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Abstract

In this article, we develop the theoretical properties of the propensity func-
tion which is a generalization of the propensity score of Rosenbaum and Rubin
(1983b). Methods based on the propensity score have long been used for causal
inference in observational studies; they are easy to use and can effectively re-
duce the bias caused by non-random treatment assignment. Although treatment
regimes need not be binary in practice, the propensity score methods are generally
confined to binary treatment scenarios. Two possible exceptions were suggested
by Joffe and Rosenbaum (1999) and Imbens (2000) for ordinal and categorical
treatments, respectively. In this article, we develop theory and methods which
encompass all of these techniques and widen their applicability by allowing for
arbitrary treatment regimes. We illustrate our propensity function methods by
applying them to two data sets; we estimate the effect of smoking on medical
expenditure and the effect of schooling on wages. We also conduct Monte Carlo
experiments to investigate the performance of our methods.
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1 Introduction

Establishing the effect of a treatment that is not randomly assigned is a common goal in

empirical research. The lack of random assignment, however, means that groups with differ-

ent levels of the treatment variable can systematically differ in important ways other than

the observed treatment. Because these differences may exhibit complex correlations with

the outcome variable, the causal effect of the treatment may be difficult to ascertain. It is

in this setting that the propensity score of Rosenbaum and Rubin (1983b) has found wide

applicability in empirical research; in particular, the method has rapidly become popular in

recent years in the social sciences (e.g. Heckman et al., 1998; Lechner, 1999; Imai, 2003).

The propensity score aims to control for differences between the treatment groups when

the treatment is binary; it is defined as the conditional probability of assignment to the

treatment group given a set of observed pre-treatment variables. Under the assumption

of strongly ignorable treatment assignment, multivariate adjustment methods based on the

propensity score have the desirable property of effectively reducing the bias that frequently

arises in observational studies. In fact, there exists empirical evidence that in certain situ-

ations the propensity score method produces more reliable estimates of causal effects than

other estimation methods (e.g. Dehejia and Wahba, 1999; Imai, 2003).

The propensity score is called a balancing score because conditional on the propensity

score the binary treatment assignment and the observed covariates are independent (Rosen-

baum and Rubin, 1983b). If we further assume the conditional independence between treat-

ment assignment and potential outcomes given the observed covariates (strongly ignorable

treatment assignment), it is possible to obtain unbiased estimates of treatment effects. In

practice, matching or subclassification is used to adjust for the estimated propensity score,

which is ordinarily generated by logistic regression or linear discriminant analysis (Rosen-

baum and Rubin, 1984, 1985). The effects of using estimated propensity scores in place

of true propensity scores are discussed at length in the literature (e.g., Rosenbaum, 1987;

Robins et al., 1995; Rubin and Thomas, 1996; Heckman et al., 1998; Hirano et al., 2002);

see also Section 5.3. One of the principle advantages of this method is that adjusting for

the propensity score amounts to matching or subclassifying on a scalar quantity, which is
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significantly easier than matching or subclassifying on a large number of covariates.

In this article, we extend and generalize the propensity score method so that it can

be applied to arbitrary treatment regimes. The original propensity score was developed to

estimate the causal effects of a binary treatment. In many observational studies, however,

treatment may not be binary or even categorical. For example, in clinical trials one may

be interested in estimating the dose-response function where the drug dose may take on a

continuum of values (e.g. Efron and Feldman, 1991). Alternatively, the treatment may be

ordinal. In economics, an important quantity of interest is the effect of schooling on wages

where schooling is measured as years of education in school (e.g. Card, 1995). The treatment

can also consist of multiple factors and their interactions. In political science, one may be

interested in the combined effects of different voter mobilization strategies, such as phone calls

and door-to-door visits (e.g. Gerber and Green, 2000). It is also possible that the treatment

is measured in frequency and duration, e.g., the health effects of smoking. These examples

taken together illustrate the need for the propensity score, a prominent methodology of causal

inference, to be extended for application with general treatment regimes.

Two extensions of the propensity score have been developed to handle a univariate cate-

gorical or ordinal treatment variable. (We use the term ordinal variable to refer to a discrete

variable that takes on ordered values while a categorical variable is discrete with possibly

unordered values.) Imbens (2000) suggests computing a propensity score for each level of a

categorical treatment variable, i.e., he recommends computing the probability of each treat-

ment given the observed covariates. The mean response under each level of the treatment is

estimated as the average of the conditional means given the corresponding propensity score.

The effect of the treatment can be studied by comparing the mean responses under the var-

ious levels of the treatment. For an ordinal treatment variable, Joffe and Rosenbaum (1999)

proposed and Lu et al. (2001) applied a method based on a scalar balancing score; matching

subjects on this score tends to balance the covariates. Both of these extensions maintain

an important advantage of the approach of Rosenbaum and Rubin (1983b): they effectively

balance a potentially high-dimensional covariate by adjusting for a scalar propensity score.

(At the end of their paper, however, Joffe and Rosenbaum (1999) propose the possibility of

adjusting for a low-dimensional linear propensity score in the context of a univariate ordinal
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treatment. Imbens (2000) also suggests adjusting for several propensity scores; but the scores

are adjusted for one at a time.)

In this article, we develop methods and theory that encompass the generalized propensity

scores of both Imbens (2000) and Joffe and Rosenbaum (1999). Our methods can be used

to establish causal effects in observational studies when the treatment is categorical, ordi-

nal, continuous, semi-continuous, or even multi-factored. Our methods are closely related

to those of Joffe and Rosenbaum (1999), but we emphasize analysis techniques based on

subclassification rather than the matching methods used by Lu et al. (2001). We also are

able to effectively balance a high-dimensional covariate by adjusting for a low-dimensional,

though perhaps not scalar, propensity score.

The rest of the article is organized into five sections. Section 2 describes the propensity

function which is our generalization of the propensity score. A set of Monte Carlo experiments

are provided in Section 3. Sections 4 and 5 illustrate our method through two applied

examples. The final section gives concluding remarks.

2 Methodology and Theory

2.1 Framework for causal inference

Consider a simple random sample of size n. For i = 1, ..., n, we observe a p × 1 vector of

pre-treatment covariates, Xi, and the possibly multivariate value of the treatment received,

TAi , as well as the value of the outcome variable associated with this treatment, Yi. We adopt

the common framework for causal inference, frequently referred to as the Rubin causal model

(Holland, 1986). In this framework, we define a set of potential outcomes, Y = {Yi(t
P ), tP ∈

T for i = 1, . . . , n}, where T is a set of potential treatment values and Yi(t
P ) is a random

variable that maps a particular potential treatment, tP , to a potential outcome. We treat tP

as an ordinary variable while TAi is a random variable.

To evaluate the effect of the treatment, we rely on the following two standard assumptions.

Assumption 1 : Stable Unit Treatment Value Assumption (Rubin, 1980, 1990).

The distribution of potential outcomes for a unit is assumed to be independent of potential
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treatment status of another unit given the observed covariates. Formally, p{Yi(t
P
i ) |TAj =

tPj , Xi} = p{Yi(t
P
i ) |Xi} for all i 6= j and any tPi , t

P
j ∈ T .

Assumption 1 excludes the possibility of interference between units and allows us to con-

veniently consider the potential outcomes of one unit to be conditionally independent of

another unit’s treatment status given the observed covariates. (Thus, we may suppress the

observational index, i, and do so for the remainder of the article.) Because the treatment

assignment mechanism in most observational studies is unknown, the conditional distribution

of TA given X needs to be modeled, usually parametrically. The following critical assumption

allows us to model TA without conditioning on potential outcomes.

Assumption 2 : Strong Ignorability of Treatment Assignment (Rubin, 1978).

The distribution of the actual treatment does not depend on potential outcomes given the

observed covariates. Formally, p{TA |Y (tP ), X} = p(TA |X) for all tP ∈ T and 0 < p(TA ∈

A |X) for all X ∈ X and measurable sets A ⊂ T .

In practice, ignorability is a non-trivial assumption that should be made only with great care;

omitting covariates can seriously bias estimates of causal effects (Rosenbaum and Rubin,

1983a; Drake, 1993); see also Section 5. For clarity, we maintain Assumptions 1 and 2 and

discuss generalization of the propensity score method under these assumptions.

When making causal inference, the distribution p{Y (tP ) |X} as a function of tP and for

fixed X, or its average over the population, p{Y (tP )} =
∫
p{Y (tP ) |X} p(X) dX, is of pri-

mary interest. The fundamental difficulty of causal inference in observational studies is that

we only observe one of the potential outcomes, Y (tP = TA) ∈ Y. Therefore, in practice, we

must condition on the observed treatment assignment. Because T A and X are not generally

independent, however, basing inference on p{Y (tP ) |TA} =
∫
p{Y (tP ) |X,TA} p(X |TA) dX

often leads to bias. The solution lies in conditioning on the observed covariates; by Assump-

tion 2, p{Y (tP ) |TA, X} ∝ p{Y (tP ), TA |X} = p{Y (tP ) |X}p{TA |X} ∝ p{Y (tP ) |X}.

Thus, the average causal effect E{Y (tP1 )−Y (tP2 ) |X} = E{Y (tP1 ) |TA = tP1 , X}−E{Y (tP2 ) |TA =

tP2 , X}, where tP1 6= tP2 , and we obtain valid inference conditional on X even when we condi-

tion on the observed treatment assignment.
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In principle, we can model p{Y (tP ) |TA = tP , X} directly, but experience shows that even

with binary treatments standard model assumptions, e.g., linearity, do not suffice and that

this misspecification can strongly bias causal inference (Drake, 1993; Dehejia and Wahba,

1999). A variety of non-parametric techniques exist; matching and subclassification are com-

monly used. However, as the dimensionality of X increases, matching and subclassification

become impossible in practice. The propensity score aids statistical analysis in this regard

by reducing the dimensionality of the variable that is conditioned upon to a scalar variable.

In the following section, we generalize the propensity score such that it is not only appli-

cable to arbitrary treatment regimes including continuous treatments, but also reduces the

dimensionality of X enough to allow for efficient matching or subclassification.

2.2 The propensity function

We define the propensity function as the conditional probability of the actual, perhaps multi-

variate, treatment given the observed covariates, i.e., pψ(TA |X), where ψ parameterizes this

distribution. When TA is binary the propensity function is determined by the propensity

score, pψ(TA |X)|TA=1, where TA is an indicator variable for the treatment.

In practice, the propensity function is unknown and the conditional distribution, pψ(TA |X)

must be modeled, and the unknown parameters, ψ, must be estimated using, e.g., maximum

likelihood. Since we treat ψ as an unknown but fixed quantity ψ is implicitly condition upon

throughout; for clarity, we occasionally denote the dependency of distributions on ψ through

a subscript. This parametric model defines the propensity function, eψ(· |X) = pψ(· |X).

Misspecification of the model for the propensity function is possible, and generally leads to

biased causal inference. Thus, care must be taken both to identify as many covariates as

possible and to check for model misspecification (Drake, 1993); see also Section 5.

In order to simplify the representation of the propensity function and to facilitate subclas-

sification and matching, we make the following assumption regarding its parameterization.

Assumption 3 : Uniquely Parameterized Propensity Function.

For every X ∈ X , there exists a finite dimensional parameter, θ ∈ Θ, such that eψ(· |X) =

e{· | θψ(X)} and
∫
A
eψ(t | θ)dt =

∫
A
eψ(t | θ′)dt for all measurable sets A ⊂ T imply θ = θ ′.
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That is, θ uniquely represents e{· | θψ(X)}, which we may therefore write as e(· |θ).

This assumption implies that e(· |X) depends on X only through θψ(X), i.e., θ is sufficient

for TA. In this case, the propensity function is effectively summarized by the parameter

θ, which is typically of much lower dimension than is X. To illustrate Assumption 3 and

methods based on the propensity function, we consider three simple examples.

Example with a continuous treatment: Suppose we model the conditional distribution

of the treatment given a (p × 1) vector of covariates, X, as T A |X ∼ N(X>β, σ2) where

σ2 is a scalar, and β is a (p × 1) vector of regression coefficients. Thus, the propensity

function, e{· | θψ(X)}, is the Gaussian density function, ψ = (β, σ2), and θψ(X) = X>β.

Given ψ, the propensity function is completely determined by the scalar, θ. Hence, matching

or subclassifying on the propensity function can be easily accomplished by matching or

subclassifying on θ, regardless of the dimension of X.

Example with a categorical treatment: In this example, we illustrate that the propen-

sity function encompasses the propensity scores suggested by Imbens (2000) for a categorical

treatment. Suppose T = {1, . . . , tmax} and we model pψ(TA|X) as a multinomial distri-

bution with probability vector π(X) = {π1(X), . . . , πmax(X)}. If for each X, π(X) is an

unconstrained probability vector, then θψ(X) = π(X) is a tmax dimensional parameter which

corresponds to the set of tmax propensity scores proposed by Imbens (2000). We might use

nested logistic regression (as suggested by Imbens, 2000) or a multinomial probit model (e.g.,

Imai and van Dyk, 2003) to model the dependence of π(X) on X; in either case ψ represents

the set of regression coefficients.

Example with an ordinal treatment: The propensity score suggested by Joffe and

Rosenbaum (1999) for an ordinal treatment is also a special case of the propensity function.

We can use the same set up as in the example with a categorical treatment, except we model

π(X) using an ordinal logistic model (McCullagh and Nelder, 1989). In this case, π(X) is

determined by the scalarX>β, where β is a (p×1) parameter vector; in the general framework

ψ = β and θψ(X) = X>β. Lu et al. (2001) mention the possibility of using Gaussian linear
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regression to model the assignment mechanism for an ordinal treatment, but must assume

constant residual variance. This constraint is not necessary under our general framework,

but allowing for non-constant variance generally increases the dimension of θψ(X).

2.3 Large Sample Theory

Under the analytical framework and assumptions given in Sections 2.1 and 2.2, we derive

theoretical results which closely follow and extend those in Rosenbaum and Rubin (1983b).

Throughout we assume the propensity function including the parameters, ψ, is known. First,

Theorem 1 states that the propensity function is a balancing score even with a non-binary

treatment. That is, we show that given the propensity function, the conditional distribution

of the actual treatment does not depend on observed covariates.

Theorem 1 : Propensity Function As a Balancing Score.

p(TA |X) = p{TA |X, e(· |X)} = p{TA | e(· |X)}.

Proof : We have

p{TA | e(· |X)} = p(TA | θ) = p{TA | θ(X̃)} = p(TA | X̃), (1)

for θ such that e(· |X) = e(· | θ) and for any X̃ ∈ X such that θ(X̃) = θ, in particular X̃ = X.

The first equality in (1) follows from Assumption 3, the second from the definition of θ, and

the third from the sufficiency of θ for TA. Replacing X̃ with X, this implies that the propen-

sity function is a balancing score since p(T A |X) = p{TA |X, e(· |X)} = p{TA | e(· |X)},

where the first equality follows from the fact that e(· |X) is redundant given X.

In practice, Theorem 1 can be checked, for example, by examining the t-statistics for the

coefficient of TA in linear models that predict each covariate while controlling for the es-

timated propensity function. In Sections 4 and 5, we employ this diagnostic of the model

specification of the propensity function; see also Appendix A.

We can now establish the key theorem which states that the potential outcomes and the

actual treatment assignment are conditionally independent given the propensity function.
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Theorem 2 : Strong Ignorability of Treatment Assignment given the Propen-

sity Function. p{Y (tP ) |TA, e(· |X)} = p{Y (tP ) | e(· |X)} for any tP ∈ T .

Proof : Given e(· |X), the joint distribution of T A, X, and Y (tP ) can be written

p{TA, X, Y (tP ) | e(· |X)} = p{TA, X | e(· |X)} p{Y (tP ) |TA, X, e(· |X)}. (2)

Applying Theorem 1 to factor the first term of the right-hand side of (2) and Assumption 2

to rewrite the second term, we have p{T A, X, Y (tP ) | e(· |X)} = p{TA | e(· |X)}p{X | e(· |X)}

p{Y (tP ) |X, e(· |X)}. Combining the final two terms of this expression and integrating it over

X, we find that given e(· |X), Y (tP ) and TA are independent.

We can average p{Y (tP ) | e(· |X)} over the distribution of the propensity function to obtain

p{Y (tP )} as a function of tP ; this is the distribution of primary interest. According to

Theorem 2,

p{Y (tP )} =

∫
p{Y (tP ) |TA = tP , θ} p(θ) d θ, (3)

where θ = θψ(X) uniquely indexes the propensity function.

2.4 From Theory to Practice

We generally accomplish the integration in (3) by subclassifying similar values of θ. In

particular, we first model pψ(TA |X) and compute the estimate ψ̂ of ψ, perhaps by maximum

likelihood. We then compute θ̂ = θ
ψ̂
(X) for each observation and subclassify observations

with the same or similar values of θ̂ into a moderate number of subclasses of roughly equal

size. Within each subclass we model p{Y (tP ) |TA = tP } and compute the relevant causal

effect, e.g., the regression coefficient of Y (tP ) on tP . In practice, additional adjustment for

the estimated propensity function within each subclass is desirable to further reduce bias.

That is, we model p{Y (tP ) |TA = tP , θ̂}, for example, by regressing Y (tP ) on both TA and

θ̂ or some transformation thereof. To further reduce bias, some authors have suggested the

inclusion of covariates in this regression (e.g. Robins and Rotnitzky, 2001). Although this is

a useful strategy in some cases, we suppress such conditioning in our general notation.
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The average causal effect can be computed as a weighted average of the within-subclass

effects with weight equal to the relative size of the subclasses. Formally, we approximate (3)

with

p{Y (tP )} =

∫
p{Y (tP ) |TA = tP , θ) p(θ) d θ ≈

J∑

j=1

p{Y (tP ) |TA = tP , θ̂j}Wj , (4)

where J is the number of subclasses and Wj is the relative size of the subclasses. If Wj is

known and the estimate of the causal effect is unbiased within each subclass, this procedure

results in an unbiased estimate of the causal effect. In practice, we estimate Wj by the

relative proportion of the observations that fall into subclass j. Since results may be sensitive

to the number of subclasses and the choice of subclassification on θ̂, we suggest conducting

a sensitivity analysis, repeating the analysis with different subclassification schemes.

Equation (4) describes how we can approximate the full distribution of the potential

outcome at a particular level of the treatment. Although this full distribution is sometimes

appropriate in practice (e.g., Imbens and Rubin, 1997), more often it is summarized by its

mean. This is the approach we take in our examples, i.e., we compute

E{Y (tP )} ≈

J∑

j=1

E{Y (tp) |TA = tP , θ̂j}Wj (5)

In contrast to our general strategy of subclassifying on θ̂, Lu et al. (2001) suggest matching

pairs of units on θ̂. As Lu et al. (2001) point out, however, matching is inherently more

difficult when the treatment is not binary. In particular, not only should the matched pairs

have similar values of θ̂, but they should also have dissimilar treatments; this second concern

does not arise with a binary treatment since each pair consists of a unit from the treatment

group and a unit from the control group. To accomplish matching, Lu et al. (2001) propose

a distance measure that decreases both as the propensity scores become similar and as the

assigned treatments become dissimilar.

With matched pairs in hand, Lu et al. (2001) suggest evaluating the treatment effect by

examining the difference in response between the “high” and “low” treatments; the treatment

was an ordinal variable. Because this approach ignores the magnitude of the difference in

treatment, they also suggest regressing the difference in response on the difference in treat-

ment. Although these suggestions are quite reasonable in their application, they are difficult

10



to generalize to unordered treatments or combinations of treatments. In practice, we may

want to allow for more complex non-linear relationship between treatment and response. For

example, the response variable in the study of Lu et al. (2001) consisted of four ordinal vari-

ables. One might wish to model the response with a ordinal logit model, perhaps accounting

for correlation among the four variables. Although such models are straightforward to fit

within subclasses, they require sophisticated analysis to fit with matched pairs. Of course,

this situation is even more complex when θψ(X) is not a scalar. Thus, although matching

methods may be useful in particular settings and certainly deserve further study for gen-

eral treatment regimes, we believe subclassification is a more generally applicable strategy

because it allows for simpler implementation of more complex analysis models.

3 Monte Carlo Experiments

In this section, we use two Monte Carlo experiments to illustrate how controlling for the

propensity function can improve the statistical properties of estimated causal effects.

3.1 A Univariate Continuous Treatment

We begin with an experiment involving the model for a continuous treatment variable that

we introduced at the end of Section 2.2. In particular, we generated 5,000 data sets, each of

size 1,000. For each unit within each data set, we independently draw two covariates, X1 and

X2, from independent univariate Gaussian distributions with unit variance and means equal

to one and two respectively. Then, we simulate the treatment variable, T A, which depends

on X1 and X2 through a univariate Gaussian distribution, namely

TA |X1, X2
indep.
∼ N

(
1 +X1X2 +X2

1 +X2
2 , 1

)
. (6)

Similarly, the outcome variable, Y , is generated from another univariate Gaussian distribu-

tion given X1, X2 and TA,

Y |TA, X1, X2
indep.
∼ N

(
1 + TA +X1X2 +X2

1 +X2
2 , 1

)
. (7)

In this experiment, the conditional mean of Y is not linear in X1 or X2, and, on average

given X1 and X2 the causal effect of a one unit change in T A is a one unit change in Y .
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Average Causal Effect of TA

Bias MSE

Linear Regression 0.832 0.692

Propensity Function 0.390 0.153

Table 1: Performance of subclassification on the estimated propensity function compared

with linear regression. The two columns represent the bias and mean squared error (MSE)

based on 5,000 simulations.

For each data set, we estimate the model, p(T A |X), with a Gaussian linear regression

with mean X>β and constant variance, σ2, where X = (1, X1, X2)
>, σ2 is a scalar, and β

is a 3 × 1 vector of fixed coefficients. We intentionally use a misspecified model in order

to investigate the effect of misspecifying the propensity function on the resulting estimates.

We obtain the maximum likelihood estimates for the parameter, θ = X>β, that uniquely

defines this propensity function. Using the estimated propensity function, we subclassify the

observations into ten subclasses of roughly equal size. We then regress Y on the treatment

variable, TA, the propensity function, via θ̂ = X>β̂, and an intercept within each subclass.

This allows us to estimate the within-subclass average causal effect. Finally, we average the

ten within-subclass estimates to get the overall average causal effect.

Table 1 compares the performance of subclassification on the estimated propensity func-

tion with the direct Gaussian linear regression of Y on T A and X. Note that this direct

regression is misspecified in the same manner as the model for the propensity function so

that we can examine the relative sensitivity of the two methods to model misspecification.

Subclassification on the propensity function significantly improves the regression estimate; it

reduces the bias by over 50 percent. The propensity function method also has much smaller

mean squared error. This example illustrates that subclassification on the propensity func-

tion can successfully reduce bias and improve efficiency. It also illustrates that the propensity

function method can be more robust to model misspecification than direct linear regression

(see Drake (1993) for similar results with a binary treatment). As pointed out by a referee,

subclassification (or matching) is required to realize this gain; if we were to regress the re-

sponse on TA and θ̂ without subclassification, the estimated causal effect will be identical to

the direct regression estimate.
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3.2 Multiple Treatments

As a second example, we consider the common and important situation where the effects

of multiple treatments are of interest. Such multiple treatments are frequently encountered

in applied research. For example, medical researchers may use propensity scores to adjust

for non-compliance in an randomized experiment, where the combined effect of two different

drugs are of interest. We illustrate the estimation of multiple treatment effects in Section 4

where we directly analyze the effects of frequency and duration of smoking on medical ex-

penditure.

Here, we investigate the application of the propensity function to multiple treatments

using a Monte Carlo experiment. In particular, we extend the experiment in Section 3.1 by

adding a second continuous treatment, T A2 , which we simulate from a bivariate Gaussian

distribution together with TA1 for each unit in the sample,


 TA1

TA2




∣∣∣∣X1, X2
indep.
∼ N2






 1 +X2

1 +X2
2

1 +X1X2


 ,


 1 0.5

0.5 1






 . (8)

Since we may be interested in the interaction effect as well as main effects, the outcome vari-

able, Y , is generated from a univariate Gaussian distribution, which includes an interaction

Y |TA1 , TA2 , X1, X2
indep.
∼ N

(
1 + TA1 + TA2 + TA1TA2 +X1X2 +X2

1 +X2
2 , 1

)
. (9)

In this setup, the true main causal effects of the treatments, T A1 and TA2 , as well as the

true interaction effect of the two treatments are all equal to one. We generated 5,000 data

sets according to this model, each with sample size n = 2, 000.

We begin by estimating the propensity function for each treatment. For T A1 , we use

the same misspecified model as we used in Section 3.1. Namely, we use a Gaussian linear

regression with mean X>β and constant variance, σ2, where X = (1, X1, X2)
> and σ2 is a

scalar. The same misspecified model is used to independently model the propensity function

for TA2 .

Given the estimated propensity functions for the two treatments summarized by θ̂1 =

X>β̂1 and θ̂2 = X>β̂2, respectively, we subclassify all of the observations into nine separate

subclasses. Each subclass contains units with a specific range of both θ̂1 and θ̂2. As Figure 1
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Figure 1: Subclassification of the propensity function for two overlapping treatments. Each

cell of the 3× 3 table represents a subclass within which units have a particular range of the

propensity functions for the two treatments, T A1 and TA2 . The vertical and horizontal lines

which divide each subclass are the 33rd and 67th percentile of the propensity functions, as

measured by θ̂1 and θ̂2.

illustrates, in the 3×3 table of subclasses, the first subclass contains units with θ̂1 and θ̂2 lower

than their 33rd percentile and the last subclass contains units with both quantities above

their 67th percentile. (In some cases, classification schemes that are more complex than a

simple grid may be required to maintain subclasses that are of roughly equal size.) Next,

we estimate the average causal effects within each subclass using Gaussian linear regression.

Namely, within each subclass, we regress Y on a constant, T A1 , TA2 , the interaction term,

TA1TA2 , θ̂1 and θ̂2. Finally, the overall average causal effect is calculated as the weighted

average of the nine within-subclass estimates.

Table 2 displays the simulation results. We compare the performance of the propensity

function method with that of Gaussian linear regression, where we regress Y on T A1 , TA2 ,

TA1TA2 , X1, and X2. Notice that for the purpose of comparison this model is misspeci-

fied in a way similar to the two propensity function models. The subclassification on the

propensity function results in substantially smaller bias and mean squared error than the

direct regression. For example, the biases for the main causal effects of T A1 and TA2 are
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Effect of TA1 Effect of TA2 Effect of TA1TA2

Bias MSE Bias MSE Bias MSE

Direct Regression 0.517 0.268 −0.340 0.118 0.045 0.002

Propensity Function 0.159 0.026 −0.102 0.014 −0.007 0.000

Table 2: Performance of subclassification on the estimated propensity function compared

with direct regression. The estimates for the propensity function method are the weighted

average of the nine within-subclass average causal effects. The results for the direct model

are obtained from Gaussian linear regression applied to the entire sample. The columns

report bias and mean squared error (MSE), and are based on 5,000 simulations.

about 70 percent smaller with the propensity function method than with the standard linear

regression adjustment. Moreover, the mean square error of the propensity function method

is much smaller than that of the direct regression.

The simulation studies in this section are designed to show that subclassifying on the

estimated propensity function is more robust to possible model misspecification than is linear

regression. Although our simulations are clearly limited in scope, we expect that as long as

it effectively balances important covariates (a property that we can easily check) adjusting

for the propensity function will generally lead to robust methods. This is because the within-

subclass models are relatively simple in that they need not specify the relationship between

the typically high-dimensional covariates and the response.

4 Effects of Smoking on Medical Expenditures

4.1 Background, Data, and Previous Studies

As a first applied example, we estimate the average effect of smoking and the amount of

smoking on annual medical expenditures for individuals. Being associated with lawsuits

against the tobacco industry, many recent studies have estimated the effects of smoking on

health and medical costs (see e.g., Rubin, 2000, 2001; Zeger et al., 2000, and the references

therein). The lack of experimental data led many researchers to use the propensity score

method. However, since the propensity score method is confined to a binary treatment, the

focus has been on the comparison of smokers and non-smokers without distinguishing among
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smokers based on how much they smoke (e.g., Larsen, 1999; Rubin, 2001). In contrast,

the method we propose can incorporate the frequency and duration of smoking, non-binary

treatment variables, and can be used to estimate their causal effects on health and medical

expenditure.

We use the data collected by Johnson et al. (2003) who extracted relevant information

from the 1987 National Medical Expenditure Survey (NMES, US Department of Health and

Human Services). The advantages of the NMES are that it includes detailed information

about frequency and duration of smoking, and that medical costs for 1987 are verified by

multiple interviews and additional data from clinicians and hospitals. Our analysis includes

the following subject level covariates: age at the times of the survey (19 – 94), age when the

individual started smoking, gender (male, female), race (white, black, other), marriage status

(married, widowed, divorced, separated, never married), education level (college graduate,

some college, high school graduate, other), census region (Northeast, Midwest, South, West),

poverty status (poor, near poor, low income, middle income, high income), and seat belt usage

(rarely, sometimes, always/almost always).

As in the original study reported in Johnson et al. (2003), we conduct a complete-case

analysis by discarding all individuals with nonresponse. Johnson et al. (2003) note that better

accounting for the missing data using multiple imputation did not significantly affect their

results. In general, the complete-case analysis involving the propensity score produces biased

causal inference unless the data are missing completely at random (D’Agostino and Rubin,

2000). Nonetheless, since our purpose is to illustrate the use of the propensity function, we

focus on the complete-case analysis.

The original study did not directly estimate the effects of smoking on medical expen-

diture. Rather, the authors first estimated the effects of smoking on certain diseases and

then examined how much those diseases increased medical costs. Specifically, the authors

first modeled the “smoking-attributable fraction of disease” for diseases whose predominant

cause is known to be smoking. These diseases include lung and laryngeal cancer and coronary

heart disease. Next, they modeled the disease-attributable fraction of medical expenditures

using the probability of having one of the diseases as the propensity score. In contrast, we

will directly estimate the effects of smoking on medical expenditures.
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4.2 A Continuous Scalar Treatment Variable

Previous studies have mainly focused on comparing smokers with non-smokers to estimate

the direct effects of smoking (e.g., Larsen, 1999; Rubin, 2001). We focus on smokers and

begin with a measure of the cumulative exposure to smoking in order to differentiate among

smokers according to how much they have smoked. Johnson et al. (2003) proposed a measure

of cumulative exposure to smoking that combines self reported information about frequency

and duration of smoking. This variable is called packyear and is defined as

packyear =
number of cigarettes per day

20
× number of years smoked. (10)

In our initial analysis, we use log(packyear ) as the treatment variable.

To apply the propensity function method, we use Gaussian linear regression to model the

treatment variable, TA = log(packyear ), given all available covariates, X; we use the sampling

weights provided with the data set when fitting this regression model. The complete-case

sample size for our analysis is 9,073 smokers. The estimated propensity function in this case

is uniquely defined by the fitted values of T A under the model, i.e., θ̂ = X>β̂, where β̂ is the

maximum likelihood estimates of regression coefficients.

To evaluate the balance of the covariates, we regress each covariate on the treatment

variable, log(packyear ), using (unweighted) logistic linear and Gaussian linear regression

for indicator and continuous covariates, respectively. (We use the log transformation of

continuous covariates because log(packyear ) and each covariate are necessarily uncorrelated

given θ̂; see Appendix A.) The left panel of Figure 2 presents a standard normal quantile plot

of the t-statistics (d.f.= 9, 071) for the coefficient of the treatment variable in each regression.

The lack of balance is evident in the magnitude of the t-statistics; the treatment variable is

highly correlated with many of the covariates. The right panel of Figure 2 is identical to the

left panel except that we control for the estimated propensity function as quantified by θ̂ in

each regression. The figure shows the substantial reduction in the t-statistics that is obtained

by conditioning on the estimated propensity function, indicating that the covariate balance

is significantly improved. The quantile plots in Figure 2 are constructed including the square

terms of the age variables (the current age and the age when the individual started smoking).

The inclusion of these variables improves the balance of the covariates. In particular, if these

17



−2 −1 0 1 2

−
20

0
20

40
60

standard normal quantiles

qu
an

til
es

 o
f t

−
st

at
is

tic
s

−2 −1 0 1 2

−
20

0
20

40
60

standard normal quantiles

qu
an

til
es

 o
f t

−
st

at
is

tic
s

PSfrag replacements

controlling for θ̂without controlling for θ̂

Figure 2: Standard normal quantile plots of t-statistics for the coefficient of log(packyear ) in

the models predicting each covariate. The left and right panels represent the models with

and without controlling for the linear predictor of the estimated propensity function.

variables are not included, the t-statistic for log(packyear ) as a predictor of the log of subject

age is 6.33 even after controlling for θ̂; including the square terms reduces this t-statistic to

0.40. This is an example of a check of the model specification for the propensity function

that was suggested in Sections 2.2 and 2.3.

Using the estimated propensity score based on this model, we subclassify the observa-

tions into ten subclasses of roughly equal size. The outcome variable is self-reported medical

expenditure, denoted by Y , and is modeled within each subclass using the two-part model

of Duan et al. (1983) for semi-continuous variables; see Johnson et al. (2003). In particular,

we first model the probability of spending some money on medical care, Pr(Y > 0 |T A, θ̂),

given the treatment variable, TA = log(packyear), and the linear predictor, θ̂ using logis-

tic regression. Second, we model the conditional distribution of log(Y ) given T A and θ̂,

p(log(Y ) |Y > 0, TA, θ̂), for those individuals who reported positive medical expenditure

using Gaussian linear regression; see Olsen and Schafer (2001) and Javaras and van Dyk

(2003) for discussion of models for semi-continuous variables. Using this two-part model, we

estimate the effects of smoking on medical costs within each of the ten subclasses. Finally,
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Propensity Function

Direct Models 3 subclasses 10 subclasses

Logistic Linear Regression Model

coefficient for TA −0.097 −0.069 −0.073

standard error 3.074 3.035 3.072

Gaussian Linear Regression Model

average causal effect 0.026 0.049 0.051

standard error 0.016 0.017 0.018

Table 3: Estimated average causal effect of increased smoking on medical expenditures. The

logistic linear regression model presents the coefficient of the treatment variable from the

models for Pr(Y > 0 |TA, X) and Pr(Y > 0 |TA, θ̂). The Gaussian linear regression model

presents the estimated average causal effects of log(packyear ) on log(medical expenditure)

for those individuals who reported positive medical costs (calculated from the models for

p{log(Y ) |Y > 0, TA, X} and p{log(Y ) |Y > 0, TA, θ̂}). For the propensity function method,

the results from subclassification with three and ten subclasses are presented.

we compute the weighted average of the ten within-subclass estimates to obtain the average

causal effect; in each within-subclass analysis, we use the sampling weights provided in the

data set. The analysis was repeated with three subclasses, but this had little effect on the

estimates.

Table 3 presents the results from subclassification with the propensity function as well

as the results based on the standard complete-case linear and logistic regressions. All of

the covariates are included in the standard regression models. Both methods indicate that

cumulative exposure to smoking has no significant effect on the probability of spending

some money on medical care in 1987. In contrast, we find that smoking, as measured by

the packyear variable, appears to increase medical expenditure among those who reported

positive medical cost. (As pointed out by a referee, this ignores the fact that smoking can be

fatal and potentially reduce medical expenditure, referred to as the death benefit.) Moreover,

the propensity function method yields a greater effect of smoking on medical expenditure

than the standard linear regression analysis. In particular, if packyear doubles we expect

annual medical expenditure to increase by a factor of about 1.04.
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3 × 3 subclasses 4 × 4 subclasses

TA1 TA2 TA1 TA2
Logistic Linear Regression Model

coefficient −0.358 0.075 −0.359 0.026

standard error 7.110 4.527 8.789 5.470

Gaussian Linear Regression Model

average causal effect 0.011 0.084 0.027 0.068

standard error 0.036 0.026 0.046 0.032

Table 4: Estimated average causal effect of increased smoking on medical expenditures via

the subclassification on two propensity functions. The coefficients of two treatment variables,

TA1 =log(duration) and TA2 =log(frequency), and their standard errors are reported.

4.3 A Continuous Bivariate Treatment Variable

Instead of combining frequency and duration into a single measure, we can conduct an

analysis with a bivariate treatment with one variable for each characteristic. To do this, we

must estimate two propensity functions, one for the frequency of smoking (the log number of

cigarettes per day) and one for the duration of smoking (the log number of smoking years);

we use two independent Gaussian linear regression models. In addition to the covariates,

we again include the square terms for the two age variables in both models to improve the

balance given the two linear predictors. We subclassify the observations into nine subclasses

based on the estimated propensity functions as illustrated in Figure 1. Finally, we apply the

same two-part model as in Section 4.2 within each subclass, controlling for the estimated

propensity functions, and again compute the weighted average of the coefficients.

Table 4 reports the results based on the subclassification on two propensity functions.

The analysis based on 3 × 3 and 4 × 4 subclasses both indicate that among smokers the two

treatment variables have no significant impact on the probability of spending some money

on medical care. On the other hand, we find that the frequency of smoking increases medical

expenditure significantly while duration of smoking does not. An increase from one cigarette

to one pack of cigarettes per day raises annual medical expenditure by about 30%.
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5 Effects of Schooling on Income

5.1 Background and Data

In this section, we estimate the average causal effect of schooling on income by applying the

propensity function method to balance the instruments in an instrumental variables (IV)

analysis. The effect of education on income has long been an important topic in economics;

researchers have quantified the effect by comparing years of education and individual wage

in IV analyses (e.g., Angrist and Krueger, 1991, 1992; Card, 1995; Kling, 2001). The use

of IV estimation in observational studies, however, is vulnerable to criticism concerning the

validity of the instrument (e.g., Bound et al., 1995). Thus, improving the performance of the

IV estimation has been a focus of much recent literature (e.g., Angrist and Krueger, 1995;

Staiger and Stock, 1997; Angrist et al., 1999). Here, we show how the propensity function

methods developed in this article can potentially be used to improve IV estimation.

We analyze a data set used in Angrist and Krueger (1995) that contains a sample of

16,193 individual men from six U.S. Current Population Surveys (CPS). The men were born

between 1949 and 1953, and their wages and other information were recorded for one of the

years between 1979 and 1985 (excluding 1980). Following the original article, we adjusted

wages to 1978 dollars. We use a subsample of the data used in the Angrist and Krueger

study. They used the sample of men born between 1944 and 1953, but, only the 1949 to 1953

subsample is publicly available. In addition, the data set contains nine background variables:

education in terms of the highest grade completed (0 – 18), race (Black, Hispanics, and

others), year of birth (1949 – 53), marital status (single or married), veteran status (veteran

or not a veteran), Vietnam lottery code (14 categories), region of residence (9 regions), and

indicator variables for residence in a central city and employment in a Standard Metropolitan

Statistical Area. Following Angrist and Krueger (1995), we exclude those men who did not

work and/or recorded zero earnings as well as those who have missing values for at least one

variable. This yields a sample size of 13,900 for our analysis.
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5.2 Assumptions and Previous Analyses

Before we describe the IV analysis, we pause to consider an analysis based directly on the

propensity function, i.e., an analysis of the sort illustrated in Section 4. In this case, we

are interested in the effect of the treatment variable, highest grade completed, on wages.

The validity of the direct propensity function analysis is predicated upon Assumption 2,

that the treatment and the potential outcomes are independent given the set of observed

covariates. Unfortunately, the set of covariates contains no measure of such important factors

as underlying individual intelligence or work ethic, both of which would seem to affect the

treatment and the potential outcomes. For example, individuals who are intellectually gifted

and motivated tend to attain higher levels of education and might be expected to earn higher

wages for any given level of education they might have attained. Without controlling for a

richer set of covariates (e.g, Rouse, 1995), Assumption 2 is unjustifiable. Our criticism of

the ignorability assumption is substantive in nature; Rosenbaum and Rubin (1983a) describe

a method to quantify the sensitivity of results to Assumption 2.

Although an IV analysis requires certain other assumptions, it does not require the treat-

ment assignment to be ignorable. Hence, an IV analysis may be more appropriate here.

To estimate the causal effect of education on income, Angrist and Krueger (1995) employed

two-stage least squares (TSLS), which is a type of IV estimation. Specifically, they assume

Yi = X>
i α0 + Tiξ + Viγ + εi, (11)

Ti = X>
i α1 + Z>

i δ1 + ui, (12)

Vi = X>
i α2 + Z>

i δ2 + ηi, (13)

where i = 1, . . . , n indexes individuals, Yi is log weekly wage, Xi is a vector of covariates, Ti

is the highest grade completed, Vi is an indicator variable for veteran status, Zi is a vector

of instrumental variables that interact the Vietnam draft lottery code with year-of-birth

indicator variables, and εi, ui, and ηi represent independent error terms. Here, ξ represents

the causal effect of education on wages. The estimation procedure consists of two steps.

First, one obtains the fitted values, T̂i and V̂i, via the least squares fit of (12) and (13),

respectively. In the second step, Ti and Vi in (11) are replaced with their fitted values from

the first step and the least squares estimate of the average treatment effect, ξ̂, is computed.
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In this formulation, the Vietnam draft lottery code plays a key role in constructing the

instrumental variables, whereas veteran status and education level form a bivariate treat-

ment. In order to assign a causal interpretation to ξ, the instrumental variables must be (i)

independent of both the potential outcomes and potential treatment assignments given X,

(ii) monotonically predictive of the treatment assignment given X, and (iii) only affect the

outcome variable through the treatment variables (Angrist and Imbens, 1995; Angrist et al.,

1996). As Angrist and Krueger (1995) pointed out, the key here is that only the assignment

mechanism for the lottery code (and not for education level) needs to be strongly ignorable.

They also argue, in reference to requirement (ii), that men with low draft lottery numbers,

who were likely to be drafted, had a strong incentive to stay in school longer. Thus, the key

insight of the approach of Angrist and Krueger (1995) is the use of the lottery code as an

instrument. (Veteran status is included as part of the treatment to help ensure requirement

(iii) is met.)

5.3 Balancing the Covariates Across the Instrument

Although the lottery code is randomly assigned and thus the true propensity function,

pψ(ZA |X), is known and constant as a function of X, adjusting for the estimated propensity

function can still be advantageous. Indeed, there is a large literature on the advantage of ad-

justing for the estimated rather than the true propensity score in both observational studies

(e.g., Rosenbaum, 1984, 1987) and randomized experiments (e.g., Rubin and Thomas, 1992,

1996; Hill et al., 1999). Briefly, randomized treatment assignment balances the covariates

only in expectation, but by adjusting for the estimated propensity function, we can bring

the covariates closer to exact balance in the observed data. This is illustrated in Figure 3 for

the lottery codes. First, we regress each of the covariates on the lottery code, using logistic

regression. (All covariates in this case are indicator variables.) The 22 resulting t-statistics

(d.f. = 13, 898) are represented in a standard normal quantile plot in the left panel of Fig-

ure 3; there is no evidence that the lottery code are correlated with any of the covariates.

That the t-statistics are not zero reflects the fact that exact balance is not achieved.

Our goal is to improve the observed balance of the instrumental variable, ZA, by first

balancing the assigned lottery code, Z∗A. (Recall that ZA represents the interaction terms
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Figure 3: Standard normal quantile plots of t-statistics for the coefficient of the lottery code

variable in the models predicting each covariate. The left panel and right represents the

models with and without controlling for the linear predictor of the estimated propensity

function.

of Z∗A with year-of-birth indicator variable.) To do this, we condition on the estimated

propensity function, p
ψ̂
(Z∗A |X). In particular, we use an ordinal logistic model to estimate

the conditional probability of each lottery code given all of the available covariates (see e.g.

McCullagh and Nelder, 1989). Given the estimated values of the parameters, the scalar

linear predictor, θ̂ = X>β̂, completely identifies the propensity function; β takes the role

of ψ in the general framework. The second panel of Figure 3 is identical to the first except

that we control for the linear predictor, θ̂ = X>β̂, in each logistic regression. The resulting

t-statistics are all much closer to zero because better balance is achieved by conditioning on

the estimated propensity function.

Taking advantage of the improved balance, we subclassify the sample on θ̂ into several

subclasses of roughly equal size. We then replicate the TSLS analysis of Angrist and Krueger

(1995) as specified in equations (11)–(13) within each subclass. When doing so, we do not

further condition on θ̂ because θ̂ = X>β̂ is a linear function of X. Finally, we obtain the

estimate of the average treatment effect by computing the weighted average of the within-
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Direct Models Propensity Function

TSLS SSIV 5 subclasses 10 subclasses

average causal effect 0.109 0.040 0.062 0.063

standard error 0.034 0.037 0.015 0.010

Table 5: Estimated average treatment effect of education on income, i.e., the average effect

of a one year increase in the highest grade completed on log weekly wage. See Angrist and

Krueger (1995) for a complete discussion of the Split-Sample Instrumental Variables (SSIV)

method. Results for SSIV are based on 250 bootstrap samples.

Subclass I Subclass II Subclass III Subclass IV Subclass V

average causal effect 0.084 0.063 0.020 0.054 0.090

standard error 0.028 0.035 0.028 0.036 0.036

Table 6: Within-subclass TSLS estimates of average treatment effect of education on income

for each of five subclasses. The subclassification is performed on the estimated propensity

function.

subclass estimates. Table 5 displays the estimated average treatment effects of education;

i.e., the average effect of one additional year of education on log weekly wage. Along with

the results based on TSLS and the propensity function, we present the estimates based on

the Split-Sample Instrumental Variables (SSIV) of Angrist and Krueger (1995). Angrist and

Krueger used this estimator in order to overcome the finite sample bias of TSLS. They note

that SSIV estimates tend to be biased toward zero whereas TSLS estimates tend to exhibit

bias toward the least squares estimates. Our analysis shows that balancing the instruments

using the estimated propensity function method reduces the TSLS estimate, but it is still

not as close to zero as the SSIV estimate.

Table 6 reports the within-subclass TSLS estimates and standard errors using five sub-

classes. That the within-subclass estimates vary significantly among the subclasses illustrates

the advantage of subclassification on θ̂. The standard errors for the estimates which balance

the covariates using the estimated propensity function are smaller than those based on TSLS

or SSIV.
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6 Concluding Remarks

This article extends the propensity score of Rosenbaum and Rubin (1983b) along with the

generalizations of Joffe and Rosenbaum (1999) and Imbens (2000) for application with general

treatment regimes. In particular, our strategy allows researchers to estimate causal effects by

conditioning on a low dimensional parameterization of the the propensity function rather than

on typically high dimensional covariates. This formulation retains the powerful dimension

reduction that makes propensity scores such a useful tool.

Subclassification on the propensity function can successfully reduce bias and mean squared

error relative to standard regression techniques when analyzing the effects of general treat-

ment regimes. Our simulation studies indicate that this bias and error reduction is relatively

robust to model misspecification. While severe model misspecification can lead to biased

results, it appears that appropriate subclassification on the propensity function reduces this

bias relative to standard regression methods. Since better model specifications lead to bet-

ter results, however, care must be taken when selecting the model form of the propensity

function and when computing the effect of the treatment conditional on the propensity func-

tion. Model diagnostics, including the examination of the resulting balance of the covariates

after conditioning on the estimated propensity function, should always be thoughtfully em-

ployed. As with all methods based on covariate adjustment, care must be taken to collect a

sufficiently diverse class of covariates.

Nevertheless, our strategy offers advantages over other methods. For example, usual

goodness-of-fit diagnostics of the standard regression analysis provide little insight as to

whether a model is appropriate for causal inference. The propensity function method, on the

other hand, provides guidelines about how to appropriately control for and balance a large

class of covariates as is often necessary for causal inferences in observational studies.
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Appendix

A Diagnostics of a Linear Regression Propensity Function

If a linear regression is used to model the dependence of the treatment variable on a set of

covariates, then the treatment variable is necessarily uncorrelated with each covariate given

the linear predictor. Although this is an indication that each covariate is balanced, the par-

tial correlations are not useful as diagnostics of the model specification for the propensity

function. This is formalized in the following result.

Result : Consider a full rank set of covariates, X = (1, X1, ..., XP ) and a treatment variable,

T , where T is an n×1 vector, 1 is an n×1 vector of ones, and Xp is an n×1 vector covariate

for each p. Let T̂ = (X>X)−1X>T be the linear predictor of T . The partial correlation of

T with each Xp is zero given T̂ , i.e., the second component of (X̃>X̃)−1X̃>T is zero, where

X̃ = (1, Xp, T̂ ).

Proof : If we substitute T̂ = (X>X)−1X>T into (X̃>X̃)−1X̃>T and use the identities

1>T̂ = 1>T , X>
p T̂ = XpT , and T̂>T̂ = T̂>T , the result follows from simple algebraic

manipulations.
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