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Using Multivariate Matched Sampling and Regression 


DONALD B. RUBIN* 


Monte Carlo methods are used to study the efficacy of multivariate 
matched sampling and regression adjustment for controlling bias due 
to sDecific variables when denendent variables are 
moderately nonlinear in X. The general con'clusion is that nearest 
available hlahalanobis metric matching in combination with regres- 
sion adjustment on matched pair differences is a highly effective plan 
for controlling bias due to X. 

KEY WORDS: Covariance adjustment; Nonrandomized studies; 
Quasi-exoeriments. 

1. INTRODUCTION 

Our objective is to study the utility of matched 
sampling and regression adjustment (covariance ad-
justment) for controlling specific matching variables in 
observational studies. This introduction is brief; we 
assume that the reader is familiar with the literature on 
matching and covariance adjustment in observational 
studies (e.g., Althauser and Rubin 1970) ;Billewicz 1964, 
1965; Campbell and Erlebacher 1.970; Cochran 1953, 
1968; Cochran and Rubin 1973; Gilbert, Light, and 
Mosteller 1975 ; Greenberg 1953 ; Lord 1960 ; McKinlay 
1974, 1975a,b; and Rubin 1974, 1977, 1978a). In  par- 
ticular, this work is a natural extension of earlier Monte 
Carlo work on one matching variable (Rubin 1973a,b) 
and theoretical work on multivariate matching methods 
(Rubin 1976a,b). 

Matched sampling refers to the selection of treatment 
units (e.g., smokers) and control units (e.g., nonsmokers) 
that have similar values of matching variables, X (e.g., 
age, weight), whereas regression adjustment refers to a 
statistical procedure that adjusts estimates of the treat- 
ment effects by estimating the relationship between the 
dependent variable Y (e.g., blood pressure) and X in each 
treatment group. Hence, matched sampling and regres- 
sion adjustment may be used alone or in combination, 
that is, samples may be random or matched, and regres- 
sion adjustment may or may not be performed. Our use 
of the term matching excludes methods that discard units 
with Y recorded ; thus, our matching methods should be 
thought of as choosing units on which to record Y when 
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Adiustment to Control Bias 

in Observational Studies 

Y can be recorded only on a limited number of units (e,g., 
Y is obtained by an expensive medical examination in the 
matched samples). - . 

A major problem with matching methods is that in 
practice it is rare that enough matched pairs of treatment 
and control units with identical values of X can be found, 
and then the matching does not perfectly control for X. 
A major problem with regression adjustment is that the 
linear model relating Y to X may be wrong, and then the 
adjustment being applied may nut be entirely appro- 
priate. We study cases with imperfect matches and Y 
moderately nonlinear in X. 

Cochran and Rubin (1973) summarize work on the 
efficacy of univariate matching and regression adjust- 
ment with quantitative Y and X. The general conclusions 
of these univariate investigations are that (a) a very 
simple and easy-to-use pair-matching method known as 
nearest available pair matching (order the treatment 
units and sequentially choose as a match for each treat- 
ment unit the nearest unmatched control unit) seems to 
be an excellent matching method ; and (b) the combina- 
tion of regression adjustment on matched samples is 
usually superior to either method alone. 

We extend this work with quantitative Y and X to the 
case of bivariate X. The two main questions to be ad- 
dressed are (a) Which of two multivariate nearest avail- 
able pair-matching methods (discriminant, Mahalanobis 
metric) is preferable? and (b) Which of three regression 
adjustments (no adjustment, pooled estimate, estimate 
based on matched pair differences) is preferable? Section 
2 introduces terminology and notation, and Section 3 
defines the conditions of our Monte Carlo study. Section 
4 presents results on the ability of regression adjustment 
to control bias in random samples. Section 5 presents 
results for matched samples, with and without regression 
adjustment. The broad conclusion is that nearest avail- 
able Mahalanobis metric pair-matching coupled with 
regression adjustment on the matched pairs is a quite 
effective general plan for controlling the bias due to 
matching variables, and this combination is clearly 
superior to regression adjustment on random samples. 
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2. TERMINOLOGY AND N O T A T I O N  

Let P1 be a population of treatment units and let P2 
be a population of control units. Random samples are 
obtained from PI and P 2 ;  these samples, G1 and G2, 
consist of N and rN  units (r > 1) with recorded values of 
the matching variables, X. Matched samples are created 
by assigning to each G1 unit a G2 unit having similar 
values of X; the algorithm used to make the assignments 
is the matching method. The dependent variable Y is 
then recorded on all 2N units in the matched samples, 
and the effect of the treatment is estimated. Regression 
adjustments may be performed by fitting a linear model 
to the conditional expectation of Y given X. These 
regressions are estimated from the matched samples and 
not the random samples because Y is only recorded in 
the matched samples. Of course, if r = 1, the matched 
samples are simply random samples of size N with pairing 
of Gl and G2 units. 

2.1 Matching Methods to Be Studied 

We will study two matching methods : nearest available 
pair matching on the estimated best linear discriminant 
and nearest available pair matching using the Mahalano- 
bis metric to define distance. Nearest available pair- 
matching methods first order the G1 units and then have 
each G1 unit choose in turn the closest match from the yet 
unmatched G2 units; that is, the first G1 unit selects the 
closest G2 unit, the second G1 unit selects the closest Gz 
unit from the rN  - 1 not yet matched, and so on, until 
all G1 units are matched. These matching methods are 
fully defined once we specify the order for matching the 
G1 units and the precise meaning of closest. Since pre- 
vious univariate work (Rubin 1973a) indicated that 
random ordering is usually satisfactory, we will study 
random order, nearest available matching methods. 
Closest is clearly defined for one matching variable but 
not for more than one. 

Let xi be the Ni X p data matrix of X in Gi (where 
N1 = N, N2 = rN), let Pi be the 1 X p sample mean 
vector in Gi, and let 

be the pooled within-sample covariance matrix of X 
based on the random samples GI and G2. Mahalanobis 
metric matching calculates the distance between a G1 
unit with score XI and a G2 unit with score X2 as 

Discriminant matching calculates each unit's score on the 
estimated discriminant as XDT where D = ( f l  - f2)S-l, 
and then matches on this variable; equivalently, it 
defines the distance between a G1 unit with score X1 and 
Gz unit with score Xz as 

(Xi - Xz)DTD(X1- X2)T . (2.2) 

We study these two particular matching methods be- 

cause both matching methods are easy to implement 
using commonly available computer programs for sorting 
and calculating a pooled covariance matrix and because 
both matching methods have an appealing statistical 
property discussed in Rubin (1976a,b ; 1978b). 

2.2 The Treatment Effect 

For the expected value of Y given X in P, we write 
ai + Wi(X). This expectation is often called the response 
surface for Y in Pi. The difference in expected values of 
Y for P1 and P2 units with the same value of X is thus 
al - a2 + W1(X) - W2(X); when PI and P2represent 
two treatment populations such that the variables in X 
are the only ones that affect Y and have different dis- 
tributions in PI and P2, then this difference is the effect 
of the treatment a t  X. If Wl(X) = W2(X) = W(X) for 
all X, the response surfaces are called parallel, and 
al  - or2 is the effect of the treatment for all values of the 
matching variables X. 

Nonparallel response surfaces are not studied here in 
order to limit the number of conditions in the Monte 
Carlo experiment and because a straightforward argu- 
ment suggests that matching must have beneficial effects 
when the response surfaces are nonparallel and the 
average treatment effect in P1 is desired. The expected 
treatment effect over population P1is 

where El is the expectation over the distribution of X in 
PI. An unbiased estimate of the first expectation in (2.3) 
is simply gl., the average observed Y in GI. If we knew 
the P2 response surface, an unbiased estimate of the 
second term in (2.3) would be 

that is, the average value of the P2 response surface across 
the values of X in the G1 sample. Expression (2.4) implies 
that in order to estimate the expected treatment effect in 
PI,we must extrapolate the P2 response surface, W2( . ) ,  
into the region of G1 data. When the Pzresponse surface 
is estimated from Gz data, this extrapolation can be 
subject to great error unless the sample from Pz used to 
estimate Wz( . )  has values of X similar to values in GI, 
that is, unless the sample from P2 is matched to GI. See 
Billewicz (1965) and Rubin (1973a, 1977) for further dis- 
cussion of nonparallel response surfaces. 

Henceforth, we will assume Wl(X) = W2(X) = W(X) 
so that the treatment effect is T = a1 - a2. 

2.3 Estimators of 7 

We will consider three estimators of T, all of the form 

where pi. and t i .  are the means of Y and X in the matched 
samples, and 0 is an  estimated regression coefficient of 
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1. Estimators of the Response Surfacg Difference: 
^7 = yl. - yz.  - (XI. - X2.)@ 

Estimators of 7: i Estimators of p: b 

Y on X. The differences between the estimators are thus 
confined to estimating the regression coefficient and are 
summarized in Table 1 :  ?, is simply the difference of Y 
means in the matched samples, 9, is the analysis of co-
variance estimator of 7 from the two-group design ignor- 
ing the paired structure of the matched samples, and Fd 

is the analysis of covariance estimator of 7 using the two 
group by N matched-pair structure of the matched 
samples (equivalently forming matched-pair differences, 
ydj = yij - yzj and xdj = xlj - x ~ j ,Bd is t'he estimate of 

found from regressing ydj on xdi). Note that 4d is the 
only estimator that requires matched pairs to be assigned 
in the matched samples. 

Simple algebra shows that the conditional bias of 7 

given the xij is 

where wij = W(xij), i = 1, 2, j = 1, . . ., N, and for 
4,, S,, r 0. With multivariate X and moderate N, the 
variance of this conditional bias can be substantial, and 
then the expected value of the conditional bias may not 
be a good indicator of the utility of a procedure. Hence, 
we will use the expected value of the squared conditional 
bias to measure the utility of a procedure: 

where E* is the expectation over the distribution of X in 
matched samples. When r = 1, the expected squared 
bias of F, is 

[Ei(@i.) - E2(@1.)I2+ [Vi(ai.) + VT(@I.)] 
= [Ei(W(X)) - Ez(W(X))12

+ [VIW(X> + V~W(X>l /N  

where Ei is the expectation and V; the variance over the 
distribution of X in Pi. I t  follows that the percentage 
reduction in expected squared bias resulting from match- 
ing and/or regression adjustment is 

If the matches were always perfect (xij = xzj, j = 1, 
. . ., N), then f l .  = 2,. and ~ 1 .= a 2 . ;  hence, the per- 
centage reduction in expected squared bias would be 100 

for any response surface and all of our estimators. If 
the response surfaces were parallel and linear, then the 
percentage reduction in expected squared bias would be 
100 for the regression adjusted estimates (i, and id) 
whether random or matched samples were used. But in 
general with imperfect matches and nonlinear response 
surfaces, the percentage reduction in expected squared 
bias will be less than 100. 

3. M O N T E  CARL0 COMPARISONS OF 
PROCEDURES -CONDITIONS 

Except for the cases noted a t  the end of Section 2.2, 
the computations of percentage reductions in expected 
squared bias in matched samples appear to be analyti- 
cally intractable. Hence we turn to Monte Carlo tech- 
niques. Our study can be compactly described as a 
2 X 3 X 6 X 4 X 3 X 3 X 8 factorial study with one 
summary value (percentage reduction in expected 
squared bias) per cell. This summary value was in fact 
obtained by a covariance adjustment on 100 replications 
using the first, second, and third moments of X in each 
of the random samples GI, G2 as nine covariates. The 
resultant precision of the value is roughly equivalent to 
that obtained with 300 replications and yields standard 
errors usually less than 1 percent, although larger in 
cases with smaller percentage reductions in expected 
squared bias. The Appendix provides details of the design. 

The factors in this study are 

Factor 1: matching method : metric matching, dis-
criminant matching. 

Factor 2 : regression adjustment: F,, F,, Fd. 

Factor 3:  ratio of sample sizes, r : 1, 2, 3, 4, 6, 9 
(N = 50 for all conditions). 

Factor 4 :  bias along discriminant, B : 4, $, 2, 1. 
Factor 5 : ratio of variances along discriminant, u2:$, 1,2.  
Factor 6 : ratio of variances orthogonal to discriminant, 

t2:$, 1,2. 
Factor 7 : response surfaces W(X) ; curvature along and 

orthogonal to discriminant : ++, +0, +-, 
0+ ,  0-, -+, -0, -- ; see Equation (3.2). 

The first three factors define the procedures that we 
study. The next three factors specify the distributions 
of the matching variables in PI and P 2 ;  we assume that 
X has the following normal distributions: 

where 

a2 = 4, l , 2 ;  and 6' = 3, 112 

The last factor defines the nonlinear response surface 
W(X). The ++ notation for the eight levels of W(X) 

mailto:[Ei(@i.)
mailto:E2(@1.)I2
mailto:VT(@I.)]
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refers to nonlinearity along the discriminant and non- 
linearity orthogonal to the discriminant. Specifically, 
we let 

2 2 

= exP [Q(=) 
where (a, b) = (+3, +4), (+3,0), (+a, -$), (+ . I ,  +$I, 
(-.I, -$), (-4, +3), (-4, O), (-3, -3). Values of a 
were set to A .1  instead of 0 in order to avoid cases in 
which 3, is unbiased in random samples; q, a2,and 52 ap-
pear in (3.2) so that the response surfaces (3.2) with the 
distributions of X given by (3.1) are equivalent to the re- 
sponse surfaces W(u, v) = exp (au + bv) with the distri- 
butions of X standardized so that El  (X) + Ez (X) = 0 and 
3[Vl(X) + V2(X)l = I. 

The response surfaces given by (3.2) are moderately 
nonlinear for the distributions given by (3.1). In order 
to justify the use of the phrase moderately ,nonlinear to 
describe these response surfaces, we calculate the per- 
centage of the variance of W(X) that can be attributed 
to the linear regression on X in Pi : 

where Ci( . ,  .) is the covariance in Pi. Straightforward 
algebra using (3.1), (3.2), and the fact that if t - N (0 ,  4), 
then 

ECexp (Yt)l = exp COY + Y24/21 
and 

E[t.exp (Yt)l = (9  + r4)ECexp (-It)] 

shows that 
Ri2 = Ai/[exp (A;) - 1) 

where 

I t  follows that the percentage of variance of W(X) that 
can be attributed to the linear regression on X varies -
between 70 and 92 percent across all conditions of this 
Monte Carlo study. 

4. REGRESSION ADJUSTMENTS W I T H  
RANDOM SAMPLES 

In practice, it is not uncommon for researchers to con- 
duct observational studies without any matching. Ran- 
dom samples from PI and P2are chosen and regression 
adjustments are used to control the X variables. We begin 
our study of the Monte Carlo results by considering 
estimators with r = 1. 

When r = 1, 3, yields no reduction in squared bias with 
either matching procedure, and 3 ,  is the same for both 
matching procedures because it is the usual analysis of 
covariance estimator with two groups and no blocking; 
therefore, when r = 1, only three of the six possible 
estimators defined by the first two factors are of interest. 
Although when r = 1 3d metric matched and 3d dis-
criminant matched use the same units they in general 
yield different percentage reductions in expected squared 
bias because they pair the units in different ways before 
performing the regression adjustment on matched pair 
differences. 

Table 2 presents the Monte Carlo percentage reduc- 
tions in expected squared bias for 3,. Although 3, does 
quite well in many conditions, especially when u2 = t2 
= 1, in other conditions it does quite poorly, especially 

2. Percentage Reduction in Expected Squared Bias; Monte Carlo Values for *7, in Random Samples of Size 50 
-

a2= 1/2 a2= 1 aZ= 2 
Response 
Surface B =  1/4 1/2 3/4 1 '/4 V2 3/4 1 V4 3/4 ?/2 1 
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3. Percentage Reduction in Expected Squared Bias for ?,, Metric Matching With r = 1 

a2= ?h a2= 1 a2= 2 
Response 
Surface B =  ?'4 '/2 3/4 1 ?'4 '/2 ?/4 1 '/4 1/2 3/4 1 

when u2 = t2 = 2 and u2 = l2= 3. The negative values 
in Table 2 indicate that the regression adjustment ac-
tually increases bias. These results show that 9,  based on 
random samples cannot be counted on to control the 
X-variables when the response surfaces are nonlinear. 

Some insight into the problem with P ,  can be achieved 
by considering the large sample case. In large samples, 
9,  is approximately E1(W(X)) - E2(W(X))- qc where 
c is the pooled slope of W (X) on the discriminant, that is, 
the first component of [CI(X, W(X)) + C2(X, W(X))]/ 
(1 + u2). From (3.1) and (3.2), we can write sc 
= aB[E1(W(X))(u2/(1 + u2)) + E2(W(X))/(1 + u2)1; 
because W(X) and B are positive, qc has the same sign 
as a. If u2 = t2 = 1, then the initial bias, El(W(X)) 
- E2(W(X)), has the same sign as a, implying that the 
adjustment -qc is in the correct direction. However, if 
u12 Z 1 and/or t2# 1, then the adjustment may be in the 
wrong direction and actually increase bias. 

Somewhat surprising, estimating the regression coeffi- 
cient from matched-pair differences in the random 
samples can result in better estimates. Table 3 presents 
Monte Carlo values for the percentage reduction in 
expected squared bias for P d  metric matched with r = 1 ; 
Pd is superior to ?, in 209 of 288 cases, and in only two 
cases (u2 = 1 £2 = 1

2 ,  
B = 2 ,  ++ and u2 = 2, l2= 12 1 

B = t ,  --) do the results favor ?, by more than 5 
percent. The fact that Pd is usually better than P ,  is con- 
sistent with Monte Carlo results and analytic considera- 
tions presented in Rubin (197313) for the univariate case. 

The results for Pd discriminant matched are similar but 
inferior to the results for ?d metric matched. The mean of 
the 288 metric minus discriminant differences in per- 
centage reduction in expected squared bias is 5.4, the 

minimum difference is -15.6, the maximum difference 
is 58.1, 219 differences are positive, and only three 
differences are less than -10 (u2 = 3, l2= 3, B = "4 ,

++; u 2 = l ,  1 2 = 3 ,  B = 3 ,  ++; u 2 = 2 ,  t 2 = + ,  
B = ' - -).

4 ,  

Even though the results for Pd are somewhat better 
than for P,, in cases in which ?, does poorly, so does P d .  
Of course, with real data we could try fitting higher-order 
(e.g., quadratic) terms, although the nonlinearity might 
be difficult to detect because these response surfaces are 
only moderately nonlinear. Our study does not include 
quadratic terms in the regression adjustment but does 
include matched sampling. Hence, we turn to results with 
r > 1 to see if matched sampling improves the estimation 
of 7 .  

5. RESULTS WITH r > 1 

We now consider the utility of matched sampling, alone 
and in combination with regression adjustment. Because 
the analyses of the 7-factor Monte Carlo study are some- 
what involved, we begin in Section 5.1 by presenting 
specific results for two procedures in order to convey the 
flavor of our conclusions. The remainder of Section 5 
presents detailed analyses of the results of the Monte 
Carlo study with r > 1. Section 5.2 presents an analysis 
of variance (ANOVA) of the study. Section 5.3 shows 
that although the difference between metric and dis-
criminant matching varies with the estimator, the dis- 
tribution of X, and the response surface, metric matching 
is clearly superior to discriminant matching. Section 5.4 
focuses on the results for metric matching and concludes 
that ?d is the best regression adjustment procedure that 
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we have considered. Section 5.5 displays results for P~ 5.2 An ANOVA of the Results When r > 1 
metric matched that can be used to suggest ratios of 
sample sizes needed to  remove nearly all of the bias for a 
variety of nonlinear response surfaces. 

5.1 Two Specific Estimators 

Tables 4 and 5 present percentage reductions in ex- 
pected squared bias for metric matched samples with 
r = 2 for Po and Pd. By comparing Tables 3 and 5, we 
immediately see advantages to  matching even with 
r = 2. The estimator 4d metric matched with r = 2 
usually removes most of the squared bias and is clearly 
better than ?d (or Pp) with r = 1. Of the 288 differences 
between the percentage reductions in expected squared 
bias for ?d metric matched with r = 2 and fd  metric 
matched with r = 1, only two are negative; of the 288 
differences between the percentage reductions in expected 
squared bias for ?d metric matched with r = 2 and PP 
metric matched with r = 1, only seven are negative; and 
the most negative of these nine differences is only -1. 
In  the next sections we will see that in those cases that  
are difficult for matching (e.g., u2 = t2  = 2), larger ratios 
result in even better estimates. 

By comparing Tables 4 and 5 we see that in all cases 
except with u2 = t2  = 2, there is an  advantage to using 
regression adjustment on matched samples. When 
u2 = t2 = 2, Po is superior to Pd in a few cases, but Pd is 
usually better. Without knowledge of the response sur- 
face, Pd is to be preferred to Po; with such knowledge, a 
more appropriate regression adjustment can be used. We .. . 

will see tha t  Pd is in this sense always preferable to 
9, (or TP). 

Table 6 presents an  ANOVA of the 7-factor study 
where factor 3 has five levels r = 2, 3, 4, 6, 9. For 
simplicity of display, the response surface factor and the 
three distribution of X factors have been collapsed into 
one "distribution" factor with 288 levels. I n  fact, little 
information was lost by collapsing the distributional 
factors because of numerous large higher-order interac- 
tions among the distributional factors and because larger 
interactions between procedure factors and distributional 
factors tended to involve higher-order interactions among 
the distributional factors. The purpose of this ANOVA 
is simply to see which are the large sources of variation. 

Table 7 summarizes the procedure factors by the 
average value of the percentage reduction in expected 
squared bias over the 288 distributional conditions. If 
there were no interactions between procedures and condi- 
tions, then Table 7 would be an adequate summary for 
our Monte Carlo study; that  is, there would be good and 
bad procedures and easy and hard distributional con-
ditions, but  comparisons between procedures would be 
the same in each distributional condition. However, 
there are nontrivial interactions between procedures and 
distributions in the sense that  if we fit the procedure- 
plus-distribution additive model to the 7-factor study, we 
are left with some large residuals to explain. Although 
Table 7 is not an  entirely adequate summary for our 
study, we will see in Sections 5.3 through 5.5 that  most 
trends displayed there are not misleading. The major 
trends in Table 7 are that 

1. Metric 	 matching is superior to discriminant 
matching. 

4. Percentage Reduction in Expected Squared Bias for ?,, Metric Matching With r = 2 

Response 
Surface B = 'A4 r/, 3/4 1 1/4 1/2 3/4 1 '14 '/2 3/4 1 
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5. Percentage Reduction in Expected Squared Bias for ?,, Metric Matching With r = 2 

= is2 = 1 cr'2= 

Response 
Surface 6 = l/4 Y2 3/4 1 l/4 l/2 ?I4 1 '14 l/2 3/4 1 

2. ?d especially with metric matched ?, is superior to 
samples, and both ?d and ?, are superior to ?, 

X and response surfaces, using larger ratios for matching 
can result in substantial improvements. 

especially for smaller r. 
3. Larger ratios of sample sizes are better, although 

7. Percentage Reduction in Expected Squared Bias only modest benefits accrue when moving from 
Averaging Over Distributional Conditions r = 2 to larger ratios, the benefit being largest 

-with ?, and smallest with ? d .  

Further analysis will show that the conclusion from 1. 
and 2., to the effect that r d  metric matched is the best 
combination of matching method and regression adjust- 
ment, is correct. However, the conclusion from 3., to the 
effect that  ratios larger than 2 are not needed, is not 
always true; with some combinations of distributions of 

6. Analysis of Variance of 7-Factor 
Monte Carlo Study With r > 1 

Degrees of Mean 
Source Freedom Square 

Matching Method (metric, discriminant) 1 36.615 
Regression Adjustment (i,,i,,i,,) 2 7.414 
Ratio (r = 2,3,4,6,9) 4 ,705 
Distributiona 287 ,442 
M.M. x R.A. 2 ,430 
M.M. x Ratio 4 .214 
M.M. x Distribution 287 ,241 
R.A. x Ratio 8 ,114 
R.A. x Distribution 574 ,027 
Ratio x Distribution 1148 
M.M. x R.A. x Ratio 8 : 
M.M. x R.A. x Distribution 514 ,007 
M.M. x Ratio x Distribution 1148 ,002 
R.A. x Ratio x Distribution 2296 .0°2 
M.M. x R.A. x Ratio x Distribution 2296 ,001 

a Factors 4, 5, 6,and 7 deflned ~n Sect~on 3 

Discriminant Metric 
Matching Matching 

Ratio 70 T I )  +,I '0 78 .id 

" Theoret~cai values 

5.3 Metr ic  Matching vs. Discriminant Matching 

Table 6 indicates that  the matching method factor and 
its interactions with distributional factors make a large 
contribution to the variation in the Monte Carlo study. 
Table 7 suggests that  metric matching is on the average 
superior to discriminant matching. But these tables do 
not tell us whether the interaction between matching 
method and distribution is the result of a varying superi- 

ority of metric matching over discriminant matching or 
a n  occasional superiority of discriminant matching. If 
discriminant matching were better than metric matching 
for only some distributions of X, then m7e should decide 
which matching method to use on the basis of the ob- 

.A 

served distribution of X in GI and G'z. Our results clearly 
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8. Summary of Differences in Percentage Reduction in 
Expected Squared Bias for Each Estimator: Metric 

Matching Minus Discriminant Matchinga 

Ratio 
r = 2 3 4 6 9 

;,, 	 (metric) min -19.9 -16.0 -13.0 -7.8 -6.1 
-	 (discrim) 24,5 20.2 

mean 9.9 13.3 : : g::: 
> o 194 219 232 245 254 

i,	(metric) min -2.0 -.7 -.7 -.4 -.5 
- +, (discrim) max 102.0 73.4 90.2 83.1 82.9. . 

mean 8.9 9.8 10.9 12.0 12.7 
# > O 262 260 256 259 262 

+,(metric) min -1.2 -1.3 -.6 -.4 -.2 

- .id (discrim) 107.6 79.1 83.9 
mean 11.5 12.0 12.9 13.2 13.2 
# > o 269 264 264 271 273 

" 288 differences for each estimator, one for each distr~butional cond~t ion in Monte 
Carlo study. 

show metric matching to be superior to discriminant 
matching for all distributions of X considered. 

Focus on one estimator, that is, one adjustment 
(Po, Pd, Pp) and one ratio (r = 2, 3, 4, 6, 9) ; for each of 
the 288 distributional conditions, take the difference be- 
tween the percentage reduction in expected squared bias 
obtained by metric matching and obtained by discrimi- 
nant matching. If all 288 differences were positive, we 
would know that metric matching was superior to dis- 
criminant matching for that estimator (e.g., Pd with 
r = 2). 

Table 8 summarizes the 3 X 5 = 15 metric minus 
discriminant sets of differences across the 288 distribu- 
tional conditions. With Bd and 9, there are essentially no 
cases where discriminant matching is to be preferred to 
metric matching; the most negative difference is only 
-2 percent. With Bo, metric matching is usually superior 
to discriminant matching, but further study of these 
differences is enlightening. All cases where the differences 
are < -10 percent occur when a2 = 2 and l2= 9:five 
cases when r = 2, three cases when r = 3, and two cases 
when r = 4. Table 9 displays the metric minus dis- 
criminant differences for Po with r = 2, 3, 4 for a2 = 2 
and g2 = 3. Clearly, even for these distributions of X, 
metric matching is to be preferred unless exceptionally 

strong prior knowledge suggests a response surface that 
has curvature increasing as one moves from the P2 range 
of X to the P I range of X, and even then little can be lost 
by metric matching especially if r 2 4. 

This conclusion holds for Po even when the response 
surface is linear in the discriminant (i.e., W(X) 
= X(1, O)T). Of the 3(a2) X 3(12) X 4(B) X 5(r) = 180 
differences in percentage reduction in expected squared 
bias for Po (Mahalanobis metric matched) minus Po 
(discriminant matched), only 26 were greater than 2 per- 
cent, and of these, 6 favored discriminant matching (five 
3 percent differences, one 4 percent difference), whereas 
20 favored Mahalanobis metric matching (four 3 percent - .  
differences, six 4 percent, two 5 percent, four 6 percent, 
three 7 percent, and one 9 percent difference). 

Because there seems to be no reason to recommend 
discriminant matching over metric matching, we restrict 
further investigation of the Monte Carlo study to results 
obtained by metric matching. 

5.4 Comparing Regression Adjustments 

Table 10 compares the regression adjustments (based 
on metric matched samples) for each ratio across the 288 
distributional conditions. The comparison of Pd with f p  
shows that although there is usually not much difference 
between the adjustments, Pd is clearly superior to ?,, the 
most negative difference in percentage reductions in 
expected squared bias being -2.2 percent when r = 2. 

The comparison of Bd with Po in Table 10 shows that 
although Bd is usually substantially better than Po, Po is 
better than Pd in a few cases. All five cases having differ- 
ences in percentage reductions in expected squared bias 
favoring Po by 10 percent or more occur when n2 = E2 = 2, 
three with r = 2 and two with r = 3. Tables 4 and 5 
provide the results for Bo and Pd when r = 2 and show 
that without strong prior knowledge of the response sur- 
face, T$ is better than TO even when a2 = l2= 2;  a 
researcher having rather specific knowledge of the re-
sponse surface should be fitting a model relevant to that 
response surface and should not be using a linear ap- 
proximation (Pd or Pp) or no adjustments (Po). 

The conclusion thus far is simple: Use Bd based on 
metric matched samples. I t  remains for us to summarize 
the efficacy of using different ratios for the matching. 

9. Differences in Percentage Reduction in Expected Squared Bias: (Metric Matched) Minus f ,  (Discriminant 
Matched) When Distributions of X Are Relatively Favorable to Discriminant Matching (u2= 2, t2= 1/2) 
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10. Summary of Differences in Percentage Reduction 

in Expected Squared Bias for Estimators Based 


on Metric Matched Samples 


Ratio 
r = 2 3 4 6 9 

Bd (metric) min -2.2 -.6 -.O -.1 -.7 
- .i,(metric) max 34.1 26.3 20.9 12.6 

mean 4.2 3.4 3.0 2.2 1.8 
# > 0 275 281 285 284 283 

id(metric) min -29.8 -16.1 -9.5 -9.3 -6.0 
- B,, (metric) max 59.7 45.0 37.2 26.9 21.6 

mean 14.9 9.2 7.5 5.0 3.8 
# > 0 270 259 270 271 270 

5.5 The Effect of Using Different Ratios for Matching 

Tables 2 through 5 give specific results for the estima- 
tors P,(r = l ) ,  Pd (r = 1, metric), P,(r = 2, metric), and 
?d(r = 2, metric). These tables show that in some cases 
any of these estimators can remove nearly all of the 
squared bias, whereas in other cases even the best of 
them, Pd with r = 2, removes less than 50 percent of 
squared bias. The results are sensitive to the distribution 
of X and the response surface, especially when r = 1. 
Table 5 shows that if a2 < 1 and F2 5 1, Pd metric 
matched with r = 2 can be counted on to remove most 
of the bias, and in most cases with either a2 > 1or E2 > 1 
usually removes more than 90 percent of the bias. The 
clearest need for improved estimation occurs when both 
u2 > 1 and E2 > 1. Increasing r yields better estimates. 

In order to indicate the advantages of increasing r, we 
present Table 11, which gives "pessimistic" results for 
+d metric matched. Pessimistic means that for each ratio 
and each distribution of X defined by a value of (B, a2. E2), 

Journal of the American Statistical Association, June 1979 

within the context of our Monte Carlo study, these repre- 
sent the worst results that can be obtained by using Pd 
metric matched. We see that increases in r result in im- 
proved estimation. When r = 4, Bd metric matched re-
moves 73 percent of the expected squared bias in the 
worst case and usually removes more than 90 percent 
even when a2 = E2 = 2. The most difficult cases are those 
with small initial bias. Using a ratio equal to 2a2E2 for 
matching usually removes most of the bias. 

6. DISCUSSION 

The general conclusion from our analyses of the 
Monte Carlo study is that the best procedure we have 
considered is Pd (the regression-adjusted estimator based 
on matched pair differences) using large r (large ratio of 
size of reservoir to size of matched sample) and metric 
matched samples (specifically, using the Mahalanobis 
metric, (2.1)). Obtaining G2 with large r can be expensivc 
in practice, however, and we have seen that the im- 
provements that accrue from using r = 9 rather than 
r = 2 are modest, except when the spread of the X 
distribution is larger in PI than P2. Tentative advice 
would be to metric match using a ratio of 2u2E2 (i.e., 
perhaps twice the determinant of 8 1  8 2 - I  where 8, is the 
covariance of X in P,) and perform regression adjust- 
ments on matched pair differences. Our results demon- 
strate quite clearly that matching can dramatically im- 
prove estimation. 

Of course, a realistic criticism of this work is that we 
have not considered other procedures, ones that carefully 
try to search for nonlinear components in the response 
surfaces or try to perform sophisticated Bayesian or 
empirical Bayesian analyses that average over a variety 
of nonlinear models for the response surfaces. Our reaction 

we have produced the minimum percentage reduction in to this criticism is that although we hope that in any real 
squared bias over the eight response surfaces. Hence, data analysis such techniques would be applied, con-

11. Pessimistic Percentage Reductions in Expected Squared Bias for &, Metric Matched 
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sidering all of them in a Monte Carlo study is impossible 
because good data-analytic techniques must be, by 
nature, conditional on the observed data. Presumably, 
such sophisticated estimators would do a t  least as well 
as Pd, and so the results for 3d (metric matched) can be 
thought of as minimums for methods that try to estimate 
the response surface by more than a linear fit. We feel 
that the general benefits from obtaining matched samples 
would hold for more sophisticated estimators because 
with matched samples the sensitivity of the regression 
adjustment to model specification is reduced. 

In conclusion, because we feel that results similar to 
ours would be obtained for more than two matching 
variables, for nonnormal matching variables, and other 
nonlinear response surfaces, we feel that an effective plan 
for controlling matching variables in observational studies 
is to perform regression adjustments on matched samples 
obtained by nearest available Mahalanobis metric pair 
matching. Of course this summary of advice assumes the 
sampling situation described in Section 2, with dependent 
variables recorded in the matched samples but not 
recorded in the initial random samples. 

APPENDIX: DISCUSSION OF M O N T E  CARL0 STUDY 

The Monte Carlo study is a 7-factor study as described 
in Section 3. The first three factors define 36 procedures, 
and the last four factors define 288 distributional condi- 
tions. For the moment, focus on one condition and one 
procedure: Over repeated matched samples we wish to 
know the expected value of BIAS2, expression (2.6). 

Letting NSIM be the number of sampling replications 
in each condition, we could simply perform NSIM replica- 
tions in each condition, drawing samples independently 
across the conditions and independently for each pro- 
cedure. Such a sampling scheme would be more expensive 
than necessary for several reasons. First, it would generate 
many more random numbers than needed. Second, i t  
would not provide efficient comparisons of procedures 
within conditions or a procedure across conditions be- 
cause the independent sampling would not have created 
correlated estimates of BIAS2. Third, no attempt would 
have been made to increase the precision of the study by 
using simulation covariates, quantities that are defined 
for each procedure and condition and correlated with 
BIAS2, but whose expectations we know from analytic 
considerations, for example, the moments of X in the 
random samples G1 and Gz. 

First consider the third point, using simulation co-
variates to increase precision. In our study with normal 
random variables, we know the expectations of all 
sample moments in Gl and Gz, and these should be related 
to the ease of obtaining well-matched samples and the 
utility of regression adjustment. For example, G1 and Gz 
samples with means farther apart than usual should 
imply that the resultant matched samples will have 
means farther apart than usual. We can let the data 
estimate these relationships between sample moments 
in GI and Gz and BIAS2. Pilot studies indicated that 

using the first three moments in G1 and G2 as simula- 
tion covariates resulted in the most cost-effective plan. 
More covariates would have been more expensive be- 
cause extra storage would have been required in core, 
and fewer covariates would have been more expensive 
because additional simulations would have been needed 
to obtain the same precision. Roughly speaking, our use 
of simulation covariates allowed us to reduce the number 
of simulations by a factor of 3. Typically, the squared 
multiple correlation between BIAS2 and the simulation 
covariates was about .6 and higher when the standard 
errors were higher; hence, without the covariance ad- 
justment we would have needed roughly NSIM = 300 
in order to obtain the precision that was obtained using 
NSIM = 100 and simulation covariates. 

The issues of minimizing the number of random num- 
bers generated in order to save cost and correlating the 
estimates across conditions to increase precisian of com- 
parisons are really handled in the same manner. First, 
focus on one distributional condition and consider a fixed 
ratio r and a fixed matching method. Then we want to 
compare the three adjustments Po, P,, Pd with respect to 
BIAS2. By calculating all adjustments on the same 
matched sample, we make the estimates of BIAS2 cor- 
related across adjustments and hence make comparisons 
more precise. Now let us consider different matching 
methods with the same ratio; we cannot use the same 
matched samples from Gz but we can and do use the same 
random samples (GI, Gz) for matching. For example, 
BIAS2 for B, r = 2 metric and Po r = 2 discriminant are 
calculated in matched samples obtained from the same 
random samples. Using the same random samples cor- 
relates the metric and discriminant results, increasing the 
precision when comparing metric matching with dis-
criminant matching for each estimator. Finally, consider 
different ratios for matching; we cannot use the same 
random samples Gz, but we can and do use the same 
random samples G1 and overlapping random samples Gz 
(i.e., the r = 2 Gz sample includes the r = 1 Gz sample, 
the r = 3 Gz sample includes the r = 2 Gz sample, etc.). 
Using overlapping random samples correlates the results 
for different ratios and hence increases the precision of 
comparisons between estimators using different ratios. 

Furthermore, we can correlate results across response 
surfaces and distributions of X, thereby increasing pre- 
cision of comparisons of procedures between distribu-
tional conditions and reducing computational costs by 
reducing the number of random deviates that must be 
generated. Correlating results across response surfaces is 
trivial because all nine response surfaces can be studied 
from the same matched sample. Correlating results across 
distributions of X is done by having the 4 X 3 X 3 cases 
use the same N(0, 1) deviates. Only the G1 sample needs 
to be linearly transformed in accordance with equation 
(3.1). 

The N(0, 1) deviates were generated by Marsaglia's 
rectangle-wedge-tail method described in Knuth (1969). 

[Received January 1978. Revised December 1978.1 
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