumes that mean selection bias depends only on P, the
probability of being selected into the program. The original parametric econo-
metric models of selection bias are special cases of the index-sufficient model.
We develop and apply a new test of index sufficiency and find support for this
characterization of bias. However, the functional form of the index-sufficient
selection bias that we estimate is different from that assumed in traditional
econometric selection models. Regions of support where the selection bias for
nonparticipants is negligible are required in order to use the index-sufficient
selection estimator to construct the counterfactuals required to evaluate pro-
grams.>® Such regions are not found in our data. To produce them requires a
comprehensive sampling plan for collecting the data on comparison group
members.

The second type of estimator whose identifying assumptions we test is the
method of matching. It pairs participants and nonparticipants with common P
values to estimate program impacts.” In general, matching is not guaranteed to
reduce bias and may increase it (see Heckman and Siegelman (1993) and
Heckman, LaLonde, and Smith (1999)). Moreover, matching is open to many of
the same criticisms that have been directed against traditional econometric
estimators because the method relies on arbitrary assumptions. Even with the
rich data at our disposal, the method of matching is not, in general, an effective
evaluation method. In our samples, it reduces but does not eliminate the
conventional measure of selection bias. Matching eliminates bias averaged over
certain intervals of P but does not eliminate pointwise bias in P. We demon-
strate that this feature of the method is shared with the classical econometric
selection model based on index sufficiency.

The third type of estimator whose identifying assumptions we test is an
extension of the widely-used method of “difference-in-differences.” Conditional
on P, outcomes of participants before and after they participate in a program
are differenced and differenced again with respect to before and after differ-
ences for members of the comparison group. The unconditional version of this
estimator and its close cousin—the fixed effects estimator—are widely used.

> The supports of P are the domains of P with positive density.

5See Heckman (1990a) for a discussion of “identification at infinity,” whereby parameters of
interest can be identified from subgroups of individuals for whom there is no selection bias.

" The relationship between matching models based on P and classical selection models based on
P was first discussed in Heckman and Robb (1986).
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The assumptions required to justify the conditional version of this estimator are
weaker than those required to justify matching. They are generally supported by
our data. The effectiveness of the conditional difference-in-differences estima-
tor is consistent with our evidence that the index-sufficient model characterizes
bias. Since in our data selection bias as a function of P is constant over time for
most values of P, it can be differenced out.

A major finding of this study is that the empirical distribution of P for
program participants is very different from the distribution of P for members of
the comparison group. Not only are the shapes of the empirical distributions
different over regions of common support, but the supports differ as well.
Conventional measures of selection bias employed by Ashenfelter (1978),
LaLonde (1986), and Heckman and Hotz (1989) do not distinguish the bias
arising from comparing participants and nonparticipants at the same P values
from the bias arising from comparing persons at different P values.

We present a new decomposition of the conventional measure of selection
bias that isolates these conceptually distinct sources of bias. We find broad
regions of P values over which the difference between the outcomes of
participants and nonparticipants conditional on a particular value of P is not
defined because the supports of the distributions of participants and nonpartici-
pants do not overlap. Comparing incomparable people contributes substantially
to selection bias as conventionally measured. This finding, in conjunction with
our evidence that the impact of the program measured in the region of common
support differs from the overall impact of the program, reveals an important
limitation of all nonexperimental methods for evaluating social programs. Even
when these methods solve the selection problem, they can only identify the
effect of treatment for participants who have counterparts in the comparison
group.

Our discovery of the empirical importance of imposing a common support
condition in reducing bias as conventionally measured demonstrates the benefit
of the nonparametric approach to econometrics. Rigorous application of non-
parametric methods entails careful specification of the domain over which
estimators can be identified and consistently estimated.

This paper also shows the value of having good data. We show that access to a
geographically-matched comparison group administered the same questionnaire
as program participants and access to detailed information on recent labor force
status histories and recent earnings are essential in constructing comparison
groups that have outcomes close to those of an experimental control group.
Data and method both matter in devising effective nonexperimental estimators
of program impacts.

In the concluding sections, we discuss how to extend and apply the methods
analyzed in this paper to analyze the effect of treatment on the treated in the
more common situation where analysts do not have access to experimental data.
Two of the three methods require no modification. The semiparametric selec-
tion bias estimator requires additional exclusion restrictions when applied to
ordinary observational data.
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2. THE EVALUATION PROBLEM, THE PARAMETER OF INTEREST IN THIS
PAPER AND HOW RANDOMIZATION ESTIMATES IT

Following Fisher (1935), Roy (1951), and Quandt (1972), we assume that each
person has two possible outcomes, Y, and Y, in the untreated and treated
states, respectively. Let D =1 signify receipt of treatment and D =0 its ab-
sence. General equilibrium effects are ignored so that the outcomes for any
person do not depend on the overall level of participation in the program.®

The problem of program evaluation arises because we observe only Y, or
Y, for each person, but never both. That is, we observe Y where Y= DY, +
(1 — D)Y,. Thus we cannot form the gross gain A =Y, — Y, for anyone. In the
standard evaluation problem, analysts have access to participant records and to
data on a comparison group of nonparticipants. Hence, one can construct the
conditional distribution of Y; given a vector of conditioning variables X and
D =1, and the conditional distribution of Y; given X and D =0, and can
consistently estimate Pr(D =1]X)=P(X).°

This paper only considers the evaluation problem for mean impacts.”’ We
focus on the parameter that receives the most attention in the evaluation
literature: the effect of treatment on the treated, defined as

(D AX)=E(AIX,D=1)=EY,|X,D=1)—-E(Y,|X,D=1),

or an averaged version for X in some region K,
2) Z(K)=/A(X)dF(X|D=1)/f dF(X\D=1).
K K

The average impact parameter is the focus of many evaluation studies, especially
those based on the method of matching. Other aspects of a program may also be
interesting, but parameters (1) and (2) are useful in evaluating the gross benefit
of an existing program—the main ingredient required to make a decision to
continue it or shut it down.'!?

To make the parameter (1) clearly interpretable, we require that the condi-
tional distribution of X satisfy F(X|Y,,Y;, D)=F(X|Y,,Y);), i.e. that condi-

8 Lewis (1963) discusses the failure of this assumption in the context of evaluating the effects of
unionism on wages. This assumption is relaxed in an evaluation of skill promotion policies in
Heckman, Lochner, and Taber (1997, 1998).

° Thus we do not consider the intrinsically more difficult evaluation problems considered by
Marschak (1953) and Lancaster (1971), who consider forecasting the effects of policies never
previously implemented (Marschak) or estimating the demand for goods never previously consumed
(Lancaster).

10 Heckman (1990b, 1992), Heckman, Smith, and Clements (1997; first draft 1993), and Heckman
and Smith (1993, 1995a, 1998) consider the identification and estimation of distributions of impacts.

' See Heckman and Robb (1985), Heckman (1992), Moffitt (1992), Heckman (1997), Heckman
and Smith (1993, 1995a, 1998), and Heckman, Smith, and Taber (1998) for discussions of alternative
parameters of interest.

2 In a cost-benefit analysis the other required ingredient is the cost. See, e.g., Heckman and
Smith (1998).
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tional on potential outcomes, realized D does not “cause” or predict X. This
avoids the problem of conditioning on variables that are determined by D and
hence masking the total effect of D. This condition is not strictly required but it
simplifies the interpretation of our estimates. See Heckman, Lal.onde, and
Smith (1999) for further discussion.

Data on program participants identify E(Y;|X, D = 1). Missing is the infor-
mation required to identify E(Y,|X, D = 1). The method of comparison groups
uses data on nonparticipants to estimate it. The method assumes that, condi-
tional on X, the outcomes of nonparticipants approximate what participants
would have experienced had they not participated; that is, it assumes E(Y |
X,D =0)=E(Y,|X, D =1). The selection bias, B(X), associated with the pro-
gram impact E(A|X, D = 1) that arises when this assumption fails to hold is

(3)  B(X)=E(Y,|X,D=1)—E(Y,|X,D=0).

Under certain conditions, the parameter of interest can be identified with
data from a social experiment. If experiments do not disrupt the program being
evaluated, and if control group members do not have access to close substitutes
for the experimental treatment, then experimental data identify E(Y,| X, D = 1).
Thus E(A|X, D =1) can be identified for any set of conditioning variables X
within the support of X for D = 1 with data from a social experiment.!*> When it
is valid, randomization avoids all of the traditional econometric problems of
model selection. It avoids the need to specify the functional forms of the
estimating equations that relate Y; and Y|, to X, or to specify which variables
are included in or excluded from outcome equations or program participation
equations. This is an important advantage of randomization compared to other
evaluation procedures.

3. CHARACTERIZING SELECTION BIAS

Since social experiments are costly, there is considerable interest in knowing if
a nonexperimental strategy can be devised that produces estimates close to what
would be produced from an ideal experiment on a prototypical job training
program. This paper uses the data from the control group in a social experi-
ment, together with unusually rich comparison group data collected under our
supervision, to characterize the selection bias, B(X), for different specifications
of X. Knowledge of B(X) is informative about the effectiveness of entire
classes of selection bias correction methods. We now briefly describe the three
types of estimators considered in this paper.

13 Randomization is an instrumental variable that identifies parameters (1) and (2) even when all
of the X are endogenous variables in the traditional sense of the term. See Heckman (1996) for an
elaboration of this point.
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3.1. The Method of Matching

To our knowledge, the method of matching was first used by Fechner (1860).
It has been extensively applied to the evaluation of job training programs in
studies conducted in the late 70’s and early 80’s.'* The method is based on the
identifying assumption that, conditional on some X, Y is independent of D. In
the notation of Dawid (1979), it assumes that

(A1) Y,1DI|X, Xey,

for some set y,, where “ 1" denotes independence and variables to the right of
“P” are the conditioning variables.!® This assumption produces a comparison
group that resembles the control group of an experiment in one key respect:
conditional on X, the distribution of Y, given D=1 is the same as the
distribution of Y| given D = 0. In particular, when the means exist,

(4) E(Y,|X,D=1)=E(Y,|X,D=0),

so that pointwise in X, bias B(X) =0.

Many matching estimators have been proposed that exploit (A-1) or its
implication (4). Traditional matching methods pair nonparticipants with partici-
pants that are “close” in terms of X using different metrics.!® For each
observation i in the participant sample, a weighted average of comparison
sample observations is formed to estimate the effect of treatment on i:

&) i Z WNONl(i’j)YOj
je{D=0}

where {D =0} is the set of indices for the nonparticipants and {D = 1} is the
set of indices for participants, N, is the number of observations in the compar-
ison group, {D = 0}, N; is the number of observations in the treatment group,
{D=1}, and X, ,_Wy,n(i,j) =1 for all i."7

Matching estimators differ in the weights attached to members of the compar-
ison group. Define a neighborhood C(X;) for each participant i. The persons
matched to i are in 4; where 4,={j€{D = O}IXj € C(X,)}. Different match-
ing methods use different neighborhoods. Nearest neighbor matching sets
C(X)) ={X;| X, = min,|| X, —lel,j e {D = 0}} where || || is a norm, WNON,(i’j) =

14 See the detailed references to the historical literature in Heckman, LaLonde, and Smith (1999).

13 A stronger version of (A-1) is usually stated: (Y, Y;).L D | X. Given our focus on parameters (1)
and (2), this stronger version is not needed. The omitted assumption of conditional independence of
Y, and D given X would be useful if we sought to evaluate the impact of lack of treatment on the
untreated, E(Y, —Y;|X, D = 0), using the outcomes of participants to proxy what nonparticipants
would have earned had they participated. Note that we can estimate the impact of the program on a
randomly selected person as a combination of the impact of treatment on the treated and treatment
on the untreated.

16 See Heckman, Ichimura, and Todd (1997, 1998; first drafts 1993) for a detailed discussion of
alternative matching methods.

17 The weights are allowed to depend on N, and N to allow for use of an optimal bandwidth.
See Heckman, Ichimura, and Todd (1996; first draft 1994).
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1, jeA,;, and Wy y(i,j)=0 otherwise.!® Nearest neighbors may be very far
apart. For that reason a criterion must be imposed to ensure that the match is
close in some sense. Caliper matching defines C(X;) = {Xj X, — XjII < g} where
g is arbitrarily prespecified (see Cochrane and Rubin (1973)). If there is no such
X, the observation i is not matched to any observations. If more than one
person is in A;, the nearest neighbor in terms of norm || || is used to pick the
match.
Kernel matching defines

G..

4

WNON,(i’j) =

>

Ly e{(D=0} Gix

where G, = G((X; — X,)/ay,) is a kernel that downweights distant observations
from X; and ay, is a sequence of smoothing parameters with the property that
limy _., ay, = 0. Nonzero values of this weight implicitly define C(X,) for this
version of matching. In Section 5 of this paper, we extend kernel matching to
permit regression adjustment of outcome equations. To estimate impacts over a
set K as in (2), form a weighted sum of (5) over K:

(6) MK = ¥ aoynD|Yy— L Wyn,)DY,| for X, €K,
ie{D=1} je{D=0}

where wy, Nl(i) is a weight accounting for scale and possibly heteroskedasticity as
well as the choice of support K.

Regression estimators have also been proposed that exploit (A-1), or its
implication (4), in a linear regression setting. The econometric procedure of
Barnow, Cain, and Goldberger (1980) assumes that Y, is linearly related to
observables X and an unobservable U, so that E(Y;|X,D =0)=Xp+ EU,|
X,D=0), and that E(U,|X,D =0)=E(U,|X) is linear in X. Under these
assumptions, controlling for X via linear regression allows one to identify
E(Y,|X,D =1) from the data on nonparticipants E(Y,|X, D = 0). These func-
tional form assumptions do not exploit the richness of assumption (4), which can
be used to produce a nonparametric estimator of treatment effects using
conditioning instead of projection or linear regression methods. Moreover, in
practice, users of the method of Barnow, Cain, and Goldberger (1980) do not
impose a common support condition in generating the estimates obtained from
the method. The distribution of X may be very different in the {D =0} and
{D = 1} samples, so that comparability is only achieved by imposing linearity and
extrapolating over different regions.

Recently, attention has focused on matching techniques that compare persons
based on their probability of participation. Define the probability of participa-
tion or “propensity score” as P(X)=Pr(D =1|X). A theorem of Rosenbaum

'8 There are two versions of this method that differ depending on whether or not each
comparison group observation may be matched to more than one participant observation. For
expositional simplicity, we ignore ties.
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and Rubin (1983) demonstrates that if (A-1) is satisfied, then
(A-2) Y,uD|P(X) for Xey,

provided 0 < P(X) < 1 for X € x,, so that there is a positive probability that the
events D=0 and D =1 occur for all elements in y,. Conditioning on P(X)
rather than on X produces conditional independence. An implication of (A-2),
and not (A-2) itself, is all that is required to construct the desired counterfactual
conditional mean. That implication is

@) E(Y,|P(X),D=1)—-E(Y,|P(X),D=0)=B(P(X)) =0,

where (7) could be assumed directly in place of (A-2) or (A-1). Conditioning on
P(X) sets B(P(X))=0 and reduces the dimension of the matching problem
down to matching on the scalar P(X). Below we test condition (7) as a statistical
hypothesis and reject it in our data.

Rosenbaum and Rubin (1983) assume that P(X) is known rather than
estimated. They do not present a distribution theory for the pointwise estimators
of (1) or (2). Heckman, Ichimura, and Todd (1997, 1998; first drafts 1993)
present the asymptotic distribution theory for the kernel matching estimator for
the cases where P is known and where it is estimated.'’

Comparison groups produced assuming (A-1) is valid differ from the control
groups produced by a random experiment in an important way. Randomization
equates the distributions of characteristics in the treatment and control groups.
Without randomization, the distributions of characteristics in the treatment and
comparison groups are not necessarily equated even if (A-1) is satisfied. The
supports of the distributions of X may be different in the two groups and the
shapes of the distributions may be different over regions of common support.
Because counterparts to participants cannot always be found in the comparison
group, estimators based on (A-1) or equation (7) do not necessarily identify
treatment impacts for all values of X among program participants, unless the
impacts do not depend on X.

A major advantage of the method of randomized trials over the method of
matching in evaluating programs is that randomization works for any choice of
X. In the method of matching, there is the same uncertainty about which X to
use as there is in the specification of conventional econometric models. Even if
one set of X values satisfies condition (A-1), an augmented or reduced version
of this set may not. Heckman, Ichimura, and Todd (1997; first draft 1993) discuss
tests that can be used to determine the appropriate choice of X variables. We
discuss this problem in Section 4.3 below. Since nonparametric methods can be
used to perform matching, the method does not, in principle, require that
arbitrary functional forms be imposed to estimate program impacts.

19 Heckman, Ichimura, and Todd (1998; first draft 1993) also answer the question, “If P(X) were
known would we match on it or on X ?” Using the variance of the average impacts (2) as the choice
criterion, the answer is “it depends.”
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3.2. Index Sufficient Methods and the Classical Econometric
Selection Model

The traditional econometric approach to the selection problem adopts a more
tightly-specified model relating outcomes to regressors X. This is in the spirit of
much econometric work that builds models to estimate a variety of counterfac-
tual states, rather than just the single counterfactual required to estimate the
mean impact of treatment on the treated, the parameter of interest in most
applications of the methods of matching or random assignment.”® In the
simplest econometric approach, two functions are postulated: Y; = g,(X, U;) and
Y, =g,(X,U,), where U, and U, are unobservables. A selection equation is
specified to determine which outcome is observed. Separability between X and
(U,, U,) is assumed, so that

® Y, =g,(X)+ U, and Y, =g,(X) +U,,

where E(U,) = E(U,) = 0. This assumption defines functions called structural
functions that do not depend on unobserved variables. In this notation, the
parameter of interest defined in (1) becomes

9) E(A1X,D=1)=g(X) —gy(X) +EU, — Uy | X,D=1).

Parameter (9) is an unconventional object for an econometric investigation. It
combines the g,(X) and g,(X) functions that are the usual objects of econo-
metric interest with the conditional mean of the difference in unobservables
EWU, - Uyl X,D=1).

Much applied econometric activity is devoted to eliminating the mean effect
of unobservables on estimates of functions like g, and g,. However, the mean
difference in unobservables is an essential component of the definition of the
parameter of interest in evaluating social programs.?! In the traditional separa-
ble framework, the selection bias that arises from using a nonexperimental
comparison group is

(10) B(X)=EWU,|X,D=1)-E(U,|X,D=0).

In the standard evaluation problem, the goal is to set B(X)=0, not to
eliminate dependence between (U, U;) and X. The X can fail to be exogenous
and parameters (1) and (2) can still be identified.

The conventional economic approach partitions the observed variables X into
two not necessarily disjoint sets (R, Z) corresponding to those in the outcome
equations and those in the participation equation, and postulates exclusion

% This emphasis on econometric models as devices to generate a variety of counterfactuals can
be traced back to Haavelmo (1944) or Marschak (1953).

2LIf U, = U, as is assumed in the dummy endogenous variable model, then E(U; — U, | X, D = 1)
=0. If U, —U, is not forecastable with respect to X and D=1 at the time the decision to
participate in the program is made, then E(U; — U, | X, D = 1) = 0. See Heckman (1992, 1996, 1997)
and Heckman and Smith (1993, 1996, 1998). The model Y=Y, D + Yy(1 —D) =g(X) +[g(X) -
go(X) + U, — UyID + U, is a model with a random coefficient on D.
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restrictions. Thus it is assumed that certain variables appear in Z but not in R.
The conventional approach further restricts the model so that the bias B(X)
only depends on Z through a scalar index. Note that exclusion restrictions are
neither required nor used to justify matching as an estimator of (1) or (2).2

The latent index variable model with index I motivates the characterization
of bias as a function of a scalar index. Define I = H(Z) — v where H(Z) is the
mean difference in utilities or discounted earnings between the participation
and nonparticipation states and v is assumed to be independent of Z.>* Then
D=1 if I>0 and D=0 otherwise, so that Pr(D =1|Z) =F,/(H(Z)). The
conventional econometric selection model further assumes that the dependence
between D and (U,,U,) that gives rise to bias (10) arises only through v and
that R and Z are independent of (U, U,). This implies that

E(W,1Z,R,D=1)=E(U,|lv<H(Z)),
EWUy1Z,R,D=0)=EU,| v>H(Z)),
E(U,1Z,R,D=1)=E(U, |v<H(Z)), and
EWU,1Z,R,D=0)=EU,|v>H(Z)).

Therefore, both B(Z) and the mean gain of the unobservables, E(U; — U, |
Z,R,D = 1), depend on Z only through the index H(Z). When F, is assumed
to be strictly monotonic almost everywhere, we may write H(Z) =F, '(Pr(D =1
| Z)) and the bias and mean gain terms depend on Z solely through P. The bias
is

(1) B(P(Z)) =E(U,|P(Z2),D=1) —EU,|P(Z),D =0).

This is the “index sufficient” representation where P(Z), or equivalently H(Z),
is the index.?* Conventional econometric models (see, e.g., Amemiya (1985))
assume that the latent variables v and U, are symmetrically distributed around
zero, so that B(P(Z)) is symmetric around P = 1. Figure 1 presents an example
of a normal selection model. If P itself is symmetrically distributed around P = 3,
the average bias over symmetric intervals around that value is zero even though
the pointwise bias is nonzero. Thus, the classical selection model sometimes
justifies matching as a consistent estimator of parameter (2) over intervals of P
where the bias cancels out. To test the index sufficient model, we use our pooled
sample of controls and comparison group members to determine if the esti-
mated bias is solely a function of P(Z) for different sets of variables Z, or if a
more general conditioning set (R, Z) is required to characterize the bias.

2 Heckman, Ichimura, and Todd (1998; first draft 1993) extend the theory of matching to
consider separable models and models with exclusion restrictions and discuss the efficiency gains
from using such restrictions. Exclusion restrictions are natural in the context of panel data models
where the variables in the outcome equation are measured in periods after the decision to
participate in the program is made.

2 Absolute continuity of v is often assumed although technically it is not required.

* This argument is due to Heckman (1980). If there are multiple decision rules for admission into
the program, then a multiple index model is required. See Heckman and Robb (1985).
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Note: This is the index model introduced in Section 3.2 where » and U, are assumed to be normal and o, = 1, oy = 375,
and p = cov(Uy, »)/ oy, = 0.16.

FIGURE 1.—Prototypical selection model, normal example; B(P(X))=EU,|P(X),D=1)—
E(U, | P(X),D =0).

Index sufficiency is only a necessary condition for applying the classical index
sufficient selection model in a nonparametric or semiparametric setting. As
noted by Heckman (1990a), it is also necessary to know a point or interval of P
where E(U, | P(X), D =0) = 0. Unless this condition is satisfied, it is not possi-
ble to use the index-sufficient selection model to construct the required counter-
factual.> Thus in order to implement this method, it is necessary (a) that such a
point or interval exist and (b) that it be possible to discover it.

The traditional selection-correction method parameterizes the bias function
B(P(Z)) and eliminates bias by estimating B(P(Z)) along with the other

» To see why this condition is necessary, suppose that Y, = By + Uy and that index sufficiency
holds. Then E(Y, | X, D =0) = By + E(Uy | P(X), D = 0). To construct E(Y,|X, D = 1), the classical
selection bias model requires that E(U) = 0 and that B, be identified along with E(U, | P(X), D =
0). Then using the fact that

EWUy) =EW,|P(X),D=1P(X)+EWU, I P(X),D=0)(1-P(X))=0,
it follows that

1-P(X)

E(WU,|P(X),D=1)= _—P(_F—

E(Uy 1 P(X),D =0).
To use this result to construct E(Y;|X, D = 0) nonparametrically, it is necessary to know S,. If this
is known, then E(Y,|X,D =0)— By, =EU,|P(X), D =0), and it is possible to construct

1-P(X) 3 Bo
00 EHI X D=0 + 5

E(Y,1X,D=1)= —

Heckman (1990a) shows that B, is identified only if there is a set of values X such that
E(U, | P(X),D = 0) = 0. If there is no such set, then one cannot separate a constant associated with
E(U, | P(X), D =0) from B,.



SELECTION BIAS 1029

parameters of the model.”® Heckman and Robb (1985, 1986) term the depen-
dence between U, and D operating through the » “selection on unobservables”
while the dependence between U, and D operating through dependence be-
tween Z and U is termed “‘selection on observables.” In their framework, the
method of matching assumes selection on observables, because conditioning on
Z controls the dependence between D and U,, producing a counterpart to (4)
for the residuals: E(U, 1 Z, D =1) = E(U,| Z, D = 0). When selection is on unob-
servables, it is impossible to condition on v and eliminate the selection bias.
Thus the choice of an appropriate econometric model critically depends on the
properties of the data on which it is applied.

3.3. Difference-in-Differences

The classical before-after estimator compares the outcomes of participants
after they participate in the program with their outcomes before they partici-
pate. With the difference-in-differences estimator, common time and age trends
are eliminated by subtracting the before-after change in nonparticipant out-
comes from the before-after change for participant outcomes. This method can
be generalized to include regressors.”” The simplest application of the method
does not condition on X and forms simple averages over the treatment and
comparison groups.

In this paper, we introduce conditional semiparametric and nonparametric
versions of the difference-in-differences estimator to a panel or to repeated
cross sections of persons. Differencing is done conditional on X. The critical
identifying assumption in our proposed method is that conditional on X, the
biases are the same on average in different time periods before and after the
period of participation in the program so that differencing the differences
between participants and nonparticipants eliminates the bias.

To see how this estimator works, let ¢ be a post-program period and ¢’ a
preprogram period. The method identifies parameters (1) and (2) conditional on
X under the assumption

(12) B(X)-B,(X)=0, forsomet,t’,

where B, denotes the bias in time ¢, defined in (10). This method extends the
method of matching because it does not require that the bias vanish for any X,
just that it be the same for some ¢ and ¢’ conditional on X. Notice further that
(12) is implied by the conventional econometric selection estimator if E(U, |
P(X),D =1) - E(U,, | P(X), D =1) is the same for some choice of ¢ and ¢'. In
application, (12) is often assumed to hold for all ¢ and ¢’ or for ¢ and ¢’ defined

%6 Heckman and Robb (1985), Heckman (1990a), and Cosslett (1991) discuss this strategy in a
semiparametric model.

7 Heckman and Robb (1985, p. 218) discuss the difference-in-differences estimator and demon-
strate that it can be implemented using repeated cross-section data. They also present economic
models that justify its use. See also Heckman, LaLonde, and Smith (1999).
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symmetrically around ¢=0, the date of participation in the program (.e.,
t=—1").

We now compare B(X) to the more conventional measure of bias used in the
literature.

4. RE-EXAMINING THE CONVENTIONAL MEASURE OF SELECTION BIAS

The selection bias measure B(X) is rigorously defined only over the set
of X values common to the D=1 and D =0 populations. Define S;, = {X|
f(X|D=1)>0} to be the support of X for D=1, where f(X|D =1) is the
conditional density of X given D =1. Let S, ={XI|f(X|D =0)> 0} be the
support of X for D=0 and let Sy =S,y NS,y denote the region of overlap.
Using the X distribution of participants, we define the mean selection bias Es,{
as

_ fs, BLX)dF(XID=1)
Bs, = fs, dF(X1D =1)

A comparable definition of Es,, replaces X with P(X) in the definition of
By . The conventional measure of selection bias B = E(Y,|D =1) — E(Y;| D =
0) used by LaLonde (1986) and others does not condition on X.

The conventional measure of bias B can be decomposed into a portion
corresponding to a properly-weighted average of B(X) and two other compo-
nents.?® First note that

(13) B=fs E(Y,|X,D=1)dF(X|D=1)

—[ E(Y,1X,D=0)dF(X|D =0).
Sox
Decompose B into three terms:
(14) B=B,+B,+B;,,
where

B, = E(Y,IX,D=1)dF(X|D=1)
1 0
Six\Sx

—[  E(Y,1X,D=0)dF(X|D=0),
Sox\Sx

B,= [ E(Y,|1X,D=0)[dF(X|D=1)-dF(X|D=0)], and
Sx
B, =PyBy ,

% One can place the conventional method in a regression framework. Run a least squares
regression of Y on D, with Yy = 7y + 7D + 7, and E(7) = 0. Then plim 7, = B as long as a law of
large numbers is valid for the (Y;, D) data sequence.
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where Py = [g dF(X ID = 1) is the proportion of the density of X given D =1
in the overlap set Sy, S; v\ Sy is the support of X given D = 1 that is not in the
overlap set Sy, and S,,\ Sy is the support of X given D =0 that is not in
the overlap set Sy.

Term B, in (14) arises when S\ Sy or S,y \ Sy is nonempty. In this case we
fail to find counterparts to E(Y,|X, D = 1) in the set S, \ Sy and counterparts
to E(Y,|X,D=0) in the set S;y\Sy. Term B, arises from the differential
weighting of E(Y,|X, D = 0) by the two densities for X given D=1and D=0
within the overlap set. Term Bj; arises from differences in outcomes that remain
even after controlling for observable differences. Selection bias, rigorously
defined as ESX, may be of a different magnitude and even a different sign than
the conventional measure of bias B

Matching methods that impose the condition of pointwise common support
eliminate two of the three sources of bias in (14). Matching only over the
common support necessarily eliminates the bias arising from regions of nonover-
lapping support given by term B, in (14). The bias due to different density
weighting is eliminated because matching on participant P values effectively
reweights the nonparticipant data. Thus PXBS is the only component of (14)
that is not eliminated by matching.” By is the bias associated with a matching
estimator.

4.1. Examining the Validity of Matching on P

We examine the validity of matching on P(X) by estimating the three
components of the bias B. If matching is valid, the third component of the
decomposition should be negligible for each value of P(X). Form the orthogo-
nal decomposition of the conditional mean given X into two components:
E(Y)IX,D=1)=E(Y,|P(X),D=1)+V where V=E(Y,|X,D=1)—E(Y,|
P(X),D=1)and E(V|P(X),D =1)=0. Heckman, Ichimura, and Todd (1997,
1998; first drafts 1993) show that constructing the mean conditional on P(X)
permits consistent, but possibly inefficient, estimation of the terms in decompo-
sition (14). The conditional means are integrated against the empirical counter-
parts of the conditional distributions for P(X), F(P(X)|D = 1), and F(P(X)]|
D =0), i.e., the means are self-weighting.

Before presenting our estimates of the components of (14), we describe the
data used to generate them and the variables Z that best predict participation in
the program.

4.2. Our Data

The data used in this study come from four training centers participating in a
randomized evaluation of the Job Training Partnership Act (JTPA).*® Along

¥Since B, and B, may be of any sign, the matching estimator may have a bias component bigger
than B.
0 See Orr, et al. (1995) for a description of the National JTPA Study.
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with data on the experimental treatment and control groups, information was
collected on a nonexperimental comparison group of persons located in the
same four labor markets who were eligible for the program but chose not to
participate in it at the time random assignment was conducted. These persons
are termed ENPs—for eligible nonparticipants.®!

Random assignment took place at the point where individuals had applied to
and been accepted into JTPA (i.e., admitted by a JTPA administrator). Under
ideal conditions, randomization at this point identifies parameters (1) and (2).
Members of the control group were excluded from receiving JTPA services for
18 months after random assignment. The controls completed the same survey
instrument as the ENP comparison group members.* This instrument included
detailed retrospective questions on labor force participation, job spells, earnings,
marital status, and other characteristics. In this paper, we analyze a sample of
adult males age 22 to 54. Table I defines the variables used in this study.
Appendix B describes the data more fully and gives summary statistics for our
sample.

4.3. Determining the Probability of Program Participation P

The participation probability P(X) plays a central role in our analysis. In this
paper, participation means that a person applies and is accepted into the
program. Heckman and Smith (1995b) find that for all groups, including adult
males, recent (past six months) labor force status transitions, not the pre-pro-
gram earnings dip emphasized by Ashenfelter (1978), are the key predictors of
participation. The relative participation rates presented in the fifth column of
Table II demonstrate this point. Persons recently entering unemployment are
the most likely to seek to participate in the program. Participation in job
training is a form of job search for many unemployed workers. Earnings at the
time of the participation decision are an important secondary predictor of
participation.

Table III presents the estimated coefficients of the logit model P(X).
Variables are included in the model on the basis of two criteria: (a) minimiza-
tion of classification error when P(x )>P, is used to predict D=1 and
P(X) <P, is used to predict D =0, where P, = E(D); and (b) statistical signifi-
cance of the included regressors. For adult males, the two criteria produce the
same model. See Appendix C for a more extensive discussion of the variable
selection criteria used in this paper.

Figure 2 presents the distributions of the estimated P(X) in the {D = 0} and
{D = 1} groups. We obtain similar distributions for P(X) using alternative sets
of regressors.* This figure indicates the potential importance of defining bias on

31 See Smith (1994) and Appendix B for descriptions of the ENP sample.
32 Treatment group members did not complete the long baseline survey instrument administered
to the controls and ENPs, and so cannot be used in the estimation of the participation model.
33 These results are available on request from the authors.
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TABLE 1
DEFINITION OF VARIABLES

Variable Name

Description

Training Center:
Corpus Christi, Fort Wayne,
Jersey City, Providence.
Race and Ethnicity:
black, white, Hispanic.

Age:
age 22-29, age 30-39, age 4049,
age 50-54.
Education:
less than 10th grade, 10-11th grade,
12th grade, 1-3 years of college, 4 or
more years of college.
Marital Status:
currently married,
last married 1-12 months before RA /EL,
last married > 12 months before RA /EL,
single, never married at RA /EL.
Children less than 6 years of age

Calendar Quarter:
quarter 1, quarter 2, quarter 3, quarter 4.

Calender Year:
year 1987, year 1988, year 1989, year 1990.

Local Unemployment Rate
(Sources: U.S. Department of Labor’s
publication “Labor Force, Employment, and
Unemployment Estimates for States,
Labor Market Areas, Counties, and Selected
Cities” for the years 1986—1991 provide the
unemployment rates. Population weights are
obtained from annual total population data
available in the U.S., Department of
Commerce’s Regional Economic
Information System (REIS)).

Indicator variables for the geographic location of
the individual.

Indicator variables for the race /ethnicity of the
individual. Individuals who reported Asian or
“other” were included in the Hispanic category
in R but not in Z.

Indicator variables for the age of the individual
calculated using the average age in years of the
individual within the quarter of the observation.

Indicator variables for the educational attainment
of the individual at the time of random
assignment or eligibility determination.

Missing values are imputed.”

Indicator variables for marital status at the time of
random assignment or eligibility determination
(RA/EL). Missing values are imputed.*

Indicator variable for the presence of young chil-
dren in the household at the time of the base-
line interview. Missing values are imputed.’

Indicator variables for the calendar quarter
for the observations. Quarter 1 refers to
January, February, and March etc. If an obser-
vation overlaps two quarters, then the variable
takes on fractional values.

Indicator variables for the calendar year of the
observation. If the observation overlaps two
years, then the year indicators take on
fractional values.

This variable gives the monthly unemployment
rate. The data are published at the county
and metropolitan area levels. We calculate the
unemployment rate as a population-weighted
average of the unemployment rates of the
counties and metropolitan areas served by
each of the four training centers in the
JTPA data.
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TABLE I—Continued

Variable Name Description

Labor Force Status Transition: The two most recent labor force statuses during
employed — employed, the period composed of the month of random
unemployed — employed, assignment or eligibility determination and the
OLF — employed, six preceding months define a set of nine labor
employed — unemployed, force status patterns. In each case, the second
unemployed — unemployed, status is that in the month of random assignment
OLF - unemployed, or eligibility determination and the first status
employed — OLF, (if different) is the most recent preceding status.
unemployed — OLF, Repeated patterns such as “employed —
OLF - OLF. employed” indicate persons in the same

labor force status for all seven months.
Missing values are imputed.?

Number of Persons in the Household Continuous variable indicating the number of
persons in the individual’s household as of the
baseline interview. Missing values are imputed.?

Earnings in the Month of Random Self-reported monthly earnings in the month of

Assignment or Eligibility Determination random assignment or eligibility determination
from the baseline survey. Persons for whom
the survey covers only a part of the month
have their responses scaled up to a full month.

Ever had Vocational Training Indicator variable for whether the respondent ever
had vocational or technical training as of the
baseline interview date, excluding courses
taken while in high school. Missing values
are imputed.?

Currently Receiving Vocational Training Indicator variable for current receipt of vocational
or technical training as of the baseline interview.
Excludes courses taken in high school. Missing
values are imputed.?

Number of Job Spells in the 18 Months Categories for the number of full or partial job
Prior to Random Assignment or Eligibility  (not employment) spells experienced
Determination: during the 18 months prior to random
zero, one, two, more than two. assignment or eligibility determination.

Missing values are imputed.?
Work Experience Continuous variable indicating months of work

experience prior to random assignment or
eligibility determination. It is calculated using
the Mincer method, (age-education-6)*12, for
the period prior to our data, adding in actual
experience in months for the five years prior
to RA/EL.

An appendix available upon request from the authors describes the imputation procedure for these variables.
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TABLE II

ESTIMATED BiAs BY LABOR FORCE STATUS TRANSITION CELLS AND THE PROBABILITY OF
PARTICIPATION AND ITS LOGIT BY LABOR FORCE STATUS, CRUDE RATES,
AND RATES IMPLIED BY LOGIT
Quarterly Earnings Expressed in Monthly Dollars, Experimental Control and
Eligible Nonparticipant (ENP) Samples, Adult Males, 508 Controls and 388 ENPs

Difference in Difference in
Population Logits of
Percentage Percentage Estimated Program Average Coefficient Program
of Controls  of ENPS Bias Participation  Derivative From Participation
Cell in Cell in Cell in Cell® Rates® from Logit" Logit® Rates®
Employed 21.16 73.41 —421 * # * *
— Employed (78)
Unemployed 10.79 4.16 —474 0.038 0.033 1.518 1.703
— Employed (228) (0.416)
OLF — Employed 4.77 1.11 —128 0.061 0.012 0.787 2.139
327) (0.761)
Employed 27.39 6.65 —148 0.158 0.079 2.465 3.113
— Unemployed (188) (0.456)
Unemployed 17.43 4.16 420 0.105 0.093 2.668 2.671
— Unemployed (69) (0.583)
OLF 5.81 0.55 230 0.109 0.142 3.272 2.715
~ Unemployed 07 (0.597)
Employed - OLF 5.60 1.94 398 0.119 0.085 2.552 2.801
(209) (0.608)
Unemployed 1.45 1.39 381 0.072 0.069 2302 2.298
- OLF 92) (0.875)
OLF —» OLF 5.60 6.65 297 0.017 —0.002 -0.154 1.090
157 (0.609)

#This column gives the mean difference in monthly earnings of the experimental controls and eligible nonparticipants
conditional on labor force status transition patterns in the six months prior to random assignment (see Table I for the
definition of the labor force transition categories). The mean is calculated over the 18 months after the date of random
assignment /eligibility determination.

®These columns give differences in the population participation rates and in the logits of the population participation
rate, relative to the Employed — Employed cell.

a common support of P(X). For the sample of controls, the histogram of P(X)
values has support over the entire [0, 1] interval. Surprisingly, however, the mode
of the distribution of P(X) for controls is near zero. Many controls have a low
estimated probability of participation. In the sample of ENPs, the support of
P(X) is concentrated in the interval [0,0.225]. Thus, the bias measure Es,,,
which is the bias defined conditional on P(X) rather than X, is defined only
over a fairly limited interval. As a result of this restriction on the support, any
nonexperimental evaluation can nonparametrically estimate program impacts
defined only over this interval. As we demonstrate below, the difference be-
tween the distributions of the estimated values of P has important implications
for understanding the sources of selection bias as conventionally measured.
Before presenting this decomposition, we first develop some econometric tools
that are used to generate many of the empirical results reported in this paper.
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TABLE III

COEFFICIENT ESTIMATES AND p VALUES FROM WEIGHTED PARTICIPATION LOGIT?

BEST PREDICTOR MODEL FOR THE PROBABILITY OF PARTICIPATION"
Experimental Control and Eligible Nonparticipant (ENP) Samples

Dependent Variable: 1 for Experimental Control, 0 for Eligible Nonparticipant
Adult Males, 508 Controls and 388 ENPs

Variables Coeff Std Error p Value®
Intercept -5.07 0.83 0.0000
Fort Wayne, IN 2.45 0.41 0.0000
Jersey City, NJ 0.66 0.43 0.1273
Providence, RI 2.19 0.44 0.0000
Black 0.49 0.33 0.1333
Hispanic 0.43 0.40 0.2837
Other race /ethnicity 0.61 0.55 0.2653
Age 30 to 39 -0.50 0.30 0.0926
Age 40 to 49 —0.60 0.38 0.1115
Age 50 to 54 -0.29 0.62 0.6361
Fewer than 10 years schooling —0.83 0.40 0.0397
10-11 years schooling 0.66 0.34 0.0510
13-15 years schooling 0.90 0.35 0.0096
16 or more years schooling -1.38 0.54 0.0101
Last married 1-12 months prior to RA /ELY 0.42 0.80 0.5995
Last married > 12 months prior to RA/EL —-0.03 0.61 0.9648
Single, never married at RA /EL 0.71 0.36 0.0498
Child age less than 6 present in household —-0.16 0.38 0.6761
Unemployed — Employed 1.52 0.42 0.0003
OLF — Employed 0.79 0.76 0.3016
Employed — Unemployed 2.46 0.46 0.0000
Unemployed — Unemployed 2.67 0.58 0.0000
OLF — Unemployed 3.27 0.60 0.0000
Employed — OLF 2.55 0.61 0.0000
Unemployed — OLF 2.30 0.87 0.0085
OLF - OLF -0.15 0.61 0.8002
One job in 18 months prior to RA /EL 0.41 0.39 0.2894
Two jobs in 18 months prior to RA /EL 0.57 0.50 0.2600
More than two jobs in 18 months prior to RA /EL 1.87 0.52 0.0003
Enrolled in vocational training at RA /EL 1.94 0.62 0.0019
Ever had vocational training? -0.28 0.32 0.3815
Total number of household members -0.25 0.10 0.0134
Earnings in the month of RA /EL —-0.00 0.00 0.0000

#Weights are used in the estimation procedure to account for choice-based sampled data. It is assumed that in a random

sample Controls represent 3% and ENPs 97% of the eligible population.

The omitted training center is Corpus Christi, TX; the omitted race is white; the omitted age group is 22-29; the
omitted schooling category is twelve years; the omitted marital status is currently married at RA/EL; the omitted labor
force transition pattern is Employed —» Employed; the omitted number of job spells in the 18 months prior to RA/EL is

ZCI'O

Reported p-values are for two-tailed tests of the null hypotheses that the true coefficient equals zero.
RA/EL indicates the month of random assignment (RA) for the experimental controls and the month of eligibility (EL)

for Eligible Nonparticipants (ENPs).
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FIGURE 2.—Density of estimated probability of program participation for adult male controls and
eligible nonparticipants.

5. NONPARAMETRIC TOOLS FOR ESTIMATING SELECTION BIAS B(X) AND
OTHER OBIJECTS OF INTEREST

In an econometric sample selection model, the usual goal is to consistently
estimate B in Y;=XB+U,, where E(Y,)|X,D=1=XB+EU,|X,D=1)
and E(Y,|X,D=0)=XB+EU,|X,D =0). In this paper, the goal is to esti-
mate the bias B(X)=E(U,|X, D =1) — E(U,| X, D = 0) that arises from using
a comparison group to identify the parameter E(A|X, D = 1).3* A characteriza-
tion of B(X) suggests which nonexperimental strategies, if any, are likely to be
effective in eliminating it. Our emphasis is thus very different from the standard
approach that treats bias terms as nuisance functions to be eliminated.*

In the case where the X variables are all discrete, estimation of the bias is
straightforward. Only cell means are required. The regression equation used to
estimate the bias on comparison and control samples is

(15) Y,=XB+EW,|X,D=0)+B(X)D+ ¢,

*In a context where the treatment impact and not the bias is being estimated, the methods we
use can be applied directly by substituting data on Y; for participants for the data on Y, for
controls. To apply the semiparametric index sufficient selection model (but not the other methods
we consider) requires an exclusion restriction—some variable in Z not in R. We expand on this
point below in Section 11.

% See, e.g., Heckman (1979), Cosslett (1991), or Ahn and Powell (1993).
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where B(X) =E(U,|X,D=1) —E(U,|X,D=0)and E(¢|X, D)= 0. B(X) can
be estimated from a least squares regression of Y, on a constant and D
interacted with dummy variables for each X cell. The interactions between D
and X identify B(X) at the discrete coordinates of X even though g is not
identified unless E(U,|X, D =0) =0, an assumption not required to identify
B(X). If conditioning on X eliminates bias, as is assumed in the method of
matching or in the analysis of Barnow, Cain, and Goldberger (1980), then
B(X) = 0 for each value of X.

A simple application of this method is presented in Table IV. We compute
the mean bias within cells defined by a subset of the variables included in the
logit for P. This subset and the cells themselves were chosen by cross-validation
to minimize the sample misclassification rate using the “hit or miss” method
described in Section 4.3 and using the Classification and Regression Tree
(CART) method that partitions the data into the best-predicting groups.®
Within cells, the bias B(X) is large, just as it is in the fourth column of Table II.
Averaging over cells using the cell weights for the D =1 population, the
estimated bias is much smaller. Thus, although the biases tend to cancel across
cells, the method of matching per se is not justified by this partition of the data,
nor is the method advocated by Barnow, Cain, and Goldberger (1980).

When E(U,|X,D =0) and E(U,|X,D =1) are specified more generally as
nonparametric functions of continuous variables, equation (15) is termed the
partial linear regression model.’” In this paper we focus on nonparametric
estimation of the B(X), rather than on estimating the parametric portion of the
model, and use the local linear regression methods described in detail in
Appendix A.

Our data have a panel structure with individuals observed in periods

=1,...,T. Individuals are subscripted by “i.” Define the bias functions as
K, (P)=EU,y,|P,D;=1)and Ky,(P,) = E(U,y;,| P, D;=0), and let &, = U, —
DK, (P)—(1—-D,)K,(P,) where E(Uy,)=0. To conserve on notation we
suppress the subscript “0” on Y| in the rest of this section and in Appendix A.
Define Y, =(Y},...,Y;;), X;=(X;,..., X;p)', K{(P)=(K;(P),...,K;z(P)),
j=0,1, and & =(¢g;,..., &) . Precise assumptions about & are stated in
Appendix A. In this notation, the seemingly-unrelated partial linear regression
model used in this paper is

(16)  Y,=X,B+D,K,(P)+(1-D)K)P)+ &

3 The method of picking the best predictors is formalized as the CART method developed in

Breiman, Friedman, Olshen, and Stone (1984). We use the CART algorithm in S + . See Chambers
and Hastie (1993). The method described in Section 4.3 was applied using a parametric logit model.
CART is a nonparametric method that searches for the best-predicting partitions of the data and
explicitly considers interactions in constructing the model. In fitting the parametric logit model, we
do not include interactions terms.

7 See, e.g., Robinson (1988) and Hastie and Tibshirani (1990). For discrete X, the method used
to estimate (15) is fully nonparametric.

* In Appendix A, we relax the restriction that B is constant across time periods. Robinson (1988)
first proposed the partially linear model in the seemingly-unrelated regression framework.



TABLE IV

ESTIMATED Bias FROM CLASSIFICATION TREE MODEL USING CROSS VALIDATION
Average Earnings in the 18 wionths Following Random Assignment Expressed in Monthly Dollars
Experimental Control and Eligible Nonparticipant (ENP) Samples, Adult Males, 508 Controls and 388 ENPs

Cell Characteristics

Mean Earnings in 6 Number  Number
Earnings at Months Prior #Job of of
Cell* Labor Force Status RA/EL to RA/EL Site Spells  Education  Controls ENPS Estimated Bias
(1)  consistently unemployed or had > $1050 Fort Wayne, IN and 13 8 — 608
labor force transition in 18 Jersey City, NJ (296)
months prior to RA/EL
() sameas (1) > $1050 Providence, RI and 0 11 NA®
Corpus Christi, TX (NA)
(3)  same as (1) < $1050 343 54 158
(107)
(4)  consistently employed, consistently < $1008 Fort Wayne, IN and Oorl > 3years 1 14 43
out of the labor force or missing Jersey City, NJ and college or (NA)
Providence, RI missing
()] same as (4) < $233 < $1008 same as (4) Oor1l < 10,10-11, 41 19 222
12 or some 217
college
(6)  same as (4) > $233 < $1008 same as (4) all < 10, 10-11, 11 7 -90
levels 12 or some 347)
college
(7)  same as (4) < $1008 same as (4) Qorl < 10,10-11, 6 20 —15
or some (178)
college
(8)  same as (4) < $1008 same as (4) 2 or 57 18 127
more (154)
(9)  same as (4) > $1008 same as (4) 44 135 - 602
(114)
(10)  same as (4) Corpus Christi, TX 20 138 —430
(157)
Average Cell Bias® 49
(74)

?Variables included in the CART analysis that were not selected as cells were age. average earnings for 12 months prior to random assignment or eligibility determination,
number of household members, race, and current and past vocational training.

‘A bias or standard error value of “NA”™ indicates that the cell contains only individuals of one type, either all controls or all eligible nonparticipants, so that the bias could not
be calculated. If there is exactly one observation in a cell, then a bias can be calculated but a variance cannot (which is the case with cell (4)). A value of “...” indicates that the
variable was not included as a cell conditioning variable so that all values of that variable are included in the cell.

“The average bias is obtained by a weighted mean of the cell bias values, using the control distribution across cells as the weights. “NA” cells are omitted in taking means.
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Participants (D = 1) are oversampled in our data relative to their population
proportions. We reweight the data to random sample proportions, and use the
parametric logit model to estimate P,.* In the general case, K,, and K,, are
functions of more than just P;. In the classical selection model and the extension
of the matching method developed in Heckman, Ichimura, and Todd (1997,
1998; first drafts 1993), however, these functions depend only on P, The
extension of the estimation method to vector-valued arguments for the K
functions is straightforward.

We estimate the bias functions using the “double residual regression” method.
Form expectations of equation (16) conditional on P; and D; to obtain

E(Y;|P,D,) =E(X,|P;,,D;)B+D,K,(P)+ (1—-D,)K,(P,).

Remove the portion of X; and Y,

conditional means) to form an adjusted version of (16):

(17)  Y,—E(Y,|P,D)=[X,~ E(X,|P,,D)]'B+ &,

that depends on P, and D, (ie., the

1

Run “adjusted” least squares on this equation to estimate B8.** The conditional
expectations E(Y;|P;, D;) and E(X,|P,, D;) are consistently estimated using this
method under conditions stated precisely in Appendix A.*!

To estimate the components of the bias term B(P(X)), we use a local linear
regression estimator applied to the X-adjusted residuals, ¢; =Y, — X; /§ where ,é
is estimated using the first stage procedure just descrlbed The pointwise
estimator of K,(P,) in the neighborhood of P, is denoted K ¢ (P,), where
K ,(P,) and %,(P,) are defined as -

A

\ p-P
(18) argmin ) [ci—Kd(PO)—yd(PO)(Pi—PO)]ZG SR

Kiva ie{D=d) ay
de{0,1},

% The weights are given in the footnote to Table III. As is common in many evaluations (see the
discussion and methods of solution in Heckman and Robb (1985)), persons in the {D = 1} group are
oversampled compared to persons in the {D = 0} group. This gives rise to the problem of choice-based
sampling. The problems raised by choice-based sampling are a special case of the problem of
weighted distributions first analyzed by Rao (1965; 1986) and the solution is the same as his: weight
the sampled distributions back to population proportions using population weights. Amemiya (1985)
discusses applications of Rao’s method in econometrics. Todd (1995) discusses estimation of the
model in the text using nonparametric estimators for P. Her evidence suggests that estimation of P
assuming a logit functional form is innocuous in our sample. Heckman, Ichimura, and Todd (1996;
first draft 1994) show that the correction for choice-based sampling is strictly not required to
estimate the bias functions. We reweight the data in order to derive estimates of the selection bias
functions that are functions of P.

“ The “adjusted” least squares trims out observations for which f(P|D = 1) is too small. Such
“trimming” is required to obtain uniform convergence of the estimator. See Appendix A for details
and for the conditions required to secure consistency and asymptotic normality of B. Yatchew (1997)
presents a simpler alternative estimator that avoids this first step procedure for estimating S.

I See Malinvaud (1970) for references on the origins of the double residual regression method.
Robinson (1988) extends it to semiparametric models.
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where P, is a given point in the support of ﬁ for {D =d}, G is a kernel with
properties fully characterized in Appendix A, {a ~} Is a sequence of smoothing
parameters, and P is the ith individual’s estimated value of P. If y,(P,) is set to
zero for all P, (18) becomes the standard kernel regression estimator. Introduc-
ing vy,(P,) removes the linear bias term in the neighborhood of P,, gives an
estimator that is robust to the distribution of the regressors, and produces better
boundary behavior than is produced using standard kernel regression. We
account for the estimation of the parameters of P in deriving standard errors
and test statistics. See Appendix A for further discussion.

The local linear regression method can be used to construct matches and to
extend matching to regression-adjust for X. As demonstrated in Heckman,
Ichimura, and Todd (1997; first draft 1993), local linear matching on P defines
the Wy y(i, j) in (5) to be

. A-B
19 Wy (7)) = =D’
where
A=G, Y G (p,—P),

1
ke{D =0}

ke{D=0}
C= Z Gij Z Gy (P, _Pi)z?

je{D=0} ke{D=0}

D= Y Gu(P,—P), and
ke{D=0}

P, —P,
Gy=6G :

ay

This weight can be used to construct consistent pointwise estimators of (1) or
averaged estimators of (2). Consistency and asymptotic normality of these
estimators is established under conditions specified in Heckman, Ichimura, and
Todd (1998; first draft 1993). Regression-adjusted local linear matching removes
XB from Y,. Applied to participant and comparison group data, formula (5) or
(6) is used with weights (19) and with (Y; — X; 8) in place of Y,. The estimates B
are obtained from the first stage estimator of equation (17).

6. ESTIMATING THE COMPONENTS OF OUR DECOMPOSITION OF B

We obtain nonparametric estimates of each of the components in (14) by
decomposmg our estimate of the bias B into the sample analogs of the three
terms in (14) as follows:

(20)  B=E(Y,ID=1)-FE(Y,|D=0)=B, +B, + B,
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where

X~ 1 1
BIZN— Z YO(P)_N— Z Y, (P),
1 ie{D=1} 0 ie{D=0}

P,eSp\Sp P,eSop\Sp

. 1 . 1
By=— )}, E(Yy,IP,D=0)-— Y Y/(P),
Nlie

{D=1} 0ie{D=0}
P,eSp P.eSp
Bi=— T [Yy(P)~EYyIP, D=0,
1je{D=1}
P,eSp

~

where N, denotes the size of the D =1 sample, N, denotes the size of the
D =0 sample, “*” indicates an estimate, P, = P(X,) for person i, Y (P,) is the
value of Y,; for person i with probability P, where Sp,S;p\Sp,Sp\Sp are
analogous to Sy, S, ¥\ Sy, and Syx\ Sy in (14) and where the counterfactual
outcome in the no-treatment state for a D = 1 observation with probability P,
E(Y,;|P,D,=0), is estimated by a local linear regression of Y,, on P, using
data on persons for whom D =0. Each term in the summations on the
right-hand side of (20) is self-weighted by averaging over the empirical distribu-
tion of the P in either the D=1 or D =0 sample. Under random sampling,
each term is consistently estimated and VN times each term centered around its
expected value is asymptotically normal.*

Following the analysis of the JTPA experiment reported in Bloom, et al.
(1993), we use quarterly earnings and total earnings in the 18 months after
random assignment as our outcome measures. Table V presents consistent and
asymptotically normal estimates of the three components of decomposition (14)
using the earnings data from the JTPA experiment and estimated using the
formulas presented below equation (20). The control group sample gives infor-
mation on Y| for those with D =1 and the sample of eligible nonparticipants
gives Y, for those with D = 0. The first column in Table V indicates the quarter
(three month period) for which the estimates are constructed. These quarters
are defined relative to the month of random assignment or eligibility determina-
tion. Each row corresponds to one quarter, with the bottom row reporting
averages over the first six quarters (18 months) after random assignment.
Column (1) reports the estimated mean selection bias B. The next three
columns report estimates of the components of the decomposition in (14). The
top number in each cell is the estimate, the number in parentheses is the
bootstrap standard error, and the number in square brackets is the percentage
of B for the row that is attributable to the given component. The first
component, Bl, is presented in column (2) of the table. The component arising
from misweighting of the data, B,, is given in column (3), and the component
due to selection bias rigorously defined, B,, appears in column (4). Column (5)

2 The asymptotic normality of each component is justified by Theorem A.1 of Appendix A.
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TABLE V

DECOMPOSITION OF MEAN SELECTION BIAS FOR THE BEST PREDICTOR MODEL FOR THE
PROBABILITY OF PROGRAM PARTICIPATION®
Experimental Control and Elig. Nonparticipant (ENP) Samples, Adult Males,
508 Controls and 388 ENPs

1) ) 3) ) ) 6) (@)
‘Mean R Nonoverlap Density Selection  Average  pyperimental Average Bias (Bs )
Difference Support® Weighting Bias 13}35 Treatment as of % of
Quarter (B) (El) (B,) (E;) (B_Sp) Impact Treatment Impactd
Qtrl —420 190[-45%] —627[149%] 17[-4%] 29 5 566%
(38) (31) (32) (34) (63) (30)
Qtr2 —352 209[—-59%] —581[165%] 19[—6%] 32 37 88%
(C)] 41) (45) (35) (65) (33)
Qtr3 —343 221[—-65%] —576(168%] 12[—3%] 20 57 35%
(55) (39) (50) (43) (79) (34)
Qtr4 —294 234[-80%] —568[194%] 41[—14%] 68 60 114%
57 (40) (46) (42) (79) (34)
Qtr5 -311 232[-75%] —576[185%] 33[—10%] 54 44 121%
57 (40) (51) (41) an (35)
Qtr6 —334 223[-67%]) —573[172%] 16[—5%] 27 61 44%
(63) (45) 1) (44) (81) (34)
Average —342 218[—64%] —584[170%] 23[—-7%] 38 44 87%
of 1to 6 47 (38) (41) (33) (63) (14)

“The best predictor model for the probability of program participation includes training center indicators, race, age,
education, marital status, children aged less than 6, labor force status transitions, job spells, current and past vocational
training, total number of household members, and earnings in the month of random assignment or eligibility determination.
(See Table III for model estimates and Appendix C for prediction rate compansons)

>The percentage of the mean difference attributable to each component appears in square brackets in the appropriate
column. Bootstrapped standard errors based on 50 replications with 100% sampling appear in parentheses.

°A 2% trimming rule was used in determining the overlapping support region, and a 0.06 fixed bandwidth was used for the
nonparametric estimates. (See Appendix A for details.) Proportion of controls in the overlap region Sp = 0.60, proportion of
ENPs in Sp= 0.96.

The final column gives the ratio of the absolute value of BS to the absolute value of the experimental impact estimate,
times 100. The experimental impact estimate is based on the full treatment and control sample.

presents I_§s,, (ﬁsx evaluated with X = P), the selection bias for those in the
overlap set Sp. Column (6) presents the experimental impact estimate calculated
using the full control and treatment group samples while column @

expresses ES,, as a fraction of the experimental program impact estimate. All of
the values in the table are reported as monthly dollars. Thus the first row and
first column of Table V reports a mean earnings difference of —$420 per month
over the three months of the first quarter after random assignment. The
percentages of controls and ENPs in the common support region for P, are
reported in the table notes.

A remarkable feature of the estimates in Table V is that for the overall 18
month earnings measure, terms B1 and B2 are substantially larger than the
selection bias component B The selection bias is a small fraction (only 7%) of
the conventional measure of selection bias and is not statistically significantly
different from zero.* These results on the bias for the overall impact of the

* For adult women and for youth the estimated selection bias is proportionately higher, although
the conventional measure B is lower than for adult males. For adult women and youth the bias
measures B and B3 are of the same order of magnitude. These results are reported in Heckman,
Ichimura, and Todd (1997; first draft 1993).
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program appear to provide a strong endorsement for matching on P as a

method of program evaluation. However, the bias B_SP that is not eliminated by
matching is still large relative to the estimated treatment effects, as is shown in
the last two columns.

The decompositions for quarterly earnings tell a somewhat different story.
There is more evidence of selection bias in quarters 4 and 5, although even in
these quarters the selection bias is still dwarfed by the other components of bias
in (20). Expressed as a fraction of the experimental impact estimate, the
quarter-by-quarter biases are substantial.

The evidence for the empirical importance of selection bias that cannot be
removed by matching is even stronger when we examine the bias at particular
deciles of the P, distribution (conditional on D =1) in the overlap set. Table
VII, discussed below, shows that the estimates of bias at the deciles of the
control distribution of P are large, negative, and statistically significant at the
lowest decile, and large and positive at the upper decile. The apparent success of
matching on P in eliminating some of the conventionally-measured selection
bias in the overall estimate of program impact masks substantial bias over
subintervals of P. The bias that remains after matching is a large fraction of the
experimentally-estimated program impact. Our evidence of substantial pointwise
bias that averages out to small bias over certain intervals is reminiscent of what
can occur in the classical selection bias model, as noted in the discussion
surrounding Figure 1. Moreover, it is inconsistent with the identifying assump-
tion used to justify matching. This empirical regularity occurs in the other
models estimated below and is a central empirical finding of this paper.

7. TESTING THE CONDITIONS THAT JUSTIFY MATCHING, OUR EXTENSION
OF MATCHING, THE INDEX SUFFICIENCY HYPOTHESIS, AND THE
CONDITIONAL DIFFERENCE-IN-DIFFERENCES METHOD

We now refine our characterization of the bias function by testing several
important hypotheses. The first hypothesis is the fundamental identifying as-
sumption (7) required to identify parameter (1) using matching. Rejection of this
hypothesis for a broad array of probabilities of participation P, selected on the
basis of various criteria, leads us to test the validity of regression-adjusted
matching. In that method, we postulate econometric separability and exclusion
restrictions and write X=(R,Z), Y,=R'B+U,, and EU,|X, D)=EU,|
Z, D). In place of (7), we postulate conditional mean independence for the
disturbances that parallels the conditions specified in (A-1) and consider U, 1L D
| Z or the disturbance parallel of (A-2), U, L D | P(Z) or its implication

(21) EWU,|1P(Z),D=1)=EU,|P(Z),D=0)=EU,|P(2)).

Separability is a familiar econometric restriction. Exclusion restrictions are
motivated by the temporal structure of the program we analyze. Outcomes are
affected by variables R, like local labor market variables and time effects, that
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are experienced after participation decisions are made due to uncertainty about
future labor market shocks.

Our evidence on hypothesis (21) is mixed. Using conventional asymptotic
standard errors, we reject (21). Using standard errors that adjust for estimation
of B, which are justified in an extensive Monte Carlo analysis reported in
Heckman, Ichimura, and Todd (1996; first draft 1994), we do not reject the
hypothesis. However, the estimated pointwise bias expressed as a function of P
is large. We are reluctant to declare a sizable estimated effect to be zero based
on these tests and we conclude that even after adjusting for R, matching is not
vindicated in our sample. However, the regression-adjusted method improves on
simple matching on P in producing somewhat lower average bias over certain
intervals.

We test the index sufficiency hypothesis (11), and do not reject it, although
the power of our test is not high in the empirically-relevant range of alterna-
tives. Therefore, a key necessary condition justifying the classical econometric
selection bias model is consistent with our data. Large pointwise bias and small
average bias over certain intervals are consistent with the econometric selec-
tion model. Finally, we test the identifying assumptions of the conditional
difference-in-differences estimator and find that they are satisfied in our data
for all but low values of P in time periods near the date of random assignment
or eligibility determination.

7.1. Testing the Validity of Matching on P

We construct our test of the hypothesis (7) from estimates of 72,(P) = E(Y,|
P,D =1) and m(P) = E(Y,| P, D =0) obtained from the separate local linear
regressions of Y, on P for observations with D=1 and of Y, on P
for observations with D =0. The asymptotic normality of the two terms
(Nya) 23y (P) —my(P) ~NW,,V,), d=0,1 is discussed in Section A.5
of Appendix A, where ¥, and V/, are also defined. (See Theorem A.3.) We pick
the smoothing parameters to satisfy ay =ay =ay. The statistic used to test
hypothesis (7) is

i (P) = g (V, /Cay N)) + Vo /CayNy)) (i, (P) = ring(P))
~x*(D),

where I}d is a consistent estimator of V, for d €{0,1} and N, and N, are the
sample sizes for D =1 and D = 0, respectively. For testing hypothesis (21), the
test statistics are analogous except that Y|, is replaced by U,. The test statistics
and estimators of the variances for this case are presented in Appendix A,
Section A.6. The Monte Carlo evidence reported in Heckman, Ichimura, and
Todd (1996; first draft 1994) suggests that adjustment for the estimation of B is
required to produce correct standard errors for samples of size 500-1,000 with
the variation in the regressors found in the samples used in our analysis.

Tables VIA and VIB present the “p values” (rejection rates under the null)
for these hypotheses for various values of the probability of program participa-
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TABLE VIA

TEsTS OF CONDITIONAL MEAN INDEPENDENCE OF EARNINGS AND RESIDUALS
BASED ON ASYMPTOTIC STANDARD ERRORS WITHOUT ADJUSTMENT
FOR ESTIMATION OF 3?
Experimental Controls and Elig. Nonparticipant (ENP) Samples
Adult Males, 508 Controls and 388 ENPs

p-Values from Tests of Conditional Mean Independence of Earnings®
Hy: E(Yy|P,D=1)=E(,|P,D=0)

Joint Test Joint Test
for Quarters for Quarters
Value of P t=1tot=6° t=-6tot= -1

0.0025 0.0000 0.0242
0.005 0.0002 0.0803
0.01 0.0042 0.2416
0.02 0.1224 0.1919
0.03 0.4363 0.1238
0.04 0.7659 0.1585
0.05 0.9423 0.3271
0.10 0.1678 0.8464
Joint 0.0000 0.0159

p-Values from Tests of Conditional Mean Independence of Residuals®
Hy: EUy|lP,D=1)=EWU,|P,D=0)

: Joint Test Joint Test
for Quarters for Quarters
Value of P t=1tot=6 t=—-6tot=~—1

0.0025 0.0002 0.0293
0.005 0.0004 0.0815
0.01 0.0040 0.2586
0.02 0.2056 0.4078
0.03 0.6563 0.5680
0.04 0.9060 0.7177
0.05 0.9885 0.8064
0.10 0.2591 0.7456
Joint 0.0001 0.2515

?Densities were estimated using a biweight kernel and using the fixed bandwidth proposed in
Silverman (1986) (defined in Appendix A, Section A.2). Conditional means were estimated by
local linear regression using a fixed bandwidth of 0.06 and a biweight kernel. (See Appendix A,
Section A.1 for a description of local linear regression and Section A.6 for a description of the
test procedure.)

Final row presents the p-value from a joint test.

°The number of observations within one bandwidth of P =0.0025 in quarter 1 are 140
controls and 328 ENPs. For other P points, the numbers of observations are the following: 143
controls, 331 ENPs (P = 0.005), 150 controls and 336 ENPs (P = 0.01), 158 controls and 345
ENPs (P = 0.02), 170 controls and 350 ENPs (P = 0.03), 184 controls and 353 ENPs (P = 0.04),
198 controls and 355 ENPs (P = 0.05), and 120 controls and 52 ENPs (P = 0.1). The number of
observations in other quarters are similar, but vary slightly because of the unbalanced panel
data.
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TABLE VIB

TESTS OF CONDITIONAL MEAN INDEPENDENCE OF RESIDUALS BASED ON
ASYMPTOTIC STANDARD ERRORS WITH ADJUSTMENT FOR
ESTIMATION OF 32
Experimental Controls and Elig. Nonparticipant (ENP) Samples
Adult Males, 508 Controls and 388 ENPs

p-Values from Tests of Conditional Mean Independence of Residuals®
Hy: EUy|P,D=1)=EWUy|P,D=0)

Joint Test Joint Test
for Quarters for Quarters
Value of P t=1tot=6 t=—~6tor=—1
0.0025 0.0955 0.6421
0.005 0.1129 0.7346
0.01 0.2170 0.7773
0.02 0.5925 0.6738
0.03 0.8289 0.7808
0.04 0.9563 0.8726
0.05 0.9939 0.9042
0.10 0.5790 0.9253
Joint 1.0000 1.0000

?Densities were estimated using a biweight kernel and using the fixed bandwidth
proposed in Silverman (1986) (defined in Appendix A, Section A.2). Conditional means
were estimated by local linear regression using a fixed bandwidth of 0.06 and a biweight
kernel. (See Appendix A, Section A.l for a description of local linear regression and
Section A.6 for a description of the test procedure.)

®Final row presents the p-value from a joint test.

tion P located at least one bandwidth apart, so that the test statistics are
statistically independent. The top portion of Table VIA reports tests of hypothe-
sis (7). The relevant period over which the test should be performed is the
post-random assignment period (¢ =1,...,6) since it is post-entry time periods
on which the program would be evaluated. For the sake of completeness,
however, we also record the test results for the pre-random assignment period
(t=—1,..., —6).* The bottom portion of the table reports tests of hypothesis
(21). Hypothesis (7), which justifies matching on P, is decisively rejected. In
addition, hypothesis (21) is rejected, so regression-adjusted matching is also
inconsistent with our data. When second order-adjusted standard errors are
used that account for the estimation of B, as in Table VIB, the evidence is less
clear cut. However, the pointwise bias is large (see Figure 3 for bias from the
best-predictor P) and it seems inappropriate to ignore this bias and accept the
null of no selection bias when an asymptotically-equivalent test of the same
hypothesis rejects it. Table VII reports the pointwise bias estimates at deciles of
the distribution of P for controls. The bias is large, negative, and statistically
significant at low values of P and large and positive at high values of P, which is
inconsistent with the null hypothesis that matching is a valid estimator.

“ The same inferences are found when we test over all 12 periods although such a test is not
especially interesting for judging the performance of matching as an evaluation estimator on
post-random-assignment data.
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Average Earnings over Six Post-Program Quarters
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FIGURE 3.—Local linear regression estimates of pointwise bias (B(P(X))), adult males, best
predictor P model for the probability of program participation; bandwidth = 0.06, trimming = 2%.

7.2. Testing Index Sufficiency

Our data are consistent with the hypothesis of index sufficiency. Appen-
dix A, Section A.6.2, presents the test statistic for this hypothesis. We test
EUy,|P,Z,D=1)-EWU,,|P,Z,D=0)=K,(P,Z2)-K,(P,Z) for different
discrete regressors, Z, shown in the subtable headings of Table VIII, using the
best-predicting P score selected on the basis of tests discussed in Appendix C.*
For most cells, and tests over all cells using conventional significance levels, we
do not reject the hypothesis in the relevant post-random assignment period
(t=1,...,6) or for that matter in the pre-random assignment period (¢ =
—1,..., —6). P values are chosen at least one bandwidth apart so that the test
statistics are statistically independent. A Monte Carlo analysis of the test
statistic presented in Appendix D reveals that the test is consistent but quite
conservative. It rejects at a far higher rate (25%) than the normal size (5%). On
the other hand, the power of the test is not especially high (roughly 20%) for a
large range of alternatives away from the null. A similar pattern of acceptance

* Since the terms E(U,,|P,Z, D =1) and E(U,, | P, Z, D = 0) are identified only up to unknown
constants, we do not test the hypotheses K, (P,Z) =K, (P) and K;(P,Z) =K, (P). Our test of
index sufficiency is different from that of Fan and Li (1996) because we test the hypothesis that
differences are index-sufficient, not levels. Our test is also different from that of Ait-Sahalia, Bickel,
and Stoker (1994) because we test for index sufficiency of a subfunction and not an entire function
and we use local linear regression methods which greatly simplify the derivation of the sampling
distribution of test statistics. See the discussion in Appendix A.




TABLE VII

ESTIMATED SELECTION Bias AT DECILES OF THE CONTROL P DISTRIBUTION FOR THE BEST PREDICTOR P MODEL?
Quarterly Earnings Stated in Monthly Dollars®
Experimental Control and Elig. Nonparticipant (ENP) Samples, Adult Males, 508 Controls and 388 ENPs

Decile of the Control Empirical Distribution of P¢
(Decile boundaries shown in brackets)

1 2 3 4 5 6 7 8 9
Quarter [0.0002,0.0023)  [0.0023,0.0087)  [0.0087,0.0152)  [0.0152,0.0269)  [0.0269,0.0410)  [0.0410,0.0822)  [0.0822,0.0983)  [0.0983,0.1337)  [0.1337,0.2534]
Qtrl —338 —229 —139 -83 -20 84 66 -2 517
(121) 92) (83) (86) (101) (122) 131 (175) (320)
Qtr2 —260 —194 — 144 -95 -23 130 157 228 492
(139) (109) (94) (86) o7 (131) 127) (165) (348)
Qtr3 —295 —195 —118 -59 6 176 202 275 442
(140) (111) (96) (86) 95) (134) 127) (193) (378)
Qtr4 —193 —103 =50 -21 38 193 152 54 530
(133) 107) (95) (90) (102) (133) (132) (183) 376)
Qtrs —246 —146 -84 —45 22 257 246 —163 519
(139) (112) (102) (€0} (119) (169) (176) (240) (398)
Qtr6 —359 —262 —173 =76 -3 169 191 97 428
a1n 94) (88) (102) (130) 175 (191) (205) (342)
Average of —282 —188 —118 - 63 3 168 169 81 488
1to6 (116) (C29) (81 (79 98) (130) 117 (147) (281)

2The best predictor model is given in Table IIL.
Bootstrap standard errors are shown in parentheses. They are based on 50 replications with 100% sampling. For the nonparametric estimates, a fixed bandwidth of 0.06 and a
biweight kernel function were used. (See Appendix A, Sections A.1 and A.5.2 for additional details concerning the estimation procedure.)
“The deciles are based on the distribution of control probabilities of participation in the region of overlapping support, Sp. A 2% trimming rule was used in determining the
overlapping support region, and a 0.06 fixed bandwidth was used for the nonparametric estimates. (See Appendix A for details.) Proportion of controls in the overlap region
Sp=0.60, proportion of ENPs in Sp= 0.96. There are too few eligible nonparticipant observations to estimate the bias reliability in the 10th decile.
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TABLE VIII

Pp-VALUES FROM TESTS OF INDEX SUFFICIENCY ?
Experimental Controls and Elig. Nonparticipant (ENP) Samples
Best Predictor Model for the Probability of Program Participation
Adult Males, 508 Controls and 388 ENPs

Tests by Race and Ethnicity®

Joint Test Joint Test
for Quarters for Quarters
Value of P t=1tor=6 t=—6tot=—1
0.002 0.4229 0.4376
0.039 0.5213 0.7867
0.076 0.2268 0.5307
0.113 0.6526 0.2827
0.150 0.0175 0.2440
Joint® 0.0421 0.3983
Tests by Training Center®
Joint Test Joint Test
for Quarters for Quarters
Value of P t=1tot=6 t=—6tot=—1
0.008 0.4942 0.8503
0.026 0.3404 0.1392
0.044 0.0952 0.0230
0.062 0.0925 0.0626
0.080 0.4062 0.2633
Joint® 0.4667 0.5959
Tests by Years of Schooling Categories®
Joint Test Joint Test
for Quarters for Quarters
Value of P t=1tot=6 t=—6tot=—1
0.003 0.4717 0.4646
0.022 0.5736 0.2842
0.042 0.2576 0.0967
0.061 0.0792 0.0188
0.080 0.0967 0.0964
Joint® 0.1718 0.1686

?Densities were estimated using a biweight kernel and using the fixed bandwidth
proposed in Silverman (1986) (defined in Appendix A, Section A.2). Conditional
means were estimated by local linear regression using a fixed bandwidth of 0.06 and
a biweight kernel. (See Appendix A, Section A.l for a description of local linear
regression and Section A.6 for a description of the test procedure.) Standard errors
used in the test are asymptotic and are not adjusted for higher order terms (as
described in Appendix A, Section A.6). When adjustment is made for estimation of
B, the estimated standard errors are substantially larger.

The tests by race and ethnicity include “White” and “Black” groups. The tests
by training center include “Fort Wayne,” “Jersey City,” and “Providence.” The
tests by years of schooling category include “Fewer than 10 years of schooling,”
“10-11 years of schooling,” “12 years of schooling,” and “More than 12 years of
schooling.”

“Joint tests shown include only a subset of the P points that are at least one
bandwidth apart.
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of the null of index sufficiency is found for all specifications of P shown in Table
VIII, except when P scores are used which exclude both earnings and recent
labor force transition information.

Our acceptance of index sufficiency is necessarily qualified because the power
of our test is not especially high. The test partitions the data by demographic
group, by training center at which the experiment was conducted, and by
education group. This partitioning sometimes produces very small cells and it
greatly restricts the range of P over which the test can be performed. When
certain cells are deleted, the range of P values over which the test can be
performed is greatly expanded. For this reason, the tests reported in Table VIII
omit the “Hispanic” race /ethnicity and the “Corpus Christi” training site cells.
Unlike the case of our test of the conditional independence assumptions that
justify the conventional matching estimator, where the rejections are firm, here
we can only make the guarded statement that the data are consistent with the
null hypothesis of index sufficiency and that further tests with larger samples
would be highly desirable.*® The pointwise differences in the bias are sometimes
substantial (see Figure D-2 displayed in Appendix D), but so are the standard
errors.

Moreover, as noted in Section 3.2, in order to use the index-sufficient model
to construct the desired counterfactual (1) it is necessary to be able to determine
a set of X values where E(U,|P(X),D =0)=0. The restricted support of
P(X) evident in Figure 2 precludes this identification strategy unless parametric
restrictions are invoked. The restriction on the support of P in our sample also
eliminates the possibility of a more general statement about the shape of B(P)
over the full support of P for program participants. Future evaluations should
select comparison groups to enlarge S, to the full support of program partici-
pants in order to allow valid inferences about the entire sample of participants.

7.3. Testing the Identifying Assumption Justifying the Conditional
Difference-in-Differences Method

Maintaining index sufficiency to characterize bias B(X) simplifies the testing
of identifying assumption (12). In light of our evidence on index sufficiency we
can reformulate it in the following way:

22) B(P(X))—B,(P(X))=0, forsome¢t,t’

where ¢ is a post-program period and ¢’ is a pre-program period.
Figure 4 plots the pointwise bias estimates over all ¢. The B,(P) are not
constant over time, or even equal for time periods t = —¢' at low values of P for

“ In general, a multiple index model would characterize participation in the program, reflecting
the preferences of the individuals and those of the bureaucrats who accept people into the program.
Heckman, Smith, and Taber (1996) report the absence of cream-skimming behavior at one of the
JTPA training centers analyzed in this paper. (The required data are not available at the other
centers.) In a larger sample, or with different decision rules used by program officials, the single
index model might be rejected in favor of a multiple index model. Local linear regression methods
can easily be modified to estimate models with multiple indices using higher dimension kernels.
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FIGURE 4.—Local linear regression estimates of pointwise bias B,(P(X)) over time, adult males,
best predictor P model for the probability of program participation; bandwidth = 0.06, trimming =

2%.
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(c) Pointwise Bias Estimates, P= 0.01
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(e) Pointwise Bias Estimates, P= 0.03
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(g) Pointwise Bias Estimates, P= 0.05
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FiGURE 4.—Continued

time periods near the time of the participation decision. In general, however,
the identifying assumption justifying the conditional difference-in-differences
estimator is consistent with our data. The fourth column of Table IX presents p
values for tests of hypothesis (22) for symmetric differences around ¢ = 0.7 Only

“T The inference using the unadjusted standard errors is the same as that reported in Table IX.
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TABLE IX

Pp-VALUES FROM TESTS FOR FIXED EFFECT AND DIFFERENCE-IN-DIFFERENCES
SPECIFICATIONS FOR THE B1as FUNCTION
All Tests are Symmetric Around Time ¢ = 0*°
Adult Males, 508 Controls and 388 ENPs

Null tested jointly over ¢ € {1,2,3,4,5,6)°

Fixed Effect Fixed Effect Difference-in-
Value of P Test for Controls Test for ENPs Differences Test
(1) 2) 3 (4
0.0025 0.0922 0.8042 0.1221
0.0050 0.0967 0.8578 0.1291
0.0100 0.1148 0.8609 0.1688
0.0200 0.2158 0.3093 0.4279
0.0300 0.2327 0.0948 0.7579
0.0400 0.0807 0.0454 0.9353
0.0500 0.0047 0.0466 0.9707
0.1000 0.0057 0.1785 0.9914
Overall 0.1303 0.0019 0.8087

Null tested jointly over t € {1,2,3}°

0.0025 0.3160 0.9417 0.4083
0.0050 0.3251 0.9832 0.4907
0.0100 0.3614 0.9949 0.7176
0.0200 0.4392 0.6269 0.9899
0.0300 0.3158 0.1877 0.9999
0.0400 0.1159 0.0785 1.0000
0.0500 0.0121 0.0680 0.9999
0.1000 0.0068 0.4363 0.9999
Overall 0.0255 0.0001 0.7008

Null tested jointly over t € {4,5,6}¢

0.0025 0.9456 0.9968 0.9386
0.0050 0.8779 0.9832 0.8424
0.0100 0.7217 0.9115 0.6266
0.0200 0.6256 0.8132 0.6123
0.0300 0.7353 0.8901 0.8768
0.0400 0.8467 0.9206 0.9772
0.0500 0.8522 0.9263 0.9906
0.1000 0.4140 0.9931 0.9966
Overall 0.9498 0.3141 0.9376

“Densities were estimated using a biweight kernel and using the fixed bandwidth proposed in Silverman (1986) (defined in
Appendix A, Section A.2). Conditional means were estimated by local linear regression using a fixed bandwidth of 0.06 and
a biweight kernel. (See Appendix A, Section A.1 for a description of local linear regression and Section A.6 for a description
of the test procedure.) Standard errors used in the test are asymptotic and are not adjusted for higher order terms (as
described in Appendix A, Section A.6). When adjustment is made for estimation of B, the estimated standard errors are
substantially larger.

°Null hypothesis for fixed effects test for controls is Hy: Ky,(P)~ K, _,(P)=0; null hypothesis for fixed effect test
for ENPs is Ho: Ko, (P)— Ko _,(P)=0; null hypothesis for difference-in-differences test is Hy: [K;(P)~K; _,(P)] -
[Ko(P)— Ky, -, (P)] = 0; where (—1) is a pre-program period ¢ periods before random assignment or eligibility determina-
tion.

“Values of P in the overall test are at least one bandwidth apart.



SELECTION BIAS 1057

for the lowest values of P in the joint test over all six pairs of quarters is the
null close to being rejected at conventional levels. Outside the interval t &
[—3,3], hypothesis (22) is never close to being rejected for any values of P.
Table X presents the bias by P decile in a format comparable to that of Table
VII. For most deciles, the bias is substantially lower than for the matching
estimator. Pointwise, the estimated bias using the difference-in-differences
matching estimator, which is a differenced version of the regression-adjusted
matching estimator, is lower than that for the cross-sectional matching estimator
or the regression-adjusted matching estimator.*®

Column (2) of Table IX reports p values for the test of the identifying
assumption of the fixed effect model (K;(P)=K, _,(P)). In a stationary
environment, the fixed effect method applied to controls (D = 1) is sufficient to
identify the parameter of interest.*” This hypothesis is decisively rejected overall
for the ENPs and in most cases for the controls, but the data are consistent with
the hypothesis of fixed effects in the interval outside ¢ € [—3,3]. The results in
column (3) of Table IX show that the same conclusions apply to the hypothesis
Ko (P)=K; _,(P).

8. ESTIMATED SELECTION BIAS UNDER ALTERNATIVE ESTIMATORS AND
SENSITIVITY OF ESTIMATES TO ALTERNATIVE SPECIFICATIONS OF THE
OUTCOME AND PARTICIPATION EQUATIONS

This section presents estimates of selection bias associated with the alterna-
tive estimators described above and explores the sensitivity of the estimated
average selection bias, l_?sp, to variations in the variables included in the
outcome equations (R) and in the participation equation (Z). We also compare
the selection bias, rigorously defined, that is obtained from the method of
Barnow, Cain, and Goldberger (1980) with the bias from the local linear
regression estimator.

Table XI presents estimates of selection bias associated with different match-
ing estimators, where matching is performed using the best-predictor model for
P. The first column of Table XI gives the benchmark difference in raw mean
earnings between the control and ENP groups. Column (2) is the bias for a
local-linear P matching estimator without regression-adjustment, which imposes
a common support condition and uses nonparametric local linear regression
methods in constructing matches. The average bias estimate of $47 improves
substantially over a simple mean-difference estimator. Column (3) gives the
estimated bias for the regression-adjusted version of the same estimator. The
fourth and fifth columns present the bias estimates for the difference-in-dif-

“ The bias by decile for the regression-adjusted matching method is only slightly smaller (less
than 10%) for each decile. For the sake of brevity we do not display these results.
* See Heckman and Robb (1985).
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TABLE XI

COMPARISON OF ESTIMATED SELECTION BIAS UNDER ALTERNATIVE ESTIMATORS
OF PROGRAM IMPACTS FOR THE BEST PREDICTOR MODEL FOR P
Quarterly Earnings Stated in Monthly Dollars
Experimental Control (D = 1) and Elig. Nonparticipant (ENP) (D = 0) Samples
Adult Males, 508 Controls and 388 ENPs

“@) (@)
3) Difference-in- Difference-in
) ) Regression- Differences Differences
Difference Local Linear Adjusted Local Linear Regression-Adjusted
in P Score Local Linear P Score Local Linear
Quarter Means Matching Matching Matching Matching
Qtrl —418 (38) 33(59) 39 (60) 97 (62) 104 (63)
Qtr2 —349 (47) 37 (61) 39 (64) 77 (89) 77 (92)
Otr3 —337(55) 29 (78) 21 (80) 90 (114) 74 (114)
Qtr4 —286 (57) 80 (77) 65 (82) 112 (90) 98 (91)
Qtr5 —305(57) 64 (77) 50 (83) 19 (95) -5 (99
Qtr6 —328(63) 37 (82) 17 (90) 4(105) —35(111)
Average of 1to 6 —337 (47) 47 (60) 39 (64) 67 (71) 52 (74)
As a % of impact 775% 107% 88% 153% 120%

“The best predictor model was used for the probability of participation. It is given in Table III.

®For the nonparametric estimates, a fixed bandwidth of 0.06 and a biweight kernel function were used. (See Appendix A,
Sections A.1, A.4, and A.5 for additional details concerning the estimation procedure.) Bootstrap standard errors are shown
in parentheses. They are based on 50 replications with 100% sampling.

ferences and regression-adjusted difference-in-differences estimators, respec-
tively. The estimated bias is slightly higher.”

In Table XII, we explore the sensitivity of the bias estimates to alternative
sets of variables included in the outcome equation. That is, we use the best-pre-
dictor P model defined in Appendix C throughout the sensitivity analysis but
vary R. Table XII reveals that there is relatively little sensitivity in the estimates
of selection bias across specifications of the outcome equations. For example,
comparing the baseline specification with Model I, which includes no regressors
except for an intercept, shows little effect of inclusion of the baseline regres-
sors on the estimated overall bias. Addition of training center indicators,
race/ethnicity, age, and calendar quarter and year dummies (Model II) to the
stripped-down Model I decreases the estimated overall selection bias roughly by
a factor of two. Augmenting the regressors of Model II to include measures of
previous training, work experience, the local unemployment rate, and a dummy
variable for whether or not a child is present (Model III) increases estimated
overall selection bias only by a small amount compared to Model II. Adding
schooling, age, and marital status to the Model III specification to produce

%0 Heckman, Ichimura, and Todd (1997; first draft 1993) apply the conditional difference-in-dif-
ferences estimator to data from three other demographic groups and find that it generally yields bias
estimates similar to those obtained using cross-sectional matching estimators.
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TABLE XII

SELECTION BIAS UNDER DIFFERENT OUTCOME EQUATION MODELS:
ESTIMATED BIAS FROM REGRESSION-ADIUSTED LOCAL LINEAR MATCHING ESTIMATOR® ®
Quarterly Earnings Stated in Monthly Dollars
Experimental Control (D = 1) and Elig. Nonparticipants (ENP) (D = 0) Samples
Adult Males, 508 Controls and 388 ENPs

Method of Barnow

Quarter Baseline® Model I° Model II°  Model III®  Model IV  Model V¢ Cain and Goldbergerd
Qtrl 39(60) 33(59) 32(68) 38(68) 33(65) 63(62) 150 (34)
Qtr2 39(64) 37(61) 33(64) 38(68) 32(63) 63(65) 126 (28)
Qtr3 21(80) 29(78) 5(76) 14(78) 4(76) 40(83) 82 (16)
Qtr4 65(82) 80(77) 40(78) 54(78) 41(79) 82(82) 125 (27)
Qtrs 50(83) 64(77) 32(75) 44(78) 28(77) 66 (80) 142 (45)
Qtr6 17(90) 37(82) —5(81) 9(85) —7(84) 38(87) 108 (53)
Averageof 1to 6 39(64) 47(60) 23(61) 33(63) 22(62) 59(65) 134 (51)

As a % of impact  88% 107% 52% 76% 50% 135% 304%

#The regression-adjusted average bias is defined in Appendix A, Section A.5.3. In the estimation of the model, densities
were estimated using a biweight kernel and the fixed bandwidth proposed in Silverman (1986) (defined in Appendix A,
Section A.2). The bias function was estimated by local linear regression using a fixed bandwidth of 0.06 and a biweight
kernel. The overlapping support region was determined using a 2% trimming rule and a biweight kernel function. (See
Appendix A, Section A.1 for a description of local linear regression, and Section A.4.1 for the method used to determine
the overlapping support region.)

Bootstrap standard errors are shown in parentheses. They are based on 50 replications with 100% sampling.

Baseline outcome model includes dummy variables for specific training center, race or ethnicity, schooling, age, and
previous training. It also includes work experience, local unemployment rate, an indicator for marital status, an indicator for
presence of a child age less than six, and quarter and year indicators.

Outcome Model I includes no R variables and is equivalent to local linear P score matching.

Outcome Model IT augments I with training center indicators, race or ethnicity, age, and quarter and year indicators.

Outcome Model III augments II with previous training, work experience, local unemployment rate, and presence of a
child age less than six.

Outcome Model IV augments II with local unemployment rate, presence of a child age less than six, schooling, and a
marital status indicator.

Outcome Model V augments the baseline model with labor force transition indicators.

9The Barnow, Cain, and Goldberger (1980) method is based on equation (15) in the text with the X = (R, Z) the same as
in the baseline model, and B(X)=B(Z) and E(Uy|X,D = 0)=E(Uy|R,D = 0) = E(Uy | R) assumed linear. We impose a
common support restriction in defining the sample used for estimation where observations are used with P(Z) e SP for the
baseline model. The bias is computed using the distribution of P|D = 1.

Model 1V barely changes the estimated selection bias. Adding the labor force
transition variables (Model V) that prove useful in estimating the probability of
participation substantially increases the estimated selection bias. These variables
are not included in the baseline model and are typically not used as regressors
in earnings equations.

The final column of Table XII presents the selection bias that arises from
using the method of Barnow, Cain, and Goldberger (1980). This is a weighted
linear regression version of our method of regression-adjusted matching. Using
the same outcome variables (R) and selection variables (Z) that appear in
the baseline model, we estimate linear regression (15) where B(X) = B(Z) is
postulated to be a linear function of Z and E(U,|X,D =0)=EU,|R,D=0)
= E(U, | R) under their hypothesis, is postulated to be linear in R. We impose
the condition of common support to secure estimates from the method by using
the observations with P(Z) € S,, and we impose common weighting in estimat-
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ing the regression across ENP (D = () and control samples by weighting the
ENP observations by the ratio of the estimated control and ENP densities
f(PID=1)/f(PID=0)5" The estimated selection biases are large when com-
pared with those obtained from the baseline semiparametric model. Our semi-
parametric alternative to linear regression methods offers substantial benefits in
reducing selection bias.*?

Table XIII presents a sensitivity analysis of the effect of changes in Z on the
estimated selection bias for both the regression-adjusted local linear matching
estimator and the difference-in-differences version of the estimator. The base-
line regressors R from the previous table are maintained through all of the
specifications examined here. The second column of the table presents the
baseline selection bias for the regression-adjusted model. “Coarse P I” is a
model that only includes demographics, schooling, and training center dummies
in Z. If there is no access to information on earnings or labor force histories to
include in Z, the estimated bias for the local linear estimator is substantial. For
the difference-in-differences estimator, the quarterly bias estimates are also
substantial but they average out to a low value of $32 per month. Access to
information on earnings from the year preceding random assignment or eligibil-
ity determination greatly improves but does not climinate the estimated selec-
tion bias for the local linear regression estimator, as shown by the estimates for
the “Coarse P II” model. The estimates for the “Coarse P III” model
demonstrate that adding local labor force transition variables to the “Coarse P
I” model greatly reduces the estimated selection bias. The importance of recent
labor force transitions in predicting P and eliminating selection bias is a major
empirical finding of this paper. This information was not used in earlier
evaluations of U.S. job training programs because it was not available.

9. SENSITIVITY OF THE ESTIMATED BIAS TO ALTERNATIVE DEFINITIONS
OF ELIGIBILITY, MISMATCH OF GEOGRAPHY, AND ALTERNATIVE
FORMATS OF SURVEY QUESTIONS

National comparison group samples are commonly used to evaluate local
programs. These samples do not place comparison group members and partici-
pants in the same labor markets. Moreover, the variables and interview formats

3! Following the analysis of White (1980), such weighting reduces misspecification error for
E(Uy|X,P(Z),D =1)— EW,|X, P(Z), D = 0) when the bias function is assumed to be linear and is
in fact not linear. The densities are estimated by kernel methods using the kernel defined in
Appendix A. Imposing the common support condition ensures that the denominator is nonzero. In
results not reported for the sake of brevity, we use an alternative way to impose the common
weighting condition. A regression is first estimated without rewriting to obtain an estimate of B(X;)
for each person, and then the common weighting by f(P|D =1) is used in averaging individual
B(X) estimates. Introducing weighting in the first stage regression makes a substantial difference in
the resulting estimates of bias. The estimated bias is about four times larger if the regression is
unwelghted and the weighting is performed in the second stage.

2 Below, in Table XIX, we report estimated bias for a more standard version of the Barnow,
Cain, and Goldberger (1980) estimator that does not impose common support or common weighting.



TABLE XIII

COMPARISON OF ESTIMATED SELECTION BIAS BS (adj) UNDER DIFFERENT MODELS FOR P ESTIMATED Bias FROM REGRESSION-ADJUSTED
LocAL LINEAR MATCHING ESTIMATOR AND DIFFERENCE-IN-DIFFERENCES ESTIMATOR®®
Quarterly Earnings Stated in Monthly Dollars Experimental Control (D = 1) and Elig. Nonparticipant
(ENP) (D = 0) Samples, Adult Males, 508 Controls and 388 ENPs

Best Difference-in- Difference-in- Difference-in- Difference-in-
Predictor differences Coarse differences Coarse differences Coarse differences

Quarter pPe Best Predictor P PI¢ Coarse P1 PII¢ Coarse PII PIIIC Coarse PIII
Qtrl 39 (60) 104 (63) —390 (50) 167 (67) —228(67) 31(57) -84 (71 67 (68)
Qtr2 39 (64) 77 (92) —312(58) 143 (82) —193 (61D —80(62) -39 (8%) 103 (107)
Qtr3 21 (80) 74 (114) —286(62) 62 (95) —-153(57) —158(71) -36 (96) 105 (134)
Qtr4 65 (82) 98 (91) —231(64) 33 (93) —104 (66) —150(82) -9 (92) 47 (109)
Qtrs 50 (83) -5 (99 —244(72) —73(104) —146 (70) —254 (86) 20 (96) -29(122)
Qtr6 17 (90) —35(111) —286(84)  —143(106) —-172(79) —255(96) -3111) —36(129)
Average of 39 (64) 52 (74) —291(54) 32 (78) —166 (56) —144(61) =25 (83) 43 (95)

1to6
Asa % 88% 120% 670% 73% 382% 332% 58% 98%

of impact

#The regression-adjusted average bias is defined in Appendix A, Section A.5.3. In the estimation of the model, densities were estimated using a biweight kernel and the
fixed bandwidth proposed in Silverman (1986) (defined in Appendix A, Section A.2). The bias function was estimated by local linear regression using a fixed bandwidth of
0. 06 and a biweight kernel. (See Appendix A, Section A.1 for a description of local linear regression.)

Bootstrapped standard errors are shown in parentheses. They are based on 50 replications with 100% sampling.
“Best predictor model for P is the same as shown in Table III.

Coarse P model I includes indicator variables for training site, race or ethnicity, age, schooling, marital status, and presence of a child age less than six.

Coarse P model II augments I with earnings from the year prior to random assignment or eligibility determination.

Coarse P model III augments I with the labor force status transition patterns used in the best predictor model for program participation.
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sometimes differ across surveys creating further sources of discrepancy between
participant and comparison groups unrelated to selection bias, rigorously de-
fined. LaLonde (1986) uses comparison groups situated in different markets
from his participants, all of which were administered different questionnaires
than those given to participants. Part of the bias that he reports arises from
market and survey mismatch. This section investigates these sources of bias and
also explores the impact on the estimated bias of imposing different eligibility
criteria in creating nonexperimental comparison group samples.

We use SIPP (Survey of Income and Program Participation) data to investi-
gate these issues. These data are sufficiently rich that it is possible to determine
whether surveyed persons are eligible for JTPA. However, because of sample
size and confidentiality restrictions, it is not possible to make close geographical
matches between controls and nonparticipants. In addition, the SIPP survey asks
questions about earnings and labor force participation in a different format than
does the survey used to produce our data.*®

Table XIVA presents estimates of the bias (B), the average bias after local
linear matching on P, t_?sp, and the regression-adjusted bias, Esp(adj), from three
alternative comparison samples. The first sample (“full sample”) uses all SIPPs.
The second sample uses SIPPs screened for eligibility for JTPA using the rough
guidelines employed by Ashenfelter and Card (1985) in their evaluation of the
closely-related CETA program. The third sample used only JTPA-eligible per-
sons.** The raw bias B greatly diminishes as more refined eligibility criteria are
imposed to create comparison samples. For the first two samples, matching and
regression-adjusted matching eliminate a substantial portion of the raw bias but
the bias that remains is still large relative to the program impact. Imposing
eligibility actually increases the measured bias obtained from either method of
matching for the SIPP sample of persons, constructed using either the Ashenfel-
ter-Card criterion or exact eligibility for JTPA. Table XIVB presents analogous
estimates for the difference-in-differences estimators but the benefits of impos-
ing eligibility criteria on the sample are small. Using samples of eligible
individuals as comparison group members may be intuitively appealing but is not
guaranteed to reduce selection bias compared to the estimates obtained from
other samples. The estimator performs comparably for the full sample and the
Ashenfelter and Card (1985) eligible sample, but the bias increases for the
sample imposing the more refined eligibility criterion.

Our estimates demonstrate the importance of basic data quality in producing
valid program evaluations. The bias from use of SIPP data is generally substan-
tially greater than the bias that arises from using the ENP data (compare the
biases in Table XIVA and XIVB with the biases in Table XI).

Unlike the SIPP sample, the ENP sample was drawn from the same geo-
graphic locations as program participants and was administered the same sur-
vey questionnaire. To isolate the effect of geographic mismatch in producing

53 Our data are collected in the format of the NLSY. For elaboration of these issues, see Smith
(1995).
> See Devine and Heckman (1996) for an analysis of eligibility for the JTPA program.
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TABLE XV

EFFECT OF GEOGRAPHY ON ESTIMATED BIAS
COMPARING CONTROLS AT TWO SITES TO ELIGIBLE NON-PARTICIPANTS AT TWO SITES
Earnings in the 18 Months After Random Assignment
Quarterly Earnings Expressed in Monthly Dollars
Elig. Nonparticipant (ENP) Sample at Corpus Christi and Fort Wayne
Experimental Control Sample at Jersey City and Providence
Adult Males, 149 Controls and 276 ENPs

Difference-in-

Regression-Adjusted Difference-in differences for
Difference Local Linear Local Linear differences for Regression-Adjusted
in Means Matching® Matching Local Linear Local Linear
Quarter B Bs, Bg,(ad)) Matching Matching
Qtrl —534(53) —203 (85 —184(110) —143 (11D —135(126)
Qtr2 —504 (73) —166 (107) —154 (120) —125(118) =72 (130
Qtr3 —515(78) —177 (120) —147(127) =73 (131) -9 (141)
Qtr4 —485 (78) —200 (121 —164 (132) —87(141) 19 (15D
Qtr5 =527 (72) —272(127) —211(132) —254 (160) —136 (167)
Qtr6 —524(75) —281(110) —189(112) —257(162) —82(165)
Average of  —515(63) -216 (95 —175(108) —157(110) —69 (123)
1to6
Asa % 1183% 497% 402% 360% 159%
of impact

#2% trimming is used to estimate the overlapping support region. A fixed bandwidth of 0.06 is used for the nonparametric
estimates. (See Appendix A for more details on the estimation procedure.) Bootstrap standard errors are shown in
parentheses. They are based on 50 replications with 100% sampling.

bias, and to evaluate the effectiveness of econometric methods in reducing the
bias, we scramble the ENP-control data and mismatch by geography within
these samples. Since all observations are administered the same questionnaire,
this enables us to estimate a pure geographic mismatch effect. Table XV reports
the result of matching ENPs (D = 0) in two training centers to controls (D = 1)
from two other training centers. For three of the estimators, the bias B in Table
XV is two or three times as large as the bias in the geographically-aligned data
(compare with the results in Table XI). Matching and regression-adjusted
matching reduce, but by no means eliminate, the bias (compare the second and
third columns of Table XV with the second and third columns of Table XI).
When data are geographically misaligned, the difference-in-differences estima-
tors generally perform better than the cross-sectional estimators. Geographic
mismatch is an important source of bias in evaluating training programs.>>¢

»Roselius (1996) builds on our analysis and creates a variety of SIPP samples using alternative
definitions of region and city size. She finds substantial bias in all of her SIPP samples that is far in
excess of the ENP-control bias reported in the text. Adjusting for labor market variables like the
unemployment rate in the state or metropolitan statistical area does not reduce the bias she
estimates.

%6 Smith (1995) uses other data sources and considers the consequences of alternative definitions
of variables and survey instruments on the estimated bias.
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Access to comparison samples of persons who are administered the same
questionnaire and located in the same labor market as participants greatly
improves the quality of nonexperimental evaluations. Econometric methods
generally reduce, but do not eliminate, these sources of bias and are no panacea
for the problems created by using bad data to evaluate social programs.

10. THE CONSEQUENCES OF P-DEPENDENCE OF THE IMPACTS

If the program impact E(Y, — Y, | P, D = 1) depends on P, then econometric
methods applied to nonexperimental comparison groups that have P support in
regions different from the support of the participant group estimate a parameter
that differs from what is estimated by an ideal experiment. This is true even if
there is no selection bias so that B(P(X)) = 0 everywhere. This section presents
evidence on this additional source of bias.

Using data on eighteen-month outcomes from the treatment and control
groups of the JTPA experiment, we use local linear regression methods to
determine how E(Y; —Y,|P,D = 1) depends on P. The estimates are graphed
in Figure 5. The point estimates suggest a modest dependence in the neighbor-
hood of P = 0.15, but the formal statistical test whose results we report in Table
XVI does not allow us to reject the null hypothesis of no dependence.’’

However, measuring the program impact only over the limited support of the
overlap set Sp adds an additional —$19 to the bias arising from using a
nonexperimental estimator adapted to a common support. The overall impact
estimated over S, is $38 per month. The overall impact for the program
estimated without any restriction on the support is $57 per month. Thus the
restriction to a common support reduces the estimated program impact by 33%.
The difference between the two estimates of program impact is statistically
significant. (See Table XVIIL.) A major lesson of this paper for the design of
future evaluations is that comparison groups should be selected to have P
distributions similar to those of program participants in order to mitigate the
support problem.

11. IMPLEMENTATION OF ESTIMATORS WITH ORDINARY
NONEXPERIMENTAL SAMPLES

The methodologies that we have devised to estimate the bias in samples that
combine experimental and nonexperimental data can also be applied to ordinary
nonexperimental samples to estimate a variety of evaluation parameters of
interest. For the nonparametric sample selection estimator, the only new ingre-
dient that is required is an exclusion restriction—at least one variable in Z not
in R—that satisfies certain conditions specified below.

TThe test statistic is formally equivalent to the test for index sufficiency of the outcome
differences for a model with R = 1.
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FIGURE 5.—Adult males, experimental treatments and controls, P dependence of treatment
impacts, E(Y; — Y, | P), bandwidth = 0.03.

TABLE XVI

Pp-VALUES AND POINT ESTIMATES FROM TESTS OF P-DEPENDENCE OF
TREATMENT IMPACTS
Hy: E(Y, =Y |P,D=1D)—-E(Y,-Y)|ID=1)=0
Experimental Control and Treatment Samples
Average Monthly Earnings Over the First Six Quarters After Random
Assignment, Adult Males, 649 Controls and 1478 Treatments

Test Values of P p-values? Point Estimates®
0.00040 0.9607 -29
0.00081 0.9587 -31
0.0020 0.9529 -36
0.0024 0.9511 —38
0.0095 0.8952 -50
0.0159 0.7765 —47
0.0315 0.5760 —28
0.0494 0.7137 -25
0.0691 0.3765 —41
0.0970 0.6485 -38
0.1272 0.4745 38
0.1632 0.2647 74
0.2119 0.4271 57
0.2712 0.8116 -20

?A bandwidth equal to 0.06 and a biweight kernel were used for the nonparametric
estimates (see Appendix A, Sections A.1 for additional details concerning the estimation
procedure). The distribution of the test statistic is chi-squared with one degree of
freedom under the null.

Values shown are the difference between the conditional and unconditional esti-
mated means.
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TABLE XVII

COMPARISON OF MONTHLY IMPACTS ESTIMATED
OVER THE ENTIRE SUPPORT AND OVER THE RESTRICTED SUPPORT"
Quarterly Earnings Expressed in Monthly Dollars
Experimental Control and Treatment Samples
Adult Males, 649 Controls and 1478 Treatments

Estimated Impact Estimated Impact
Quarter Using Entire Support® Using Restricted Support Difference
Qtrl 4 18 -15
30) (33) (12)
Qtr2 26 42 -16
(38) (36) an
Qtr3 51 69 —-18
(36) (36) (13)
Qtr4 57 85 —-28
(42) GD (15)
Qtrs 39 58 —18
39) 36) 14)
Qtr6 49 71 —23
(44) (35 15)
Average of 38 57 -20
1to6 (16) (16) )

#Bootstrap standard errors are shown in parentheses. They are based on 50 replications with 100% sampling.

In our data the experimental control group was administered a long baseline survey that gathered five years of
retrospective data while the experimental treatment group was not (see “Appendix B). Since information on recent labor
force status and on recent earnings is missing for treatments, we are only able to obtain coarse estimates of P for the
treated group. In particular, we use the coarse II model described in the notes to Table XII1. The support region in the
nonexperimental analysis is determined using the best predictor P model, so it is necessary to estimate which treatment
group members would be excluded by the common support restriction in order to obtain impact estimates within the
support region that would be estimated by a nonexperimental method. The adjusted treatment impacts were obtained as
follows. For controls and treatments, we first divide the coarse P distribution into 20 equal-size bins, then within-bin
treatment impacts are estimated. The average unadjusted impact estimate is obtained as the weighted average of the
within-bin estimates, with weights given by the proportion of controls within each bin. The adjusted impact estimate is equal
to the weighted average of the within-bin estimates, with the weights given by the proportion of controls within each bin
after deleting controls whose values of P lie outside the overlap region.

Consider equation system (8) and suppose that index sufficiency characterizes
the bias term and that
(23a) EWY,1Z,R,D=1)=g(R)+EU,|P(Z),D=1)
and
(23b)  E(Y,1Z,R,D=0)=g,(R)+EU,|P(Z),D=0).
If there is at least one element in Z not in R that satisfies the conditions

(24a) lim E(U,|P(Z),D=1)=0
Z-Z%

and
(24b) lim E(U,|P(Z),D=0)=0,
Z—-Zc

where Z° and Z°' may be values or sets of values, and need not be the same
sets of values, we can identify g,(R) and g,(R) following the argument in
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Heckman (1990a, b). This enables us to construct E(Y; — Y, |R) and E(Y, — Y, |
R,P(Z),D =1). To see how to construct the latter, observe that the left-hand
sides of (23a) and (23b) can be constructed from sample data using, e.g., local
linear regression methods. If (24b) holds, and E(U, | P(Z)) = 0, we can use the
iterated expectation argument and construct

N » _[1-P(2)
EU,|P(Z),D=1)=—-EWU,|P(Z),D=0) P
- _ 1-P(2Z)
= —[E(Y,1Z,R,D=0)—-gy(R)] )

Thus we can construct
=E(Y,-Y,|Z,R,D=1).

Observe that condition (24a) is not required. The empirical evidence on the
support of P presented in this paper suggests that producing the sample
counterparts to (24b) or (24a) may be difficult in practice.

Cross-sectional matching and difference-in-differences methods considered in
this paper can be applied as formulated to nonexperimental data.® They do not
require the limit sets defined by (24a) and (24b).

12. SUMMARY, SYNTHESIS, AND CONCLUSIONS

This paper develops a framework for combining experimental and nonexperi-
mental data to test the identifying assumptions that justify three widely-used
nonexperimental methods of evaluating social programs based on comparison
groups: (i) the method of matching; (ii) the classical econometric selection bias
model which represents the bias solely as a function of the probability of
participation P; and (iii) the method of difference-in-differences.

We decompose the conventional measure of bias into three components
corresponding to (a) differences in the supports of the regressors between
participants and members of the comparison group; (b) differences in the shapes
of the distributions of the regressors in the two groups in the region of common
support; and (c) selection bias, rigorously defined at common values of the
regressors for both groups. The first two components are eliminated by matching
on characteristics that are “close” in the two groups. Only the third component
—selection bias—remains.

We apply our methods to unusually rich data from the control group of a
random experiment on a prototypical job training program combined with a

%8 As noted by Heckman and Smith (1996), the difference-in-differences estimator identifies the
“treatment on the treated” parameter only when no baseline observations have received treatment.
For the general case, see their paper.
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nonexperimental comparison group of nonparticipants. Our decomposition re-
veals that selection bias rigorously defined is generally the smallest of the three
components of bias as conventionally measured but it is still a substantial
fraction of the experimentally-determined impact of the program we study. In
our data, both of the forms of matching we examine reduce but do not eliminate
the conventional measure of bias. Matching cannot eliminate a nonzero selec-
tion bias, rigorously defined, and in fact the method is based on the assumption
that it is zero. In related work, Heckman, Ichimura, and Todd (1997, first draft
1993) find that for other demographic groups, matching sometimes increases the
estimated bias, at least for some sets of conditioning variables.

Our data are consistent with the index sufficiency assumption that underlies
the classical selection bias model. This model cannot be implemented semipara-
metrically in our data because the support of P is limited. To apply the method
semiparametrically in future evaluations, it is necessary to enlarge the support
of P for comparison group members so that it matches the full support of
participants (P € (0, 1)).

Our data are also consistent with the identifying assumptions required to
justify application of a conditional version of the method of difference-in-dif-
ferences to the evaluation of job training programs for all but low values of P.
The conditional difference-in-differences estimator is consistent with the index-
sufficient model of selection bias and only requires that the bias be the same
before and after the date of the program participation decision, or at least be
the same in symmetric intervals around the date of the program participation
decision.

The method of matching and the classical selection bias model share one
important feature: under the assumptions that justify each method, selection
bias B(X) averages out to zero over certain intervals. Matching is based on the
assumption that selection bias is zero for all intervals, however small. Our tests
clearly reject. this assumption, which also underlies the regression method
advocated by Barnow, Cain, and Goldberger (1980). The cross-section bias
detected in our analysis is characterized by a crossing property. Sizeable negative
bias in some cells or intervals is offset by sizeable positive bias in other cells or
intervals. A weighted average across cells can reduce the overall bias substan-
tially. This is why some form of matching reduces the bias in our sample,
although it does not eliminate it.

As shown in Figure 3, estimated selection bias as a function of P is sizeable,
especially in the vicinity of P = 0. In that neighborhood, the shape is broadly
consistent with the form of the classical selection bias displayed in Figure 1.
However, our analysis rejects the application of the normal selection bias model
of Heckman (1979). The dashed lines in Figure 3 reveal a large difference
between the estimates of selection bias obtained using the nonparametric
methods developed in this paper and the classical parametric selection bias
model based on the inverse Mills’ ratio.

We also demonstrate the substantial benefits of having access to nonexpe-
rimental data that (a) place nonparticipants in the same labor markets as pro-
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gram participants; (b) administer the same questionnaire to both groups; and
(¢) include information on recent labor force status histories. Recent labor force
status transitions turn out to be more important predictors of program participa-
tion than the recent earnings histories emphasized in the analysis of Ashenfelter
(1978). Failure to use comparison groups of persons situated in the same labor
markets as participants and administered the same questionnaires contributes
substantially to the bias as conventionally measured. These sources of bias are
empirically more important than selection bias, rigorously defined. Access to
recent labor force histories in estimating the probability of program participa-
tion considerably improves the performance of nonexperimental methods. These
findings enhance our ability to design future nonexperimental evaluations of
training programs. Since the JTPA program we consider is typical of a variety of
training programs in place around the world, the lessons from our study apply
more generally. (See Heckman, Lal.onde, and Smith (1999).)

Although further testing with larger samples would be highly desirable, our
analysis suggests that semiparametric sample selection bias methods of the sort
proposed by Heckman (1980), Cosslett (1991), and Ahn and Powell (1993) are
one potentially promising method for evaluating training programs provided that
comparable data are collected on nonparticipants and participants located in the
same geographic areas and administered the same questionnaire and provided
that the support of the distribution of P for nonparticipants is enlarged. Labor
force status history variables, local labor market variables and personal charac-
teristics that determine participation (i.e., Z variables) but are excluded from
the outcome equations are valid exclusion restrictions for identifying the semi-
parametric selection model. The temporal structure of the program makes some
of the Z and R variables distinct.

Another very promising method that does not require an exclusion restriction
is our extension of the method of difference-in-differences. Conditioning on P,
the bias function B,(P) tends to be constant over all time periods ¢, except
possibly for low values of P in time periods near the date of random assign-
ment or eligibility determination. It is for this reason that the index sufficient
selection model and our conditional version of the method of difference-in-
differences are consistent with each other.

We stress the importance of collecting information on recent labor force
status histories and of designing nonparticipant samples so that the distributions
of P have the same support for both participants and nonparticipants. It is
essential to get the full support to identify parameters (1) and (2) for the entire
population of participants.” Lack of common support—comparing the incom-
parable—is a major source of selection bias as it is conventionally measured.
Our evidence leads us to a rigorous reformulation of the definition of selection

% In practical terms, for training programs such as JTPA, stratified sampling of nonparticipants
based on their labor force status or labor force status histories seems a promising strategy. The
original ENP data collection plan called for stratification on labor force status, but this plan was
abandoned for cost reasons.
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bias so that it excludes bias arising from gaps in the common support and from
differences in the weights applied to participant and comparison group samples
over the region of common support.

Using a common support and a common set of weights applied to participant
and comparison group samples goes a long way toward improving the perfor-
mance of any econometric evaluation estimator. Table XVIIIA clearly demon-
strates this point. Column (1) presents the raw bias (B) quarter-by-quarter and
overall using the means for the control and ENP samples. Column (2) shows
how the bias is reduced simply by matching to the nearest neighbor using P.
(Recall that nearest neighbors can be far apart.) Column (3) shows how the
imposition of the common support condition improves the nearest-neighbor
matching estimator. Quarter-by-quarter, there is a substantial reduction in bias.
However, the overall average is slightly higher in (3). Column (4) presents
estimates of the bias that arise from local linear matching (on P) while column
(5) presents the estimates that arise from regression-adjusted local linear
matching. Both procedures impose common support and common weighting and
both improve over the raw mean or crude nearest-neighbor estimators.

TABLE XVIIIA

COMPARISON OF ESTIMATED MEAN BIAS
UNDER ALTERNATIVE ESTIMATORS OF MEAN PROGRAM IMPACTS?
Quarterly Earnings Expressed in Monthly Dollars
Adult Males, 508 Experimental Controls and 388 Elig. Nonparticipants (ENPs)

Difference Nearest Neighbor Nearest Neighbor Local Linear Regression-Adjusted
in Means w/0 Common Support w/Common Support Matching Local Linear Matching
Quarter (P @) 3)
Qtrl —418(38) 221 (56) 123 (67) 33(59) 39 (60)
Qtr2 —349 (47) —166 (151) 77 (83) 37 (61) 39 (64)
Qtr3 —337(55) —58(206) 53 (96) 29 (78) 21 (80)
Qtr4 —286(57) 161 (178) 86 (96) 80 (77) 65 (82)
Qtr5 —305(57) 167 (196) 87 (100) 64 (77) 50 (83)
Qtr6 —328(63) 45 (191) 34 (113) 37 (82) 17 (90)
Average of  —337(47) 62 (127) 77 (80) 47 (60) 39 (64)
1to6
Asa % 775% 142% 176% 107% 88%
of impact

*Bootstrap standard errors are shown in parentheses. They are based on 50 replications with 100% resampling.
The estimates for each column are defined as follows:

(1) B=E(Yy|D=1)-E(Y;|D=0), where E denotes the sample mean.

Q) B=Egpip-1 Yol D=1)=Esp p=1(Yo|D=0) where Ezp p_1(YolD=1)is the sample mean of {D = 1} out-
comes and Efp|p-1(Yy|D =0, P) the sample mean of nearest neighbor matched {D = 0} outcomes. The nearest neighbor
match for each observation in {D = 1} is the observation in {D = 0} that is closest in terms of P. Matching is done with
replacement. (See Section 3.1 in the text.) .

3) Esp= Erpipespp=1YolPESp,D=1)=Efp pes,p=1 Yol PESp,D=0). Same estimator as (2) except that
matches are only constructed within the region of overlapping support Sp, which is precisely defined in Appendix A.

(4) Estimates are constructed using local linear regression on P, as described in the text. There are no variables in the
outcomg equation, (See Section 5.0 in the text.) . N

(5 Bsyaapy=Efpipespp=1y Yo~ RBIPESp, D=1~ Eppipes,n=1Yo—RBIPESp,D=0). This is the same
estimator as in (4) except matching is performed on the residuals Yy — R instead of on outcomes Y. (See Section 5.0 in
the text.) The following regressors R are included in the outcome equation: dummy variables for training center, race,
schooling, age, previous training, work experience in months, local unemployment rate, marital status, presence of a child
age less than six, and quarter and year effects.
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TABLE XVIIIB

COMPARISON OF ESTIMATED MEAN BIAS
UNDER ALTERNATIVE ESTIMATORS OF MEAN PROGRAM IMPACTS?
Quarterly Earnings Expressed in Monthly Dollars
Adult Males, 508 Experimental Controls and 388 Elig. Nonparticipants (ENPs)

Regression-Adjusted

Conditional on P Conditional on
Difference-in- Difference-in- P Difference-in-
Differences Differences Differences
w/0o Common w/Common w/Common
Quarter Support (1)° Support (2) Support (3)
Qtrl 172 (42) 97 (62) 104 (63)
Qtr2 142 (47) 77 (89) 77 (92)
Qtr3 41 (56) 90 (114) 74 (114)
Qtr4 43 (61) 112 (90) 98 (91)
QtrS —54(63) 19 (95) -5 (99
Qtr6 —111(64) 4(105) -35(111)
Average of 1 to 6 39 (47) 67 (71) 52 (74)
As a % of impact 89% 153% 120%

?Bootstrap standard errors are shown in parentheses. They are based on 50 replications with 100% sampling.
The estimates for each column are defined as follows:
1 BD = E(YO AD=1)- E(Yo( plD=1)~- [E(YO ,lD 0)— E(YO( n1 D = 0)], where E denotes the sample mean.

@ Bp, sp = Ef(I’\PES,.D Yo, I P€Sp,D _1)_Ef(P|PES, p=1\Yo, | PE€Sp, D=0~ [Etp pesynp-1 Yo
PeSp,D=D~Egpipesyp-1Yo-n!PESp, D=0 where Efpypesyp-1)Yo, ~ Yo PESp,D=1)is the sam-
ple mean of the D=1 outcomes, and Efppe s, p=1y Yo~ Yo,-n|PESp,D = 0) is the sample mean of the D =0

matched outcomes. Matches are constructed by local Imear regression on P as described in the text (see Section 5.0 in the
text). The model does not include regressors in the outcome model.

(3) Same as (2) except the following regressors are included in the outcome equation: training site, age, education,
marital status, children less than 6 indicator, indicator for currently enrolled in training, labor market experience, local
unemployment rate, season and year.

Similar patterns appear in Table XVIIIB for the difference-in-differences
estimator. Simple differencing symmetrically before and after the date of
random assignment or eligibility determination eliminates person-specific com-
ponents of bias. Compare column (1) of that table with column (1) of Table
XVIIIA. Imposing common support and common density in column (2) gener-
ally reduces the quarter-by-quarter bias. However, as we found for the nearest
neighbor estimator, the overall average bias is slightly higher. Using regressors
to adjust for the bias reduces it slightly as shown in column (3). Note in
comparing Tables XVIIIA and XVIIIB that the overall bias from our condi-
tional difference-in-differences estimator and from the cross-sectional matching
estimator are of the same order of magnitude. Column (3) of Table XVIIIC
reveals that even though the inverse Mills’ ratio as typically applied is badly
biased (see the estimates in the first column), weighting by a common density
(f(P|ID = 1)) greatly improves the performance of the estimator.” Imposing

5 For column (3), the ENP observations (for which D =0) in the regression are weighted by
the ratio f(P|D =1)/f(P|D = 0), where the densities are estimated by standard kernel methods.
Imposing the common support condition ensures that the weights are nonzero. The control
observations are self-weighting by the f(P|D = 1) distribution.
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TABLE XVIIIC

COMPARISON OF ESTIMATED MEAN BiAs
UNDER ALTERNATIVE ESTIMATORS OF MEAN PROGRAM IMPACTS?
Quarterly Earnings Expressed in Monthly Dollars
Adult Males, 508 Experimental Controls and 388 Elig. Nonparticipants (ENPs)

Inverse Mills’ Ratio Inverse Mills’ Ratio Inverse Mills’ Ratio

w/0 Common Support w/Common Support w/Common Support

w /o Density Weighting w /o Density Weighting w/Density Weighting
Quarter ay @ 3)
Qtrl —611 (86) —619 (161) —147 (176)
Qtr2 —515 (95) —403 (194) 3(220)
Qtr3 —498 (96) —365 (190) 30 (215)
Qtr4 —494 (97 —421(191) —80(215)
Qtr5 -511 (98) —441 (190) —69(215)
Qtr6 —499 (102) —323(196) 48 (222)
Average of 1 t0 6 —521 (86) —553(161) =36 (37
As a % of impact 1198% 985% 83%

?Bootstrap standard errors are shown in parentheses. They are based on 50 replications with 100% sampling.
°The estimates for each column are defined as follows:
) By=EMA(P)ID=1)—E(X(P)ID =0), where E denotes the sample mean, A, is an estimator of E(Uy|X,D = 1)
obtained under the Mills’ ratio assumptlon and Ao is an estimator of EWUylX,D=1).
@) B)\ 5p= E(AI(P)IP €Sp,D=1)— E(A(P)| P& Sp, D =0), where E denotes the sample mean. A, is an estimator of
E(Ug| X, D =1) and A, is an estimator of E(Uy|X, D = 0) obtained under the Mills’ ratio assumption. (Same as (1) except
mean is only taken over observations in the overlapping support, Sp.)

3 Bys,=EGRQ(P)IPeSy D=1~ E[(fAP\D = 1)/f(PID=0DA(P)IP&Sp,D =1 This estimator is same as (2)
except with' dens:ty weighting as described in the text.

common support alone without reweighting does not lead to substantial im-
provement, as shown in column (2).

It is instructive to contrast the biases defined over a common support and with
common weighting with the biases defined in the conventional way (e.g., as in
Ashenfelter (1978) or LaLonde (1986)). One conventional measure of bias is the
OLS estimate of 7 in the model

Y=g(X)+Dn+U,

applied to controls and comparison group members, where g(X) depends on
the specification used. The normal selection bias method introduces the inverse
Mills’ ratio terms into g(X) in conducting a cross-section analysis. The differ-
ence-in-differences method uses Y or regression-adjusted Y differenced sym-
metrically around the date of random assignment or eligibility determination.
Estimates of 7 reveal the bias in the conventional common coefficient model
(U, = U,), where the program impact is assumed not to depend on X. This
estimate of bias combines the three sources of bias distinguished in this paper
plus any bias arising from correlation between U, and X.®' In contrast, esti-
mates of the bias that condition on a common support and impose a common
weighting of participant and comparison group data produce an estimate of
selection bias as rigorously defined in this paper.

8! Heckman and Todd (1994) decompose the bias # for the model with g(X) =X and present
the contribution for the case where Uj is correlated with X.
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TABLE XIX

COMPARISON OF ESTIMATED MEAN BIAS
UNDER ALTERNATIVE ESTIMATORS OF MEAN PROGRAM IMPACTS?
Quarterly Earnings Expressed in Monthly Dollars
Adult Males, 508 Experimental Controls and 388 Elig. Nonparticipants (ENPs)

Nearest Method of Barnow, Difference-
Neighbor Cain and Goldberger in-Differences Inverse Mills’ Ratio
Difference w/0 Common w/0o Common Support w/o0 Common w/0 Common Support
in Means Support w /o Density Weighting Support w/o Density Weighting
Quarter (0% @) 3) @ ©)
Qtrl —418 (38) 221 (56) -15 47 173 (42) —611 (86)
Qtr2 —349(47) —166(151) 53 (55) 142 (47) —515 (95)
Qtr3 —337(55) —58(206) 62 (58) 40 (56) —498 (96)
Qtr4 —286 (57) 161 (178) 107 (60) 43 (61) —495 (97)
QtrS —305(57) 167 (196) 94 (62) —54(63) —511 (98)
Qtr6 —328(63) 45(191) 54 (62) —111 (64) —499 (102)
Average —337(47) 62(127) 62 (58) 39 (47) —521 (86)
of 1to 6
Asa % 775% 143% 143% 90% 1198%
of impact

Bootstrap standard errors are shown in parentheses. They are based on 50 replications with 100% sampling.
"The estimates for each column are defined ag follows:
) B= E(YOID =1)- E(YﬂlD 0) where £ denotes the sample mean.

@) B= Ef(P“) p(YolD=1)- E,(P|D (Yol D = 0), where Egp|p=1)(Yq|D =1) is estimated by the sample mean of
{D =1} outcomes and Efpp=1)(YolD = 0) by the sample mean of {D = 0} nearest neighbor matches. (See Section 3.1 in
the text.)

(3) Same as described in footnote d in Table XII except without imposing a common support restriction.

4) BD E(Yy,ID= 1)~ E(Yg _plD=1)— [E(YO (D =0)- E(Yﬂ( 1D =0)], where E denotes the sample mean.

5) EQ(P)ID= 1)—E()\0(P)ID 0), where E denotes the sample mean, A; is the estimator for E(Ug|R,D = 1)
under the Mills’ ratio assumption, and &, is the estimator of E(Uy|R,D = 0).

The estimates of 7 for the different methods are presented in Table XIX.
Except for the inverse Mills’ ratio, the overall biases (w) from the other
commonly-used estimators are of the same order of magnitude. All except the
inverse Mills’ ratio estimator produce biases that are smaller than the raw mean
B. At the same time, all are large relative to the program impact and exhibit
substantial variability across quarters. The different sources of bias tend to
cancel each other out. This is especially true of the Barnow, Cain, and Gold-
berger (1980) estimator. (Compare Column (3) of Table XIX with the last
column of Table XID).

By decomposing the bias = into its components, we determine whether a
small estimated 7 is due to a fortuitous combination of offsetting biases or
whether each component of the bias is small. Sources of bias such as the failure
of common support and discrepancies in the weights across participants and
comparison group members depend on the sampling plan used to collect the
data for the comparison group and so are likely to vary across evaluations. The
factors generating self-selection are more likely to be similar across evaluations.
The focus in this paper is on the estimation of the stable components of the
conventional measure of bias. Knowledge of these components facilitates gener-
alization of the evidence from any one study to other environments, and is more
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informative about the sources of bias than the measure B or r traditionally
used to summarize bias. Our decomposition demonstrates that in our data,
selection bias, rigorously defined, is large relative to experimentally-estimated
program impacts but is small relative to the conventional measure of bias.

Our analysis highlights the benefits of randomized trials. While the bias is
reduced using nonexperimental methods that impose common support and
common weighting, it is not eliminated. Experiments avoid the need to specify
precise functional forms of econometric models or to select regressors to appear
in outcome or participation equations. Typically, experimental treatment and
control groups reside in the same location and are administered the same
questionnaires. Experiments solve the problem of common support by balancing
the distributions of characteristics between treatments and controls and produc-
ing an impact estimate for all P values. However, experiments have their own
important limitations (Heckman, Lal.onde, and Smith (1999)). If a nonexperi-
mental evaluation method is used, semiparametric selection bias models esti-
mated on data with full support for nonparticipants or conditional difference-
in-differences estimators fit outside the period immediately surrounding the
period of initial participation in the program appear to be promising methods
that deserve much further exploration and testing.
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APPENDIX A

A.l. THE LOCAL LINEAR REGRESSION ESTIMATOR

Fan (1992, 1993) develops the distribution theory for the local linear regression estimator of
E(Y|P=P,), where Y and P are random variables. The estimator of the expectation at P, is
defined as %, the solution from the problem

(A-D) min Y [Y, = v, — v2(P, — PGPy = P) /ay),

YY2 <N
where G(+) is a kernel function and a, is a bandwidth parameter. The local linear estimator at each
point is obtained by weighted least squares, with greater weight given to points closer to P, when G
is a symmetric single-peaked function. ¥, consistently estimates the first derivative of E(Y|P = Py),
a result we use below. Higher order derivatives can be consistently estimated under additional
smoothness assumptions on E(Y| P = P,) from the coefficients of the higher order terms in (P; — P;)
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in a local polynomial regression. For example, if it exists, the gth-order derivative of the regression
function can be estimated as the coefficient on [(P; — Py)?]/q! of the local polynomial regression.

There are several advantages of local linear estimation over standard kernel methods. If
E(Y| P = P,) is twice continuously differentiable with respect to P, then the bias of the local linear
regression estimator is of the same order in the boundary regions of the support of P as it is in the
interior regions, whereas the kernel estimator suffers from a lower order bias at boundary points. As
shown in Figure 1 in the text, conventional selection bias methods exhibit the greatest bias in the
neighborhood of the boundary values P € {0, 1}, and as shown in Figure 2 a lot of our data is near
P =0, so the better performance of local linear estimators at these values is potentially important
for our study. In addition, the first order bias of the local linear estimator does not depend on the
distribution of P. This property makes the local linear estimator robust to different distributions of
P and produces dramatic simplifications in the distribution theory of our test statistics, compared to
what would be obtained from standard kernel methods.

A.2. ESTIMATING THE PARTIALLY LINEAR MODEL

We adopt the following notation. The R variables appear in the outcome equation. The Z
variables appear in the probability that D =1, Pr(D = 1|Z) = P(Z’6), In this paper, a logit model is
used to estimate P. Estimators are designated by “*”, and P, = P(Z}6).

A.2.1. Estimation Method

The outcome model that we estimate is
Y, =R}, B+K(P)+ ¢, for ie{D=1}, teT,

YII=R11‘1B+K01(P1')+€H5 fOl‘ iE{D=0}, fEl“7,

where {D =1} is the set of i indices for which D;=1, {D =0} is the set of i indices for which
D; =0, and J is the set of time periods used to estimate the model, 7={1,...,T}. N=N, + N, and
N, and N, are the number of observations in {D = 0} and {D = 1}, respectively.

We may write these equations as

(A-2) Y, =R, B+D,K,(P)+(1-D)K,(P) +¢,, (€T

In implementing this model, we replace P; with P. Let R;= (R1,..., R;7) denote the matrix of
stacked regressors for individual i over all time periods and let &, —(R,], ., R;;) denote the
submatrix for individual i through period ¢. For ¢>t’, we assume, (i) E{s,, |2, Z;, D;} =0,
(i) E{e?\2,, Z;, D; = d} = 0,4(Z;,, Z;, D; = d), (iii) E{¢; &, I%I,Z,,D =d}=0(%Z,,Z;, D;=d). This
model is an extension of the partially lmear regression model of Wahba (1984) and Robmson (1988).

We first estimate P P(Z; )] by weighted logistic regression. Using the estimator P we then
estimate B, K;,(P), and K, (P). The slope coefficients B are restricted to be the same for
observations with D;=0 and D;=1 and are assumed constant over time. The nonparametric
components K, and K, are allowed to vary across groups and over time.

We use the observations for which D; =1 to nonparametrically estimate E(Y;,|P;, D;=1) and
E(R;|P;, D;=1) and observations with D; =0 to nonparametrically estimate E(Y;,|P;, D;=0) and
E(R,|P,D;=0). Let ¥, =Y, — E(R,,|P,D,=d) and R,;=R, —E(R;,|P,D,=d), where d &
{0,1} and we leave the choice of bandwidth a,, implicit. Throughout this paper ay, =ay, =ay. 8 is
estimated by pooling observations across groups over -

eI \de{0,1} ie{D=d) teT \de{0,1} ie{(D=d}

el s amel] £(2 5 el
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where QO, and Q,; are indicator functions that exclude a small fraction (2%) of the data with low
estimated densities. More precisely, 0= Uf(B1D,;=d) > §,,}, where the estimated density of P,
given D; =d, f(P ID; =d), is obtained using a standard kernel density estimator with the biweight
kernel and where §,, is the second percentile of the estimates of f(P;|D; = d). The expression for
the biweight kernel is

15

9 2 .
G(s) = E(s -1) for [s|< 1;

0 otherwise.

Such “trimming” is required to ensure that the nonparametric estimator is umformly consisten
Estimates of K,,(P,) and K,(P,) are then obtained by local linear regression of Y, — R}, 3 on P,
performed separately within the {D = 1} and {D = 0} groups. If S is allowed to vary across different
t, the estimator is

t62

-1

Z Z Ritdﬁlitdédi Z Z IéimYAi/dQAdr

de{0,1} ie{D=d} de{0,1} ie{D=d}

The terms K|, and K, are then estimated using a local linear regression of Y}, — R, 8 on P, for the
two groups (D; = 0,1) for each period.

A.2.2. Choice of Kernel Function and Smoothing Parameters

Heckman, Ichimura, and Todd (1996) establish that the choice of G(-) does not affect the
asymptotic variance of 4 but does affect the variance of the estimator of the nonparametric
components K,, and K,,. We use a fixed bandwidth of 0.06 in constructing the estimates of 8. The
empirical results are not sensitive to perturbations of the bandwidth in the interval [0.04, 0.08].

A.3 ASSUMPTIONS

Heckman, Ichimura, and Todd (1996) establish the asymptotic properties of the estimators and
test statistics used in this paper under the following assumptions. Our analysis allows for data to be
randomly missing for some quarters. To focus on the main ideas, and to simplify the notation, we
abstract from this complication in stating the propositions, but in presenting computational formulae
we allow for it.

ASSUMPTION 11 {(R; 5., Ry 13 Yy 1o, Yy 75 23 D)ie (p—ay 4 =10,1} are independent across in-
dividuals i for each d, but data may be conelated across time for each individual.

ASSUMPTION 2: P(Z}0) is twice continuously differentiable with respect to 6 and both derivatives
have finite second moments.

This condition is satisfied for a logit because the first and second derivatives of the logit CDF are
uniformly bounded and because of Assumption 3 which we now present. Let ||, denote the
Euclidean norm. We make the following assumption:

ASSUMPTION 3: E{Y, . (IR, 137 ° +1Z,3%° +1Y,,13)} < » for some 8> 0.

€Y

52 The global bandwidth parameter for the density estimates is chosen following the recommen-
dation of Silverman (1986), which in our case glves ay = =A(H/134)N"1/5 , where A is a constant
that depends on the kernel (A4 = 2.7768) and H is the interquartile range of B.
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We estimate 6 by a weighted logistic likelihood to account for choice-based sampling. (See, e.g.,
Amemiya (1985).) Let § denote the estimator of 6. Asymptotic normality for the weighted score
vector

-1
3% log L; dlogL;
3690’ 96

ll’itfd’i(zi’Di)=E{Nh1 Z

ie{D=0}u{D=1}

is assumed where L; is the contribution of the ith observation to the weighted logistic likelihood,
N=N;+N,, and Ny and N, are the number of observations in {D = 0} and {D = 1}, respectively.

ASSUMPTION 4: YN (§~ ) =N"1/2 Licp-0uD- 1)11/(Z,, D,) +0p(1) converges in distribution to
a M0, V,,) random vector, where V), is the asymplotic variance-covariance matrix of 6.

To state the next assumption, we define

2
C(G) = f"(P“)szG(s) dsf"(P“)G(s) ds — [/"(PO)SG(S) ds] R
I1(Py) I(Py) I(Py)

2
@) = | [5G (s)ds | — [“P53G(s)as [“TsGs) s,
1(Pg) 1(Pg) 1(Py)

2
C4(G) = “(PO)[II‘(PO)SZG(S) ds — u/u(PO)sG(s) ds] G*(u) du,
I(Py) |I(Py) I(Py)

where the upper and lower limits of integration, u(Py) and I(P,), satisfy u(1) =0, u(Py) = if
P,€[0,1) and 1(0) = 0,/(Py) = — if P,&(0,1]. Operationally, when the estimated P is within a
bandwidth ay of 0 or 1, C; changes discontinuously for j =1,2,3.

We impose the following conditions on G and on C(G), C,(G), C5(G):

ASSUMPTION 5: (a) The second derivative of G(s) is finite; (b) C,(G) # 0; and (c) C(G), C(G), and
C4(G) are finite.

Observe that C(G)/[ [,”‘P 9 G(s)ds]* corresponds to the variance of a random variable with
density G(s)/ [i/$F9) G(s)ds 1f G(s) = 0. Assumption 5 holds, for example, if G(-) is taken to be a
smooth density supported in a finite interval. These restrictions on the kernel function are satisfied
by the biweight kernel that we use (defined in A.2.1).

Since € is estimated, we impose the following two regularity conditions on the behavior of the
conditional expectations and the conditional densities of P; given D;=0or D; =1, f; (P1D =0) and
fo,(P1D = 1), in the neighborhood of the true value 6= 6;:

ASSUMPTION 6: E(R;,| P, D;=d) and E(Y;,| P, D; =d),d €{0,1}, are twice continuously differen-
tiable with respect to 0 in the neighborhood of 6= 6.

ASSUMPTION 7: For d €{0,1}, (2) f, (P|D =d) is bounded and continuous on [0,1], and (b) for
any &> 0 there exists 5> 0 such that if (16— 6,ll < 5, then

sup |fy(PID=d) ~f, (PID=d)|<s.
0<P<1

It is possible to weaken Assumption 6 and still obtain consistency and asymptotic normality of the
estimated B8 and K functions, but the advantages of the local linear estimator described in Section
A.1 materialize only when it is maintained.
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To construct a consistent estimator of the asymptotic variances we make the following assump-
tion.

ASSUMPTION 8: Let B, be the true value of B. For d €{0,1},var(Y,, | P;, D;=d) and var(Y;, —
R}, By | P, D; = d) are continuous functions of P evaluated at 6 = 6,,.

A.4. DECOMPOSING THE CONVENTIONAL MEASURE OF SELECTION BIAS
A.4.1. Estimation Methods

To obtain consistent and asymptotically normal estimates of B,,, B,,, and Bs, defined below
equation (14) in the text, it is necessary to estimate the overlapping support region, Sp, and
E(Y;,| P, D;=0). To estimate the region of overlapping support, Sp, we estimate the densities
fo, (1D =d) for d €{0,1}, using a standard kernel density estimator, f;o(- | D =d), applied to the
estimated values of P for each group.®®

The estimated density is evaluated at all observed data points. For both the D=0 and D=1
distributions, all points with zero density and the points corresponding to the lowest two percent of
estimated density values are eliminated or “trimmed.”® S, is the subset of the points from both
densities that survive trimming and share a common support. In our application, roughly 50% of the
control observations (D = 1) and 80% of the ENPs (D = 0) lie in the overlap region. We estimate
E(Y,, | P, D; = 0) by local linear regression using the estimated values of P.

The sample analogue estimators of By, B,, and B; defined below equation (20) in the text are,
for period ¢,

Bn=N17] Z itlic_N*] Z Y. If,
ie{D=1} ie{D=0}

By =N' Y. EW,\P,D;=0L-N' Y, Y,
ie{D=1} ie{D=0}

é3,=Nf1 Z [Yi/_E(Yit”si,Di=0)]fi’
ie{D=1}

where IA, =1{P eS$,), I;f =1{P, € S5}, the superscript ¢ denotes complement, N, denotes the
number of observations in the set {D =d} for d €{0,1}, and N =N, + N,.%

A4.2. Asymptotic Distribution of the Estimators

Heckman, Ichimura, and Todd (1996) establish that B,,, B,, and B, are consistent and
asymptotically normal nonparametric estimators when estimated regressors are used to estimate
unknown conditional mean functions. Define p, =limy .. N;/N for d €{0,1} and y,,(p) = E(Y;,|
P,=p,D;=0), and let P/ = dP(Z}0)/d(Z.0) and ¢{,(p)= o, (p)/dp, the asymptotic variance-

5 For all nonparametric estimates, we use the biweight kernel defined earlier.

5% In estimating the density, we find that it is important to use a kernel that is zero outside a finite
interval. With a normal kernel, or any other kernel with unbounded support, no points are estimated
to have zero density. This makes it difficult to choose a trimming level that will eliminate the low
density points. With a kernel supported over a finite interval, some points are estimated to have a
density of zero, so that they can be eliminated along with 2% of the observations with positive
estimated densities. With a kernel that has unbounded support, estimates of mean bias tend to be
sensitive to the trimming level but with a kernel supported on a finite interval they are not. For
further discussion, see Heckman, Ichimura, and Todd (1996).

% If we allow for random attrition, as we do in our empirical work, the sets {D = 1} and {D = 0}
and the values of N, and N are time indexed.
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covariance matrix of YN (6 — ) as V, and
c=E{yg,(P)PZ,— E(Z;|P;,D;=0)]"|D;=1}.
The following theorem holds.
THEOREM A.1: Suppose Assumptions 1-8 hold and p; >0 for d €{0,1}. If the deterministic or

stochastic bandwidth satisfies plimy _, , ay,/hy,= &y for a positive constant o and a deterministic
sequence hy for which

lim Nyh2/log Ny= and lim Nk, =0,
N0—>oo NU—>oo 0

then NY/2(B,, — B,,) converges in distribution to /0, o-2) where

ol =var(Y, I{ |D=0)/p, +var(Y, If |ID =1)/py,
NY2(B,,— B,,) converges in distribution to /0, o) where
o3, =var{E(Y; I;| P, D; = 0) | D; = 0} /py + var{E(Y; I;| P, D; = 0) | D; = 1} /p,
+ E{[(f3,(P,1 D= D) /f, (1D = ) — 1T

XY, I, ECY, 11 P, Dy = 0)F 1D, = 0} /py + ¢V,

1
and NY/*(B,, — By,) converges in distribution to /0, 0-3) where

o2 = E{var(Y, ;| P, D,=0) | D, = 1} /p,

itti
+ E{[feO(Pi ID; =1)/f, (P, 1D, = 0 var(Y,, I, | P, D; = 0) | D; = 0}/p0 +c'Te.

For simplicity the above expression assumes that the score vector of 6 and Y,, are not
correlated.® We estimate the asymptotic variances using bootstrap methods, so we do not discuss
estimation of the variances by the plug-in method. Modifications to allow for random attrition are
straightforward and for the sake of brevity are deleted.

A.5. ESTIMATION OF THE MODEL WITH REGRESSORS

We next present results on the asymptotic distributions of our estimators of 8, K, and K,,, and
BfS,,(adjl

A.5.1. Asymptotic Distribution of B

Let 7,,=R;, —E(R,|P,D;=d) and %;,=Z;,— E(Z;| P, D;=d). Throughout we assume that
ay,=ay,=ay and hy =hy =hy.

THEOREM A.2: Under Assumptions 1-8, if the (deterministic or stochastic) bandwidth ay satisfies
plimy _, ., ay/hy = ay > 0 for some deterministic sequence hy for which limy, _, ,, Nh%,/log N = o and
limy ., Nhi, =0, and H,, defined below, is nonsingular, and By is the true value of B, then

INCB=B)=H 'Y, X (N/NYVPNG2 1 (Fira€uQai + Hagh) +0,(1),

teT de{0,1} ie{D=d}

8 Note that when P; has the same distribution under D; =0 and D;=1 this assumption is not
necessary because ¢ =0 in that case. The derivation for the more general case is available on
request from the authors.



SELECTION BIAS 1083

where H) = ¥, c 5 L e 0,1y PaE(Fi1af1qQai | D; = d) and for d €{0,1},
Hyq = E(Ky(P)PiFy4Z4Q ;| Di = d),

where Q; is as defined in Section A.2.1, except in this expression true rather than estimated values are
used. We estimate the variance-covariance matrix of 3 by

(A'3) I}ﬁ = Z Z E Z ('bini é);ld( p(lN) - )

def0,1} reTteTie{D=d}

where
by = H! [Rird‘g‘iTQAdi +Hy (2, Di)] ,

ﬁ1= Z Z Z ﬁit(lﬁ/itdQAdi’

def0,1} teT ie{D=d}

Hy,;=N~" X X Ky (BYP'(ZIDIR, 421404,
teTie{D=d)}

and where £y = Z — E(Zy | By, Dy = &), Ry = Ryq = ERipg | B, D; = ), &, = (Y, = R}, B
—E(Y;, - R, BIP,D;=a),

JE(Y, —R;, BB, D;=d)
(h‘( ) A >
JP.

and y(Z;, D;) is defined below Assumption 3.

_ In an extensive Monte Carlo analysis, Heckman, et al. (1996) show that the asymptotic theory for
B is very reliable for samples of the size used in this paper and that bootstrap and asymptotic
standard errors agree.

A.5.2. Asymptotic Distributions of K, and K,

We prove the following central limit theorem for the estimator K,,[( ) in Heckman, Ichimura, and
Todd (1996). Let K (Py) = (K, (Py),..., K, (Py), and R /(Py) = (Kd 1(Py), .. Kd 7(Py)) for
de{0,1).

THEOREM A.3: Under Assumptions 1-8, if the bandwidth satisfies plimy _, . ay/hy = oy >0 for
some deterministic sequence hy for which limy _,,, Nh% /log N =% and limy _, ., Nh3 = c for some
¢ >0, then

C(G

“(Py) C(G)w an)' a3 +o0p(1),

(A-4) (Nay)"*[R (Py) — K (P =410,V,) + K"

where the (s,t) element of V; is

E(e; e/ |P;=Py,D;=d)
foO(Po|Di=d)P,1C1(G)

and where C,, C,, and C, are defined just before Assumption 5.
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The asymptotic bias is

1/2 67
G (cay) "

1
= SKi(Py)

A.5.3. Asymptotic Distribution Theory of Estimation of B, Lad))

We next discuss the asymptotic properties of our estimator of the regression-adjusted average
bias B, (adj), which is defined as

Efsp(adj)=[s [K,,(P) — Ky, (P)] dF(PlD=1)/ [ arPiD =),

where Sp is the common support defined earlier. B, Sp(adj) is consistently estimated by

Bs(ad) = Y (K (B)-Ko (B[ ¥ I,
ie{D=1} ie{D=1}

where 1: for i € {D =0} U {D = 1} is defined in Section A.4.1. These terms ensure that the estimated
control functions K, and K, are compared at common points of support and keep the denomina-
tors of K 1, and 130[ from becoming too small so that the statistical properties of this average are
well defined. Denote the conditional expectation of a random variable given P € Sp by Eg, and let
@i = LK (P) = Ko (PN = ELK, (P) = Ko (P T;).

THEOREM A.4: Under Assumptions 1-8 if the bandwidth satisfies plimy _ ,, ay/hy = ay>0 for
some deterministic sequence hy for which limy _ .. Nh%/log N = and limy _,,, Nhi =0, then the
asymptotic distribution of VN (B, sp{ad)) — B (ad))) is the same, to the first order, as

Nl_l/z Z &l — E aifli[fﬁo(PiIDi=1)/f90(Pi’Di=0)]+ Z %‘1]/

ie{D=1} ie{D=0} ie{D=1}
[p}/zPr(PESPID; D]
—[Eqg,(X,,ID; = 1) — Eg (E (X, | ;, D;= 0) 1 D; = DI'"VN ( §— By)
—1Es, (K (P)PZ;1D =1)
— Es (Es, (K, (P)P/Z;|P;, D; = 0| D;= DI'YN (6 6;).

Note that if the distributions of P for the ENP and control groups are the same, then the estimation
of B and 6 does not affect the first order asymptotic distribution since the latter two terms in this
expression are zero. In this paper, we bootstrap to estimate the standard errors, so we do not present
details of how to construct plug-in estimates of the variances.

A.6. JUSTIFYING THE TEST STATISTICS USED IN THIS PAPER

Testing for the absence of selection bias, B;,(P)=0 for all ¢, or the equivalent hypothesis of
mean independence of U, conditional on P, E(Uy;, | P,=P,D;=d)=E(Uy,, | P;=P), and testing
for index sufficiency are central tasks of this paper. All of the required test statistics are derived
from the results presented in Theorem A.3. An important consequence of this theorem is that if the
same kernel G and bandwidth ay are used to estimate K, and K,, the associated bias terms (the

%7 In samples with a few thousand observations, estimation of 3 affects the sampling error of the
estimated functions. Since 3 converges at rate N'/2, and the bias functions converge more slowly, a
conventional argument assumes that “N is big enough” to ignore the effect of estimating B in
deriving the asymptotic distribution of the estimated K functions. This assumption turns out to be
quite misleading in samples of the size at our disposal.
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second term on the right-hand side of equation (A-4)) cancel when K, = K,,, as is postulated under
the null hypothesis of no selection bias. Because we use the local linear regression estimator, the
bias does not depend on the distribution of the regressors on which K,, and K, are estimated.
These convenient properties allow us to avoid having to adjust the test statistics for noncentrality
parameters. Exactly the same elimination of noncentrality parameters occurs when testing for
conditional mean independence, which in this context is the same as testing for the absence of bias
conditional on P. A similar simplification emerges in testing for index sufficiency. In that case, it is
postulated that K,(P,J;) — Ko(P, J)) are the same for all discrete-valued J;, /=1,..., L. Under the
null hypothesis of index sufficiency, the bias term that arises from forming K (P J1) KO(P J) is
the same for all J;. The test for index sufficiency is based on differences K, (P I —Ky(P, I —
[R(P,J,) — Ky(P,J,)] for J,+J,. The bias term is the same and differences out under the null
hypothesis.

Recall that K ., and K, are estimated via local linear regression of the residuals UO,, =Y, —R}, 8
on P, for the samples for which D=1 and D =0, respectively. In constructing the tests, the
asymptotic theory suggests that estimation of £ should not affect the distribution of the test
statistics, because 3 converges at rate YN but K 1 and KO converge at rates y/Nay , which are lower.
However, Heckman, Ichimura, and Todd (1996) report in a simulation study that for samples of the
size used in this paper, failure to account for the effects of estimated B on the variance of the test
statistics produces tests that reject at too high a rate relative to the nominal significance level and
hence are conservative.

A.6.1. Test Of No Bias Or Conditional Mean Independence
Under the conditions of Theorem A.3, and under the null hypothesis B,(P) =K, (P) — K, (P) =

0, if the same kernel and bandwidth are used to estimate K;, and K,, then
A A . w1, 4 A o d
(K = Ko)' [P/ (Nyay ) + D,/ (Noay D] 7 (R, = Ky) = 2.
Arraying the K, and K, into a T X 1 vector K, — Ifo, under the conditions of Theorem A.3 applied
to all ¢,
PSS N -1, . s d
(R, =R [(P1/(Nyay ) + (P /(Npay D] (R, = Ky) = x*(T),

where V,, is a consistent estimator of V,,,d € {0,1), and ay,=ay,

We now present methods for estimating the variances V and V. To conserve on notation, and to
anticipate the expression for the variances required in the test of index sufficiency, we present
expressions for the variances conditional on strata J,,/=1,..., L. In testing for mean independence,
there is only one stratum—the whole sample. We first present the estimator of the variance that
does not adjust for higher order terms.

A.6.1.1. Unadjusted Variance Estimator. Define
V(Py) = diag(P, (Py, 7)), Vo, (Py, T1)s - s Vii( Py, ), Vo (o, I ).
For d {0, 1),
C;'Var(Y,— R, B,|P=Py,]=1],,D=d)
fo(Po|D=d)P(J=J,|IP=Py,D=d)

I}(II(PO’JI)=

consistently estimates V,;, where C; = C3(G)/C#(G), G is the same kernel density function used in
the local regression estimator, and L equals the number of discrete values of J; with L =1 in the
test for mean independence. Further, var( — R}, By|P=Py,J=J,,D=d), f;o(Po |J=J,D=d),
and P(J=J,|P= Py, D =d) are consistent estimators of the conditional variance of &, the
conditional density of P;, and the conditional probability of J=/J,, respectively. To test mean
independence at § different values of P simply add the test statistics over all points separated by at
least 2ay. Each test statistic is independent and thus the overall asymptotic distribution is x>(ST).
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To estimate one diagonal component of V,, Heckman, Ichimura, and Todd (1996) justify the
estimator

Va(P) = ) E4WE(PY,
ie{D=d}

where &4, = (Y, — R}, — K, (P))Qy; and the weights W,,(P,) are

Gio Lk« p=a) Gro( P = Po)’ = Gig( Py = PIE < (p=ay Greo P = Py)]
2 212’

Zje(D:d)GjOZke(D=d) Gko(Pk _PO) - [Zke(D=d)Gk0(Pk —Po) ]

WM(P0)=

where Gy, = G(P; — P)/ay). Although they show that this is a consistent estimator, their Monte
Carlo study reveals that this estimator underestimates the true variance by about 50%. This
evidence motivates our proposal to use the adjusted variance defined in A.6.1.2 below.

Over all time periods, the natural estimator of the variance-covariance matrix for the full 77X 1
vector K, at P=DP; is

Va(Py) = Z Zia Wi (Py),
ie{D=d)}

where &4 =(&,4y,..., &qr). However, this estimator is not feasible when the panel is not balanced
as is the case for our data.®® Consistent estimates of each component in the variance-covariance

matrix are not guaranteed to produce an estimated covariance matrix that is positive definite.
Instead, we use an alternative consistent estimator that is guaranteed to be positive semi-definite:

VA(PO) = Z €iabia>
ie(D=d)
where
b =&am, 1)”7,'(1(})0),'-", éidrﬂ(iaT)Wid(Po)],a
and where n(i,¢) =1 if observation i has data available in period ¢ and n(i,?) = 0 otherwise.

A.6.1.2. Adjusting for Estimating . To adjust for higher-order variance terms, we apply the delta
method to add two terms to Vj,:

Var=Va +ay,AVg A, —2ay, X &)ide/VidQ(li}[ > Rz/Wfde.]
ie{D=d}teT ie{D=d)

where

A= Z R, W4 Qyi-
ie{D=d}

A.6.2. Testing Index Sufficiency

Testing index sufficiency is a central goal of this paper. Unlike the test proposed by Ait-Sahalia,
Bickel, and Stoker (1994), we test for index sufficiency of a subfunction rather than of an entire
function. We ask if the K, functions can be written solely in terms of P;, so that we can represent
equation (A-2) as Y;, =R}, B+ DIK,(P)—Ky(P)]+ K, (P) + . We are not interested in the
question of whether the conditional mean function for Y}, can be expressed solely as a function of
P,, which is the question addressed by Ait-Sahalia, et al. (1994).

88 Recall that for simplicity we have ignored the unbalanced case in presenting the asymptotic
theory. Modifying it to account for random attrition is straightforward but notationally burdensome.
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Using discrete regressors, the null hypothesis of index sufficiency is as follows. Letting J, be the
value of the discrete regressor in the /th group,

K, (P,J) =Ko (P, J) =K, (P,],) =Ky (P,J;) allforland ' (I,I'=1,...,L)

and for all P and r€.9. We test for equality of the conditional mean bias functions for different
subgroups within the population.

We estimate K, (P, J)) for some fixed finite number of points P =P,, s = 1,..., S, all of which are
in the support of P given J; for /=1,..., L, and compare the estimated functions at the chosen
points. We construct the test at points where the conditional densities are bounded away from zero,
to guarantee that estimators of each K,,(P,J;) are uniformly consistent and converge at the same
rate.%

The statistic for testing the null hypothesis of index sufficiency at a point P, in period ¢ is

5(Py) = APy O (P APy S y2(L— 1),

where
AA:(PO) =M'[Ielt(PO’Jl)9IeOI(PO’Jl)""’Ielt(PO’JL)’IeOt(PO’JL)],’
and
1 -1 -1 1 0 0 0 0 0 0
0 - -1 1 0 0 0 0
M=]. . . .,
0O 0 0 0 0 0 1 -1 -1 1

so that A,(P,) is a vector of (L — 1) contrasts and N(P)= M(W(P)),M’, where
TVPY), = diagTV, (P, 1))/ (Nyan ), T, (P, 1) /(Nonan),
V(P /(Nyyan), V0o (P 1) /(Nygay),
 WVLCP, 1) /(Nygay) PPy (P11 /Ny ay)),

I’/T/m(PJI)= Z 5i2d1Wi§(P):
ie{D=d),

and where {D = d}, is the set of i values for D = d associated with discrete regressor J;, and N, is
the number of observations in the cell d,¢,1.

A test of the hypothesis over T time periods at point P under the null is based on the entire
vector A(P,) of length (L — 1T where A(Py)=(A(Py),..., Ap(P,))'. The test statistic is

$(Py) = AP (-1 (P A'(Py) S x2((L - DT,
where
(P =11, @ MIIVV(POII; ® MY

and where W(PO) = diag((WPo))l,(W(PO))z,...,(I’/\V(PO))T), I, is the T X T identity matrix and
® denotes a Kronecker product. For values of P that are at least two bandwidths ay apart, the
chi-square tests are independent when the kernel is supported on [—1,1], and we can perform an
overall test for S values as a sum of the y? statistics over P. The resulting statistic is y 2(S(L — 1)T).
To adjust for estimation error in 3 replace I’/\Vd[(PO, J}) by the appropriate adjustment for cell d, ¢,/
analogous to the adjustment given in A.6.1.2.

% The same “trimming rule” discussed in Section A.4.1 is used to estimate the densities for the
different subgroups on the J,, [=1,..., L.
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APPENDIX B

B.1. SAMPLES USED IN THE ANALYSIS

Our data consist of four samples: the experimental control group sample, the experimental
treatment group sample, the eligible nonparticipant (ENP) sample, and the Survey of Income and
Program Participation (SIPP) sample. The first three of these samples were collected at four of the
training centers participating in the National JTPA Study: Corpus Christi, Texas, Fort Wayne,
Indiana, Jersey City, New Jersey, and Providence, Rhode Island.

The control and treatment group samples consist of persons who took part in the JTPA
experiment. They applied to the JTPA program, were determined eligible for JTPA services under
Title IT-A of the Act, were accepted into the program, and were recommended for particular JTPA
services. About one third were assigned to the control group and excluded from JTPA services for 18
months while the rest were assigned to the treatment group and given access to JTPA services.

Nonexperimental data were collected on a sample of eligible nonparticipants residing in the same
geographic areas as the experimental groups. The ENP sample is composed of individuals who were,
on the basis of a screening interview, determined to be (i) eligible for JTPA due to economic
disadvantage; (ii) 22 to 54 years of age; (iii) not in junior high or high school; and (iv) not
permanently disabled.”” Our other nonexperimental comparison group sample is drawn from the
1988 SIPP Full Panel. We treat month 12 of the panel as a single cross-section in constructing the
sample.

To match the ENP sample, we impose criteria (i) and (iii) on the remaining samples. We are
unable to impose criterion (iv) due to data limitations. Criterion (i) is imposed on the SIPP eligible
subsample used in Tables XIV. The other SIPP subsamples are defined in the notes to that table. In
all of the samples individuals missing data on key variables such as race or date of eligibility
screening are omitted. Table B-1 summarizes the number of individuals omitted due to each
criterion in the ENP and control samples.

We also impose a rectangular sample restriction based on our outcome variable, quarterly
earnings. For the ENP and control samples, this restriction requires (i) at least one month of valid
earnings data prior to random assignment (for the controls) or eligibility screening (for the ENPs)
(hereafter the date of random assignment or eligibility determination is denoted as RA/EL);
(i) valid earnings data in the month of RA /EL; and (iii) at least one month of valid earnings data in
months 13-18 after RA /EL. Table B-I indicates the number of additional observations lost due to
this restriction for the ENP and control samples. Due to data limitations, only restricton (i) is
applied to the treatment group sample. For the SIPP, we require valid earnings data in the first and
final month of the panel for sample inclusion.

B.2. SURVEY INSTRUMENTS

The Long Baseline Survey (LBS) gathered five years of retrospective data on earnings and
employment, demographic characteristics, household composition, recent training history, and
transfer program participation for the ENP and control group samples. Controls completed the LBS
within one or two months after random assignment. For them, the survey covers the five years prior
to random assignment. The ENPs completed the LBS from 0 to 24 months after eligibility screening.
For them, the survey covers the five years prior to the survey date. The response rate on the LBS
was 90 percent for the controls and 78 percent for the ENPs.

Both the first and second follow-up surveys collected detailed retrospective data on job spells,
hours and rates of pay, social program participation, training and job search activities, as well as
background and demographic information. The surveys are basically identical except for the time
periods covered. The first follow-up survey was administered to treatments, controls, and ENPs and
covered the period from 12 to 24 months after random assignment for the experimental groups and
from 12 to 48 months after the LBS interview date for the ENPs. The second follow-up survey was

™ For more information on the sampling frame for the ENP sample, see Smith (1994).
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TABLE B-I

NUMBERS OF OBSERVATIONS OMITTED DUE TO SAMPLE RESTRICTIONS
Experimental Control and Elig. Nonparticipant (ENP) Samples, Adult Males

ENP Control
Restriction Sample Sample
Total number of observations 827 864
Number dropped due to missing date of eligibility screening 4 0
Number dropped due to missing value for race 7 0
Number dropped due to having no valid earnings observations 56 54
Number dropped due to rectangular sample restriction 372 302
Final analysis sample size 388 508

Note: The rectangular sample restriction requires that each observation included have at least one month of valid
earnings data in the 18 months prior to random assignment or eligibility screening (RA/EL), valid earnings data in the
month of RA/EL, and at least one month of valid earnings data in months 13 to 18 after RA/EL.

administered to a random sample of experimentals, including approximately one quarter of the
adults. This survey covered the period from the first follow-up survey to the second follow-up survey
date, which was from 24 to 48 months after random assignment.”’ The response rate to the first
follow-up survey was 81 percent for the experimental groups and 79 percent for the ENPs. The
second follow-up survey, administered only to the experimental groups, had a response rate of
80 percent. Experimentation with alternative methods for dealing with attrition and nonresponse
sustains the findings reported in the text.

At the time of random assignment, control and treatment group members completed a Back-
ground Information Form (BIF) that collected information on demographic characteristics, social
program participation, training and schooling activity, and recent labor market experience. We use
the BIF data only to fill in background variables missing on the other surveys due to item
nonresponse.

B.3. GENERATING THE VARIABLES USED IN OUR ANALYSIS

For the experimental and ENP samples, we use the monthly total earnings variables constructed
by Abt Associates, the firm hired by the U.S. Department of Labor to produce public use data files
for the JTPA experiment. These variables are based on information about average hours worked and
average rates of pay on individual job spells. These variables include tips, bonuses and overtime,
which are smoothed over each job spell. For the seam month between the LBS and the follow-up
surveys, we calculate earnings by weighting up the information from the LBS survey.

The monthly earnings data from the LBS and follow-up surveys are combined to form a panel of
up to 90 months for each individual. We organize the data by month relative to RA /EL rather than
by calendar time. Since the ENPs were screened for eligibility prior to completing the LBS, we
realign the data so that the month of eligibility screening for the ENPs corresponds to the month of
random assignment for the controls.

The monthly earnings data from the SIPP are based on direct responses to questions about
earnings on up to two jobs and from up to two businesses in each month of each four month SIPP
survey reference period. Earnings on additional jobs or from additional businesses, as well as casual
earnings, are collected from an additional survey question. The SIPP earnings variables also include
tips, bonuses and overtime, but they are not smoothed over job spells as in the data from the JTPA
experiment.”?

" For control and treatment group members not responding to the first follow-up survey, the
second follow-up collected information on the entire period from random assignment to the second
follow-up survey interview date.

72 For more information about the monthly earnings variables, see Smith (1995).
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For our regression analyses, the monthly data were converted to quarterly data. Average monthly
earnings per quarter are formed from the monthly data by taking an average over the three months
that comprise each quarter. If there are missing data on earnings, the quarterly average is taken over
the available months. In calculating the quarterly data, the quarters begin with the first month after
RA/EL. The top one percent of the quarterly earnings values are trimmed in each quarter from the
combined sample of ENPs and controls. No trimming is performed on the SIPP earnings data as
they appear to be less prone to outliers.

We align the ENP data relative to the controls in the month in which we know with certainty that
both the controls and ENPs are eligible for JTPA. Aligning the groups in this way requires
individual realignment of the ENPs due to differences across persons in the lag between measured
eligibility and administration of the baseline survey. All of the regression-adjusted estimates include
variables for calendar time. However, these variables are not substantively important.

The calendar year and month of each observation in the panel are determined from variables
giving the date of random assignment for control (and treatment) group members and the date of
eligibility screening for the ENPs. We construct the monthly age variables using each individual’s
date of birth. For the control group, the date of birth is taken from the BIF while for the ENPs it is
taken from the LBS.

Demographic and background variables, such as race, marital status, and education, are usually
obtained from the LBS. Missing values are replaced using information from the BIF or from a
follow-up survey where possible. Missing values due to item nonresponse on the variables used to
estimate the possibilities of participation for the ENP and control samples are imputed. For
continuous variables, values are imputed from a linear regression with the following regressors:
indicators for race /ethnicity, indicators for age categories, an indicator for receipt of a high school
diploma or GED, and site indicators. These variables had no missing values after imposing the initial
sample restrictions. All covariates are interacted with a control group indicator. Missing values of
dichotomous variables are replaced with the predicted probabilities estimated using a logit equation
with the same covariates. Missing values of indicator variables with more than two categories, such
as the five indicators for highest grade completed, are replaced by the predicted probabilities from a
multinomial logit model where the undeslying categorical variable used to construct the indicators is
the dependent variable. No imputed values were generated for the SIPP sample as the rates of item
nonresponse in that sample are very low. Table B-II presents descriptive statistics on the variables
used to analyze the ENP and control samples. Further details on the construction of the variables
and the samples appear in an expanded version of this appendix, and are available on request from
the authors.

APPENDIX C

SELECTION OF VARIABLES FOR USE IN ESTIMATING THE PROBABILITY OF
PARTICIPATION, P

This appendix presents the criteria used to select the Z variables in the probability of participa-
tion, Pr(D = 11Z). We have richer data than that available to previous analysts. Human capital
theory suggests that younger people are more likely to benefit from training. Previous research
suggests the importance of marital status, household size, and family income in affecting schooling
and training decisions. Ashenfelter’s (1978) analysis demonstrates the importance of recent earnings
in determining participation in training programs.

To select among the variables suggested by theory, we use the two criteria discussed in Section 4.3
of the text: (a) the fraction of observations correctly predicted using the population proportion of
controls as a cutoff value; and (b) statistical significance. For (a), we look at both the simple mean of
the control and ENP correct prediction rates and the control correct prediction rate by itself. For
(b) we “test up” by iteratively adding variables starting with the training center indicators and
demographic variables. Variables which are statistically significant at conventional levels and which
increase the prediction rates by a substantial amount are retained in the final specification.

Table C-I presents the control and ENP correct prediction rates, along with the simple average of
the two rates, for five alternative models of P. The first three rows correspond to the three “coarse”
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TABLE B-11

DESCRIPTIVE STATISTICS FOR VARIABLES USED IN THE PAPER
Experimental Control and Elig. Nonparticipant (ENP) Samples

Adult Males, 508 Controls and 388 ENPs

1091

ENPs Controls ENPs Controls

Variable Names (Effects) Mean Mean Std Error Std Error
Corpus Christi, TX 0.418 0.165 0.025 0.016
Fort Wayne, IN 0.317 0.530 0.024 0.022
Jersey City, NJ 0.121 0.156 0.017 0.016
Providence, RI 0.144 0.150 0.018 0.016
White 0.387 0.524 0.025 0.022
Black 0.119 0.272 0.016 0.020
Hispanic 0.441 0.169 0.025 0.017
Other Races 0.054 0.035 0.012 0.008
Age 25 to 29 0.173 0.220 0.019 0.018
Age 30 to 39 0.397 0.380 0.025 0.022
Age 40 to 49 0.216 0.138 0.021 0.015
Age 50 to 54 0.052 0.026 0.011 0.007
Less than 10th Grade 0.341 0.196 0.023 0.017
10th-11th Grade 0.183 0.230 0.019 0.019
12th Grade 0.270 0.361 0.022 0.021
1-3 Years College 0.131 0.168 0.017 0.016
4 + Years College 0.075 0.046 0.013 0.009
Last Married 1-12 Months Prior to RA/EL 0.020 0.040 0.007 0.008
Last Married > 12 Months Prior to RA/EL 0.038 0.131 0.009 0.014
Single, Never Married 0.255 0.508 0.021 0.022
Children Age Less than 6 0.332 0.179 0.023 0.016
Quarter 1 0.277 0.251 0.018 0.015
Quarter 2 0.227 0.207 0.018 0.013
Quarter 3 0.174 0.281 0.014 0.016
Quarter 4 0.321 0.260 0.018 0.015
Year 1986 0.000 0.000 0.000 0.000
Year 1987 0.126 0.322 0.015 0.020
Year 1988 0.715 0.544 0.020 0.021
Year 1989 0.147 0.129 0.016 0.014
Year 1990 0.012 0.006 0.005 0.003
Year 1991 0.000 0.000 0.000 0.000
Ever had Vocational Training 0.247 0.349 0.022 0.021
Currently Having Vocational Training 0.016 0.071 0.006 0.011
In School or Training in the Month of RA /EL 0.097 0.063 0.015 0.011
Last in School or Training 1-3 Months 0.019 0.047 0.007 0.009

before RA/EL
Last in School or Training 4-6 Months 0.015 0.028 0.006 0.007

before RA/EL
Local Unemployment Rate 7.719 6.287 0.169 0.120
Employed — Employed 0.731 0.210 0.022 0.018
Unemployed - Employed 0.067 0.106 0.012 0.013
OLF — Employed 0.019 0.047 0.007 0.009
Employed — Unemployed 0.042 0.273 0.010 0.019
Unemployed — Unemployed 0.042 0.174 0.010 0.016
OLF — Unemployed 0.014 0.060 0.006 0.010
Employed - OLF 0.012 0.057 0.005 0.010
Unemployed - OLF 0.006 0.017 0.004 0.006
OLF - OLF 0.067 0.058 0.012 0.010
One Job Spell in 18 Months Prior to RA 0.580 0.348 0.025 0.021
Two Job Spells in 18 Months Prior to RA 0.229 0.287 0.021 0.020
Three or More Job Spells in 18 Months 0.095 0.250 0.015 0.019

Prior to RA
Total Number of Household Members 4.132 3.072 0.083 0.076
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TABLE C-1

PERFORMANCE OF ALTERNATIVE PROBABILITY OF PROGRAM PARTICIPATION LOGIT SPECIFICATIONS
COMPARING COARSE AND RICH PROBABILITY OF PROGRAM PARTICIPATION SPECIFICATIONS
(Estimated Standard Errors in Parentheses)

Experimental Control and Elig. Nonparticipant (ENP) Samples
Adult Males, 508 Controls and 388 ENPs

ENP® Control® Equal-Weight*®
Prediction Prediction Prediction
Specification Percentage Percentage Percentage
Coarse Scores I? 69.07 70.47 69.77
(2.35) (2.02) (1.55)
Coarse Scores I11? 72.42 74.21 73.32
2.27) (1.94) (1.49)
Coarse Scores IT1? 79.38 78.15 78.77
(2.05) (1.83) (1.38)
Best Predictor P? 81.96 81.89 81.92
(1.95) (1.7D) (1.30)
Best Predictor P Without Earnings® 82.47 81.50 81.99
(1.93) (1.72) (1.29)

#See the definitions of the variables in these models presented under Table XIIL The variables in the optimal scores are
presented in Table IIIL.

The “ENP Prediction Rate” and *“Control Prediction Rate” columns give the percentage of ENPs and controls correctly
predicted, respectively, using the hit or miss rule.

“The “Equal-Weight Prediction Rate” column gives the simple mean of the ENP and control correct prediction rates.

participation probability models used in the analysis reported in Table XIII; these models are
defined in the notes to that table. The demographic variables in the coarse scores I model do a
surprisingly good job of predicting participation. Adding annual earnings, which has a statistically
significant coefficient in the logit, improves the prediction rate for both groups. However, using the
recent labor force status history variables defined in Table I, instead of annual earnings, improves
the prediction rates even more—over 10 percent for the ENPs and nearly 8 percent for the controls.
The coefficients on the labor force status history variables are also statistically significant when
added to either Coarse I or Coarse II. It is instructive to compare the Coarse Scores III row with the
fourth row, which displays the prediction rates for the best-predictor P specification used to
generate the main results in this paper. Over two-thirds of the difference in prediction rates between
the best-predicting models is due to the addition of the labor force transition variables. The
importance of these variables in predicting participation in this program is a new finding, discussed
in detail in Heckman and Smith (1995b).

The last row of Table C-I presents prediction rates for a slightly reduced specification that
discards the variable measuring earnings in the month of random assignment or eligibility screening
used in the best P predictor model. The coefficient on earnings in the month of random assignment
or eligibility screening is highly statistically significant when it is included in any specification, and its
inclusion substantially improves the control (D = 1) prediction rate. However, as shown in the fourth
column of Table C-I, including it in the model decreases the simple average of the ENP and control
prediction rates by 0.07. Since a model that includes the earnings variable dominates on two of the
three prediction criteria, and since the associated coefficient on the variable is statistically signifi-
cant, we include the earnings variable in our best predictor equation.

APPENDIX D

MONTE CARLO STUDY OF THE TEST FOR INDEX SUFFICIENCY

To study the size and power of our test for index sufficiency, we perform a Monte Carlo study
using 100 generated samples, each with 896 observations—the size of our sample. We investigate the
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size and power of our test using an additional variable besides P. We test the hypothesis that
{(K(Plr=D—Ky(Plr=1}—{K(Plr=0)—Ky(Plr=0)}=0, where r<{0,1} indicates race
group.

The data are generated from the following procedure. We first estimate earnings function (16)
with Ko(P) and K,(P) parameterized as quadratic functions of P so that Ky(P|r=1)=K(P|r=
0)=a;yP+ a,yP? and K,(Plr=1)=K(P|r=0)=a; P+ a, P> We estimate this function us-
ing a combined sample of blacks and whites, imposing a common f3 across groups. This defines the
base model for the null hypothesis.

Using the realized data for R;, and the estimated S, denoted B, we generate residuals for each
observation as follows:

&igr=Yir— R/ B—r;d; K{(P|r=1)
—(1=r)d;K(PIr=0)—r,(1—d)Ky(P|r=1)

-1 =r)(1—=d)Ky(P|r=0).

Using these residuals we estimate the variance of &, which is assumed to be common across race
groups but allowed to vary across D. We assume that &, ~#0, o,?), d €{0,1} in generating the
data for the analysis. We assume that the departures from the null operate through the linear term
of the K,(P) function. Thus K(P|r=1)=(a;, +y)P+ ay P? and K\(P|r=0)=a;; P+ ay P>
The assumption Ky(P|r=1) =K (P|r=0) is maintained throughout.

The specified value of y determines how far the data deviate from the assumption of index
sufficiency. For larger values of vy, the model deviates more from the index sufficient model, and one
would expect to see more rejections. We compute the number of rejections as a function of y for
our index sufficiency test using a 5% chi-squared critical value. The results of this analysis are
displayed in Figure D-1, which plots the number of rejéctions against the average deviation from
index sufficiency, defined here as yP, where P is the mean of the probabilities of participation taken
over the region of common support for all (D, r) subgroups.

At y =0, the null hypothesis of index sufficiency is correct, and we can determine the size of our
test for the sample sizes used in the paper. We obtain 25 out of 100 rejections at y =0 despite a

Power Function

100

90 +

80 +

Percent Rejections of Null

0 420 840 1260 1679 2099 2519 2939

FIGURE D-1.—Power function for joint index sufficiency tests, K,(P|r=1=K(P|r=0)+ yP
and Ky(Plr=1)=Ky(P|r=0).
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nominal size of 5%. Thus there is a tendency to reject the null hypothesis too frequently when it is
true and our test is conservative. In addition, the power function is very flat over a broad region of
the data.

Figures D-2 graph the estimated bias functions for quarter 3 by the site, race, and education
categories that underlie the tests on index sufficiency reported in Table VIII. These are typical of
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probability of program participation; bandwidth = 0.06, trimming = 2%.
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FIGURE D-2.—Continued

the biases found in other quarters and of the differences tested in VIII. While the agreement in the
estimated bias functions is close for some groups, there are clearly differences in the bias for the
other groups. Our failure to reject the null hypothesis of index sufficiency may be a consequence of
the low power of our tests. The large disparity between the bias functions for certain groups does not
necessarily imply that index sufficiency does not characterize the bias within those groups. However,
the samples at our disposal are too small to make such a test meaningful. Overall, we do not reject
the null hypothesis of index sufficiency but in light of the relatively low power of the test, our
acceptance of the null hypothesis is necessarily a qualified one.
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