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Abstract

Estimation of Dose-Response Functions and Optimal Treatment Doses with a

Continuous Treatment

by

Carlos Arturo Flores

Doctor of Philosophy in Economics

University of California at Berkeley

Professor Guido W. Imbens, Chair

Most of the recent program evaluation literature that uses the selection-on-observables
assumption focuses on the estimation of average treatment effects of a binary treatment on
a scalar outcome. In practice, however, units in a study can often be exposed to different
levels or doses of the treatment. Analyzing the impacts of such treatment as if it were
binary can mask important features of it. Moreover, with a continuous treatment many
more parameters than the usual average treatment effect ones can be of interest. In this
dissertation, I focus on estimation of three objects that are of interest in this continuous-
treatment setting: (i) the entire curve of average potential outcomes; (ii) the treatment level
at which that curve is maximized; and (iii) the maximum value achieved by that curve.
In Chapter 2, I discuss nonparametric estimation of these objects under the assumption

that units in a study are randomly assigned to different doses of the treatment. Then, I



propose estimators of our objects of interest under the assumption that selection by units
into different treatment levels is made based on an observed set of covariates. In both
settings, I show that the estimators are asymptotically normally distributed. Regardless of
the nature of the treatment, estimation of average potential outcomes with a large number
of covariates makes nonparametric estimation problematic. When the treatment is binary,
a common approach in the literature is the use of propensity score methods. In this chapter
I discuss the use of the generalized propensity score for estimation of our three objects of
interest. Different approaches are discussed, such as regression, matching and weighting.
This chapter also discusses how to extend the results presented for average dose-response
functions to a more general class of functions, such as quantile dose-response functions.

In Chapter 3, I illustrate the utility of our approach by presenting an empirical
application. Since the paper by Grossman and Krueger (1991) a large number of studies
have documented an inverted U-type relationship between some indicators of environmental
degradation and income per capita, known in this literature as the “Environmental Kuznets
Curve” (EKC). In this literature, a lot of emphasis is given to estimating the turning point
of this relation, that is, the level of income at which the different pollutants reach their peak
and start decreasing. Here, I use the methodology presented in this dissertation to estimate
non-parametrically the turning points of the EKCs for two pollutants, nitrogen oxide and
sulfur dioxide. This empirical application also illustrates what can go wrong when using
parametric models to estimate turning points.

Finally, Chapter 4 focuses on a Monte Carlo study to analyze the finite properties

of our estimators. To gain insight into the behavior of our estimators in situations actually



found in empirical research, I partly base our simulation design on the same data set used in
Chapter 3. This final chapter also illustrates the applicability of the estimators developed

in this dissertation.

Professor Guido W. Imbens
Dissertation Committee Chair
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Chapter 1

Introduction

Most of the recent literature on program evaluation has focused on the analysis of
the effect of a binary treatment on a scalar outcome. In practice, however, units in a study
can often be exposed to multiple levels or doses of the treatment. Analyzing the effects of
such treatment as being binary can mask important features of it. Moreover, even when
some studies address the effects of different treatment doses on the outcome, they often do
so by creating a discrete number of categories (e.g., Royer, 2003). However, the definition of
the groups is typically arbitrary and we lose information about the effects of the treatment
within each group. In this dissertation, I propose a method to estimate and carry out
inference for different parameters that may be of interest when we have a continuous dose
of the treatment.

The main focus when evaluating a binary treatment is often on estimation of
average treatment effects (ATE). The two most common are the population ATE and the

ATE on the treated. Each one of these parameters is relevant depending on the question one



wants to answer. When the treatment is continuous many more parameters and questions
can be of interest. For example, we may be interested in learning about the form of the
entire function of average potential outcomes over all possible values of the treatment. Also,
a policy maker may be interested in finding the level of the treatment that maximizes (or
minimizes) some average outcome, as well as the value of the average outcome at that level.
In some other applications, the average outcome may increase and then decrease (or vice
versa) with the level of the treatment. In this case, a policy maker may be interested in
knowing the “turning point” of this relationship. Or we could be interested in the derivative
of the average potential outcome curve, or in knowing if there is a dose level at which the
curve of average outcomes has a jump or discontinuity, as well as the size of the jump
(e.g., if we think of education as our treatment, is there a discrete effect of graduation on
average wages?). As these examples suggest, a lot may be learned from analyzing continuous
treatments. Moreover, even in cases where the treatment is not strictly continuous but can
take many values, a continuous treatment approximation to the problem could be useful.
In this dissertation, I focus on estimating three objects of interest, namely, the
entire curve of average potential outcomes or dose-response function, the treatment dose
at which that curve is maximized, and the maximum value achieved by that curvel 2 . I
estimate these objects non-parametrically and establish asymptotic normality for the esti-
mators. The importance of the first parameter is obvious from a policy maker perspective.
In contrast to the approach that defines groups based on different treatment doses, this

parameter gives the average outcome for all possible values of the treatment. The second

1The rest of the parameters mentioned on the previous paragraph are left for future work.
%In the rest of the dissertation I will also refer to the last two parameters, respectively, as the location
and size of the optimal treatment dose.



and third parameters are important when a policy maker wants to apply or recommend
a particular treatment dose to a population. For example, it could be of interest for an
agency to know the level of training that maximizes the average net benefits of a given
program; or for a health provider to have an estimate of the maternal age at which health
outcomes of the newborn are optimized. Moreover, in some cases estimating the maximum
or minimum of a given relation would be equivalent to estimating its turning point. The
latter parameter is also important in economics. For example, many studies in economics
have documented an inverted U-shaped relationship between some measures of pollution
and per capita income (e.g., Grossman and Krueger, 1991). These studies also focus on
estimation of the turning point, that is, the level of per capita income at which a particular
pollution indicator reaches its peak and starts decreasing. This example is further analyzed
in the empirical part of this dissertation.

The non-parametric approach presented in this dissertation for estimation of the
optimum treatment has some advantages over previous approaches found in the economics
literature. One approach that has been previously used is to discretize the treatment,
estimate average outcomes for each group (or range of the treatment) and conclude which
group is best (e.g., Royer 2003). The problem with this approach is that often discretization
is arbitrary, so the best range or group depends on the way the treatment is discretized.
Moreover, confidence bounds for the best group are‘rarely provided, since this would require
multiple comparison procedures. Another approach found in the economics literature is to
assume a parametric form for the relationship between the treatment and the outcome of

interest and estimate the optimal treatment or turning point from there (e.g., Grossman



and Krueger, 1991). However, results may be quite sensitive to model specifications (e.g.,
Harbaugh et al. 2002). For example, as will be further discussed in the empirical part of
this dissertation, in some cases using a quadratic model for estimation of optimal treatments
or turning points may be misleading. Finally, even when some authors use non-parametric
methods for estimating optimal treatments or turning points (e.g., Millimet et al. 2003),
they do not provide standard errors for their estimators. The estimators developed in this
dissertation are shown to have an asymptotically normal distribution and therefore, they can
be used to construct confidence intervals and undertake statistical inference. Moreover, the
estimators of the location and size of the optimal dose are shown to be jointly asymptotically
normal and uncorrelated.

In Chapter 2, I lay out the problem and formally define the parameters to be esti-
mated in this dissertation. I continue by discussing estimation of our parameters of interest
in the experimental case, in which units are assumed to be randomly assigned to different
doses of the treatment (i.e., treatment doses are exogenous). In this case, the assumption of
randomization allows us to identify our parameters. Then, I move to the non-experimental
case and assume that selection by individuals into different treatment levels is made based
on an observed set of covariates and on unobserved components not correlated with the po-
tential outcomes. This is a straightforward extension to the continuous treatment case of the
“unconfoundedness” or “selection-on-observables” assumption used in the binary-treatment
literature. Under this assumption, I present estimators of the parameters of interest based
on a regression approach and derive their asymptotic distribution. Even though in this case

we need to control for observed covariates, it is shown that the scaling factors for asymptotic



normality of the estimators of location and size of the optimal dose in this nonexperimental
case are the same as the ones for the corresponding estimators in the experimental case.
However, for calculation of the estimators under the unconfoundedness assumption we need
first to estimate the nonparametric regression of the observed outcome on the treatment
dose and the covariates. This may be a problem if the dimension of the covariates is large,
as is usually the case for the unconfoundedness assumption to be more plausible. Because
of this problem, which also appears when the treatment is binary, I consider the role the
generalized propensity score plays for estimation of our parameters of interest.

In the binary treatment case, a very useful result due to Rosenbaum and Rubin
(1983) states that if assignment to the treatment is independent of potential outcomes condi-
tional on a set of pre-treatment variables (i.e., if assignment to treatment is unconfounded),
then it is also unconfounded given the propensity score, where they define the propensity
score as the probability of receiving the treatment conditional on pre-treatment variables.
Hence, in order to control the bias due to imbalances in pre-treatment variables we only need
to adjust for a scalar variable (the propensity score), as opposed to adjusting for a possibly
high dimensional vector of pre-treatment variables. Imbens (2000) extends the propensity
score methodology to the case where the treatment of interest takes on integer values be-
tween 0 and L. He shows that the dimension of the conditioning set in this case can again
be reduced to one, just as in the binary case. Hirano and Imbens (2004) apply the results
from Imbens (2000) to the continuous treatment case to obtain a similar reduction in the
conditioning set. With a continuous treatment, the generalized propensity score is defined

as the conditional density of the treatment level given pretreatment variables. In chapter



2, I use the results from Hirano and Imbens (2004) to estimate our parameters of interest.
Analogous to the implementation of the propensity score methodology in the binary and
multiple integer-valued cases, the first step involves estimation of the generalized propensity
score. In the second step, I use this estimated generalized propensity score to estimate our
objects of interest. In this context, I also discuss how the generalized propensity score can
be used following other approaches such as matching or weighting.

Although the main focus of the dissertation is on average dose-response functions,
sometimes one may want to consider more general types of functions. For instance, the p-th
quantile dose-response function gives us, for each dose of the treatment, the p-th quantile
of the potential outcomes. This could be particularly useful when one is more concerned
about the effects of the treatment on the upper or lower regions of the distribution of
potential outcomes. Moreover, even when the focus is on a measure of the center of the
distribution, it is well known that the median is more robust than the mean. In chapter 2,
I also discuss how we can generalize the results we obtain for the estimation of mean dose-
response function, its maximum and its value at the maximum, to a more general class of
dose-response functions using non-parametric methods. Average and quantile dose-response
functions are special cases of that class of functions.

In Chapter 3, I illustrate the use of the techniques developed in this dissertation
by presenting an empirical application. Since the paper by Grossman and Krueger (1991)
a large number of studies have documented an inverted U-type relationship between some
indicators of environmental degradation and income per capita, known in this literature as

the “Environmental Kuznets Curve” (EKC). In this literature, a lot of emphasis is given to



estimating the turning point of this relation, that is, the level of income at which the different
pollutants reach their peak and start decreasing. Here, I use the methodology presented
in this dissertation to estimate non-parametrically the turning points of the EKCs for two
pollutants, nitrogen oxide and sulfur dioxide.

Finally, in Chapter 4 I analyze the finite properties of the estimators presented
in Chapter 2 through a Monte Carlo Study. In order to gain insight into the behavior of
our estimators in situations empirical researchers may find in their work, I partly base my
simulation study on a real data set. In particular, the simulations are partly based on the
data set used in Chapter 3. This chapter also illustrates the applicability of the estimators

developed in this dissertation.



Chapter 2

Econometric Theory on the
Estimation of Dose-Response
Functions and Optimal Doses with

a Continuous Treatment

2.1 Introduction

This chapter proposes nonparametric estimators for three objects of interest: the
entire curve of average potential outcomes or dose-response function, the treatment dose at
which the dose-response is maximized and the maximum value achieved by this curve. These
objects are first estimated assuming random assignment of the units in a study to different

doses of the treatment. This experimental case is helpful to gain intuition about the problem



at hand. In this chapter I show that in this case the proposed estimators of the location
and size of the optimal dose are jointly asymptotically normal and uncorrelated. I also
discuss similar results, but in different settings, that are available statistics literature. This
chapter then considers the case when units are assigned to different doses of the treatment
based on an observed set of covariates and on unobserved components not correlated with
potential outcomes. This is a straightforward extension of the unconfoundedness assumption
commonly used in the binary-treatment literature. In this case, I propose estimators of the
parameters of interest based on a regression approach. I show that the estimators for the
location and size of the optimal dose are also jointly normal and asymptotically uncorrelated
in this non-experimental case. In addition I show that, even though in this case one needs to
control for observed covariates, the scaling factors for asymptotic normality of the estimators
of location and size of the optimal dose in this nonexperimental case are the same as the
ones for the corresponding estimators in the experimental case.

The proposed estimators under the unconfoundedness assumption require esti-
mation of a possibly high dimensional object in a first step. Hence, these estimators are
prone to the “curse of dimensionality” problem. A similar problem is also present when
the treatment is binary and one needs to control for a large number of covariates. With
a binary treatment, a popular approach has been the use of propensity score methods. In
this chapter, I discuss how the generalized propensity score (GPS) can be used to estimate
our parameters of interest using regression, matching or weighting techniques. I also point
out that some other techniques such as the use of additive and partially linear model can

be used to reduce the dimensionality problem.
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The main focus of this chapter is on average dose-response functions. However,
I also discuss how one can extend the results in this chapter to a more general class of
functions, for which average and quantile dose-response functions are special cases. In
addition, this chapter shows how one can identify that class of dose-response functions
under an unconfoundedness assumption.

This chapter is organized as follows. In the following section I lay out the problem
and present the parameters to be estimated in the rest of the chapter. In Section 2.3 I
discuss estimation of our parameters in the experimental case. In Section 2.4 I present re-
sults for the non-experimental case under the unconfoundedness or selection-on-observables
assumption. In the next section I discuss some techniques to reduce the dimensionality
of the problem considered in the preceding section. First, I show how we could use the
generalized propensity score to estimate dose-response functions using different techniques
such as regression, matching and weighting. These estimators involve two-stage nonpara-
metric estimation. Second, I briefly discuss how to use our methods in a semiparametric
setting. In Section 2.6 I discuss how we can generalize the results obtained in this chapter
for estimation of the average dose-response function and its maximum to a more general

type of functions, for which average and quantile dose-response functions are special cases.

2.2 Model

I base my model in the potential outcome approach developed by Rubin (1974) and

now widely used in the program evaluation literature when analyzing a binary treatment!.

ISee, for instance, the surveys by Heckman, Lalonde and Smith (1999) and Imbens (2004).
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Assume we have a random sample of size N from a large population. We are interested in
how the units in our sample respond to different doses of some treatment with the response
measured by some outcome variable Y. The treatment levels, ¢, take on values in a set 7.
In the continuous treatment case 7 is an interval, e.g. [0,1]. Let Y;(t) denote the potential
outcome of unit ¢ under dose t; that is, the outcome unit ¢ would received if exposed to
treatment level t. Also, let T; be the actual treatment dose received by unit i. For each
unit, out of all possible values Y;(t),t € T, only ¥; = Yi(T3) is observed, which leads to a
missing-data problem?.

In the binary case we have that 7 = {0,1}, so that 7; = 1 denotes that unit ¢
received the treatment and T; = 0 denotes it did not. This is the case that has recently
received most of the attention in the program evaluation literature. The two most common

parameters of interest are:

E(A) = BIY (1) - Y (0)] (2.1)

E(AIT =1) =E[Y(1) - Y(O)IT = 1] (2.2)

The first one is the population average treatment effect®, which gives the expected

effect of the treatment for a unit randomly drawn from the population. The second is the

2As noted in Hirano, Imbens and Ridder (2003), the stable-unit-treatment-value assumption (SUTVA)
is implicitly assumed in this notation. SUTVA is the assumption that the potential outcome for unit ¢ at
treatment level ¢ is not affected either by the mechanism used to assign treatment level ¢ or by the treatment
received by other units (Rubin 1978, 1986, 1991). Note that in the binary case this assumption implies that
there is only one version of the treatment, and to the extend that treated units receive different doses of the
treatment and those doses can be seen as “different treatments”, the SUTVA assumption will be violated if
such treatment is analyzed as being binary.

3For a discussion of concepts of causality in this context see for example Holland (1986) and Heckman
(2000).
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average treatment effect on the treated, which gives the mean effect of the treatment for the
subpopulation of all treated units. In randomized experiments, both parameters are equal.

As discussed in chapter 1, in the case of a continuous treatment we can move
beyond pairwise differences as the ones in (2.1)-(2.2) and consider more parameters of

interest. In this dissertation, we focus on estimation of three objects:

p(t)=E{Y(t)} foralteT (2.3)
ag = argmax E{Y ()} (24)

and
p(eg) = E{Y (p)} (2.5)

The first one is the entire curve of average potential outcomes or average dose-
response function, which gives the average potential outcome at every possible level or dose
of the treatment. Note that from this curve we could calculate pairwise treatment effects
of the form E(A®) = E[Y(s) — Y (t)] for s,t € T. However, as opposed to only showing
pairwise differences, the dose-response function shows us how average responses vary along
the domain of treatment doses. The second parameter is the treatment dose at which the
average dose-response function is maximized. For instance, if a policy maker were to choose

or recommend a treatment dose to be applied to a population to maximize their expected

“Behrman, Cheng and Todd (2004) analyze estimation of treatment effects similar to (2.2) allowing for
continuous doses of the treatment. They use matching methods as those studied in Heckman, Ichimura and
Todd (1998). This paper will be discussed in Section 2.5.
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potential outcome, then she would be interested in knowing this parameter. This parameter
is also useful in some applications where the objective is to estimate the turning point of a
given relationship. For example, when estimating the turning point of the Environmental
Kuznets Curve (EKC) for a particular pollutant, that is, the level of per capita income at
which emissions of the pollutant reach their peak and start decreasing. In this case, the
turning point of this relationship would be equivalent to a parameter such as (2.4). Finally,
our third parameter gives the expected potential outcome at the optimal treatment dose.
Note that this latter parameter could be combined with (2.3) to calculate, for example, the
maximum expected gain from the treatment, or E{Y (ag) — Y (0)}.

In the binary treatment case the answers to the questions parameters (2.3)-(2.5)
address are very direct. The dose-response function in this case is given by E{Y (1)} and
E{Y (0)}, which are always considered either explicitly or implicitly when analyzing binary
treatments. Also, with a binary treatment the average treatment effect given by (2.1) tell ué
directly which of those two treatments (i.e., treated or non-treated) is optimal on average
depending on the sign of E(A). Hence, whenever we are testing hypotheses about the
sign of E (A) we are testing which of those treatments is optimal. Likewise, depending on
the sign of E (A) our parameter in (2.5) would be given by either E{Y (1)} or E{Y (0)}.
Analysis of (2.3)-(2.5) becomes more complicated in the continuous treatment case. Here,
the dose-response function is defined at each treatment level, and the answer to which
treatment is optimal is not as direct as when the treatment is binary. Moreover, just as in
the binary treatment case we are interested in testing hypotheses about which of the two

treatments is optimal (i.e., about the sign of E (A)), when the treatment is continuous we
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also want to be able to test hypotheses about ag, or create confidence intervals for it. The
estimators presented later in this chapter will allow us to do so.

After having defined our parameters, the next point to consider is their estimation.
A common approach found in the applied literature when faced with a continuous treatment
is to create a discrete number of categories. For example, when analyzing the effect of
maternal age on birth outcomes, Royer (2003) creates the following maternal age groups:
<18, 18-21, 22-25, 26-29, 30-33, 34-37 and >38 years. Some drawbacks of this approach
are that very often discretization is arbitrary and that we lose information about the effects
of the treatment within each of those groups. These problems are more severe if we follow
that approach to estimate the location of the optimal treatment. For instance, Royer
(2003) estimates that the best age for first births in terms of minimizing the likelihood of a
premature birth is between 22 and 25 years old. First, we would not be able to say if giving
birth between the ages of 22 and 25 is truly better than doing so between the ages of 23 and
26, or 21 and 24, since the best range of 22-25 depends on the way the maternal age variable
was discretized. Second, given that such conclusion is based on estimates of the relevant
parameters, we would expect a confidence level to be assigned to it; however, this is rarely
done in practice. Another possibility for estimation of (2.3)-(2.5) is to assume a parametric
form for the dose-response function. Unfortunately, we rarely have a clear idea of the form of
the relationship between our treatment and outcome, and assuming an incorrect functional
form would lead the estimated dose-response function to be inconsistent. Moreover, if the
estimators of (2.4) and (2.5) are based on this estimated dose-response function, then they

would also be inconsistent.
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In this chapter, I use nonparametric methods for estimation of (2.3)-(2.5), which
avoids imposing functional form restrictions on the relation between our treatment and
outcome. Also, asymptotic normality of the estimators is shown so that we can create
confidence intervals for our parameters. Nonparametric methods are based on the idea that
if the function to be estimated is sufficiently smooth around a given point, then observations
in its neighborhood can provide us with information about the value of the function at that
particular point. In the next section, estimators for (2.3)-(2.5) are presented under the
assumption that treatment doses are randomly assigned to the units in our sample. In
section 2.4 I relax this assumption and consider the case when assignment to different
treatment doses is random conditional on a set of observed covariates.

Before concluding this section, it is important to point out that the parameters in
(2.3)-(2.5) are also well defined in the case when the treatment can take on a finite number
of values, for example, when 7 = {0,1,...,L}. It is possible to construct estimators for
those parameters in this case. However, construction of confidence bounds for an optimal
treatment is more difficult than when the treatment is binary because it would require
making multiple comparisons. In this case, and provided that we have a reasonable number
of different treatment values, we can think of cur methods as a continuous approximation
to the problem. Therefore, the methods presented in the rest of the chapter can also be

useful even if the treatment is not strictly continuous.
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2.3 Experimental Design

In this section I estimate (2.3)-(2.5) under the assumption that units are randomly
assigned to different doses of the treatment, so that the set of potential outcomes for unit
1 is independent of the treatment assignment.

Assumption 2.3.1. {Y;(t)}er L T;.

This assumption implies that E [Y (¢)] = E [Y|T = t] and therefore, in this exper-
imental case estimating the dose response function is equivalent to estimating the unknown
regression function of the outcome Y on the treatment level T. Similarly, estimating ag and
E{Y (ag)} is the same as estimating the location and size of the maximum of the unknown
regression function E [Y|T =t]. Let go(t) = E[Y|T =t] and assume we observe n pairs

(yis t;), i =1,...,n. Then, I estimate (2.3)-(2.5) respectively as

> VK (155)

Gn(t) = =X for all t€ T (2.6)
; K(i55)
a =ar%€r§1_ax G, (t) (2.7)
E(Y(2)} = 91,(8) (2.8)

where K (-) is a kernel function and gy is based on the bandwidth k. (2.6) is the Nadaraya-
Watson (NW) estimator, which has been widely studied in the literature. Let fo(t) be the

density of t and 03 (¢t) = Var [Y|T =t]. Then, in this literature is shown that
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— 02
Vnh(Gn (t) — go () 4N <d3,% /[K(z)]2dz) (2.9)

provided that h = h(n) satisfles h — 0, nh — oo, and nh® — d? (for some 0 < d < o0) as
n — 0o, among other conditions; and where B is a function of go (t), fo(t) and the kernel
function®. The optimal bandwidth for the NW estimator is proportional to n~1/%, and the
speed of convergence of the mean squared error using this bandwidth is n=%3. However, it
is common in econometrics® to remove the bias in (2.9) by allowing nA® — 0, which implies
undersmoothing.

Estimators of the location and size of an optimal of a regression function based on
kernel estimators of go(t), such as the ones considered here, have been previously studied in
the statistics literature. Miieller (1985) was the first one to analyze this type of estimators in
the context of the non-random regressors model and using the Gasser-Miieller nonparametric
estimator of go(t). There, Miieller shows that his estimators of location and size of the peak
of go(t) are asymptotically jointly normal and uncorrelated. Later, Miieller (1989) allowed
for data-dependent (i.e., random) bandwidths, and showed that the asymptotic distribution
of those estimators using consistent estimates of the optimal bandwidths is the same as the
one using optimal bandwidths. In contrast to the papers by Miieller, Ziegler (2000) focuses
on the random regressor model and employs the NW estimator. Like Mieller (1989), Ziegler
allows for random bandwidths and establishes a functional central limit theorem for the joint
distribution of the estimators of location and size of the maximum. In contrast to Miieller,

his conditions are imposed locally on a neighborhood of the location of the maximum

8See, for example, Bierens (1987) or Pagan and Ullah (1999).
8See, for example, Newey (1994), Ahn (1995) and Pagan and Ullah (1999).
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rather than globally on a compact interval. In general, Ziegler’s results are similar to
those in Mileller (1989). Both authors consider the case with a single covariate, but it is
straightforward to extend their results to maximization over more than one dimension’.
An important conclusion from analyzing the asymptotic behavior of estimators
such as (2.7) and (2.8) is that if we want both of them to be jointly asymptotically normal,
then they should not be based on the same estimator of go(-). Intuitively, for a given
estimator g(-) of go(:), & will solve 8g(t)/0t = 0 (assuming an interior maximum), so the
asymptotic behavior of & will be closely related to that of the estimator of the first derivative
of go(-). On the other hand, the asymptotic behavior of (2.8) will be closer to that of the
usual NW estimator of a regression function. As will be discussed later, one of our conditions
on the bandwidth used for estimation of the location of the maximum requires nh§ — oco. If
we were to use this bandwidth in (2.8) for estimation of the size of the maximum, then the
asymptotic bias of the estimator would explode, as illustrated by (2.9). The way Miieller
(1989) deals with this is by allowing the bandwidths of his estimators of location and size
of the maximum to go to zero at different speeds. On the other hand, Ziegler (2000) uses
kernels of different orders for both parameters while using bandwidths of the same order
for both. As suggested by the notation in (2.7) and (2.8), this section follows an approach

similar to the one by Mieller, but now using the NW estimator and allowing the regressor

“Although the literature on estimation of the maximum of a regression function is not large, the opposite
is true for the related problem of estimating the mode of a density using kernel methods (e.g., Parzen 1962,
Eddy 1980, 1982; Romano 1988). On the other hand, there are other approaches in the statistics literature
for estimating the location of a maximum of a regression function in this experimental case. Some involve
algorithms detecting peaks (e.g., Heckman 1992) and the use of extreme order statistics (e.g., Chen et al.
1996). We prefer our approach because its extension to the non-experimental case is more natural. However,
the other approaches will be taken into consideration for future research.
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to be random®?.

This section presents a result which is similar in spirit to those by Miieller (1989)
and Ziegler (2000). This result is helpful to get the intuition of the problem at hand and
extend the results to the case where one needs to control for non-random selection into
different doses based on observables, as will be discussed in the next section. For simplicity,
and in order to highlight the main ideas, a second order kernel is used in the theorem
below!®. Our set up here is similar to the one considered by Ziegler; however, as previously
mentioned, instead of using different kernels for estimation of the location and size of the
maximum as he does, I employ bandwidths of different order as in Miieller. Another slight
difference of the results presented below and those by Mileller, in addition to the set up and
the kernel estimator used, is that Miieller requires the use of higher order kernels while our
results are also valid for second order kernels. The next theorem shows that the estimators
of the location and size of the optimum dose presented in (2.7) and (2.8) are asymptotically
jointly normal and uncorrelated, so that they can be used to construct confidence bounds
and perform statistical inference in this experimental case. The asymptotic distribution of
the estimators has been centered around zero by choice of bandwidth, so the result implies

undersmoothing.

Theorem 1 Assume

(i) Assumption 2.8.1. holds.

8As previously mentioned, Mileller considers the fixed design model and uses the Gasser-Mteller
estimator. '

®Whether is preferable in practice to use bandwidths or kernels of different orders for estimation of the
location and size of the maximum of a regression function is unknown. This question will be analyzed in
the future using simulation methods.

1%The extension of Theorem 1 to higher order kernels is straightforward. Moreover, the theorem presented
in the next section under the selection-on-observables assumption and using higher order kernels can be
easily reduced to this experimental case.
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(ii) o € T, where T is compact and g is in the interior of T.

(4i1) go(t) is uniquely mazimized at o and is three times continuously differ-
entiable and its derivatives up to the third order are bounded. Also, géz)(ao) <0.

() fo(t) (density of t) is continuous and bounded away from zero uniformly
in T. Also, partial derivatives of fo(t) exists up to the third order and are bounded, and
fél)(t) is continuous at og.

(v) 0k(cw) = Var[Y|T = ao] is bounded and its derivative is continuous at
ap. Also, partial derivatives of o%(t) exists up to the third order and are bounded.

(v) E|Y**? < co for some 6 > 0.

(vi) Let by = hy (n), he = ha(n) be such that: k1 — 0, nh§ — oo, nhl — 0;
and hy — 0, nh3 — oo, nhd — 0, as n — oo.

(vii) The kernel K () satisfies: (a) [ K(u)du = 1; (b) K is symmetric and
three times continuously differentiable; (c) [u?K(u)du < oo and [ |uK (u)| du < oo; (d)
W8] |[K(w)] — 0 as |u| — oco; () Let ¢ (w) be the characteristic function of K (-) so that

= [ ™K (u)du, with 12 = 1. Assume that [ |4 (w)] dw < oo and [ |w? (w)|dw <
oo; (f) For some 6§ > 0, and for Hu) = K(u) and Hu) = KU(u) we have that

[1H(W)|*T du < oo, sup |H(w)**? < 0o, and |u| |H(w)[*™® — 0 as [u] — co.
u

Then,
V/nhi (@ — ao) 0 o2 0
' N 0 (2.10)
V1h2(Ghy (@) — go(a0)) 0 0 of
with of = ﬁ% [IKW(2)2dz and 02 = %gﬁ&_zl [[K (2)]%dz; and where the super-
0 0 0

script (j) denotes the jth derivative with respect to its arqument.
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PROOF. See appendix.

Asymptotic normality of the estimator of the location of the maximum follows from
noting that under assumption (i) & satisfies 91(1 ) (@) =0, so that expanding this expression
around o and solving for & — ag gives

~1)

G-ap=-S 0 ani (2.11)

Gp, &

where o* is a mean value. Thus, the three key ingredients in showing asymptotic normality
of \/Ff?;'(a — ap) are consistency of @, uniform convergence in probability of ’gﬁ) (t) to
(())( t) for all t € 7, and asymptotic normality of \/nhl n, (1) (ap). Consistency follows
easily by noting that & is an extremum estimator with objective function gy, (¢), t € 7,
so standard results can be used here (e.g., Theorem 2.1 in Newey and McFadden,1994).
Results regarding asymptotic normality of the numerator and uniform convergence of the
denominator in (2.11) can also be found in the literature (e.g., Schuster and Yakowits,
1979; Ahmad and Ullah, 1987). The requirements on the kernel along with the smoothness
conditions imposed on go (t), fo(t) and 03 (t) in Theorem 1 are useful when applying those
results. The assumption that nhS — oo is used for showing uniform convergence of the
denominator, and nh] — 0 is used for obtaining asymptotic normality of the numerator.
Like in the usual NW estimator (see (2.9)), this latter assumption implies undersmoothing
and the use of a suboptimal bandwidth for estimating the first derivative of go (¢)*!

The proof of the joint asymptotic normality result proceeds by using the Cramér-

Wold device to show that for every real numbers A\; and A2 we have:

1The optimal bandwidth for estimating the first derivative of gg () is of order n~*/7, in which case the
speed of convergence of the MSE is n~*4/7,
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My/nh3 (@ — ao) + dev/nha(Gry (@) — go(ao)) ——

X oB (o) ()12 Mod(an) A2ds
N(o[ T )/[K O g )]d> 2.1

In obtaining (2.12), it is important to show that v/nka(Gn, (&) — go(co)) is asymp-
totically equivalent to v/nh2(gh,(c0) — go(co)). It is in this step where Mieller requires the
use of higher order kernels, while Theorem 1 shows that the same also holds true even when
using second order kernels. For showing this result, Miieller requires uniform convergence of

to 982) (-), which in turn requires nhg — oo and hence the use of higher order kernels

40
to reduce the asymptotic bias. On the other hand, the proof of Theorem 1 only requires
\/.h—g:q{hz)() to be asymptotically bounded in a neighborhood of op, which imposes weaker
conditions on hg and on the order of the kernel. Using the mean value theorem we can

write for some o* between @ and ap,

\/7%(@12 (@) — go(aw)) = \/El; (ﬁhz(ao go()) + \/n_hg gh2 (& — ap)

Hence, we need to show that the second term to the right of the above equation

is 0p(1). Again, for a suitable mean value o* between o and o* we can write

v/ nhag; gh2 Y@ —ap) = \/m\/ 5 gh2 ap) \/nh:f(a— op)
\/m ho 'gﬁ) (@™)4/nh3(a* — apg)4/nhd (@ — ap)2.13)
1

As previously discussed, \/n_h:f(’d— ag) = Op (1). Similarly, using standard results

it can be shown that \/nh3 A(l)( 0) = Op (1) (e.g., Ahmad and Ullah, 1988). The conditions
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on hy for the latter result are that nh§ — oo and nhf — 0, which clearly do not contradict
our assumptions on hy. Given our assumptions on h; and hg, the first term to the right of
(2.13) is 0p(1). Note that given that nh§ — oo, in order to show that the second term to
the right of (2.13) is 0, (1) we only require /h2 ’gﬁ)(a**) = Op (1). This imposes weaker
restrictions on hp than requiring :(jg)(a**) to converge in probability to géz)(ao), as Miieller
does. Note that the assumption nh§ — oo is used in showing that the terms to the right of
(2.13) are o0, (1), and the one requiring nh3 — 0 is used to show asymptotic normality of
the estimator of the size of the maximum, as in (2.9).

The requirement of the kernel being symmetric is key for the asymptotic uncorre-
latedness of @ and Gh, (@). Specifically, symmetry of K (-) implies that [ KD (u) K (u) du =
0, which along with the bandwidth conditions and the smoothness assumptions on go (¢),
fo(t) and cd(ag) implies that the covariance term goes to zero asymptotically (see Lemma
8 in appendix A).

The asymptotic variances of the estimators of the location and size obtained in
Theorem 1 are very intuitive. For the estimator of the size, the asymptotic variance is
exactly the same as for the usual NW estimator evaluated at the maximum, ag (see (2.9)).
As for the estimator of the location of the maximum, the asymptotic variance is the same
as the variance of the estimator of the first derivative of go (-) evaluated at oo plus the
additional term [géQ)(ao)]“‘z. This last term is a measure of the curvature of go (+) at ag; so,
as one would expect, the greater the curvature of go (-) at o the easier would be to estimate
the location of the maximum. In other words, if the maximum is located in a region of gq ()

where it increases and decreases very rapidly so that g((,2) (o) is large (in absolute value),
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then the asymptotic variance of our estimator of ag will be small.

Also, note the bandwidth for estimation of the location of the maximum converges
to zero slower than the one for estimation of the size of the maximum. In other words,
in the first case we oversmooth as compared to the second case. The intuition is that if
our estimate of go (-) is not sufficiently smooth, then it could be very difficult to estimate
the first derivative of gq (-) and consequently ¢g. The conditions on h; and hg imply that
they should be proportional to n° and n”, where § € (=1/6,—1/7) and y € (—1/4,-1/5),
respectively.

Finally, it is important to point out that the estimators of the location and size
of the maximum based on the usual NW estimator (i.e., using a bandwidth of order n=/5)
are both consistent. Say, as is usually done in practice (e.g., Millimet et al. 2003), that we
were to use the usual NW estimator based on bandwidth A to estimate the location and
size of the maximum. As previously mentioned @ is an extremum estimator, so the only
conditions imposed on A for consistency of & are those needed for uniform convergence of
Gn (t) to go(t), which are that » — 0 and nh? — co as n — oo (e.g., Bierens, 1987). The
same restrictions on ~ make the estimator of the size of the maximum consistent in this case.
Therefore, the advantage of the estimators presented in this section over those based on the
usual NW estimator is that the former ones are not only consistent but also asymptotically
normal, so they can be used to create confidence intervals and test hypothesis regarding

our parameters of interest.
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2.4 Non-experimental Design: Selection on Observables

In economics usually we do not have an experiment at hand to evaluate the effects
of a given treatment. A common approach in the binary-treatment literature and a natural
“next step” when analyzing the effects of a given treatment is to assume that selection into
treatment is based on a given set of observed covariates’?. In this section I follow a similar
approach and assume that assignment into different levels of the treatment is unconfounded
given a set of covariates X with dimension equal to k, that is, I assume that selection is
based on observables.

Assumption 2.4.1. {Y;(t) her L T;|X.

As discussed in Hirano and Imbens (2004) and Imbens (2000), assumption 2.4.1
is stronger than needed and can be replaced by a weaker version of unconfoundedness in
which all that is required is pairwise conditional independence of each of the potential
outcomes at a given treatment dose ¢ with the treatment assignment, or Y;(t) L T;|X for
all t € 7. However, as also pointed out in Imbens (1999), in practice can be difficult to
find applications in which the latter may be plausible but the stronger form in assumption
2.4.1 may not. Because of this, the stronger form of the unconfoundedness assumption is
maintained in this section. Assumption 2.4.1 implies that we can write the dose-response

function as

E[Y(t)] = Ex [E[Y(§)X =a]) = Ex [E[Y ()|T =, X =<l = Ex [E[Y|T = t, X = a]]

(2.14)

'?See for example Heckman, Lalonde and Smith (1999) and Imbens (2004).
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for all t € 7, where the unconfoundedness assumption is used in the second equality.
Hence, equation (2.14) states that, under assumption 2.4.1, we can express the dose re-
sponse function as a function of the observed data. In the experimental case discussed in
the previous section, randomization controlled for observed and unobserved confounders
by not allowing their values to differ systematically across different treatment doses, and
therefore, we were able to write the dose response function as the regression function of
the observed outcome, Y, on the treatment level received, T. On the other hand, in the
non-experimental case considered in this section, and under assumption 2.4.1., we need to
control for systematic differences in the observed covariates across treatment doses, and
Ex[E[Y|T =t,X = z]] does so by averaging over them!3. Note that this latter expression
suggests calculating the dose-response function by first computing the regression function
of the observed outcome (Y) on the observed treatment (7') and covariate values (X) and
then taking its expectation over the covariates. Hence, this suggests a regression approach
to estimating the dose-response function. However, just as in the binary case we could apply
other methodologies such as matching on the covariates or weighting by the propensity score
to estimate the average treatment effect, here we can think of other ways to estimate the
dose-response function. Extensions to the continuous treatment case of the methods previ-
ously mentioned for the binary case will be discussed later in section 2.5.1 in the context of
the role the generalized propensity score plays when the treatment is continuous. For the
moment, the focus is on the properties of the regression approach suggested by (2.14).
The last term in (2.14) is what Newey (1994) calls a partial mean, which is an

average over some conditioning variables while holding others fixed. Thus, the estimators of

%Note that in general Ex [E[Y|T =t,X = 2] # E[Y|T = 1].
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the location and size of the optimal treatment dose analyzed in this section are also useful
in the more general context of estimating the location and size of the maximum of a partial
mean.

Assume we observe (y;, ti, z;), i = 1,...,n. Also, let 7(-) be a trimming function
used to avoid the “denominator problem” by keeping a denominator bounded away from
zero. Based on the sample analogue of the last term in (2.14), the non-parametric estimators

of the parameters of interest given by (2.3)-(2.5) are defined, respectively, as

E{Y(t) = %L iT(xi) Onlt,zs) forall teT (2.15)
i=1
a= arg I%éa%?l T (x't) §h1 (ta xz) (216)
i=1
B{Y (00)} = Py (8) = = 37 (&) s @2) 2.17)

i=1

where g (t, ) is the NW multiple regression estimator

Xn: Y}K(%" x1—;:v14 xk“‘mki)

—~ =1

Gn(t,z) == rT— (2.18)
¥ K, mams, . B
J=1

and as before, K (-) is a kernel function and g is based on the bandwidth h.

The results presented in this section are based on the asymptotic theory developed
by Newey (1994) on functionals of kernels estimators. Specifically, Newey considers two-step
estimators where the first step is a vector of kernel estimators, say 5(¢, ), and the second step
is a m-estimator that depends on 3(¢,z). He shows that under some regularity conditions

these estimators are asymptotically normal. Newey also applies his general results to derive
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asymptotic normality of a partial mean estimator as the one in (2.15), which is an average
of a kernel regression estimator over some components while holding others fixed. The
general results in Newey (1994) are also useful for showing joint asymptotic normality of
the estimators of location and size of the optimal treatment in (2.16) and (2.17), as discussed
below.

Theorem 2 below, which is a special case of Theorem 4.1 in Newey (1994), shows
asymptotically normality of the estimator in (2.15). Redefine E [Y (t)] as E [Y (t)] = Ex [T (z)
EY|T =t,X = z]]. Also, let w= (t,z), r be the order of the kernel, ]?E)(a:) be the marginal
density of z and fo (w) = fo (t,2) be the joint density of ¢t and z. Finally, remember the

dimension of X is given by k.

Theorem 2 (Newey, 1994). Assume

(i) E [|y|4] <oo; E [[y]ﬂw] fo(w) and fo(w) are bounded.

(i1) Let K (-) be such that [ K(u)du = 1; K (u) is zero outside a bounded set; K (u)
is continuously differentiable, with Lipschitz derivative; and, there is a positive integer r
such that for all j <r, [ K(u) [ Llue] =0.

(iii) There is a non-negative integer d > v and an extension of so(w) to all of R¥+?
that s continuously differentiable to order d on Rk+1,

(iv) T (z) is bounded and zero except on a compact set where fo(t,x;) is bounded
away from zero.

(v) 7 (z) and fo(z) are continuous a.e., fo(z) s bounded, Ely|lw] and E[y?|w] are
continuous; and, for some ¢ > 0,

Tsupp<e [{L+E [¢flw= (t +n,2)]} fo(t +n,2)] dv < oco.
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(vi) For h = h(n), nh?**1/[In(n)]* = oo and nh¥+! — 0, as n — co.

Then,
ValE{Y (t)} - E{Y ()}) -5 N(0,Vo)

with Vo = [[{[ K (u,v)dv}?du] x [ fo(t,x)"7% (z) fé(z)0d(t, x) dz; where K(w) is parti-

tioned according to w = [t,x] and o2 (t, z) = var [y|t,z).

As discussed in Newey (1994), since Ex [E [Y|T =t, X = z]] is only a function of
T, its nonparametric estimators will converge faster than estimators of E{Y|T =¢,X = z].
This is reflected in the conclusion of Theorem 2, where the non-parametric estimator of
the dose-response function defined in (2.15) has a convergence rate of V/nh, which is the
same rate at which the corresponding estimator in the experimental case considered in the
previous section converged. The bandwidth conditions in theorem 2 imply undersmoothing,
which is reflected in the fact that the limiting distribution is centered around zero. Finally,
note that the theorem requires the use of higher order kernels, which also helps ensuring
the limiting distribution is centered at the true value by reducing the bias of the estimator.
Specifically, theorem 2 requires r > k.

The variance of the limiting distribution in Theorem 2 can be simplified in some
cases. For example, if we use a product kernel for calculation of the estimator, then the first
termin Vp reduces to [ [K (u)]? du, which is the same kernel term that appears in the limiting
distribution of the usual NW estimator (see 2.9). Moreover, ignore for the moment the trim-
ming function in V5. Then, we can write the second term in V5 as Ex [U% (t,z) / fo (t|:c)],
where f (t|z) is the conditional density of ¢ given x. This term is similar to the other term

appearing in the variance of the limiting distribution of the NW estimator in (2.9), but now
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allowing the conditional variance of Y to include also the covariates and dividing by the
conditional density of ¢ given z (instead of dividing by only fo (t) as in (2.9)), and then
taking expectation over X. Hence, Vp seems like a natural extension of the asymptotic
variance for the NW estimator to the partial mean case.

Next, I consider the limiting joint distribution of the estimators of location and size
of the maximum of the dose-response function in (2.16) and (2.17). As mentioned before,
here the general results on functionals of kernel estimators presented in Newey (1994) are
used. In order to highlight the main steps in the proofs of the theorems in this section we
focus first on the asymptotic distribution of the estimator of the optimal dose in (2.16).
Moreover, in some applications only the location of the optimal treatment dose may be of
interest, so in this case theorem 3 can be used directly.

To use the general results in Newey (1994) the estimator in (2.16) needs to be
written as a two-step estimator for which the first step involves a vector of kernel estimators.
To simplify notation, ignore for the moment the trimming function 7(:). Letting ¢ =
[1 y]', and using the same notation as before, define so(w) as so(w) = Elglw]fo(w) =
[fo(w) Ely|w|fo(w))] = [s10(w) sw(w)]. Let z = (g,ws), i = 1,...,n, denote data

observations on ¢ and w. Then, a kernel estimator of so(w) is

L 335 Ki(w - w) 5i1(w)
S(w) = -~ quKh(w —wj) = Zz_l = (2.19)
7= ;Ej;lyth(w — wj) 8a(w)

where Kp(u) = h~*+) K (u/h). This is the first step kernel estimator. Now, let g (¢, z) =

go(w) = Ely|lw] = sx(w)/s1o(w). Then, by definition of ap in (2.2), and assuming an
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interior maximum for the dose-response function, ag solves

SE[Y(t _ 9Bxlgta)]|  _ g | Omlte =0 (2.20)
ot t=ap ot t=o0 o t=ao

where (2.14) was used in the first equality. Let m(z,a0,80) = Ogo(ao,z)/0t. Then, the
moment condition implied by (2.20) is E [m(z,a0, s0)] = 0. In this case the sample moment

function becomes m(z;,a,s) = 9g(a, x;)/0t, so the second-step m-estimator of ag solves:

1< 1 ~05(a, ;)
an(zL,a,s) = nz 5t =0 (2.21)
i=] i=1
where g(w) = 82(w)/51(w) is the NW estimator in (2.18). Therefore, under the assumption
of an interior maximum of the dose-response function the estimator of the optimal dose &
in (2.16) can be written as a two-step m-estimator that solves (2.21).
As usual for m-estimators, to derive the limiting distribution of & the left side of

(2.21) is expanded around the true value ap to get

-1
~ _ 1 & om(z,a",3) 1 ¢ ~
a—0p=— {7—7{2 Do ;;Zm(ziao@as) (222)
i=1 1=1

where a* is a mean value. Consistency of @ and uniform convergence in probability of the
Jacobian term in (2.22) are useful in showing convergence in probability of the denominator
in (2.22) to some matrix M, which is assumed to be invertible. Then, the limiting distribu-
tion of @ — ¢ is determined by the behavior of the numerator in (2.22). Note that in this
latter term the moment function depends on the kernel estimator 3 in (2.19). Therefore, its
limiting distribution is derived in two steps. The first one involves a linearization around

50, and the second entails asymptotic normality of such linearization.
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The following theorem specifies conditions for asymptotic normality of &. As in
the case for estimation of the dose-response function described before, in this case higher
order kernels are also used to reduce the bias of the estimator and center its asymptotic
distribution around zero. As before, let E[Y(t)] = Ex [t (z) E[Y|T =t,X =z]] , where

7 (+) is the trimming function previously defined.

Theorem 3 Assume

(i) o € T, where T is compact and og is in the interior of T

(it) Let K (-) be such that [ K(u)du = 1; K(u) is zero outside a bounded set;
K (u) s twice continuously differentiable, with Lipschitz derivatives; and, there is a positive
integer r such that for all j <7, [ K(u) [ Llue} =0.

(i) There is a non-negative integer d > v+ 1 and an extension of so(w) to
all of RE+1 that is continuously differentiable to order d on R*+1.

(w) T () is bounded, continuous almost everywhere and zero except on a
compact set where fo (t,x;) is bounded away from zero.

(1) B [|im(z,00,50)]"] < o0; B [l*] < o0; B [Jyl* ] fo(w) and fo(w) are
bounded; .

(vi) fo(z) is zero outside a compact set X' and is continuous almost everywhere
and bounded; E[y|lw] and Ey?|w] are continuous; and, for some ¢ > 0,

Jsupjy<e ({1 + E [¢*w= (a0 +,2)] } fo (a0 + n,2)] do < oo

(vii) 82F [ylw = (o, x)] /Ot is continuous at eacht € T with probability one;

E [{82 E(y|a0,x)/8t2}2} < oo; and, E{zlég ]82E yw= (a,z)) /82&2‘} < 00,

(viii) E [1 (x) 8E [y|w = (og, )] /8t] is invertible.
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(iz) Ex[r () E[Y|T =t,X =«z]] is continuous and uniquely mawimized at
ao; E[ sup |E lw = (a,m)]q < 00; E [{E(ylao, 2)}’] < 0.
a€T
(x) Let by = h1(n) be such that: hy — 0, nh¥+5/In(n) — oo, nh%*3/[In(n)]?
— 00, nhrf’"""o’ — 0.

Then,
nh3(@ — o) ~2 N (0, V1)

with Vi = d=2 [[{J KO (u,v)dv}2du] x [ fo(ao,z) 172 (z) f3(x)0? (ag, z) dz and d = SPE {
7(z) E[Y|T = 0, X = z]} /0t2; and where K(w) is partitioned according to w = [t, z], and

KW () means the partial derivative with respect to t.

PROOQOF. See appendix.

Assumptions (vii) and (ix) are useful in showing uniform convergence in proba-
bility of the Jacobian term in (2.22) and of the objective function that & maximizes when
seen as an extremum estimator. These two results are in turn useful to prove convergence
in probability of the denominator in (2.22) to E [ () O%E [ylw = (ag, z)] /62t], which by
assumption (viii) is invertible. The dominance condition in assumption (vi) integrates
over the covariates and is used when showing asymptotic normality of the linearization of
n~13 m (2, ap,8) in (2.22) around sp. The condition requiring nh¥*3/In(n) — oo is im-
portant in showing uniform convergence in probability of the Jacobian term in (2.22). Note
that if & = 0 then this condition is analogous to the one used in the previous section to
show uniform convergence of the second derivative of the NW estimator. The assumption
nh#+3/ [In(n)]> — oo is used for linearization of the numerator in (2.22) around sg. The

last bandwidth condition, nh%”'}'?’ — 0, implies undersmoothing and is used to center the
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asymptotic distribution around the true value ap. In general, the conditions on the band-
width imply that the order of the kernel used has to be strictly greater than the number
of covariates used, i.e.,, r > k. Hence, the result in theorem 3 holds true even when using
a second order kernel in the presence of a single covariate; however, as is always the case,
the use of higher order kernels would reduce bias and increase the speed of convergence
of the mean square error. Finally, the conditions on the bandwidth imply that if Ay is
proportional to 77, then v € (min(-1/(2k +3),-1/(k +5)),—-1/(2r +3)). If k = 0, this
interval reduces to the one we had before in the experimental case!*.

Note that as in the case for partial means discussed before, in estimation of the
optimal treatment the rate achieved by the estimator is the same as in the experimental case
(i.e., as in the case without covariates). As before, this happens because of the averaging
over the covariates of the non-parametric regression of ¥ on 7' and X. The variance of the
limiting distribution in theorem 3 is not very different from the one obtained in theorem 1,
but now it allows for the presence of covariates in the estimation. For example, in theorem 1
we had the square of the second derivative of the objective function for « in the denominator;
and in theorem 3 that term is given by d. Also, note that if product kernels are employed
then the kernel term in theorem 3 reduces to the one in theorem 1. Finally, as for partial
means in theorem 2, the last term in Vi can be written as Ex [03 (t,z) / fo (t|z)], which
is an extension to the case with covariates of the corresponding term in theorem 1.

Now consider the joint limiting distribution of the estimators of location and size of

the optimal treatment in (2.16) and (2.17). As in section 2.3, to obtain the asymptotic joint

“The interval is not exactly the same as before since in this non-experimental case we are using bounded
support kernels, and in the experimental case they had unbounded support. Therefore, the conditions in
the former have an extra “log n” term.
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normality result shown below both estimators should not be based on the same estimator of
the dose-response function. The intuition is the same as in the experimental case, that is, if
the same estimator of the dose-response function used for estimation of the optimal treat-
ment is used to estimate its size, then the asymptotic bias of the estimator of the size would
explode. On the other hand, if the estimator of the dose-response function used for estima-
tion of the size is used to estimate the location of the optimal treatment, then the Jacobian
term in (2.22) would not converge in probability to 6°E {7 (z) E[Y|T = ag, X = ]} /8¢2.
As in section 2.3, we use bandwidths of different order and the same kernel function for
both estimators!5. The following theorem shows that the estimators in (2.16) and (2.17)

are jointly asymptotically normal and uncorrelated.

Theorem 4 Assume
(i) Conditions in Theorem 3 hold.
1) Let hg = hg (n) be such that: ha — 0, nhEt/ Inm) — 00, nh2*3/ n(n)]? —
2 2

00, and nhgr'*'1 — 0, asn — 00. Also, for h1 in Theorem 8, let nh? — 00.

Then,
V/nh3(@ - ag) a0
Vnha (fiy, (@) — E{Y(a0)}) 0
with V1 as in theorem 8 and Vo = [f {fK(u,v)d'u}2 du] [ fo(oo,x f(? % (ap,x)

dz; and where K(w) is partitioned according to w = [t,z] and KV (.) means the partial

derivative with respect to t.

PROQOF. See appendix.

15As discussed in section 2.3, another alternative is to use the same order of bandwidth for both and use
different order kernels for each estimator. Whether one approach is preferable to the other is unknown.



36

Clearly, if k¥ > 0 the bandwidth assumptions nh¥*5/In(n) — oo and nh3+3/
In(n)]* — oo imply, respectively, the conditions that nhS — oo and nh&+*/In(n) — oco.
The latter conditions are kept to make Theorem 4 also hold when k& = 0.

The proof of this theorem follows similar steps as the ones in the proof of theorem
1. For example, the proof of theorem 4 uses the Cramér-Wold device to show that for every

real numbers A; and Ay we have:
MR (@ = ao) + dov/ihs (EIY @) - EY (00)])) =5 N (0, MV + Ao 15)

Also, as in theorem 1, the condition that nh5™ /In(n) — oo is important in show-
ing that the term £ [Y (&)} in the above equation can be replaced by E [Y (ag)] asymptoti-
cally. As in previous results, theorem 4 requires the asymptotic bias of the estimators to go
to zero faster than their variance in order to center their limiting distribution around zero.
Thus, the conditions on the bandwidths imply undersmoothing. Specifically, they imply
that if he is proportional to n® then § € (min (—=1/(k +4),—1/(2k+3)),-1/(2r +1)),
and for h; is the same as discussed in theorem 3. Regarding the order of the kernel used,
the assumptions on h; and hy imply that » > k+1. Therefore, in the presence of covariates
the joint asymptotic normality result in theorem 4 requires the use of higher order kernels.
Note that the restrictions imposed on hg and on the order of the kernel for asymptotic nor-
mality of the estimator of the size of the maximum are stronger than those for the estimator
of the dose-response function in theorem 2. For example, while in the presence of a single
covariate the estimator of the size in theorem 4 requires higher order kernels, the result in
theorem 2 for the estimator of the dose-response function holds even when using a second

order kernel.
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2.5 Dimension Reduction Techniques

The results in the previous section show that the scaling factors for asymptotic
normality of the estimators (2.15)-(2.17) considered in the non-experimental case under the
selection on observables assumption are the same as the ones for the corresponding estima-
tors in the experimental case considered in section 2.3. This is so because of the second
averaging used for calculation of the former ones. However, for calculation of the estimators
in the non-experimental case we need first to estimate go(t,z) with some precision, and this
may be a problem if the dimension of X is large, as is usually the case in practice for the
unconfoundedness assumption to be more plausible. This section discusses some approaches
to dealing with this “curse of dimensionality” problem, which is common when employing
nonparametric methods. The first subsection considers the role the propensity score plays
in this continuous treatment case; and the second one discusses other dimension reduction

devices often used econometrics.

2.5.1 The Role of the Propensity Score

A very useful result due to Rosenbaum and Rubin (1983) in the binary treatment
case states that if the two potential outcomes are independent of the treatment assignment
conditional on X, then they are also independent conditional on the propensity score, p(z),
defined as the probability of being in the treatment group conditional on X. Hence, this
result reduces the dimensionality of the problem by requiring adjustment of only one scalar
variable, as opposed to adjusting for all pretreatment variables. Several techniques have

been used to adjust for the propensity score in the econometrics and statistics literature,
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such as matching, weighting, stratification and regression'®. Since the propensity score is
rarely known in practice, it is usually estimated using a logit model with higher order terms
in X, which can provide a relatively good approximation to the true model (see for example
Rosenbaum and Rubin, 1983; Dehejia and Wahba, 1995).

Imbens (2000) and Lechner (2001a) extend the results from Rosenbaum and Rubin
(1983) to the case where the treatment of interest can take on integer values from 0 to L,
so that 7 = {0, 1,..., L}”. However, while for estimation of the dose-response function
Lechner (2001a) shows that in this case we can reduce the dimension of the conditioning set
from dim(X) to L, Imbens (2000) shows that a reduction of the dimension to one is possible,
just as in the binary case. Based on Imbens (2000), Hirano and Imbens (2004) extend the
propensity score methodology to the continuous treatment case. Letting r(t,x) denote the
conditional density of the treatment given the covariates (i.e., r(t,z) = frix(t|z)), they
define the generalized propensity score (GPS) as: R =r(T,X). Then they show that, given
Assumption 2.4.1 (i.e., the unconfoundedness or selection on observables assumption), we

can write

E[Y(®)]

Ex [E[Y()lr(t,X) =rl) = Ex [E[Y ()| T =t,r(t,X) =7]] (2.23)

= Ex[E[Y|T=tR=1]

for all ¢t e 7. Note that the last expression is directly estimable from observed data. Thus,

$For discussion of such techniques see for example Rosenbaum and Rubin (1983), Dehejia and Wahba
(1995, 1998, 1999), Heckman, Ichimura and Todd (1998) and Hirano, Imbens and Ridder (2000). For
discussion on efficiency issues from conditioning on the propensity score rather than on X see Hahn (1998),
Heckman, Ichimura and Todd (1998) and Hirano, Imbens and Ridder (2003). For a discussion of both,
techniques and efficiency issues, see for example Imbens (2004).

"Note that this specification also includes the case with multiple treatments.
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according to (2.23) the results from Section 2.4 can be used with X replaced by the GPS,
which is one-dimensional. In this case, estimation of g (¢,r) would involve only two continu-
ous regressors, as opposed to k+1. It is important to note that, as emphasized by Hirano and
Imbens (2004), the outer average is taken over the covariate distribution (or equivalently,
over the score evaluated at ¢, 7(t, X)), as opposed to averaging over r(T, X). Also, contrary
to the binary treatment case, in the continuous case the regression E [Y|T =t,R = r| has
no causal interpretation.

Unfortunately, as in the binary case, the GPS is rarely known in practice and has
to be estimated. In the binary treatment case, Hirano, Imbens and Ridder (2003) consider
nonparametric estimation of the propensity score using series estimators. For consistency
with the rest of the chapter, in this subsection the GPS is estimated using nonparametric
kernel estimators. Assume we observe (y;, ¢, z;), ¢ = 1,...,n and let R= 7(t,z) be the

non-parametric estimator of the GPS defined by

~ 1 t—t; —-x;
62) = = Y K (=, 2= (2.24)

where h, is a given bandwidth. Also, let 7; = 7(¢, z;) and, as before, let 7 (-) be a trimming
function. Then, using (2.23), the estimators of the parameters of interest in (2.3)-(2.5) can

be defined, respectively, as

n

E{v @) Z 7(7) Gn(t,7) forall teT (2.25)
=1
1 n
arg%ajgc:lz 7i) Gny (t,7%) (2.26)
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B{Y(ao)} =5 Yo7 () Gra(@7) 2.27)

, (2.28)

and g, is based on bandwidth A.

As previously discussed, note that the outer averaging is taken over the distribution
of the covariates while holding the value at ¢ constant. The estimators (2.25)-(2.27) are two-
step nonparametric estimators, where the GPS is estimated nonparametrically in the first
step. A theorem that presents an asymptotic normality result for these estimators is left
for future work.

So far the use of the GPS has been discussed only in a regression context. However,
as is the case with a binary treatment, the GPS can be used in different ways when the
treatment is continuous. Consider for example employing matching methods; and suppose
for the moment that the GPS is known. For estimation of the dose-response function
at t, it would be difficult in practice to find observations with a dose value of exactly ¢
because of the continuous nature of the treatment. Thus, now the matching has to be
done not only on the GPS, but also in the treatment level. Two sources of bias can be
distinguished in this case. The first one comes from not having a treatment level of exactly
t and having to use observations in a neighborhood to get information about the mean
potential outcomes at t; and the second one comes from not matching exactly on the

GPS. A way in which the matching method could be done is by matching observations
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on ||t —Tj,7(t,X;) —r (t,X;)||, with ||-|| being a given metric, such as the Mahalanobis
distance. A disadvantage of this type of matching is that one can end up predicting the
dose-response function at ¢ using observations that received doses which are very far from
t and that consequently do not provide much information about the poteﬁtial outcomes
at . Another way to implement a matching estimator with a continuous treatment is the
following. For estimation of E [Y (t)] at ¢, consider a window of size 26,, around ¢, where as
usual &, is a sequence of positive real numbers tending to zero as n — oo. Then, observed
outcomes of observations with T; € [t — 8y, + 6p] can be thought as an approximation to
the potential outcome of those observations at ¢. For observations with T; ¢ [t — 6n,t + 6n),
we look for matches based on the GPS to impute their missing potential outcomes at the
treatment level t. However, given the continuous nature of the treatment, the search for
matches is restricted to an interval around t, so that the treatment values of the matches
are not too far from the treatment level of interest, t. Note that when the treatment is
binary, the imputation of missing potential outcomes takes place by matching observations
that received the opposite treatment based on X or the propensity score; however,when the
treatment is continuous we need matches that received a dose sufficiently close to t in order
for them to be informative about the potential outcomes at <.

Let Sa(2) be the set of indices for the M closest matches for unit ¢ in terms of
[r(t,Xi)— r(t, X;)|, withi # j and Tj € [t—gn,t-i—gn]. As before, 6n is a sequence
tending to zero as n — oo. Here, the sequences §,, and 8, are allowed to be different, since
it could be desirable for 8, to go to zero slower than 6,, in order to improve the quality

of the matches in terms of the GPS!®. Then, the matching estimator of E[Y ()] can be

¥The relative rates of convergence of é, and En are left for future work.
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written as

~ 1 &~
E[y () ==>_%() (2.29)
with

7\]'/1 Z Yla ifTi ¢ [t— 6nat+5n]
lESM(’i)

Note that as in the binary treatment case, even if the covariates from a given
observation j # ¢ differ from the covariates for observation ¢, it could serve as a match for the
latter if r(t, X;) is close enough to r(t, X;) (and T} to ¢ with a continuous treatment). This is
an important point of propensity score methods, since this tries to replicate randomization
in the sense that those observations have the same probability of receiving treatment level
t (if (¢, Xi) = r(t, X;)) and therefore, there are no systematic differences in the values of
their covariates. If the GPS is not known, an estimator of it such as (2.24) could be used
in the above discussion. Also, note that a similar matching approach can be followed for
matching on the entire set of covariates X, instead of matching on the GPS. Finally, as in
the binary treatment case and regardless of whether the matching is done on X or on the
GPS, it is always important in practice to check the quality of the matches used °.

A weighting approach could also be considered to estimate the dose-response func-
tion nonparametrically when the treatment is continuous. In the binary treatment case this

approach is carefully analyzed in Hirano, Imbens and Ridder (2003). As before, let &, be

*When calculating the average in E[Y (t)] = < "%, ¥; (t), we could also consider the use of different
weights depending on how close the  treatment levels of the observations used are to ¢. For example, we could
use E[Y (t)] = + 37 w(|Ti ~ t)) ¥; (t) with w(-) being a weight function depending on the distance of T;
to t.
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a sequence of positive real numbers tending to zero and let A = [t — 8p, t + 65]. Then, as

will be shown in detail in Section 2.6, the dose-response function can be estimated as

(2.30)

where I (+) is the indicator function. This seems to be a natural extension to the continuous
treatment case of the weighting-by-the-propensity-score approach used in the literature
when the treatment is binary. In this latter case, for example, the estimator of E[Y (1)]
can be written as n=1 " I (T} =1)- Yi[p(2)]™}, with p(z) = Pr(T = 1|X) being the
propensity score. (2.30) has this same structure, where for small enough §, it uses the
approximation Pr(T € A|X) ~ 20nfrx(t|z). As in the matching approach previously
described, here 6y, is the smoothing parameter. A nice feature of the weighting approach
is that it can be extended to estimation of more general types of dose-response functions,
such as quantile dose-response functions. In Section 2.6 we briefly discuss such extensions,
and show that the estimator in (2.30) can be thought as a particular case of a more general
class of estimators of the mean dose-response function that use the GPS as weights.

Once we have an estimator of the dose-response function either by matching or
weighting, we could based on it the estimation of the location and size of the optimum
treatment, just as previously done when using the GPS in a regression approach. The
asymptotic properties of the estimators (2.29), (2.30) and their corresponding estimators
of location and size of the optimum treatment will not be discussed here and are left for
future work.

Similar to the binary treatment case, and regardless of the way in which the GPS
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is employed, it is still true that we need an estimate of the GPS. If the dimension of
the covariates is large this can be as difficult as estimating the dose-response function in
first place. In some sense, the dimensionality problem from estimating the nonparametric
regression of Y on T and X in (2.14) is just shifted to estimating the GPS in (2.24). As
mentioned in Imbens (2004), unless we have additional information on the GPS, it is difficult
to argue why estimation of the latter object may be preferred. However, the approach based
on the GPS can still be useful in practice. First, when analyzing the effects of a treatment
on an outcome under the presence of selection on observables it is always informative to
know how the selection is taking place. In this sense, it seems natural that the GPS per
se should be studied or at least estimated in this case. Second, if the dimension of the
covariates is such that we find difficult to implement fully nonparametric methods and we
have to impose some restrictions such as additivity, single index sufficiency or simply make
part of the model parametric, it could be preferable to impose those restrictions on the
relation of the treatment and the covariates -that is, on the GPS-, as opposed to impose
them directly on the relation of the outcome of interest and the treatment and covariates
(e.g., on the regression of Y on T and X). It is possible that in the former case results
are less sensitive to imposing that kind of restrictions. This conjecture will be analyzed in
detail in future work.

Before ending this subsection it may be appropriate to relate the above discussion
to a recent paper by Behrman, Cheng and Todd (2004) (BCT hereafter) in which they study
estimation of treatment effects allowing for continuous doses of the treatment. They do so

in the context of studying the effect of a preschool development program targeted toward
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disadvantage children between the ages of 6 and 72 months in Bolivia on some child outcome
measures related to health, psycho-social skill and cognitive developments. They focus on
estimating parameters analogous to the average treatment effect on the treated in the binary
case. For example, letting [ € 7 denote time spent in the program (with ! = 0 for non-
participants), one of the parameters they estimate is® E(AX|l > 0) = E[Y(1)-Y (0)|! > 0].

The key identifying assumption they use for estimation of this parameter is that

EY(O),=1,X =] =E[Y(O)| =0, X =2a], forall 7. (2.31)

A stronger version of this assumption is that Y/(0) L I|X, for all I € 72!. Under

this assumption, for estimation of E(A?|l > 0) they propose the estimator

B > 0) = = ST {EY (W)l > 0 - EY(0)]ai, b = 0]} (2.32)
n ie{l;>0}N{; €Sp}

where S, is the region of common or overlapping support and n is the cardinality
of the set {l; > 0} N {l; € Sp}. They estimate the two conditional expectations that follow
the summation sign in (2.32) using local nonparametric regression methods as those studied

in Heckman, Ichimura and Todd (1998)22.

2BCT also allow the program impact to depend in a flexible way on the age of the child by writing
the potential outcomes as Y(a,!) and the treatment effects as A(A4, L, 0) and A(A4,1, 1), where a denotes
children age, and @ € A. A can be a singleton set or a range of ages. Since the focus here is on continuous
treatments, that additional complication is not considered.

1As discussed in Imbens (2001), the latter assumption may be preferred since it makes (2.31) valid for

all transformations of the outcome, and it may be hard to argue in practice why the conditional mean
independence may hold while conditional independence may not.
22Those estimators can be written as

BY(0)]zils=0]= 3 Ye@W(|Xs - X:l)
ke{l;=0}

ElY ()il > 0] > Yalbe)Wallle — Ll [ X6 — Xull)
ke {15 >0}
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To reduce the dimensionality problem when estimating the expectations in (2.32)
they assume that their conditional mean independence assumption in (2.31) holds with X
replaced by the propensity score, p(z) = p(L > 0|X = z). However, note that this last
assumption does not follow from (2.31)?3. On the other hand, as shown by Hirano and
Imbens (2004), in the case with continuous treatments unconfoundedness given X implies
weak unconfoundedness given the GPS, which is enough for estimation of dose-response
functions and average treatment effects. Thus, in this sense, the assumption about p(z)
made by BCT has no relation to the unconfoundedness-given-X assumptions discussed so

far.

2.5.2 Other Dimension Reduction Techniques

One way of reducing the dimensionality problem caused by nonparametric estima-
tion of functions in high dimensions is to impose additional assumptions on them. Examples
are additive and projection pursuit models?*. Any of those type of models can be used in
the context of this chapter to reduce the dimensionality problem. Also, it is important to
point out that, as discussed in the previous subsection, such restrictions can be imposed
either on the dose-response function directly or on the GPS. In practice, it may be prefer-
able to impose those restrictions on the GPS and estimate the dose-response function and
the location and size of its optimum based on the estimated GPS approach. This avoids

imposing restrictions directly on the function of interest, and it may be the case that results

where W, (|| Xx — X;||) and Wi ({lle — L], || Xk — X;|)) are weights that add to one and come from the local
nonparametric regression of Yx(0) on X, and of Yx(lx) on [ and X, respectively; and || - || is the euclidean
distance.

2801, written in its stronger form, it is not the case that Y(0) L I|X implies Y(0) L lp(z), foralll e T

%4For additive models see, for example, Hastie and Tibshirani (1990) and for projection pursuit Friedman
and Stuetzle (1981).
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are more robust in this case. As previously mentioned, the careful analysis of this conjecture
is left for future work.

Another common way of reducing the dimensionality problem is to allow some
parametric components into the models, such as in partially linear models. This is the

approach followed in the empirical application in chapter 3.

2.6 General Approach to Estimating Dose-Response Func-
tions and their Maximum

This section presents a general approach for estimation of a more general class of
dose-response functions, such as quantile dose-response functions, and their location and
size of optimum treatments. Many times is useful to think beyond mean dose-response
functions. For example, the p-th quantile dose-response function, which gives us for each
dose of the treatment the p-th quantile of Y(t), can be useful when one is more concerned
about the effects of the treatment on the upper or lower part of the distribution of the
potential outcomes than about its mean. Moreover, even when the focus is on a measure
of the center of the distribution of potential outcomes, it is well known that the median is
more robust than the mean.

Let the function of interest be ¢ (Y (¢)); so for example, for the mean dose-response
function ¢ (-) is given by E(-), while in the p-th quantile case is given by F;(lt) (p), with
Fy(4) (+) being the cumulative density function of Y (¢). As before, it is convenient to start
by considering the case in which assignment to different treatment doses is made randomly.

In this case, nonparametric estimators of ¢ (-) are usually available. In section 2.3, the
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NW regression estimator was used for estimation of the mean dose-response function, and
similar nonparametric estimators are available, for example, for conditional quantiles (e.g.,
Chaudhuri, 1991a, 1991b; Bhattacharya and Gangopadhyay, 1990; Samanta, 1989). Let the
location and size of the maximum of ¢ (-) be given, respectively, by 6o and ¢(fo). Also, let
the nonparametric estimator of ¢ (-) be 5(), then, an estimator of the location and size of

its optimum treatment can be defined, respectively, as

0 = arg max @ (1) (2.33)
#(60) = 3(6) (2.34)

where to simplify notation ¢ (Y (¢)) is written only as a function of ¢. Now, a brief sketch

on how to derive the asymptotic properties of estimators (2.33) and (2.34) is presented.
~(1

Assuming an interior maximum, (2.33) solves®® qb( ) (t) = 0. Expanding this expression

around the true maximum of ¢ (t), 8o, and solving for 8- 6 gives

~(1)

6—6p = —%@ (2.35)
¢ (67

for some mean value 6*. Thus, asymptotic normality for a scaled version of 6 — 6o can
be obtained by multiplying 5(1) (6o) by the appropriate function of n to get asymptotic
normality of the numerator, and by requiring uniform convergence in probability of the
denominator. As for estimation of the size of the optimum treatment, expanding ZS(A)

around ¢ and subtracting ¢ (6p) from both sides gives

25A11 derivatives in this section are taken with respect to t.
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3(8) - 8 (60) = [3(60) - ¢ (60)] +3" (67 - B - t0) (230

o~ o~

Asymptotic normality of ¢(6) — ¢ (6p) then follows by multiplying both sides by
the appropriate function of n and making sure the second term on the right side of the
equality is op(1). Sometimes the same estimator E)() would not satisfy all the conditions
needed for obtaining joint asymptotic normality of the location and size of the optimum
treatment of the dose-response function of interest. This was the case in previous sections
when focusing on the mean dose-response function using the NW estimator. In that specific
case, two estimators of ¢(-) were used based on bandwidths of different order for estimation
of the location and size of the optimum treatment.

Now, consider estimation of optimal treatments in the nonexperimental case under
an unconfoundedness or selection-on-observables assumption similar to that used in section
2.4 (Assumption 2.4.1). For the case of the mean dose-response function one could, as
in section 2.4, compute first the expectation of the outcome conditional on the treatment
received and the covariates, and then integrate it over the distribution of the covariates to

recover E{Y (t)}. However, this approach does not work for general ¢(-). For example,

it is well known that one cannot identify the p-th quantile, F;}

Y@ (p), in this way since the

quantile of the mean is generally different to the mean of the quantile. Instead, we could use
a weighting approach to identify the more general class of dose-response functions ¢ (Y (t)).
The approach presented below can be seen as an extension of the one used in the binary
treatment case by Hirano, Imbens and Ridder (2003) and Firpo (2002) to estimate average

and quantile treatment effects, respectively.
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To further simplify notation, let ¢ (Y (¢)) = ¢;, and let ¢7 be the true value of ¢,
at Y (t). Also, let ¥ (Y (t), ;) be a function such that E [y (Y (¢),¢7)] = 0. For example,
in the mean (p-th quantile) dose-response case ¥ (Y (¢),¢,) =Y (t) —p, @ (Y (2),¢y) =
I(Y (t) < gpt) — p)?, where ¢, = y; (= gp:) is the mean (p-th quantile) of the potential
outcome at t. The next Theorem shows that ¢, can be identified from observed data

Y, T, X).

Theorem 5 Letw (T, X) be a function of the treatment and the covariates such that E [w (T

, X)X < o0 and Ew(T,X)|X]#0, and assume {Y(t) ez L T|X. Then,

w(TX) ¥ (%60 _

P Ee @)X

(2.37)

PROOF. See appendix.

Thus, Theorem 5 enable us to write ¢, as an implicit function of the data, and of
the function w (T, X). The generalized propensity score discussed in section 2.5, 7(t,z) =
frx(t|z), is implicit in the denominator of (2.37). Note that the identification result in
theorem 5 holds for a general class of functions w (7, X). In section 2.5., in the context
of estimating the mean dose-response function using the GPS, this function was chosen as
w(T,X)=1(T; € A), with A = [t — 6p, t + 6n) and 8y, a sequence of positive real numbers
tending to zero. Hence, that estimator is a special case of the ones suggested by (2.37).
The question regarding the best choice of w (T, X) is left for future work.

Let @ (X) = E[w (T, X)|X]. Then, a sample analog estimator of ¢¢, at, can be

written implicitly as a solution to

2Where, as before, I () is the indicator function.
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1 & w@X) v (Vi)
n; =) =0 (2.38)

It is often the case that the estimator @; in (2.38) can be written as the solu-
tion to the problem of minimizing a weighted objective function with weights given by
w (T, X) /@ (X). For example, consider estimation of the p-th quantile dose-response, gp ¢,
and assume we use a local polynomial quantile regression approach similar to the one
studied in Chaudhuri (1991a, 1991b). Let p,(r) = |r| + (2p— 1)7 be the check function,
0 =W (T, %) =w (T, Xi) /@ (X;) and 7 () be a trimming function. Also, for a nonneg-
ative integer a let 8 be a vector of dimension a X 1, and let E(t) be

n
~

B(t) =argmin ST (Xi) @ po {Yi— P (B, T0)} (2.39)
i=1

where P, (8,t,T;) is the polynomial given by Z;«z:() B; (’%‘E)j, and as before, 6, is a se-
quence of positive real numbers tending to zero. Then, the estimator of g;p is given by
& p =By (ie., the first element of B(t))?7.

Note that given a nonparametric estimator of ¢f for ¢ € 7 is possible to estimate
the location and size of the optimal treatment based on that estimator. Thus, it is possible
to extend the estimation of the location and size of optimal treatments to more general
types of dose-response functions, such as those based on M-estimators. The asymptotic

properties of these estimators are left for future work.

27If as in section 2.5 weset w(T,X) = I (T, € A, (t)) with A, € [t — 6,,,t + 6,] and 6, a sequence tending
to zero as n — oo, then (2.39) could be written as
B(t) =argmin Y, 7(X:) Wi p, {Yi — P (B,t, T3)}, with weights given by @ = 1/ 26nf (¢{X:). Here,
B i€AR
f(t|X;) is an estimator of the conditional density of ¢ given X.
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2.7 Conclusions

In this chapter we developed nonparametric estimators based on the Nadaraya-
Watson estimator for three objects of interest: the entire curve of average potential outcomes
or dose-response function, the treatment dose at which the dose-response is maximized and
the maximum value achieved by this curve. I presented a joint-asymptotic-normality result
for our estimators of location and size of the maximum under the assumption that units in
a study are randomly assigned to different doses of the treatment. These results are very
helpful to gain intuition about the problem at hand. Then, I proposed estimators for the
case in which we assume that units are assigned to different doses of the treatment based on
an observed set of covariates, which is a straightforward extension of the unconfoundedness
assumption commonly used in the binary-treatment literature. Ishowed that in this case our
estimators of the location and size of the optimal dose are jointly normal and asymptotically
uncorrelated, and that their scaling factors for asymptotic normality are the same as the
ones for the corresponding estimators when random assignment is assumed. On the other
hand, estimation of average potential outcomes (and hence of the optimal dose) with a largé
number of covariates makes nonparametric estimation problematic. When the treatment is
binary, a common approach in the literature is the use of propensity score methods. This
chapter discusseed the use of the generalized propensity score for estimation of our three
objects of interest. Different approaches are considered, such as regression, matching and
weighting. This chapter also discusseed how to extend the results presented for average
dose-response functions to a more general class of functions, such as quantile dose-response

functions.
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Finally, this chapter also set ground for future research on the evaluation of contin-
uous treatments. As previously mentioned, this chapter discussed how one can use methods
such as matching and weighting for estimation of dose-response functions and optimal doses
with continuous treatments. However, the asymptotic properties of these estimators are left
for future work. Also, comparison of these estimation approaches could be very valuable.
Likewise, as mentioned above, this chapter showed how to identify more general classes
of dose-response functions (e.g., quantile dose-response functions) using an unconfounded-
ness assumption. Here, specific asymptotic results are also left for future work. Note that
throughout this chapter we have assumed that the unique maximum of the dose-response
function is in the interior of the treatment domain, 7. A natural next step is to consider
the asymptotic theory for the case when the maximum is in the boundary of 7. Also,
development of a nonparametric test for existence of an interior maximum could be very
valuable. Another important extension is to allow for the case when selection into different
levels of the treatment is based on unobservables and we have a continuous instrument.
In this case, we can use a model similar to the one in Newey, Powell and Vella (1999) to

estimate the objects of interest analyzed in this chapter.
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Chapter 3

Empirical Application: the

Environmental Kuznets Curve

3.1 Introduction

This chapter uses some of the tools developed in the previous chapter to analyze
the relation between two indicators of environmental degradation and per capita income.
The two indicators considered are per capita emissions of sulfur dioxide (SOz2) and nitrogen
oxide (NO,). Since the path breaking paper by Grossman and Krueger (1991), a large
number of studies have focus on the relation between diverse environmental indicators and
income per capita. Many of them have documented an inverted U-type relationship known
in this literature as the environmental Kuznets curve (EKC)!. In this literature, a lot of

emphasis is given to estimating the turning point of the EKC, that is, the level of per capita

'Some examples are Grossman and Krueger, 1991; Selden and Song, 1994; Kaufmann et al., 1998; Shafik,
1994; Cropper and Griffiths, 1994; List and Gallet, 1999; among others. For a critical review of the literature
see Stern (1998}, and most recently Stern (2004).
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income at which the level of emissions or concentration of a particular pollutant reaches its
peak and starts decreasing. Correct estimation of the turning point is critical for creating
optimal regulatory policies at both local and worldwide level, and for predicting future levels
of pollution. For example, if most of the countries are below the turning point for a given
pollutant, then we can expect large increases on the global level of that pollutant in the
future. Moreover, if the turning point is located at an extremely high level of income, then
the benefits of economic growth on the environment may be unachievable for many coun-
tries, and global emissions may increase consistently in the future. Estimation of EKCs and
their turning points for different pollutants has been at the center of discussions on world-
wide organizations such as the World Bank, World Trade Organization, and environmental
organizations in general, since they raise doubt on the argument that progress invariably
means more pollution?. Finally, other reason for the importance of the correct estimation
of turning points is that in this literature they are used to summarize results from different
studies (e.g., Stern, 1998).

Several reasons have been considered in the literature for the eventual decline in
environmental degradation as income raises. Some of them are a negative income elastic-
ity for pollution, increased levels of education, environmental awareness and openness of
the political system; changes in the composition of consumption and production; better
technologies, among others®. Arrow et al. (1995) argue that pollutants that have local
effects are more likely to have an EKC and a lower turning point than those that have only

global effects, such as carbon dioxide. Finally, Khanna and Plassmann (2003) consider the

2See, for instance, the World Bank’s World Development Report 1992: Development and the Environment
(IBRD, 1992).
®See, for instance, Selden and Song (1994), Stern (1998) and Dasgupta et al. (2002).
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importance of the ability to spatially separate the production and consumption of goods
and services. They argue that when spatial separation is not possible, the turning point of
the EKC is likely to be higher.

This chapter focuses on two indicators of environmental degradation, per capita
emissions of sulfur dioxide (SO2) and nitrogen oxide (NO;)*. Both of them have negative
health impacts. For instance, SO, irritates the respiratory system and lowers the respi-
ratory’s system defenses, making it more vulnerable to bacteria. If combined with high
levels of particulate matter and long-term exposures it can aggravate existing cardiovascu-
lar and respiratory diseases. Likewise, short term exposure to high concentrations of SO5
can cause temporary breathing impairment, specially for children, the elderly, those with
chronic lung disease, asthmatics and people who are exercising. For NOg, short-term expo-
sures can decrease lung function and increase respiratory illness, specially in children; and
long-term exposure can increase vulnerability to respiratory infections, destroy lung tissue
and cause emphysema. Also, SOy and NO,, are very important components of the acid
rain problem, which is associated with the acidification of soil (which has negative effects
on vegetation), lakes and rivers, and with the accelerated corrosion of buildings and mon-
uments. NO; is also an important component of the ground-ozone level (smog) problemd.
Given the negative consequences of high levels of these pollutants, it is not surprising they
receive considerably public policy attention and are two of the most studied pollutants in

this literature®.

“Nitrogen oxides (NOy) is a generic term for a group of gases that contain nitrogen and oxygen in various
amounts. Nitrogen oxide (NO) and nitrogen dioxide (NOj) are the most important ones.

5Source: Environmental and Protection Agency, www.epa.gov.

®See, for example, Grossman and Krueger (1995); Selden and Song (1994); Stern (1998); and Stern and
Common (2001). The latter provides a good review for SO..
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Finally, it is worth mentioning that the main anthropogenic source of SOg is fuel
(coal and oil) combustion from electricity generation. For example, about 73% of SOq
emissions in Wisconsin comes from coal-burning electrical utilities”. Other sources of SO2
are burning of fossil fuels during metal smelting, other industrial processes and domestic
heating. The major sources of NO, are fuel combustion in power plants and automobiles;

and some processes used in chemical plants®.

3.2 Estimation of the location and size of the turning point

of the EKC

The typical paper in this literature uses panel data with measures of some pollu-
tants (either on emissions or concentrations) in various locations (usually countries or cities)
over time. The relation is usually specified using a location and time fixed effects model,

which can be written as

Yir =i+ M+ g(zit) +ea (3.1)
where 7 stands for a given location and ¢ for time, y is an indicator of environmental
degradation, x is per capita income, ; and A are the corresponding individual and time
fixed effects, and ¢;; is a random error term. The function g (+) is almost always specified as
a quadratic or cubic function of per capita income. The variables in (3.1) are usually used in
levels, although some authors argue in favor or working with logarithms (e.g., Stern, 1998).

An obvious problem of working with parametric specifications such as those considered

"Source: Wisonsin Department of Natural Resources, www.dnr.state.wi.us.
H
8Source: Environmental and Protection Agency homepage, www.epa.gov.
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in the literature is that the estimated function, as well as the estimate of the turning
point, will heavily depend on the assumed functional form. There have been some recent
attempts to allow g () to depend on z in a more flexible way. For example, Schmalensee
et al. (1998) consider a piecewise linear specification with 10 segments, while Millimet et
al. (2003) estimate (3.1) as a partially linear model (PLM) with the fixed effects as the
linear part of the model. Azomahou and Phu (2001) go even further and model an EKC
for carbon dioxide as a complete nonparametric regression by first using the nonpoolability
test developed by Baltagi et al. (1996) and then, given that they are not able to reject
the null hypothesis that g (-) changes over time, pooling their panel data and using the
Nadaraya-Watson estimator. However, those studies that document the existence of a EKC
for particular pollutants using nonparametric methods do not assign standard errors to their
estimators of the turning point, so they cannot be used to create confidence intervals. In this
section, the nonparametric methods described in the previous chapter are used to estimate
the location and size of the turning point of the EKC for the two pollutants considered,
SOz and NOy, and provide standard errors for the estimators.

Some papers in this literature consider controlling for additional covariates when
estimating EKCs for SO2 and NO,. For example, Selden and Song (1994) estimate a
model like (3.1) but also controlling for population density. They argue that more densely
populated areas are more likely to be concerned about reducing per capita emissions than

areas where the population is more sparse. Some other authors consider variables such as

GDP/area, steel exports/GDP (Kaufmann et al., 1998), technological level (Cole et al.,

1997), policy variables (Panayotou, 1997), among others®. In order to illustrate how the

®For a table summarizing many of the studies on estimation of EKCs for SOg, see Stern and Common
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procedures presented in Section 2.4 work when controlling for an additional covariate on
an average way, this chapter also considers estimation of turning points controlling for
population density. As mentioned before, some of the papers in this literature include
population density as an additional explanatory variable, such as Panayotou (1993), Selden
and Song (1994), Grossman and Krueger (1995), among others.

The data for emissions of SOy, NO, and income analyzed in this section is the
same as the one used in List and Gallet (1999) and Millimet et al. (2003). It comes
originally from the US EPA in their National Air Pollutant Emission Trends, 1900-1994°.
It consists of data on emissions and income for 48 US states from 1929 to 1994. As discussed
in both papers, there are at least two major advantages of this data. First, since the data
comes from only the US, it is likely to be of higher quality than cross-country data, such
as the Global Environmental Monitoring System (GEMS) data used in many studies (e.g.,
Grossman and Krueger, 1995; Panayotou, 1997). Another advantage is that it covers a long
period of time, so it is more likely to cover both, the increasing and decreasing parts of the
EKC!!,

In order to illustrate the methodology described in the previous chapter we first
estimate a reduced form relation (i.e., without covariates), and then, population density
is also included in the model. Two models are considered in this chapter. In the first
one, the data for all states and years is pooled together, and a nonparametric regression
is performed. The second one is a partially linear model with state and time effects as in

(3.1), and where g () is left unspecified and the nonparametric methods described in the

(2001).
1°T thank John List and Daniel Millimet for kindly providing me with a copy of their data.

For more information on the data, including emission estimation methodologies, see List and Gallet
(1999), and Millimet et al. (2003).
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previous chapter are used for estimation of the turning point. For comparison purposes, we
also consider quadratic and cubic specifications for g (-), as well as the Nadaraya-Watson
estimator with bandwidths of the usual order!2.

Table 3.1 presents basic statistics of the variables used in this section. Emissions
of SO2 and NO, are measured in thousands of short tons, income in thousands of 1987 US
dollars, and population density in habitants per square mile. As previously mentioned, the
per capita income levels cover a wide range of values, being the lowest 1,160 and the highest
22,460, both in 1987 US dollars'®.

Consider first the simplest case of estimating the reduced form relation by pooling
the data. Figures 3.1 and 3.2 present scatterplots of the corresponding pollutants against
per capita income for the pooled data. These scatterplots suggest that the pooled data
follows the EKC hypothesis and that a within sample turning point may be estimable.
Also, note that the data for SO, looks more disperse than the one for NO,. This is also
reflected in the higher standard deviation of SO, in table 3.1. Figures 3.3 and 3.4 present
results for NOg and SOg using the four specifications considered. Both NW estimators are
based on a second-order Gaussian kernel'*. The first one is the usual NW estimator with a
band width of order n=(1/5~, where n > 0 is chosen to undersmooth and center the limiting
distribution around zero. From here on, I will refer to this estimator as “the usual NW”.

As discussed in section 2.3, the estimator of the location of the turning point is based on

12The quadratic and cubic models using fixed effects are the same as the ones previously estimated in List
and Gallet (1999) and Millimet et al. (2003).

1871 the rest of the dissertation all money figures are in 1987 US dollars, unless otherwise noted.

'“In order to avoid boundary problems the nonparametric estimation is done in [min(z + A), max(z — k)],
where z is per capita income and A is the bandwidth used. Other ways to procede could be either the use
of boundary kernels (e.g., Gasser and Mteller, 1979), or consider local polynomial kernel estimators instead
of the NW estimators considered here, for which no boundary adjustment is necessary.
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a bandwidth of order n~(1/ 7)"’7, with 7 > 0 . This is done in order to use the asymptotic
mean-zero normal approximation to the distribution of the estimator presented in Theorem
1. The choice of bandwidth is always an issue when using nonparametric methods; and the
calculation of an optimal bandwidth for the cases discussed in this dissertation is left for
future work. In this application, the bandwidth is chosen as h = azgn~(1/9, wherea = 1,
Tq is the sample standard deviation of z, § is the corresponding order of the bandwidth and
7 is a small number used for undersmoothing. This type of bandwidth has been previously
used in the literature (e.g., Baltagiet al., 1996; Pagan and Ullah, 1999), and for our purposes
it has the advantage that the order of the bandwidth can be specified directly. Later, we
analyze the sensitivity of the results to the choice of bandwidth by varying a.

The four specifications used in figures 3.3 and 3.4 are close to each other, even
on the location of the turning point. Tables 3.2 and 3.3 present estimates of the location
and size of the turning point using the pooled data. The estimated turning points for
NO, and SO, using the proposed bandwidth are, respectively, 12,970 and 7,200 dollars.
As point of reference, per capita income in Illinois was 12, 970 dollars in 1971, and 7240
dollars in 1942. As suggested from the graphs, the estimates of the location of the turning
point in all four models for both pollutants are close to each other. However, the quadratic
specifications underestimate the size of the turning points. Note that, based on Theorem 1,
the last column in these tables presents the estimates based on the NW with a bandwidth
of order n~(1/7)=1 for estimation of the location of the turning point, and the NW with
a bandwidth of order n=(1/3)=7 for estimation of the level of per capita emissions at the

turning point. It is not surprising that both estimates of the location and size of the turning
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point based on the NW estimators in the third and fourth columns are close to each other,
since in both cases they are consistent. However, only the ones in the last column are
shown to be asymptotically normal. Hence, for the estimators in the last column, one is
able to compute asymptotic standard errors and confidence intervals based on Theorem 1.
Specifically, we use plug-in estimators to estimate the asymptotic variances in Theorem 1.
As expected, the standard errors of the nonparametric estimators are greater than the ones
from the parametric models; however, the former estimators are more robust to functional
form misspecifications. The nonparametric models used on the pooled data suggest that
the turning point for NO is between 11,937 and 14,002; and for SOz between 4,965 and
9,434 dollars; each with a 95% confidence level. Given the highest dispersion of the SOg
data in figure 3.2, it is not surprising that the confidence level of the turning point for this
pollutant is wider than the one for NO,. Also, an approximate confidence interval for the
size of the turning point based on the NW estimator can be calculated from the tables, as
well as joint confidence intervals for the location and size of the turning points.

Now consider the PLM with fixed state and time effects as described in (3.1).
In this context, the +,’s from equation (3.1) are state specific intercepts that control for
persistent differences across states that affect emissions (e.g., fossil fuel availability, tastes,
etc.); and the \¢’s are time specific intercepts that account for time varying factors that are
common to all US states (e.g., federal environmental policies and standards, macroeconomic
effects, changes in technology used, etc.). Figure 3.5 shows estimated emissions of NO; as a

function of per capita income!®. The curves for the PLMs are evaluated at the average state

Y5There are different ways to estimate the nonparametric part of a PLM (e.g., Stock, 1984; Robinson,
1988; Yatchew, 1997). Here the approach followed is the one described in Hirdle (1990). First, the outcome
variable and the fixed effects dummies are smoothed against per capita income. Then, the residuals from the
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and year effects to avoid scaling issues. The first point to note is that for all four models
considered the estimated curves have an inverted U shape. The curves from the PLMs in
Figure 3.5 are to the left of the ones from the pooled data in Figure 3.3, which means the
estimated truning points are lower in the PLM case. Also, in Figure 3.5 there seems to
be a little more variation across models in the location of the turning point as compared
to figure 3.3. Note that in this case the quadratic specification is very different from the
nonparametric ones. Table 3.4 presents the point estimates for the location and size of
the turning point for NO; using the fixed effect model in (3.1). All of the point estimates
are below the ones from the pooled data in Table 3.2. In Table 3.4, both estimates of
the location of the turning point based on parametric models are above the one from the
nonparametric model that uses a bandwidth of order n=/?~" in the last column. The
latter estimate of the turning point is 8,150 dollars, and the estimated level of emissions
of NO,, at this point is 113.3 short tons. An approximate 95% confidence interval for the
turning point in this case is given by [7548,8751])'6. As a point of reference, in 1966, per
capita income in Texas was 8,155 dollars.

Selden and Song (1994) estimate a turning point of 12,041, in 1985 dollars, for
NO; using twenty two OECD and eight developing countries from 1979 to 1987. They use
the same specification in (3.1) with g (-) being a quadratic function of per capita income.

Likewise, Cole et al. (1997) use data on eleven OECD countries from 1970 to 1992 and

outcome are regressed on the residuals from the fixed effects dummies to estimate the fixed effects. Finally,
the estimated fixed effects are substracted from the outcome, and theses outcome residuals are smoothed
against per capita income.

181t may seem strange that the estimated standard error for the nonparametric estimator of the location
of the turning point in Table 2.5 is less than the ones using the parametric models. A bootstrap exercise
would be helpful in this case to evaluate the performance of the asymptotic approximation to the variance
of the nonparametric estimator in this partially linear model. This exercise is left for future work.
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a fixed country effect model which is quadratic in per capita income and includes a linear
trend. Cole et al. (1997) also include a trade intensity variable in their specification. They
estimate a turning point of 15,100 (in 1985 US dollars) for NOg!7. It is always difficult to
compare estimated turning points across studies because of the different data sets used and
units of observation (e.g., cities, countries, states). However, given the results in Table 3.4
in which the quadratic model gives higher estimated turning points, it is possible that in
those papers the estimates are upward biased because of the use of an incorrect functional
form. Of course, a careful analysis of this conjecture would entail working with the data
used in those studies.

Now consider the fixed effects model for SO3. The fixed effects model in Figure
3.6 presents a very different picture from the one using the pooled data. The only two
models for which there seems to be a turning point are the quadratic and the usual NW
estimator, and for the other two models the curve is increasing over the income levels in
the sample. From Table 3.6 can be seen that the turning points for the quadratic and the
usual NW estimator are 20,140 and 19,780, respectively. For the former model is possible
to create a confidence interval for the turning point; however, given the different results
obtained for the four models is very likely the quadratic model is misspecified. Using the
NW estimators is possible to estimate a turning point for the one with the usual bandwidth;
however, in this case it is not possible to apply Theorem 1 to obtain confidence bounds.
On the other hand, when the NW estimator suggested by Theorem 1 is used, the curve

no longer has a maximum. Two points are worth mentioning here. First, in this case the

1In this case they report a standard error of 758. Selden and Song (1994) do not report standard errors
for their estimators.
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estimate of the turning point using the usual NW estimator is very sensitive to the choice of
bandwidth, and this may raise doubts on the existence of a turning point in this relation. For
example, the bandwidth used for the usual NW estimator in figure 3.5 using standardized
data is 0.1840 (see Table 3.4). If instead we use 0.18 as bandwidth, then the usual NW
estimator no longer has a maximum within the sample. Second, it is generally the case
that nonparametric estimation is more difficult near the boundaries, so it is not surprising
that estimating the location of a maximum when the maximum is near the boundary is also
difficult. In this context, developing a statistical test for the existence of a maximum could
be valuable.

Although many authors have documented an EKC for SOz (e.g., Grossman and
Krueger, 1991; Selden and Song, 1994; among others) using different data sets, some recent
papers have also failed to find such a relation. For example, Millimet et al. 2003 failed to
find a turning point for SO, with a cubic model using the same data as here, and Stern and
Common (2001) also found a monotonic relation between sulfur emissions and GDP per
capita using global data including developed and developing countries. In this context, the
results obtained here for SO; seem to confirm these recent findings. Moreover, note that if
we had only considered the quadratic model, then we would have concluded that per capita
emissions of SOz also followed an inverted U-shaped relation with a turning point of 20,140
dollars. Given that many of the studies that have found an EKC for SOz use a quadratic
specification, one possibility for the finding of an EKC for SOg in other studies is the use
of an incorrect functional form. This highlights the importance of considering more flexible

model specifications when estimating turning points.
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To illustrate the results presented in section 2.4, we now estimate the models
controlling for an additional available covariate, population density. Therefore, in this case
g(-)in (3.1) is a function of z and z, where z is the population density. As before, we
first estimate the models using the pooled data, and then we include fixed state and year
effects. Theorem 4 requires the order of the kernel used to be greater than k + 1, where k
is the number of covariates used. In this case K =1, and the use of higher order kernels is
required. Here, a sixth order Gaussian kernel is employed. Specifically, we use the product
kernel K (u,v) = K (u) K (v), with K (¢) = & (15— 10¢% +¢*) ¢ (¢), and ¢ (¢) the standard
normal density function. For estimation of the location of the turning point the order of
the of bandwidth used is n=(1/15)=7 where, as before, 7 is used to undersmooth 8. For
estimation of the size of the turning point we use the same sixth order kernel previously
described, but with a bandwidth of order n=(/13=" a5 required by Theorem 4. Finally, as
in the case without covariates, we also estimate the location and size of the turning point
using a second order Gaussian kernel with a bandwidth of order n=(¥/3)~", In all cases, we
selected the bandwidth as previously discussed.

Figure 3.7 presents the partial mean estimator used for estimation of the location
of the turning point for NO, based on the pooled data. Also, figure 3.7 shows the partial
mean estimator based on the second order kernel. In this figure, the quadratic and cubic
models presented are evaluated at the average population density. Note that for estimation
of the size of the turning point one needs to calculate the partial mean estimator only at

one particular point (i.e., at the estimated location of the turning point). Thus, I do not

%The optimal bandwidth for a NW regression estimator used to estimate the d derivative of a regression
function with ¢ regressors and using a kernel of order r is of order n"*/[2(¢+7)+4  However, note that since
in this case a partial mean is used with one variable not being averaged out (per capita income), then g == 1.
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show in figure 3.7 the curve of the partial mean estimator used to estimate the size of the
turning point!®. The curves in figure 3.7 are very similar to the ones for the reduced form
models presented in figure 3.3. However, the curve we use for nonparametric estimation of
the location of the turning point (the ones based on the sixth order kernel) is not as smooth
as in the reduced form model (see figure 3.3). This is in part because of the sixth order
kernel used, but also because of the second averaging in (2.15).

Table 3.6 presents the point estimates for the location and size of the turning point
of the EKC for NO;, after controlling for population density. The estimated turning point
based on our nonparametric estimator is 13,200 dollars, with a standard error of 735.8; and
the estimated size of the turning point is 129.4, with a standard error of 4.4. These results
are not very different from the ones obtained before in the reduced-form models. Selden
and Song (1994), using parametric methods, also obtain that conditioning on population
density does not affect results very much. As in the reduced form models, note that the
quadratic specification underestimates the size of the turning point.

Figure 3.8 shows the corresponding curves for SO2. As for NO,, the curves are
very close to the ones calculated based on the reduced form model (see figure 3.4). From
table 3.7, the estimate of the turning point for SOz controlling for population density is
7,420; and the estimated size is 202.9 short tons. The corresponding standard errors are
1,365 and 9, respectively.

As in the reduced-form models, we now consider a fixed state and year effects

model. The results from this model are very similar to the ones in the reduced form case.

1%Note that in the reduced form models presented before the estimator of the size of the turning point is
based on the usual NW estimator.
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The estimated curves for NO, in figure 3.9 still keep the inverted U-shape obtained when
pooling the data. However, the results in figure 3.10 suggest an increasing relation between
per capita emissions of SOz and per capita income. Like in the reduced form model, if
we were to use a quadratic model in per capita income we would have concluded that
the turning point is 20,130 dollars. However, according to the nonparametric models, the
results seem to be driven by the quadratic-in-income assumption. Also, note that for NO,
the quadratic specification overestimates the location of the turning point. From Table 3.8,
the estimate of the turning point using the partial mean estimator presented in this paper
is 8,690 dollars, with a standard error of 336.5. This point estimate is close to the result
obtained in the reduced form model in Table 3.4, which is 8,150 dollars. The estimated size
of the turning point in this case is 113.6 short tons, with a standard error of 1.4.

In the previous analysis the bandwidth was chosen as h = azgn~(/9-7, with
a = 1. In order to check the sensitivity of the results to different choices of h, we now vary a
in the interval [0.5,2]. We perform this analysis for the estimators presented in sections 2.3
and 2.4. Table 3.10 shows the estimated location and size of the tuming point for different
values of a when using the reduced form model on the pooled data. In this case, results
are fairly stable for the estimated location of the turning point across different values of h.
Table 3.11 presents the results for the reduced form model estimated using fixed time and
state effects. Although the estimates of the location of the turning point vary more in this
case, they are still reasonably close to each other. They go from 7,580 when a = 1.4 to
9,240 when a = 0.6. The estimated size of the turning point does not vary much with a. In

general, the results in this reduced form model are not drastically changed by the choice of
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band width.

Table 3.12 presents the results for the pooled data when controlling for population
density. Clearly, the choice of bandwidth becomes more important in this case. The esti-
mated turning point for NO, goes from 10,790 with @ = 0.5 to 16,400 witha =1.1. Tt is
also important to point out how the estimator of the turning point changes from 13,200 to
16,400 when changing a from 1 to 1.1. The estimates of the turning point for SO, are not
as sensitive as the ones for NO,. In fact, if we drop the extreme cases ¢ = 2 and a = 0.5,
all but one value are between 7,420 and 8,520. Table 3.13 shows the results using the fixed
state and year model. The estimates of the location and size of the turning point in this
case do not seem to vary much for values of a between 0.6 and 1.3. However, outside of this
range the estimates vary considerably, specially at the extreme values a = 0.5 and a = 2.

For comparison purposes, the same sensitivity analysis is performed for the esti-
mators based on a second order kernel used in tables 3.6 to 3.9. In this case, the results
do not change much when the a is varied between 0.5 and 2. From table 3.14, the turning
point estimates for NO, using the pooled data go from 12,780 to 13,330 dollars; and the
ones for SO go from 6,950 to 7,490 dollars. The turning point estimates using the par-
tially linear model vary slightly more, going from a 7,810 to 9,340 dollars (see table 3.15).
However, they are still fairly stable. Therefore, it seems that most of the sensitivity of the
estimates of location and size in tables 3.12 and 3.13 comes from using a sixth order kernel.
A simulation study could be valuable to determine if this is a special feature of our data.
Hence, bandwidth choice for the proposed estimators in section 2.4 is an important topic to

be considered in the future. Finally, the fact that the point estimates from the estimators
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using higher order kernels in tables 3.6 to 3.9 are close to the ones using a second order
kernel, along with the results from tables 3.14 and 3.15, gives us some confidence on our

previous results.

3.3 Conclusions

This chapter showed how one can use the results presented in chapter 2 to esti-
mate turning points (and optimal doses in general) nonparametrically and create confidence
bounds. In this chapter I estimated the location and size of the turning point of the envi-
ronmental Kuznets curve (EKC) for two pollutants, per capita emissions of NO, and SOg,
using data for 48 US states from 1929 to 1994. Using a reduced form model with fixed
state and year effects, I estimated the turning point for emissions of NO, to be equal to
8,150 dollars with a 95% confidence interval of [7,548, 8751]. The estimated size of the
turning point at the average state and year effect is 113.6 short tons, with a 95% confi-
dence level of [110.9, 116.3]. Using the same model, I found emissions of SOy to increase
monotonically over the range of income values in the sample. The results are very similar
after conditioning for population density. This empirical application also illustrated what
can go wrong when using parametric models to estimate turning points. For example, the
quadratic-in-income specification for SOg using state and year fixed effects suggested the
existence of an EKC with a turning point equal to 20,000 dollars. This conclusion was not
supported by our nonparametric methods. Moreover, in all the models considered in the
application the quadratic specification underestimated the size of the turning point. This

chapter concluded with a sensitivity analysis which suggests that the choice of bandwidth
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is important for the estimators considered in section 2.4.

Some caveats should be mentioned regarding our empirical application. While
I approached the problem of the functional form assumed for g(-) in (3.1), some other
things can go wrong with a specification such as (3.1). For example, the assumption that
the errors are independent is strong, and it may be violated by the data. A more careful
analysis would also look at the behavior of the errors over time. This is beyond the scope
of this dissertation and is left for future work. Also, one should be careful not to make
causality conclusions from the models estimated in this empirical application. At most,
they can be seen as suggesting that the conjecture that economic progress inevitably leads
to more pollution should be reconsidered, and that the quadratic models commonly used in
this literature to estimate EKCs may be misspecified in some cases. Finally, it is important
to point out that the literature on EKC has focused on estimating regression functions.
However, as discussed in section 1.6, it could be very valuable to also look at quantiles. For
example, the focus could be on estimating the median regression function of emissions of
NO; on per capita income; and to estimate the level of income at which the median level
of emissions of NO,, starts decreasing. The focus could also be on an upper quantile, such

as the 90th percentile?0.

20For further discussion on EKC see for example, Stern and Common (2001), Dasgupta et al. (2002),
Stern (2004) and Copeland and Taylor (2004).



3.4 Figures
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Figure 3.1. Scatterplot of pooled data for Nitrogen Oxide.
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Figure 3.2. Scatterplot of pooled data for Sulfur Dioxide.
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Figure 3.3. Pooled data. Nitrogen Oxide.
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Per capita emissions of Sulfur dioxide (in 1000 short tons)
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Figure 3.4. Pooled data. Sulfur Dioxide.
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Figure 3.5. Partially Linear Model with state and time fixed effects, evaluated

at average fixed effects. Nitrogen Oxide,
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Per capita emissions of Sulfur dioxide (in 1000 short tons)

Figure 3.6. Partially Linear Model with state and time fixed effects, evaluated
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Figure 3.7. Pooled data. Controlling for Population Density. Nitrogen Oxide.
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Per capita emissions of Sulfur dioxide (in 1000 short tons)
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T T T
< Quadratc N
. Cubic N
___ partial mean, 2nd order kernel & bw of order n"/°" AN
___ partial mean, 6th order kemel & bw of order n®"/19" y
| ! 1 I
0 5 10 15 20 25

Per capita Income (in thousands of 1987 US dollars)

79



Figure 3.9. PLM controlling for Population Density. Evaluated at
average fixed effects. Nitrogen Oxide.
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Figure 3.10. PLM controlling for Population Density. Evaluated at
average fixed effects. Sulfur Dioxide.
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3.5 Tables

Table 3.1. Basic Statistics. Number of Observations:3168.

Mean Std. Deviation Minimum Maximum
Per capita SO, emissionss 0.16 0.21 0.002 1.62
Per capita NO, emissions 0.09 0.07 0.02 1.14
Per capita Income 9.09 4.24 1.16 22.46
Population density 230.6 843.4 0.64 17,574

Emissions in thousand of short tons; income in thousands of 1987 US dollars and population density in

habitants per square mile.

Table 3.2. Pooled data, NO,

Models ]
Quadratic  Cubic in NW, usual NW,suggested order of bw
inincome  income bw (order for location (order n'*""™
ntorn) and size (order n"®M
Turning point 12.59 13.36 12.96 12.97
(0.2970)  (0.2081) (0.5267)
Level at turning 0.1154 0.1221 0.1298 0.1298
point (0.0017)  (0.0021) (0.0042)
Bandwidth® 0.1840 0.2916, 0.1840
*Standard errors in parenthesis
a. Bandwidth for standardized data.
Table 3.3. Pooled data, SO,
Models |
Quadratic  Cubicin NW, usual NW,suggested order of bw
inincome  income bw (order for location (order n"")
n oy and size (order n"®"M
Turning point 7.72 7.24 7.10 7.20
(0.3846)  (0.2423) (1.14)
Level at turning 0.1939 0.2053 0.2075 0.2073
point (0.0045)  (0.0053) (0.0092)
Bandwidth® 0.1840 0.2916, 0.1840

*Standard errors in parenthesis
a. Bandwidth for standardized data.
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Table 3.4. Partially Linear Model with state and year fixed effects, evaluated at average

fixed effects. NO,.

| Models |
Quadratic  Cubic in NW, usual NW,suggested order of bw
inincome  income bw (order for location (order ')
nerm and size (order n"*™

Turning point 10.79 8.66 8.94 8.15
(0.8118)  (0.7223) (0.3070)

Level at turning 0.1105 0.1111 0.1149 0.1133

point (0.0032)  (0.0014) (0.0015)

Bandwidth® 0.1840 0.2916, 0.1840

*Standard errors in parenthesis
a. Bandwidth for standardized data.

Table 3.5. Partially Linear Model with state and year fixed effects, evaluated at average

fixed effects. SO,.

| Models |
Quadratic  Cubic in NW, usual NW,suggested order of bw
inincome  income bw (order for location (order n'"M

oy and size (order n"*M

Turning point 2014 - 1978 e
(0.8243)

Level at turning 0.4638 - 04744 -

point (0.0364)

Bandwidth® 0.1840 0.2916, 0.1840

*Standard errors in parenthesis
a. Bandwidth for standardized data.



Table 3.6. Pooled data. Controlling for Population Density. NO,.

Models |
Quadratic Cubicin  Partial mean, Partial mean, 6" order
inincome  income 2" order kernel & suggested order
kernel & usual  of bw for location (order n’
bw _ (order (191 and size (order n’
n-(1/ )-n) (1/15)-r1)
Turning point 12.64 13.38 12.97 13.20
(0.3005)  (0.2079) (0.7358)
Level at turning 0.1157 0.1224 0.1307 0.1294
point (0.0017) _ (0.0021) (0.0044)
Bandwidth® 0.1840 0.5389, 0.4963

*Standard errors in parenthesis
a. Bandwidth for standardized data.

Table 3.7. Pooled data. Controlling for Population Density. S0O,.

[ Models ]
Quadratic Cubicin  Partial mean, Partial mean, 6" order
inincome  income 2" order kerne! & suggested order

kerne! & usual  of bw for location (order n’
bw (order 3 and size (order n’
n-(1/ )-n) (1/15)-n)
Turning point 7.76 7.27 7.03 7.42
(0.3823)  (0.2430) (1.3650)
Level at turning 0.1937 0.2051 0.2065 0.2029
point (0.0045)  (0.0053) (0.0090)
Bandwidth® 0.1840 0.5761, 0.4963

*Standard errors in parenthesis
a. Bandwidth for standardized data.

84
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Table 3.8. Partially Linear Model with state and year fixed effects, and controlling for
Population Density. Evaluated at average fixed effects. NO,

| Models |
Quadratic Cubicin  Partial mean, Partial mean, 6" order
inincome  income 2" order kernel & suggested order
kernel & usual  of bw for location (order n°
bw (order (713 and size (order n”
n-(1/ )-n) (1/15)n
Turning point 10.80 8.68 8.73 8.69
(0.8118)  (0.7254) (0.3365)
Level at turning 0.1106 0.1110 0.1129 0.1136
point (0.0033)  (0.0014) (0.0014)
Bandwidth® 0.1840 0.5739, 0.4963

*Standard errors in parenthesis
a. Bandwidth for standardized data.

Table 3.9. Partially Linear Model with state and year fixed effects, and controlling for
Population Density. Evaluated at average fixed effects. SO,.

Models ]
Quadratic Cubicin  Partial mean, Partial mean, 6" order
inincome  income 2" order kernel & suggested order
kernel & usual  of bw for location (order n’
bw (order (13 and size (order n”
n~(1/ )-n) (1/15)-n)
Turning point 2013 - e e
(0.8248)
Level at turning 04638 == e e
point (0.0364)
Bandwidth® 0.1840 0.5793, 0.4963

*Standard errors in parenthesis
a. Bandwidth for standardized data.



Table 3.10. Estimates of location and size of the turning point using bandwidth

h=an Vo ,with 8 =7 for location, & =5 for size, n = 3168, and for various values
of a. Pooled data.

| NO | SO,

a Location Size Location Size
2 13.66 0.1238 7.20 0.1975
1.75 13.43 0.1251 7.33 0.1989
1.5 13.23 0.1265 7.39 0.2006
1.4 13.17 0.1270 7.39 0.2014
1.3 13.12 0.1277 7.37 0.2025
1.2 13.05 0.1283 7.32 0.2038
1.1 13.01 0.1290 7.26 0.2054
1 12.97 0.1298 7.20 0.2073
0.9 12.94 0.1306 7.15 0.2094
0.8 12.94 0.1316 7.1 0.2116
0.7 12.95 0.1327 7.09 0.2138
0.6 12.97 0.1340 7.10 0.2164
0.5 12.98 0.1354 7.14 0.2204

Table 3.11. Estimates of location and size of the turning point using bandwidth

h=an" V9™ with =7 forlocation, § =5 for size, n = 3168, and for various values
of a. Partially Linear Model with state and year fixed effects, evaluated at average fixed
effects.

| NOx l SO,

a Location Size Location Size
2 7.81 0.1107
1.75 7.63 0.1103
1.5 7.71 0.1108
1.4 7.58 0.1106
1.3 7.77 0.1106
1.2 8.07 0.1117
1.1 8.02 0.1118
1 8.15 0.1133
0.9 8.19 0.1123
0.8 8.82 0.1126
0.7 8.89 0.1138
0.6 9.24 0.1139
0.5 9.17 0.1139




Table 3.12. Estimates of location and size of the turning point using a sixth order kernel

and bandwidth /= an~1/9 with §=15 for location, §=13 for size, n.=3168, and
for various values of @ . Pooled data, and controliing for Population Density.
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NOx l SOZ J

a Location Size Location Size
2 15.50 0.1181 6.90 0.1960
1.75 13.65 0.1275 7.56 0.1959
1.5 15.62 0.1170 8.22 0.1976
1.4 12.42 0.1340 7.98 0.1992
1.3 13.46 0.1297 6.88 0.2000
1.2 12.39 0.1320 8.34 0.2008
1.1 16.40 0.1039 8.52 0.1940
1 13.20 0.1294 7.42 0.2029
0.9 15.10 0.1206 8.45 0.1988
0.8 13.17 0.1298 8.21 0.2015
0.7 14.64 0.1215 7.54 0.2054
0.6 12.29 0.1239 8.14 0.1391
0.5 10.79 0.1173 4.80 0.1853

Table 3.13. Estimates of location and size of the turning point using a sixth order kernel

-8 \ith §=15 for location, § =13 for size, n=3168, and
Partially Linear Model evaluated at average state and year fixed

and bandwidth 2 = an
for various values of a.
effects, and controlling for Population Density.

NOy SO, |

a Location Size Location Size

2 17.48 0.0521 -
1.75 12.21 0.0927
1.5 12.87 0.0886
1.4 11.36 0.0989
1.3 9.42 0.1115
1.2 8.75 0.1125
1.1 9.35 0.1073

1 8.69 0.1136
0.9 8.87 0.1118
0.8 8.62 0.1095 - -
0.7 8.38 0.1117
0.6 8.99 0.1149
0.5 6.62 0.1081




88

Table 3.14. Estimates of location and size of the turning point using a second order kernel

and bandwidth /2 = an~/®™ with § =5 for both location and size, 7 =3168, and for
various values of a . Pooled data, and controlling for Population Density.

I NOx l SOZ

a Location Size Location Size
2 13.33 0.1250 7.39 0.1975
1.75 13.13 0.1262 7.19 0.1986
1.5 12.94 0.1275 7.42 0.2003
1.4 12.86 0.1280 7.34 0.2012
1.3 12.78 0.1284 7.27 0.2024
1.2 13.13 0.1291 7.19 0.2036
1.1 13.05 0.1299 7.11 0.2050
1 12.97 0.1307 7.03 0.2065
0.9 12.89 0.1315 6.95 0.2077
0.8 13.24 0.1322 7.30 0.2099
07 13.16 0.1336 7.22 0.2127
0.6 13.08 0.1350 7.14 0.2150
0.5 13.00 0.1366 7.49 0.2162

Table 3.15. Estimates of location and size of the turning point using a second order kernel
and bandwidth 4 = an~ 97 with §=S5 for both location and size, 7 = 3168, and for

various values of a . Partially Linear Model evaluated at average state and year effects,
and controlling for Population Density.

NO, ! SO, ]

a Location Size Location Size

2 7.81 0.1091
1.75 8.04 0.1095
1.5 8.27 0.1113
1.4 8.19 0.1103
1.3 8.96 0.1106
1.2 8.89 0.1129 20.32 0.4375
1.1 9.23 0.1076 - -

1 8.73 0.1129 —— )
0.9 9.07 0.1119 20.09 0.4447
0.8 8.99 0.1128 - --=
07 9.34 0.1136 - -
0.6 9.27 0.1135 19.43 0.5666
0.5 9.19 0.1149 19.78 0.4703
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Chapter 4

Simulation Study

4.1 Introduction

In this chapter I analyze the finite properties of the estimators presented in Chapter
2 through a Monte Carlo study. A few simulation results for estimators similar to the ones
presented in this dissertation can be found in the statistics literature. For example, Miieller
(1985) studies the performance of his estimators of location and size of the maximum. As
mentioned in Chapter 2, he considers the fixed design case with equidistant points in the
[0,1] interval, and his estimators are based on the Gasser-Miieller nonparametric estimator.
In his simulations, he works with two functional forms, one having a sharp Gaussian peak
and the other a smooth peak, and adds a mean-zero Gaussian error with variance o2 = 0.2
to them. The true location of the maximum in both cases is at 1/2, and the sizes are 4
and 2, respectively. Miieller reports results for 100 repetitions with sample sizes 25 and
100. Based on this set up, he concludes that in the location of asymmetric peaks the bias

is directed towards the flat part of the peak and that there is usually a negative bias in
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the estimators of the size of the maximum, which is greater for small and high peaks than
for flat peaks. He also concludes that higher order kernels improve the performance of his
estimators.

Mieller (1989) also performs a simulation study similar to the one in Miieller
(1985) but now focusing on the use by his estimators of a global versus a local bandwidth.
For this purpose, he considers a function with a sharp Gaussian peak and different variances.
He performs his simulations using 50 observations equidistantly in [0, 1] and 200 repetitions.
He concludes that there is a clear advantage of using local bandwidths for estimation of the
location and size of the maximum in terms of smaller average squared errors.

Finally, there are some papers which simulations focus on comparing the non-
parametric-regression based estimators in Mieller (1985, 1989) with the so-called best-r-
point-average (BRPA) estimators (e.g., Chen, Lo Huang and Huang, 1996; Bai and Lo
Huang, 1999; Bai, Chen and Wu, 2003 ). These later estimators, which focus mainly
on estimation of the location of the maximum, are based on picking the r observations
pairs with the highest values of y (outcome variable) and taking the average over their
corresponding values of  (the treatment variable) as the estimate. Consistency results
and rates of convergence for these estimators can be found in the literature (e.g., Chen, Lo
Huang and Huang, 1996), but asymptotic approximations to their distribution are yet to
be developed!. Those simulation studies usually consider different error distributions and
regression functions, including the one analyzed by Mieller(1985, 1989). They also consider

different values of r (e.g., 1, 5, 8), and the treatment variable is either taken to be equally

'Two advantages of these BRPA estimators are that they are easy to compute and they do not require
continuity at the maximum (e.g., see Bai and Lo Huang, 1999). However, as mentioned in Chapter 2, in
this dissertation I focus on nonparametric-regression estimators of the location and size of the maximum
because it is easier to extend them to the case where we need to control for additional covariates.
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spaced or uniformly distributed in a given interval, usually [0,1]. The BRPA estimators
have the disadvantage of being inconsistent when the right tail of the error distribution is
heavy, and this is confirmed in the simulations. However, it is also shown that even when
the error distribution has a heavy right tail the BRPA estimators sometimes perform better
(in terms of smaller average absolute deviations) than the ones in Miieller (1985) for some
choices of r and some sample sizes (e.g., 100, 200, 400). In general, these simulation results
suggest the use of the BRPA estimator when the error distribution has a lighter tail than
the normal distribution (e.g., Bai et al., 2003).

In this Chapter, as in the rest of the dissertation, I consider two settings. First, I
consider the case when the treatment level is assumed to be randomly assigned; and second,
the case when we control for an additional covariate in an average way. This latter case
has not been considered before in the literature. In the first case the simulations presented
here differ from the ones in the current literature in that we intend our simulation design
to be closer to the situations actually found in empirical research by basing our design on
a real data set. Specifically, I partly base the simulation design on the same data set used
in Chapter 3 to analyze the relationship between per-capita income and pollution. Also,
I consider larger sample sizes, a larger number of repetitions and I present a larger set
of summary statistics of the simulation results including those regarding estimation of the

asymptotic variance of our estimator, which have not been done before.
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4.2 Experimental Design

As in Chapter 2, let Y (t) denote the potential outcome under treatment level ¢,

where t € 7. Then, we can write our objects of interest as:

Qp = argmax E{Y(t)} (4.1)
and
p (o) = E{Y (a0)} (4.2)

where the first one is the location of the maximum and the second one its size. As dis-
cussed in Chapter 2, when assignment to different treatment levels is independent of po-
tential outcomes (Assumption 2.3.1.) we can write the dose-response function, E{Y (t)},
as the regression function of the observed outcome Y on the observed treatment level T',
or E[Y|T = t]. Thus, estimating o and (o) in this case is equivalent to estimating the
location and size of the regression function F [Y|T = t].

The data generating process is partly chosen to mimic the data used in Chapter
3. As discussed in that chapter, the data consists of measures of per-capita income and
per-capita emissions of NO, and SOz for 48 US states from 1929 to 1994. In this case our
treatment variable is given by per-capita income (in thousands of 1989 dollars)?. Table 4.1
shows some basic statistics of the per-capita income variable.

The functional forms g (t) = E [Y|T =t] considered in this experimental case are

given by:

2In this Chapter we ignore the panel-data nature of the original data and pool all observations. A Monte
Carlo study that takes this into account is left for future work.
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gi(t) = 0.07+0.025sin(0.5¢) +0.15¢ 101568} (4.3)
g2 (t) = 0.240.005sin(0.75¢ — 5) — 0.001 (¢t — 11)? (4.4)
g3(t) = 0.09+0.05sin(0.5¢ — 13) + 0.15e{~0-02(4-35)"} (4.5)

Each function has parameter values (ag, 1 (ag)): (7.7968,0.2019), (9.7418,0.2021)
and (8.5480,0.2059), respectively. These parameter values were chosen to be somehow close
to the estimated turning point (i.e. peak) for the relation between per-capita emissions of
SO2 and income obtained when pooling the data in Chapter 3 (see Table 3.3). Figures
4.1-4.3 show graphs for these functions. The first function has a sharp and symmetric
peak at 7.7968. This function is similar to the one analyzed in Mieller (1985, 1989). The
second one has a smooth and asymmetric peak at 9.7418. This second function represents
a difficult case for our estimator of the location of the maximum since, given the very low
curvature of the function, it would be difficult to detect the place where the function attains
its maximum. Finally, the third function has also a sharp peak at 8.5480, but the function
is relatively highly nonlinear.

I add a Gaussian error with standard deviation ¢ = 0.1 to the functions in (4.3)-
(4.5). For reference, when we calculate the empirical errors from a nonparametric regression
of per-capita emissions of NOz and SOz on per-capita income using the original data set, the

sample standard deviation of these errors is 0.07 and 0.2, respectively3. In this experimental

8As can be seen from Table 4.1 and Figure 4.1, per-capita emissions of SOz have some values which are
large as compared to the rest and they lead to large and positive empirical errors. The sample standard
deviation for the SO2 empirical errors when we drop their top 5 percent values is 0.1. Considering different
variances and adding other type of errors (such as the estimated errors from a nonparametric regression of
Y on T) to the functions in (4.3)-(4.5) could be very valuable. For brevity, we leave these extensions for
future work.
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case we consider five sample sizes: 100, 300, 500, 1000 and 3000. In order to have a better
idea of the noise-to-signal ratios in our simulations, figures 4.1-4.3 also show representative
simulated samples of size 500 for each of the models considered. Note that by partly basing
our simulated samples on an actual data set and by considering a variance level similar
to the one found in our original data, we expect our simulations to be useful to empirical
researches.

As discussed in Chapter 2 our estimators of ap and p (o) are

O =argmax gn, (t) (4.6)
teT
H(a0) = gns(@) (47)

where g, and gj, are the Nadaraya-Watson (NW) kernel estimators based on bandwidths

hr and hg, respectively. The NW estimator is given by

3> ViK(i5)
Gn(t) =5——— fort €7 (4.8)
; K(5E)

In our simulations we use a second order Gaussian kernel and choose the band-
widths Az, and hg to satisfy our conditions in Theorem 1. In particular, as in the em-
pirical application in Chapter 3, we set the bandwidths equal to hy = tgpn=¥7)=7 and
hg = tgpn~(1/5=7 for estimation of the location and size of the maximum, respectively.
Here, tgp is the sample standard deviation of per-capita income at each simulated sample
and 7 is a small quantity chosen to undersmooth so that we can use our asymptotic ap-

proximation to the distribution of our estimators presented in Theorem 1. As in Chapter
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3, I restrict the nonparametric estimation (and hence the search for the maximum) to the
interval [min(¢;) + hr, max(t;) — hr) in order to avoid boundary problems. Here, t; are the
per-capita-income observations from a given the simulated sample.

At each replication, we estimate the asymptotic variance of our estimators in The-
orem 1 using a plug-in estimator in the same way we did in our empirical application in
Chapter 3. Specifically, we substitute nonparametric estimates of each of the quantities
appearing in the asymptotic variances in Theorem 1. Finally, for comparison purposes, we
also present results for estimation of ap and u(ap) based on a cubic model of per-capita
income. In order to make a better comparison between the cubic and our nonparamet-
ric model, I also restrict the search for the maximum in the cubic model to the interval
[min(t;) + hr,max(t;) — hr).

Tables 4.2-4.4 present the results for each of the models in (4.3)-(4.5) based on
10,000 repetitions. For each estimator and sample size I report the number of times
the estimated function is monotonic, the mean and median bias, the square root of the
mean squared error (mse), the median absolute error, the standard deviation of the esti-
mates, the range of the estimates, the mean and median estimated standard error, and
the coverage rates for nominal 95% and 90% confidence intervals. For the purposes of
this chapter, I defined an estimated function to be “monotonic” when using our nonpara-
metric approach if either g, (min(t;) +hr) > Ga,, (t) or G, (max(t;) — hr) > Gn, (t) for all
t € (min(t;) + hy, max(t;) — hy); where, as before, t; are the per-capita-income observations
from a given the simulated sample. That is, I defined a nonparametric estimated function

to be monotonic if the value of the function when using the estimator Gy, (-) is greater at



96

either one of the boundaries than in the interior of the interval [min(t;) + hr, max(t;) — hr)].
Note that this definition would classify as “monotonic” a case in which the estimated func-
tion has a local maximum but the function evaluated at one of the boundaries is larger.
Figure 3.9 presents an example of this situation. For the cubic case, I defined an esti-
mated function to be monotonic if: i) the maximum of the estimated cubic function is
outside [min(t;) + hy, max(t;) — hy]; or ii) the value of the estimated cubic function at ei-
ther min(¢;) + hr or max(t;) — hr is greater than at any other point in the interior of
[min(t;) + hr, max(t;) — hr]*.

In all cases the results are as expected in terms of the mse, bias and variance
statistics of the estimators decreasing as we increase the sample size. In the sharp case
in Table 4.2 the location estimator has a relatively low mean and median bias, and its
coverage rates are higher than the nominal ones. However, the size estimator does not seem
to perform as well as the location one in this case. There we can see a negative bias in the
estimator of the size, as reported in Miieller (1985), and the coverage rates for nominal 95%
and 90% confidence intervals are relatively low and decreasing as the sample size increases.
Our size estimator performs much better than the cubic one, though. It is also worth
pointing out the relatively good performance of the location and size estimators in this
case as compared to the cubic ones even for a sample size of 100. Also, note that even for
relatively small sample sizes (e.g., n = 100) the fraction of times the estimated function is
monotonic using our nonparametric approach is very small. For sample sizes of 1000 all

estimated maximands are in the interior. On the other hand, the mumber of monotonic

“In principle we could find a case in which the estimated location of the maximum using the cubic model
is outside the interval [min(#;) + hr,max(é:) — hr] but inside [min(#;), max(¢;)]. This would be a within-
sample estimated maximum. I allowed for this possibility in the simulations below; however, this particular
case never happened.
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cases when using a cubic model is greater than when using our nonparametric approach.
This is because our nonparametric approach is better in capturing the sharp-peak nature
of the true function.

Table 4.3 presents the results for our second model, which represents a more dif-
ficult case for estimation of the location of the maximum since the peak is smooth and is
therefore more difficult to estimate the place where the function is maximized. As expected,
we see a larger bias and mean squared error than when the peak is sharp. Moreover, as
discussed in Chapter 2 in relation to the asymptotic variance obtained in Theorem 1, when
the peak of the function is smooth then the second derivative of the function at the maxi-
mum is smaller and we can expect a higher asymptotic variance. This is confirmed by the
results in Table 4.3. However, note that even in this more difficult case the coverage rates
for the location estimator are greater than the nominal ones. Also note that, as pointed
out by Miieller (1985), the bias in this case is directed towards the flat part of the peak.
As compared to the cubic-based location estimator, note that in terms of root mse the
superiority of the nonparametric location estimator shows up only for large sample sizes
(n = 3000); however, in terms of median absolute error it shows up even for smaller sample
sizes (n = 300). Regarding the size estimator, this seems to perform much better with
a smooth rather than with a sharp peak. In this smooth case even its coverage rates are
larger than the nominal ones. On the other hand, note that in terms of root mse and me-
dian absolute error the cubic estimator outperforms the nonparametric one for the sample
sizes considered. This is not that surprising given the smooth nature of the function to be

estimated and the much lower variance of the cubic estimator. In this smooth-peak case
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the number of times the estimated function is monotonic when using our nonparametric
approach is greater than in the sharp-peak case. In addition, we need larger sample sizes
in order to have all estimates for the location of the peak in the interior. These results also
show that is more difficult to estimate the location of the maximum when the function has
a smooth peak. Finally, note that the number of monotonic cases is very similar when using
either our nonparametric approach or the cubic one.

Table 4.4 presents the case of a highly nonlinear function with a sharp peak. As
in the first case, our location estimator performs reasonably well in this setting, specially
as compared to the cubic-based location estimator for which the number of cases in which
the estimated function is monotonic increases with the sample size. Nevertheless, the size
estimator does not perform very well in this case, showing a relatively large negative bias.
On the other hand, the size estimator still performs much better than its cubic counterpart.

Regarding the three models, note that the mean and median estimated standard
errors of our location estimators are usually higher than the standard deviation of the
estimators, specially for the models with sharp peaks. This may suggest that our estimates
of the asymptotic variance of our location estimators tend to overestimate their actual
variance. On the other hand, note that the mean and median estimated errors of the size
estimator are close to their standard deviation, which may suggest our estimated variances
are doing a reasonable job. By looking at the asymptotic variances obtained in Theorem 1,
this may suggest that our plug-in estimator of the second derivative of the regression function
evaluated at the estimated location is not very accurate, and is actually underestimating

its true value.
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Given the relatively poor performance of the size estimators in the presence of
sharp peaks, and following Miieller (1989), I investigate the performance of our estimators
when a local bandwidth is employed. The intuition for the use of a local bandwidth is that
if we choose a global bandwidth which is too large as compared to the optimal local one,
then we would be oversmoothing and we would decrease the estimated size of the peak.
This is likely to be the case in the presence of a sharp peak, as will be confirmed below.
As always, we are faced with the question of how to select the local bandwidth. Miteller
(1989) relies on a modified version of the procedure developed by Miieller and Stadtmiieller
(1987) to choose his local bandwidths®. Here, for illustrative purposes, I use an estimate of
the optimal bandwidth of the NW estimator at a particular point ¢6. It is well know in the

literature that this optimal bandwidth is given by’

A1) [K2w)dv\"°
h. = n 4.9
i <u%f(t) [g<2><t>}2> (“9)

where o2 (t) is the conditional variance of Y at t, K (-) is the kernel used, g®® (¢) is the
second derivative of the regression function at ¢, f (¢) is the density of the regressor evaluated
at ¢t and yy = [v2K (v)dv. Here I use two estimates of the optimal bandwidth in (4.9) to
evaluate the importance of correctly selecting the local bandwidth to be used. Note that the
unknown quantities in (4.9) are o2 (t), f (t) and g (t), from which the last one is the most

difficult to estimate. Because of this our first estimate of the optimal bandwidth uses the true

5In short, this procedure is based on an asymptotic relation between the optimal global and local band-
widths. Then, Miueller (1989) determines the global bandwidth based on the criteria discussed in Rice
(1984).

8We could have used some other ways of selecting the local bandwidth such as the one used by Miieller

(1989) or procedures based on bootstrap methods. The problem of bandwidth selection is left for future
work.

"See, for instance, Pagan and Ullah (1999).
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second-derivative function, which can be derived from the corresponding functions in (4.3)-
(4.5), evaluated at the estimated location of the maximum, @ The second estimate of (4.9)
uses a plug-in estimator of g2 (&). In both cases, the optimal bandwidth is undersmoothed
in order to satisfy our assumptions in Theorem 1.

Tables 4.5-4.7 present the results from estimation of the size for the three functional
forms in (4.3)-(4.5) using both estimators of the bandwidth in (4.9) and the global one used
before. For the first model, the use of the estimated bandwidth based on the true value of
the second derivative of the regression function improves results significantly. In this case,
the bias as well as the root mse and median absolute error are decreased, and the coverage
rates improve a lot, although they are still below the nominal 95% and 90% levels. Note
that this improvement is not as much when we use an estimate of the second derivative of
the regression function to estimate (4.9). Here, although the results improve as compared
to the use of a global bandwidth, the results do not improve as much as when we use the
true value of the second derivative of the regression function. Note that in this model, for a
sample size of 3000, the mean global bandwidth used is 0.7892, while when using the local
bandwidth based on the true second derivative the mean bandwidth used is 0.3398. Finally,
the mean local bandwidth used when estimating the second derivative is 0.54558.

Table 4.6 show the results for the case with a smooth peak. Here the use of a local
bandwidth does not improve, and actually seems to negatively affect, the performance of
the size estimator. Thus, using a local bandwidth for estimation of the size may not always

be the best approach to follow. Finally, Table 4.7 shows the results for the highly nonlinear

8Note that this discussion regarding estimation of the second derivative of the regression function at the
estimated value reinforces our previuos observation that our plug-in estimator of this quantity may not be
very accurate.
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case with a sharp peak. In this case the use of a local bandwidth improves the results
significantly. For example, for the local bandwidth that uses the true value of the second
derivative of the regression function and for a sample size of 3000, the bias is reduced by
more than 75%, and the root mse by more than a half. However, the coverage rates of the
estimator remained very low®.

In general, we can draw the following conclusions from the simulations presented
in this section: i). The nonparametric estimator of the location of the peak performs better
for sharp than for smooth peaks; ii). The more non-linear the true regression function is
the better is to use our nonparametric estimators as compared to the ones based on a cubic
specification, even for relatively small sample sizes (e.g., 100, 300); iii). For smooth peaks as
the one considered here, our location estimator needs a larger sample size for its superiority
over a cubic-based model to show up; iv). Our size estimator performs better for smooth
rather than for sharp peaks; v). The use of local bandwidths improves the performance of
the size estimator when the peak is sharp, but it may affect negatively for smooth peaks;
vi). In this regard, how much the performance of the size estimator improves with the use

of a local bandwidth depends on how well the optimal local bandwidth is estimated.

4.3 Non-experimental Design

Now we turn our attention to the case when we need to control for additional
covariates. As discussed in Chapter 2, in this framework we assume that assignment to

different treatment levels and potential outcomes are independent conditional on a set of

®As pointed out by Miieller (1985), the use of higher order kernels improved the performance of his
nonparametric estimators of location and size of the maximum. The Monte Carlo analysis of how the use
of higher order kernels affects our estimators is left for future work.



102

covariates (Assumption 2.4.1). In this case, we showed in Chapter 2 that we can write the
dose-response function as the expectation over the covariates, X, of the regression function
of Y on T and X. Using our notation, we can write our estimators as a function of the

observed data as

ap = argmax Ex [g (t,)] (4.10)
and
p (o) = Ex [g (cvo, )] (4.11)

where g (t,x) = E[Y|T =t, X = z]. Based on these equations we estimate our quantities

of interest as

~ 1< N

G = argmax— 2 7 (i) Gny (T, i) (4.12)
=~ JUR B S
E{Y (00)} = Tin, (@) = = D 7 (%) Gns (@ 1) (4.13)

where g, (¢, ) and gng (¢, ) are the NW multivariate regression estimators of the regression
function g(t, x) based on bandwidths hz and hg, respectively; and 7(z;) is a trimming
function used to keep the denominator bounded away from zero. As discussed in Chapter
2 estimators (4.12) and (4.13) are based on partial mean estimators, which control for
additional covariates by averaging over them.

In this chapter I consider the case with one additional covariate, As discussed in

Sections 2.4 and 2.5, the case with multiple covariates is the same in principle, although it is
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more difficult in practice because of the dimensionality problem when using nonparametric
methods. As in Chapter 2, the covariate used in this section is population density. Table
4.1 presents summary statistics for population density, and Table 4.8 reports the correlation
matrix for per-capita income, population density and emissions of NOg and SOz. In our
simulations we resample from the joint empirical distributions of T" and X. Figure 4.4
shows a scatterplot of per-capita income and population density from our original data
set. In general, we can see that the population density variable is more disperse for values
over 200, and it reaches levels over 1000. Also, note that for values of per-capita income
below 5000 dollars we do not have observations with high population density. Similarly, for
values over 15,000 dollars the amount of data is less, and for very large values of per-capita
income we do not have observations with low population densities. As we can expect, our
nonparametric methods will be negatively affected in these regions.

In this nonexperimental case we choose the true regression functions to somehow
reflect the observed relationship between population density and per-capita emissions of
NO; and SOg. Here we consider two models, one having a sharp and symmetric peak and
another one with a smooth and asymmetric peak. The true regression functions in this case

are given by

gt,z) = —0.25+0.15{015(-95)°} | g 175¢{-0025(t-01)"}
+10000e{-0.01e-10} (@.14)

g2 (t,z) = 0.01sin(0.75t — 5) — 0.002 (t — 0.01z — 9)% + 10000e{0012=10} (4 15)

Following (4.10) and (4.11), the dose-response functions are given by E{Y (t)} =
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Ex [g (t,x)), where Ex is the empirical expectation of the population density variable based
on the original data set. Using this approach, the true values of the parameters (o, 4 (c0))
for the models based on (4.14) and (4.15) are given by (9.2982,0.2107) and (9.4262, 0.2354),
respectively. Figures 4.5 and 4.6 show graphs for these functions. As in the experimental
case, we expect the second function to be a more difficult case for our location estimator.
In order to gain more insight into the functions we are considering and our available
data, figure 4.7 presents a scatterplot of per-capita income and the output generated from
a1 (t,z) in (4.14) using our original data (without adding an error term), as well as the
true dose-response function. Figure 4.8 shows the corresponding scatterplot for go (t,z) in
(4.15). Note that, as we mentioned before, for values of per-capita income below 5,000
dollars we do not have observations with high population densities. Hence, most of the
observed values of g (¢, ) and g2 (¢,2) appear at the top of the graph. Thus, we may find
difficult to apply a partial mean estimator like the ones appearing in (4.12) and (4.13) in
this region. In fact, one would expect a partial mean estimator to become noisier and to
overestimate the true values of the dose-response function as we approach to this region.
As in the experimental case, we add a Gaussian error term with standard deviation
o = 0.1 to the models in (4.14) and (4.15). The sample sizes analyzed are 100, 300, 500,
1000 and 2000. Figures 4.5 and 4.6 show a scatterplot of a representative simulated sample
of size 500 for each of the functions analyzed. Just by looking at these figures, and based on
our previous discussion regarding figures 4.7 and 4.8, we can see that in this case is going to
be more difficult to estimate the true location and size of the peak than in the experimental

case.
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In order to satisfy our assumptions in Theorem 4 we base our estimates on the same
six-order Gaussian kernel used in our empirical application!? and choose the bandwidths
using standardized data as hy = n~(1/15)-7 and hg = n~(¥/13-7 for estimation of the
location and size of the maximum, respectively. As before, 1 is used to undersmooth.
Finally, we trim those observations with estimated joint density lower than 0.01. Finally,
for reference, we also estimate a cubic model in per-capita income and evaluate it at the
sample mean population density®*.

Tables 4.9 and 4.10 present our simulation results based on 1000 repetitions, The
summary statistics shown are the same as the ones shown in Tables 4.5-4.7. Table 4.9
reports the results for the sharp-peak case. For the location estimator, the mean bias and
the median absolute error decrease as the sample size increases. The root mse also decreases
as sample size increases except for a sample size of 2000, in which case there is an increase
in the standard deviation of the estimators which leads to an increase in root mse. I will
come back to this point later. Here is important to note the difference between the mean
and median estimated standard errors, which suggests the presence of some large estimated
standard errors in some simulated samples. Also note that the coverages for large sample
sizes are below the nominal ones. As compared to the cubic-based location estimator, the
nonparametric estimator performs better in terms of root mse and median absolute error
even for small sample sizes; however, for very small sample sizes (e.g. n = 100) the large

estimated standard errors can make difficult to create meaningful confidence intervals.

108 pecifically, the kernel is given by K (u,v) = I?(u)f("(v), with I?(C) =1 (15 -10¢% +¢*) ¢ (¢), and
¢ (¢) the standard normal density function.

11As before, to avoid boundary problems in the nonparametric estimation we look for the location of the
maximum in the interval {min (ts;) + hr, max (¢s:) — hr], where ts; is the standardized per capita income
from a given simulated sample.
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Regarding estimation of the size in this sharp case, the bias as well as the root
mse and median absolute error decrease as the sample size increases. As compared to the
sharp cases presented in the experimental case, the coverage rates seem reasonably good,
although they are still below the nominal values. In general, the size estimator performs
much better than its cubic counterpart, even for small sample sizes (e.g., n = 100).

Table 4.10 presents the case with a smooth peak, which as we have mentioned poses
a difficult problem for our location estimator. For the location estimator, the root mse and
median absolute error decrease when the sample size increases. Here, it is important to note
the discrepancy between the mean and median estimated standard errors, which suggest the
presence of some large estimated values. Moreover, note that in this case even the standard
deviation of the estimates is relatively large. The location estimator based on the cubic
model shows a larger bias. However, its root mse and median absolute error are smaller
than for our location estimator even for large sample sizes (n = 2000) because of its much
lower variance. Hence, in this setting we may need very large sample sizes for our location
estimator to outperform the cubic one. This is not surprising given that estimation of the
location of the maximum is like estimating the first derivative of the function. On the other
hand, the nonparametric estimator of the size performs reasonably well, and outperforms
the cubic-based one for all sample sizes considered.

So far we have ignore the fact that for our nonparametric estimator as the sample
size increases the number of cases in which the estimated function is monotonic also in-
creases. This result is mainly an artifact of the way we deal with the boundary problem in

nonparametric estimation. Specifically, remember that to avoid boundary problems we re-
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strict our search for the maximum to the points between min (¢s;) + Az, and max (ts;) — hp,
where ts; stands for standardized-per-capita-income observations from a given simulated
sample. Hence, as n increases and h decreases, we allow ourselves to look for the maximum
closer to the boundaries. As previously discussed, we do not have enough data close to the
boundary, so our estimation there becomes very noisy and we can end up with some high
estimates of the dose-response function which our estimator identifies as the maximum (see
for example figure 4.9). This illustrates the importance of having enough data and overlap
between our treatment and covariates in order for our nonparametric estimators to work
properly. In Table 4.9, this also increased the standard deviation of the estimator for a
sample size of 2000, and we ended up with a larger root mse than with a sample size of
1000.

To evaluate the performance of our estimators when i) the interval where we look
for the maximum does not increase with the sample size and; ii) we have “enough” data
points and a “reasonably” overlap between our treatment and covariates, I simulate our
models again but now restricting the search for the maximum between the 25th and 75th
sample percentiles of the treatment.

Table 4.11 presents the results for the case with a sharp peak. Now, as expected,
the number of monotonic cases using our nonparametric estimator decreases as the sample
size increases. The root mse and the median absolute error for the location estimator
also decrease with the sample size. Note that in this case, for a sample size of 2000, the
standard deviation of the location estimates is much smaller than the one shown in Table

4.9. Also, it is important to point out that in this case the discrepancy between the mean
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and median estimated standard errors is not as large as in Table 4.9 and for large sample
sizes (n = 2000) they are very close to each other. As for the coverage rates, they are still
below the nominal ones. Regarding the size estimator, the results are similar to the ones
presented in Table 4.9. Finally, it is worth pointing out that in this sharp-peak case the root
mse and median absolute error are much more smaller for our nonparametric estimators
than for the cubic-based ones for large sample sizes.

The results for the case with a smooth peak presented in Table 4.12 show that
the root mse as well as the median absolute error for the location estimator decrease with
the sample size. In this case the mean of the estimated standard deviation of the location
estimator is smaller than the ones shown in Table 4.10, and for a sample size of 2000 it
is reasonably close to the median. Moreover, in this case the standard deviations of the
location estimator are smaller than the ones shown in Table 4.10. The cubic-based location
estimator still performs better than the nonparametric one in terms of root mse and median
absolute error for the sample sizes considered. As for the nonparametric size estimator, the
results do not change much from those reported in Table 4.10.

From our simulations in this non-experimental case we can draw the following
conclusions: i). As in the experimental case, our nonparametric estimator of location
performs better for sharp rather than smooth peaks; ii). For both models and all sample
sizes considered, our size estimator performs better than the one based on the cubic model
in terms of lower mse, median absolute error, bias and coverage rates; iii). For the sharp-
peak case considered here, the performance of our location estimator was better than thé

one based on the cubic model in terms of lower root mse and median absolute error; and
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in some cases the differences were large; iv). For the smooth case considered here, the
location estimator based on the cubic model has a lower root mse and median absolute
error than our location estimator for all sample sizes considered. This may suggest that in
this case we need a large amount of data for our location estimator to perform better than
the cubic-based one; v). In general, in this non-experimental case we need larger sample
sizes than in the experimental case for our asymptotic results to work properly. This is not
surprising given that in the non-experimental case we need to estimate nonparametrically
a high dimensional function (i.e., E [Y|T, X]) with some precision. Moreover, as we have
mentioned, estimation of the location of the maximum is like estimating the first derivative
of the function. vi). It is important to have enough data and overlap of our treatment with
the additional covariate in order for our estimators to perform adequately. Otherwise, we

may have to rely on parametric assumptions.

4.4 Conclusions

In this chapter we analyzed the performance of our estimators in finite samples
through a simulation study. In order to gain insight into the behavior of our estimators
in situations empirical researchers may find in their work, we partly based our simulation
exercise on a real data set. Specifically, our simulations partly rely on the data set we used
in Chapter 3, and we added to our models an error term with variance similar to the ones
we could find in actual data sets. Also, we faced our estimators with difficult situations,
such as very smooth peaks.

In general, our location estimator performs better the sharper is the peak of the
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function of interest. On the other hand, the size estimators find more difficult to estimate the
true size of the peak the sharper is the peak. Our results in the experimental setting show
that the use of local bandwidths improves the performance of the size estimator; however,
the level of improvement depends on how well the optimal local bandwidth is estimated.
Although we did not investigate the use of local bandwidths in our non-experimental setting,
this conclusion is very likely to be extended to this case. As compared to the location and
size estimators based on a cubic model, our estimators usually performed better in terms
of a lower root mse and median absolute error, sometimes even for relatively small sample
sizes (e.g., 100). This conclusion is stronger the sharper is the peak and the more non-linear
the function of interest is. Focusing in our non-experimental setting, we talked about the
importance of having enough data and overlap between our treatment and covariate for
estimation of the location and size of the maximum. In the absence of such overlap, one
may need to rely on parametric assumptions to extrapolate to those regions with not enough
data and /or poor overlap.

In this chapter I only considered the case with one additional covariate. As dis-
cussed in section 2.4, the case with more covariates can be approached in the same way
as with a single covariate. However, as discussed in section 2.5 and as illustrated in this
chapter, the more covariates we add the larger sample sizes we need for the adequate per-
formance of our estimators. For the case with many covariates our estimators may become
intractable. In section 2.5 I argued that in this case the use of dimension reduction tech-
niques such as additive models, partially linear models and other semiparametric techniques

becomes relevant. Given the good performance of our estimators in the experimental design
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(i.e., with only one regressor), the dimension-reduction techniques just mentioned are likely
to work properly. The analysis of different dimension-reduction techniques using simulation
methods is left for future work.

Finally, studying the performance of our estimators under different variance levels
and error distributions, as well as analyzing of the use of higher order kernels and semipara-
metric models, can be very useful. In addition, it would be very enlightening to compare
our estimators to estimators based on higher-than-cubic polynomials, and to consider the

panel data structure of our original data. I left these considerations for future work.
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4.5 Figures

Figure 4.1. Regression curve g, and a representative simulated sample of size 500.
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Figure 4.2. Regression curve 9, and a representative simulated sample of size 500.
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Figure 4.3. Regression curve 9, and a representative simulated sample of size 500.
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1I;|c%xre 4.4. Scatterplot of per-capita income and populatlon den9|ty from original data.
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Figure 4.5. True dose-response function based on g 1(t,x), along with
a representative simulated sample of size 500.
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Figure 4.6. True dose-response function based on gz(t,x), along with
a representative simulated sample of size 500
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Figure 4.7. Scatterplot of per-capita income and output generated from (4.14)
based on the original data (no error added), along with true dose-response function.
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Outcome of interest

Figure 4.8, Scatterplot of per-capita income and output generated from (4.15)
based on the original data (no error added), along with true dose-response function.
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Figure 4.9, Example of a nonparametric fit of the dose-response function based on g1(t,x) and
for which the estimqted peak i§ at the bomlmdary. Fitlbased on pandwidth hL and sample size 500.
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4.6 Tables

Table 4.1. Basic Statistics. Number of observations: 3168.
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Per-capita
Income Emissions of NOyx | Emissions of SO, | Population density

Mean 9.0893 0.0928 0.1647 132.3179
Std. Deviation 4.2415 0.0735 0.2056 198.7439
Minimum 1.1621 0.023 0.0021 0.8196
Maximum 22.4625 1.136 1.8179 1080.3
Percentie:

1% 1.8439 0.028 0.0096 2.3678
5% 2.8135 0.0347 0.0254 4.7204
10% 3.7694 0.0398 0.0357 8.2616
15% 4.4771 0.044 0.0459 9.8849
20% 5.2159 0.0479 0.0529 17.6644
25% 5.8475 0.0514 0.0591 25.4093
30% 6.346 0.0555 0.0667 32.3025
40% 7.3529 0.0659 0.0807 45.7986
50% 8.4346 0.0759 0.0968 58.7491
60% 9.9725 0.0874 0.1193 75.9248
70% 11.5933 0.0999 0.1588 101.1822
75% 12.3803 0.1066 0.1839 131.8647
80% 13.1763 0.1147 0.2158 166.4229
85% 14.0093 0.1323 0.2614 247.1094
90% 14.9382 0.1624 0.3357 361.3737
95% 16.2717 0.2064 0.5451 647.8338
99% 19.1976 0.3807 1.1668 956.3541
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Table 4.8. Matrix of correlation coefficients.
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Per-capita
Income Emissions of NOy | Emissions of SO, | Population density
Income 1
Emissions of NO, 0.2363 1
Emissions of SO, -0.1296 0.3014 1
Population density 0.3292 -0.2275 -0.1858
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Appendix A

Proofs: Experimental Design

Let go(t) = E[Y|T =t]; then, the parameters of interest in Theorem 1 are:

ap =argmax go(t) and go(ag). These parameters are estimated respectively as
teT

a =argmax Jp, (1)
teT

do(cw) = Gr, (@)

where g; (t) is the Nadayara-Watson estimator

> VK (Gk)
Gn,(t) = B
£

based on the bandwidth h; and where K (-) is a Kernel satisfying the conditions on Theorem
1.

The result in Theorem 1 states that

V/nhi @ — ag) 0 o2 0
' AN s (A1)

Vnha(3 (@) = go(ao)) 0 0 o}
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_UQLQ_QL_ M)()]2 = -
with of = ool fotom) f[K dz and 03 = f ) 2alo0) (1K (2)]%dz; and where the super

script (7) denotes the jth derivative with respect to t.

The general approach of the proof is similar in spirit to those in Miieller (1985) and
Ziegler (2000), but is closer to the latter since Ziegler (2000) also considers the random design
case and the NW estimator. However, as mentioned in the text, rather than using kernels
of different order for estimation of location and size of the maximum, we use bandwidths
of different orders for their estimation.

First, we briefly sketch the steps involved in proving Theorem 1. To simplify

~

notation let Gn, () = g1 () and G, () = G2 (-). According to the Cramér-Wold device we

need to show that for every real numbers A; and Ay we have:

Ay/nh3(@ — ag) + Aevnha(G2(@) — go(ao)) —

N(o, %2 Xod (ao) / KD(2)] 2dz+—2ﬂﬂ°‘—° / [K(z ]2dz) (A.2)
0

()2 fo(ao)

As usual in the nonparametric literature (e.g., Bierens, 1987; Pagan and Ullah,

1999), and similar to Ziegler (2000), the first step involves showing that we can write

¢ 3@~ a0) + o y/nha(G2(8) — go(a0))
<"'1'= z”: [Y: — 90 ao)]K*(ti;hbhz)) +0p (1) (A.3)
=1

fo(a Vil

with K*(t;;h1,he) = °‘h ) ( "t'). Lemmas 6 and 7 will be

(2)(00 h2

helpful in showing (A.3). The first one shows that \/nhl a—ag) = Op (1), while the second

one shows that vnha(g2(a) — go(an)) = vnha(G2(co) — go(eo)) + op(1).
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The next step is to show that the term inside the parenthesis in (A.3) is asymp-
totically normal. As is usually done in the literature, we derive the limiting distribu-
tion in two stages. Letting Wn; = [Vi — golao))K*(ti; h1, h2), we first show in Lemma
9 that —\/]: 1:1 {Whr,i — E(Whny)} is asymptotically normal. Then, Lemma 10 shows that
-j;L 1221 E(Wy;) — 0. In order to highlight the importance of the kernel being symmetric
for the asymptotically independece result of the estimators of location and size, we calculate
the asymptotic variance of W; in Lemma 8.

We now present the lemmas to be used in the proof of Theorem 1.

Lemma 6 (Asymptotic Normality of the Location of the Maximum). Assume:
(i) {(1,t1) 5 -« s (Yn,tn)} is an i.i.d. sample.
(ii) E [|Y|2+6] < oo for some é > 0.
(i1i) o € T, where T is compact and og is in the interior of 7.
(iv) go(t) is uniquely mazimized at g and is three times continuously differ-
entiable and its derivatives up to the third order are bounded. Also, g(()z)(ao) #0.
(v) fo(t) is continuous and bounded away from zero uniformly in T. Also,
partial derivatives of fo(t) at o exists up to the third order and are bounded.
(vi) Partial derivatives of o3(t) ezists up to the third order and are bounded.
(vii) h1 — 0, nhf — oo, nh} — oo, nh — oo, nh] — 0, as n — .
(vii) The kernel K(-) satisfies:
(a) [ Ku)du=1, [u*K (u)du < oo, and [ |K (u)| du < co.
(b) K is symmetric and three times continuously differentiable.

(¢) lul[K ()] = 0 as [u| — oo.
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(d) sup [ K (u)] < oo

() [ [KD(@)]* du < co.

(f) For some 6 > 0 we have that [ |K(u)|**® du < 0.

(9) Finally, letv (w) be the characteristic function of K (-) so that 1 (w) =
[ ™K (u)du, with i> = —1. Then, assume that [ |1 (w)|dw < oo and [ |w¢ (w)|dw <

.

Proof. Under our assumptions we have that & satisfies 'g‘(ll) (@) = 0. Expanding

this expression around ag and solving for & — ag gives

A
G- g (a0) (A.4)

U )
where o is a mean value. Thus, the three key ingredients in showing asymptotic normality
of v/nh$ (& — ag) are (i) consistency of @, (ii) uniform convergence in probability of §§2) (t)
to 962) (t); and (iii) asymptotic normality of M@‘il) (o).

First, we consider the consistency of @&. This follows easily by noting that @ is
an extremum estimator with objective function g (¢), t € 7. Hence, by Theorem 2.1 in
Newey and McFadden (1994), the result follows from continuity of go(t), go(t) being uniquely
maximized at g, 7 being compact and from uniform convergence in probability of g; (t)
to go(t). This latter result is standard in the literature (e.g., Theorem 2.3.1. in Bierens
1987, or Theorem 3.7 in Pagan and Ullah 1999) and follows from our assumptions. Thus,

a-d a.
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Next, consider uniform convergence in probability of @\(12) (t) to g((,2) (t). Results of
this type can also be found in the literature (e.g., Schuster and Yakowitz, 1979; Ahmad
and Ullah, 1988). Instead of using any of those results, in Lemma 11 we obtain a uniform
convergence result for higher order derivatives of the NW estimator based on the approach
followed by Bierens (1987). The rate of uniform convergence derived in Lemma 11 will be
useful in proving Lemma 7 below. For the moment, note that our assumptions in Lemma
6 satisfy all conditions in Lemma 11 for the estimator of the second derivative of go (-).
Hence, ﬁgz) (t) converges uniformly in probability to 962) (¢). This latter result, along with
consistency of @, continuity of g(()2) (t) and the fact that o is a mean value between & and
ap, imply that 5(12) (a*) 5 g(()2) (c0).

Finally, consider asymptotic normality of \/7%;@(11) (o). As in previous cases this
result is also standard in the literature. This result is presented, for example, in Theorems
4.1 and 4.2 from Pagan and Ullah (1999). It is easy to verify that our assumptions impliy the

result of those theorems, so that \/n_h‘;”gp) (ag) BN (0, [foloo)) ™ (o) [ [K(l)(z)]zdz).

Therefore, the result in Lemma 6 follows by using Slutzky theorem. ®

Lemma 7 Assume
(i) Same set of assumptions as in Lemma 6.
(ii) ha — 0, nh§ — oo, nh§ — oo, nh§ — 0, as n — co.
(1i1) K is symmetric and three times continuously differentiable.

Then,

Vnha(2(8) — go(a)) = v/nha (G2 (o) — go (o)) + op(1) (A.5)

Proof. Using the mean value theorem we can write g2(@) = g2(ao) +§§1)(a*)(& -
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ap), for some a* between & and ag. Subtracting go(ag) from both sides and multiplying by

/nhy we have:

V/nhz (82(8) = gola0)) = /nhs (Ga(00) = gola0)) + v/haBs(o*) (@~ c0)  (AS)
Hence, we need to show that the second term to the right of (A.6) is 0p(1). Again,
for a suitable mean value o** between oo and o* we can write §§1)(a*) = Eél)(ao) +

’9422) (@**)(a* — ap). Thus we have that:

o N —
’I’th’g‘él)(a )(a —_ ao) = nh%h% nh%xg\él)(ao) nh‘i’(a _ aO)
1 \/ 2 Hox * ~
+ /nh‘f h2lg§ )(a ) V nh?(a - 0‘0)\/ nh:{’(a —ap)(A.7)

Consider the first term to the right side of (A.7). Note that from Lemma 6 we
know that \/n_hif(a —ag) = Op(1). Also, as in Lemma 6, we can use Theorems 4.1 and
4.2 in Pagan and Ullah (1999) to show that \/n_h%fjél)(a) = Op(1). The conditions of those
theorems require hg to be such that nh§ — oo and nh? — 0, which clearly do not contradict

our assumptions on hs. Finally, observe that

since by assumption nhf — oo and nh§ — oco. Thus, the first term to the right of (A.7)
is 0p(1).

Now consider the second term to the right of (A.7). Again, from Lemma 6 we
know that /nh$(@ — ap) = Op(1). Also, given that |o* — ag] < [@ — ag| we have
M(a* — @) = Op(1). Therefore, in order for the expression in (A.7) to be op(1), we
require (nhf) ~1/2 \/Fg’g\g)(a**) £ 0. Write

Vha

1

Vha

6
nhy

h
\/%? sup }982)@)’

up [o87(8)| <~ sup o7 (8) - o (8)| +

3
o>
ol
®
[=
o
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Given our assumptions, we know that (nh‘f)_l/ 2 Jha sup ’ géz)(t)l = 0(1). From Lemma

11 we know that sup, ‘f}éz)(t) - g(()2) (t)‘ =0p ((nhg)_l/2). Thus, we obtain that (nh§) -1/

N UG

< 0Op ((nhff)_l/2 (nhg)_l/z). Note that if we use a badwidth with the
optimal order n~Y/3, then nh§ — d? > 0 and (nh‘f)_l/2 (nhg)_1/2 — 0. Hence, in
this case (nh‘f) -1/ \/l_z;’95§2)(t) converges uniformly to zero, which combined o™ £ aq
and continuity of g((,Q)(t) imply that (nh?) -1/2 \/h_2§§2)(a**) £ 0. However, in Theo-
rem 1 we decided to center the distribution around zero by choice of bandwidth. Let
h1 and hy be proportional, respectively, to n=(1+€)/7 and n=1+0/5 where ¢ and 7 are
small positive numbers used for undersmoothing. Let “~” denote proportionality. Then,
(nhff)_l/2 (nh%)_l/2 « (n=(1=6e=T)) Thus, if ¢ and 7 are chosen such that 1 > 6e + 7,
then (nh‘f)_l/2 (nhj) “2 , 0 and consequently (nh‘f)_l/2 V25 () B 0. Hence, the
second term to the right of (A.7) is o, (1)1

Thus, both terms to the right hand of (A.7) are o,(1), and the conclusion of
Lemma 7 follows from (A.6). ®

Now, in order to highlight the importance of the kernel being symmetric for the
asymptotically independece result of the estimators of location and size, we calculate the
asymptotic variance of Wy ; = [¥; — go(co))K*(ti; h1, h2), with K*(t;; by, he) as defined in

(A.3), in the following Lemma.

— K1)

Lemma 8 Let Wy; = [Y; — go(oo)|K*(t:; hi,he), with K*(ti; hy, he) = TA;_
’ [ CTYVEN

—Lq —_ el /74 .
(Mhl ) —Ak\/hz) K (‘2““—t‘h2 ), and assume that:

!This part of the proof works nicely if we use kernels with bounded support. In this case we would
have (e.g., Newey (1994)) sup, ‘@éz)(t)—géz)(t)‘ = Op([ln(n) /nhg]_l/z), Then, it would follow that
‘\/h_gaéz)(a**) <0, ([ln (n) /nhj) _1/2); so that +/A;g5% (a**) — 0 given the assumption that nhd/In (n) —

Q0.
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(i) E[Y?] <0

(i) go(t) ts continuous at og, its derivative exits and is continuous at og.
Also, go(ag) is bounded and 962)(040) # 0.

(iii) fo(t) is continuous and bounded away from zero uniformly in T. Also,
the derivative of fo(t) at ap exists and is continuous; and fo(og) and fél)(ao) are both
bounded.

(iv) The derivative of E [Y2|T =] esists and is continuous at T = ao. Also,
a%(t) is continuous at og and 0% (cv0) and its first derivative evaluated at og are both bounded.
(v) b1 = 0, hg — 0, nh3 — 0o, nh§ — oo, nh§ — a? for some constanta >0,
as m— oo.
(vi) Let K () be symmetric with [ [uK(u)|du < oo; and for H(u) = K(u)
and H(u) = KU (u) we have
(a) [ |H ()2 du < 00
(5) [ul|[H@)]* — 0 as Ju| — oo

(¢) sup [H(w)? < o0

Then,
Var (W;) — _1?%‘1(9&%2292 / (KD (2))2dz + Mod (o) fo(eo) / [K(2))?dz  (A.8)
OtO

Proof. Using the definition of W; first write:
Var(W) = B ({(¥; = go(c0)) K*(tiih1, b))
~ (B [{Yi - go(@0)} K™ (t;; b, 12)]) (A.9)

First we focus on the first term to the right hand of (A.9). Let ¢(t;) = E[(Yi—

90(c0))? |T = t;], then using iterated expectations and the definition of K*(ti;hy, ha) we
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obtain

B ({(¥i = gol00)) K*(t hu, h2)}?)

= E (K2* ti§h17h2)¢(ti)>

(
_ [g<2><:—§>}2h1E (sttar° (2872 + 35 (otean (222 )

0

N ap —ti ag—t
~2————F ( ¢(t) KV (—) K (————)) A.10
g5 (a0)v/Rithe <¢(t ) h1 ha (A.10)

By bounded convergence?, and noting that by definition ¢(ag) = od(ag) = Var[Y|

T = ap], we obtain:

1 — 1
E <¢(ti)K2(1) ("‘Oh—l)) — 22 (a)fo(o) / KD (2)dz (A.11)
and
1 o [C0 =t 2 2
hQE ¢(t¢)K h_g —>00(a0)f0(a0) [K(z)] dz (A.l?)
Now we need an approximation formE (¢(ti)K(1) (“ﬁff“) K (““,f)) asn—
co. Since now the term we want to approximate depends on two different bandwidths,
h; and hg, we cannot directly use the bounded convergence result as usually stated in
the literature (e.g., Parzen, 1962 Theorem 1A). Let s(t) = #(t) fo(t), @ = (hoh]T")*/?, and

b= (hy'h1) /2, then we can write:

e (s (55 (555
Whth(czS(tz)K —) K (0
- s R () ¢ (1) o

= /K(l <\/h1 ) (:jh_ )s(ao——\/h_lh-z-z)dz
= s(ag /K(l (az) K (bz) dz — sV (a \/fqh—z/zK(l az) K (bz)dz (A.13)

%See, for instance, Theorem 1A in Parzen (1962).
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where we made the change of variable z = -ﬁfﬁ: in the third line and used the mean value
theorem in the last one, for some o* that lies between ag — +/h1hoz and op. By symmetry

of the kernel we know that K(z) = K (~z) and consequently K1) (z) = —K()(~z). Hence

we have that:

0 0
/ KW (az) K (b2)dz = / KW (a2) K (b2) dz+ / KW (a2) K (b2) dz
o -
- / KW (a2) K (b2)dz — / KD (az) K (=b2) dz
—00 0

0 0
- / KW (a2) K (b2) do— / KW (a2) K (b2)dz =0
oo —00
Thus, the first term in (A.13) is zero because of the symmetry of the kernel. As
for the second term, observe that o* — ag as n — oo, so that by continuity of s(1)(-) we
have that s (a*) — s((ay), which is less than infinity by assumption. Also, letting C

be the constant bounding K9(-), note that

‘\/ﬁ/zK(l) (az) K (bz) dz

< \/m/lzK(l) (az) K (b2)|dz
N / 2K (b2)| dz

1
= oV / WK (w)] dw
Remember that by definition b = (hy1h1)Y/2, so that

— 3 /b
\/hlhzza = \/E = _nhz_ — 0
vhi \/\/nh%\/nhg

given that nhd — a?, nh? — oo and nh§ — oco. This, along with the assumption that

[ lwK (w)|dw < oo, implies that |v/hihy [2K®) (a2) K (b2) dz| — 0. Hence, the second
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term in (A.13) goes to zero as n — oo, so we conclude that:

\/ﬁlfh_zE (¢(ti)K<1) (O‘OT:“> K <%)) — 0 (A.14)

Plugging (A.11), (A.12) and (A.14) into (A.10) we obtain:

2 ({(Y- — @(@0)) K* (ti:ha, 1))

5 “E’ L2 [150(a)Pas + Modao) ffao) [P (A15)

To complete our proof we show that the second term in (A.9) goes to zero as

n — 00. Let r(t) = go(t) — go(aw), then we have:

E[{Yi - go()} K™ (ts; b1, o))

= E[K"(ti;h1, ho) {E(YIT = t1) — go(0)}] = E [K* (ti; hy, ho)r(t:)]

— /r(ti) {982)(:01)\/71[{(1) <a0h—1- ti) _ %K <a0h ﬂ fo(ti)dt

/\1\/h1 1 (1) Oéo—ti)
- = t; —_— t;)dt;
3 (00) M1 /"‘( VK ™ fo(ti)

_Ag\/h_g-f-i; / r(t)K (“0

By bounded convergence and noting that r(cg) = 0 we obtain:

= ti) fo(ts)dt; (A.16)
2

}31 / r(t) KO <"7£'t'> folts)dts — () folo) / KW(2)dz = 0

1
ha

r(t)K (255 fo(t)dts — r(co) fofan) = 0

Hence we obtain from (A.16) that®

E{Yi — go(co)} K" (ti; h1, he)] — 0 (A.17)

3Note also that vh1 — 0 and v/hz — 0 in the last equality in (A.16).
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By plugging (A.15) and (A.17) into (A.9) the result follows.

We now present the lemmas that will be useful in showing asymptotic normality of
the term inside the parenthesis in (A.3). As previously mentioned, we first show asymptotic
normality of this term centered at its expectation, and then show that under our conditions

the normalized expectation goes to zero asymptotically.

Lemma 9 Let Wn; = [Y; — go(ao)|K™(ts; ha, he), with K*(ts; hy, he) = g(—z,)(sivh_lK(l)
0

(“‘};ﬁ‘) T K ( ) Assume

(i) Same set of assumptions as in Lemma 8.

(i) {(y1,t1) ;- -, Wnytn)} is an i.4.d. sample.

(i) E [|Y|2+6] < oo for some § > 0.

(iv) g§¥ (ao) is bounded.

(v) For some § >0, and for H(u) = K (u) and H(u) = K (u) we have that
(¢) [|H@)Pdu< oo
(b) sup | H (w)|"*" < o0

(c) [ul |H @)*** =0 as Ju| = co.

Then,

& & (W =B} 5

N <o Aol bl [15eC) ()2 + NoB (o) olar) [IK (= ]2dz).
Proof. Let

- "\ Whi — E(Wpy)
Ly = : ’
; o Z [nVar (Wn,i)]l/ 2

i=1

Note that L, ; is a traingular array of i.i.d. random variables such that E (L, ;) =

n
0, Var (Ln;) = 1/n < oo and Var (Z Ln,i> = 1. Hence, we have by Liapunov’s Central
=1
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7
Limit Theorem that > Ln; <, N(0,1) if for some 6 > O:
i=1

n
Tim 2; E (|Ln,¢|2+5> =0 (A.18)
In our case we have:
E |Ln,i|2+§
=1 ( )
Wn’i - E(Wn’z)

= n} [Var (V[/'i)}_(l""g) E|W; - E(W)[**

[nVar (Wy)]?

< 224608 [Var (Wi)]" () B w2t

= 2t [Var ()]0 B % - go(ao)

KD <a0 - ti)
g (o) Vi h1

AQ ag — tz 246

Y- o) Je K (252
03+26,,—4 [Var(m)]-(wg) {E

2+6

IN

[¥; ~ go(ao)| KO (ggﬁ)

)\2+6h_(1+‘2s)

i ()]

where in the fourth and sixth lines we used the C,-inequality, while in the fifth we used the

ot 246 _ s
i — q(ao))K (%)\ Agopy (040 (A.19)

definitions of Wy ; and K*(¢; hy, he). Given that E |Yi|2+5 < 00, we have that E[1Yi|2+‘5 |
T=1t;] < oo. Let C; be the constant bounding the latter, and let Cy be the constant

bounding go(-). Then,

(246
E‘[YE — go(cv0)] KW (M>

h1
viE® (=8 _ o) (20=h
hl hl

Y, KM <9‘_0__ti>

= F

IA

o1 +o {E
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N\ 12+6
< E(‘K(l) (ﬂ’aﬁ)l E[MIQHIT:M})

246
ap —ti
Hanfeo) P+ | (1)

2+6
CLE | KD QoY + 2+ | KD 20—t
hy 2 h1

2+6
(1) (Qo—ti
CgE}K < ™ )

where we again used the Cr-inequality in the third line, and we let C3 be another constant.

246

IA

(A.20)

Following the same steps as before we get:

(A.21)

for a constant Cy. Plugging (A.20) and (A.21) into (A.19) we obtain
Z E (an,z |2+6)
i=1

< (nh)” 2[Var(m)] (1+ )[g_(:)\?%jz‘”hl_lElK(l) <_aoh_—1t,->
0

(k)4 [Var (9] () gocing b |1 (252
2

2+6

246

(A.22)
Now, by bounded convergence we have that

e Ry
1

— folo) / [ (z)‘mdz

246
fo(t1)dt1

and

246
fo(t)dtq

el () - (o)

— folao) / K ()P da
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)‘2+6dz < oo for some § > 0.

where by assumption [ |K (2)** dz < co and [ |K (2

Also, by Lemma 8 we have that
Var (W) — A0 f° 20 [l + Bedleolfoloo) [K(aPde (A29)

Hence, given that 982) (cp) < 0o we have that all quantities to the right hand side
of (A.22) are bounded as n — oo, and given that nh; — o0, nhy — oo and 6 > 0, we
have from (A.22) that Liapunov’s condition (A.18) is satisfied, so that il Ly 4, N(0,1).

=

Now, let D = —lfﬂ(ﬁgilm JTE®(@)2dz + 2303(c0) fo(ao) [[K(2))2dz. Note that

since M‘”}D—d — 1 by (23), Z L —Z lV”“‘;EJ-W-Tf;Lz and Z WouimBOVai) have the same

T & [nWVar (W) [nD]*/?

limiting distribution, and therefore:

d

72 2 (Ws = EO¥ai)} =
N( ,MM/[ dz+)\200 ap)fo(ao /[K 2dz>

(av0))?

as required

Lemma 10 Let Wy and K*(t;; hi, he) be as in Lemma 8 and 9. Assume,

(1) {(y1,¢1),...,(yn,tn)} is an i.i.d. sample.

(i) g 1s in the interior of T, so that ggl)(ao) = 0.

(tit) go(t) three times continuously differentiable and its derivatives up to the
third order are bounded. Also, 982)(040) # 0.

(iv) fo(t) is continuous and bounded away from zero uniformly in T. Also,
partial derivatives of fo(t) exists up to the third order and are bounded, and fo(l)(t) is

continuous at ag.
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(v) by — 0, hg — 0, nh] =0, nhS =0, as n — co.
(vi) Finally, let K (-) be symmetric and satisfy [vw?K(u)du < co and |u3|-
|K (u)| — 0 as |u| — oo.

Then,

Proof. As before, let r(t) = go(t) —go(ap). Also, let ¢(t) =r(t) fo(t). Then, using
iterated expectations along with the fact that the W, ; are ii.d., and given the definitions

i
of Wh, and K™ (ts; hi, hg) we observe that :/]71 >~ E(Wh,) can be written as:
=1

:/%iXZ;E(Wn,i)
= VRE([Y; — go(eo)lK*(ts; b1, he)) = VRE [K*(t;;h, ho)r(t;)]
_ ﬁ% / KO <ﬂ’,—§—t—> o(t)dts
R e
- B 1h4/ KO (S5 ) ot
_ thz 5 [x (&r) ot dt; (A.24)

where in the last equality we multiplied the numerator and denominator of the first term by
m and of the second term by \/h_g . Given our assumptions that nh] — 0 and nh§ —
0, our proof will be completed by showing that the terms ﬁ% [K® (“ﬁ) &(t;)dt; and
'h]§ [K (Qﬂh;—t‘) @(t;)dt; are both O(1). First, consider the term 71% KM (3‘};1—’5‘) o (t;)dt;.

Making the usual change of variable z = (g — t;)/h1 we find that

1 -t 1
7 KM <29F> o(ts)dt; = I / KW (2) (e — hy2)dz (A.25)
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Next, we make a Taylor expansion of ¢(ag — h1z) around op. Before doing so, note that by
definition of ¢(¢) (i.e. ¢(t) = [go(t) — go(w)] fo(t)) and using the fact that g(()l)(ao) =0 we

have :

$lag) = 0 (A.26)
¢ (a0) = 0
63(a0) = 98 (a0)fo(a0)

$3(a0) = g5 (c0)fo () +395(c0) £ (an)

where all quantities are less than infinity by assumption. Also observe that: [ K1) (2)dz =
0, [2KW(2)dz = —1, and [ 22K 1) (2)dz = 0; where the first and last equality follows from
the fact that K(-) is symmetric, and in the second one we used integration by parts and
the assumption that |2K(z)| — 0 as z — oo. Hence, for some o* between ap — h1z and o

we can write (A.25) as

h_l% /K(l) <a0h_—1tz> o(ti)dt: = —é¢(3)(a*) /z3K(1)(z)dz
Given our assumptions on go (-) and fo(-) we have that ¢ () is continuous at ao,
and given our assumptions on k1 we have that ¢®) (a*) — $®) (o). Moreover, note that by
using integration by parts again and the assumption that |2° K (2)| — 0 as z — oo we obtain
that [ 28K M (2)dz = =3 [ 2°K(2)dz, with [ 22K (2)dz < co by assumption. Therefore, we

obtain that:

1 —t
i KO (2= et
1

— 5 [ 0o(00)+ 30 (@) £” ()] [ K@ (a2
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Now consider the term 7 f K ( ) @(t:)dt;. Following the same steps as above,
and using (A.26) and our assumptions that [ 2K(z)dz = 0 and [ 22K(2)dz < oo, we find

that

i K<%T2-> B(t;)dt; — ._D_QQZM/ ZK (A.28)

h3
Therefore, the proof is completed by plugging (A.27) and (A.28) into (A.24) and
using the fact that nh] — 0 and nh} — 0. ®
Given lemmas 6 to 10, we now proceed to prove Theorem 1.
Proof of Theorem 1. As mentioned before, according to the Cramér-Wold

device we need to show that for every real numbers A1 and Ao we have:
My frh (@ = o) + day/nha(3(3) ~ go(oo))

N(o,[ Al"o ) / [KD(2)]%dz +—2ﬂ’ﬁﬂ2 / [K(2) ]2dz> (A.29)

m? (ao)]? fo(ao)

From Lemma 7 we have that v/nhg(G2(@) — go(an)) is asymptotically equivalent
to /nha(G2(c0) — go(co)), so we will focus on the asymptotic distribution of A/nhi(@ -
a0) + A2v/nha(G2(0) — go(a0))-

o~ =t N 1 LC —1. —~
Let 5(t) = nh, E YK ( ™ ) and fi(t) = 7 z=zl K (L}Tf“), so that gi(t) =
~ -l
[fl(t)} 8i(t), for I =1,2. From Lemma 6 we know that we can write (@ — o) as (see (4))

-1
—'gf“( 0) ['g\g)(a*)] for some o* between oy and &. Hence, we have that:

Ay (@ = ) + Aoy uha(a(e0) — gofeo)) = (A30)

Dy e .
A1y/nh3 <_;(12)§ 2;) T (s2(@0) — go(c0) fa(c0)) (A.31)
1 [8%

f2(ao)
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As in Ziegler (2000), it is convenient to write g1 (ap) as:

M (a0) = gi(a0) AP (a0)

D) = X
91 (o) Fi(ao)
§M(a0) ~ w(e0) iV (a0)  FP(a0)
1 0 @ 1 21 an) — o
7 (o) Frlo0) [G1(c0) — go(ew)]

Plugging this into (A.31) we get that (A.30) is equal to:

A/l (_Esl)(ao) — go(ag) F{(ag) + 1) [91(a0) = 90(a0)1>

73 (a) Fi(ao) Filao)
+2272 (5 ) — gole) Faleo) (A32)

Ja(o)
Note that given our assumptions we have that: ﬁ(ao) L folog) for 1 =1,2 (e.g.,

Parzen 1962) and fl(l)(ao) £, fél)(ao) (e.g., Schuster 1969). Also, as discussed in the proof

of Lemma 6 we have that ﬁz)(a*) £, g(()Q)(ao). Thus, (A.30) is asymptotically equivalent

to
A h
R (ao)lfo(ao) k(s a0) = go(ac) /i (eo) (A.33)
MiPag) o o deveg o
+9(()2)(ao)fo(ao) 1{51(00) = golao)] + fo(ao) (52(a0) = go(a0) f2(e0))

Note that we can write 1/nh$[G1(a0) — go(ag)] from the second term as

nh3[G1 (o) — go(ao)]

= \/nh?[ﬁl(%)—E@l(GO)Itl,tz,---,tn)]+ nhi [E (G1(co)lty, t2, - .- tn) — go(co))]

It is a standard result that, given our assumptions, /nhy{g(ag) — E (G1{a)]
t1,to, .. ., ty)] is asymptotically bounded (e.g., Theorem 3.5 in Pagan and Ullah, 1999), so
that /nh} [gi (@) — E @i(co)lts, b2, ..., tn)] = mv/nhi [Gi(c0) = E @1(c0)lts, ta, - . tn)]

£.0. Also, given our assumption that nh{ — 0, we obtain that 1/nh3[E (G (ao)lt1, t2, .. .,
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tn) —go(c0)] £, 0. The proof of this latter result follows basically the same proof of Theo-
rem 3.6 in Pagan and Ullah (1999), which shows that v/nh [E (§(co) 1, b2, .. - , tn) — go(c0)]
£, 0 for the usual Nadayara-Watson estimator when nh® — 0. However, the fact that
the term in brackets in our case is multiplied by \/n_hill’ instead of v/nh allows us to obtain
the result even though in our case nh? — o0. Intuitively, the expected value of the term
in brackets is O (h%), so that when multiplied by \/n_h‘i‘ and using our assumption that
nh] — 0 gives that the expected value of that term goes to zero asymptotically. Also, it
is straightforward to show that its variance vanishes asymptotically, so the convergence to
zero in probability follows. Therefore, \/n—h:f[ﬁl(ao) — go(ao)] £, 0, and the second term
in (A.33) converges to zero in probability.
Now, given the definitions of 3;(t) and f(t), we have that: '§l(1) —L? Zn:
=1
Y, KW (t;ml) and fl(l (t) nh Z K® < ) Substituing these into (A.33) and using
the fact that the second term in equation (A.33) is asymptotically negligible we obtain that

(A.30) is asymptotically equivalent to:

1 _)\IW e ag —t; e o — t;
folag) lg(()z) (o) 'n;lg {Z viKk® <—-—-—h1 ) — go(o0) ZK(U <-.__._hl )}

i=1 =1
¥k |5 o — i) _ - o=t
A2 {; KK< h2 ) go(ao);f{( ™ >H
_ 1 M 1 1 oKD [Qo=ti
Folao) ng)(ao)\/;zfl {i:l [¥i — go(e) | K ( T >}
s {0 e (252)
IS S IR U o o M W (=t
fO(aO) {\/’I’L Z=: [Y; 90( 0)] <962)(a0)\/h_1 < hy )
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< Z Y go ao K (tz, hl,h2)> (A.34)
i=1

where we define K*(t;;h1,ho) = 932_)(&)7’1_1.;{(1) (xxn:.h) \/—K ( ) Let Wy =[Y; —

go{0)|K*(t;; ha, he). Then, from (A.34) we have that (A.30) is asymptotically equivalent

to:

\/n

In Lemma 9 we showed that:

== > (Wi = By}~

N( , ([’ (‘;‘0 f° o) / (KD (2)]2dz + A303(ao) fo () / [K(Z)]de> (A.36)

while in Lemma 10 we showed that:

1 n
—_— EW,,; 0 A37
ﬁ ; ( n,z) - ( )
Using Slutsky’s Theorem we find that (A.35), and consequently (A.30) is asymp-
. s . )\2] azﬂgagf
totically distributed as: N (O oD (co)? fo(om) [IK 12dz + fo f (K (2) >, as re-
quired. ®

The next Lemma was used in the proofs of Lemmas 6 and 7.

Lemma 11 (Uniform rate of convergence for higher order derivatives of the NW estima-
tor). Let g(z) be the Nadayara-Watson estimator and let the p-th derwative of go (z) =
E[Y|X] be estimated by 8PG(x) /OxP. Assume:

(1) {y1,21) s - -, Wn,Zpn)} is an i.i.d. sample.

(1) fo(x) (density of x) is continuous at x. Also, partial derivatives of fo(x) exists

up to the p + 1 order, with the p + 1 derivative continuous at .
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(i) go(z) is continuous at x. Also, partial derivatives of go(x) exists up to the
p+1 order, with the p-th derivative uniformly continuous and the p+1 derivative continuous
at x.

(vii) Let h = h(n) be such that: h — 0 asn — oo.

(viii) The kernel K(-) satisfies: (a) [ K(w)du = 1; (b) K 1is p times continuously
differentiable; (c) [|K(u)|du < oo; (d) sup |K(u)] < oo; (e) |uP||K (u)] — 0 as |u| — oo.
Finally, let 1 (w) be the characteristic function of K (-) so that v (w) = [ ™K (u)du, with
i = ~1. Assume that [ [wPy (w)| dw < oo.

Then,

1
s 7 ) - & ()] = 0y (s )

Proof. The proof of this Lemma closely follows the one in Bierens (1987) for
uniform consistency of the Nadayara-Watson estimator. Let §(z) = # Ji:leK (-m;,f-‘),
so that 50 (z) = Eﬁji:l Y; K@) (22—%) is the p-th derivative estimator of sgp ) (x) =
OPE[Y|X] fo (z) /0zP. Also, let ¥ (t) = [exp (itz) - K (z)dz, with > = —1, and assume
[ 1P (t)|dt < co. By the well known inversion formula for Fourier transforms the kernel
can be written as K (z) = 5= [ exp(—itz)-1) (t) dt,so that K (z) = 5= [ (—it)P exp (—itz)-

¥ (t) dt. Hence, 3) (z) can be written as:

1 - r—x;
@) = T 3 KO (252)
j=1

= n—h-lm jz:;yg [%/(—it)pexp (—z’t (L}fz)) P (t) dt]

= —2}171 ZYJ'/(—Z'S)” exp (—isz) - exp (isz;) - 1 (hs) ds
j=1
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5P (z) = 2—17r I:% iY] exp (z's:vj)] (—is)Pexp(—isz) - ¢ (hs)ds (A.38)
=1

where in the third equality we have used the change of variable ¢t = hs. In this case, and

given our ii.d. assumption, we have

E[5® (2) = % / (—is)P exp (—isa) - ¥ (hs) E [Y; exp (isz1)] ds

Then, we can write

@) (¢) - E [§<P> (x)} l

% ZYJ exp (z’sxj):l (—is)P exp (—isz) - ¢ (hs) ds—
j=1

% /(—is)p exp (—isz) - ¢ (hs) E'[Y] exp (isz)]ds

= |5 [ (isP ap (~ise) - (ko)

5 [1w 0

Since the right side of the inequality in (A.39) does not depend on z we have that:

@ - B[ @)| <5 [Iwns)

n
%Ejnwmmm—EW“W“”m}w
j=1

7—1 ZYJ exp (isz;) — E [Y1 exp (isz1)]| ds (A.39)
j=1

n

Z xp (isz;) — E [Y1 exp (isz1)]

ds

Slv—l

(A.40)

Taking expectations to both sides of (A.40) we find that:

(2) - E [§<P> (m)] H

2_17r/|s%(hs)|E{ }ds (A41)

Consider for the moment the expectation inside the integral. It can be writen as:

E{ .% - } (A.42)
i=1

E {sup s
xr

n
7% Z i exp (isz;) — E [Y1 exp (isz1))
j=1

ZY} exp (isz;) — E [Y; exp (isz1)]




168

|

n
From this last expression, let 4 = 2 }:lYJ [cos (sz;) — E [Yi cos (sz1)]] and B =
J:

3

= E{ 7—12 Y; [cos (—sz;) —isin (—sz;)] — E [Y1 [cos (—sz;) — isin(—sz;)]]
J

}

E { -7-11 Y; [cos (sz;) — E [Y1 cos (sz1)]] —i—i;"lZ ZY] sin (sz;) — i [Y1 sin (sz1)]
Jj=1 j=1

it
fal

-

n
1 S~ Yjsin(sz;)—iE [Yisin (sz1)]. Then, note that E [A] = E[B] = 0, so that E|A+ ¢B| =
=
E [(A2 + B2)_1/2] < E[(A? +B2)]*1/2 = [var (A) + var (B)]"/2. Plugging this into the

last equation in (A.42) and using the fact that we have i.i.d. observations we find:

“ }

%z [var {Y; cos (sz;)} +var {Y;sin (sasj)}]‘l/2

1 , :
- E Y;exp (isz;) — E [Yiexp (isz1)]
=1

IA

1 —
< HIE)] v (A.43)

Plugging the result in (A.43) into (A.41) we obtain:

51;7% (B [l (hs) s

= e B el

IA

E [sup
z

3®) () - E [gﬂ’) (a,-)] ﬂ

1
= 0 ( —nh20’+1)> (A.44)
since by assumption E (Y2) < oo and [ [uPy (u)| du < co. Thus, by Markov inequality we

have that

P (o) E [3@ (cc)} ] 20 (A.45)

sup
x

By the triangle inequality we have

sup [®) (z) — s(()p) (x)‘ < sup "S{p) (z)— E [é{p) (m)” +sup
z T T

E [§<P> (x)} — s (a:)‘ (A.46)



It has been previously shown in the literature that sup ‘E (5@ (z)] - 5(()13 ) (m)l =
z

O (h?) (e.g., Corollary 1 in Schuster and Yakowitz, 1979). Then, it follows from (A.45) that
sup |57 (z) — s(()p) (w)‘ 20 (A.47)
T

Finally, a similar result holds for the derivative density estimator @ (z) = EF;?

n T,
S K® (—hl) Then, it follows that
j=1

1
sup 7® (z) — g (w)‘ =0p (m) (A.48)
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Appendix B

Proofs: Non-experimental Design

In this case we assume that assignment into different levels of the treatment is
unconfounded given a set of covariates X with dimension equal to k. That is, using the

notation from chapter 2 we have:
{Y(®)ter LTIX

As discussed in chapter 2, let E[Y (t)] = Ex [ (z) E[Y(t)|X = z]|, where 7 (-) is
a trimming function used to avoid the “denominator problem” by keeping a denominator
bounded away from zero. Under the unconfoundedness assumption we can write the dose-

response function as:

EY(@®)] = Ex[r()EY@OIX =4l = Ex[r(x) EY ()T =t,X = 4]

= BEx[r@EY|T=tX =4, (B.1)

for all ¢ € T; where in the first equality we have used iterated expectations, and in the
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second one our unconfoundedness assumption. Writing the maximum of the dose-response

as

ap =t" = arg rtxéaqch{Y(t)} (B.2)

and using (B.1), we have that we can estimate ap as

a = argr@qqcﬁ{Y(t)} = argrgleaqgcﬁx [7' (m)E[Y|T =t,X = 7]
1 n
= - NG y B'
arglglea\Txni=17(:vz)gh1(t,X¢), (B.3)

for all t € T; where g(t, X;) is the Nadayara-Watson multiple-regression estimator

n .
iX:l }/ZK()‘%IL’ z1 ’:1% e wahlﬂiaz)
/\t X' — ==
g() 'l) n Kt__tz P To—Tgi
;1 ( k1 hy Y hy )

and K(u) is a kernel function satisfying some conditions specified below, and h > 0 is the
bandwidth.

Proof of Theorem 3. In analyzing the asymptotic behavior of &, we use
results from Newey (1994) on the asymptotic theory of functionals of kernel estimators.
Specifically, Newey considers two-step estimators where the first step is a vector of kernel
estimators, say §(), and the second is an m-estimator that depends on §(z). To analyze
the asymptotic behavior of (B.3), first we write the estimator as a two-step m-estimator
that depends on kernel estimators. Let ¢ = [1,y]’ and w = [t ], so that w is formed by
putting together the treatment level variable and the covariates. Given that the dimension

of = is k, we have that the dimension of w is k + 1. Also, let fo(w) be the density of w.
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Then, we can write

wlw) = Elguipw = | | = |

Ely|w] fo(w) s20(w)

where we defined sio(w) = fo(w) and sy (w) = Ey|w]fo(w). Let z; = (gi, wi), 1 = 1,...,n,
denote data observations on ¢ and w, and let K(u) be a kernel function and h; > 0 be

the bandwidth. To simplify notation, in what follows we let h; = h. Define Kp(u) as

Kn(u) = = ®+DK(u/h). Then, we estimate so(w) as

n z éKhW—wa) 31 (w)
fw) ==Y gKaw—wj) = | - = (B.4)
7=t ;‘L]; Y Kp (w — wj) 32(w)

n n

where we have let 51(w) = 2 3~ Ku(w — w;) and So(w) = £ 3 y; Kn(w — w;). Hav-
j=1 =1

ing described the first-step estimator, we now describe the second-step m-estimator. Let

go(w) = Efylw] = sgo{w)/s10(w). Then, by definition of ap in (B.2), and given the assump-

tion that «g is in the interior of 7, we have that ag = t* solves

OE[Y(t)] @ OEx[r(x)E[Y|T=tX=z) O0Ex][r(x)go(t )]
ot - ot - ot
- By [T (m)%’f’x)] =0 (B.5)

where we have used (B.1) in the first equality. Hence, if we let m(z, ag, s0) = 7 (z) dg0(cw, z)
/0t, we have that E[r (z) m(z,aq,sg)] = 0. In this case, the sample moment function is

m(z;,,8) =7 (x;) 89(e, ;) /Ot. Then the second-step estimator & solves:

1< 1 & 9g(e, )
- ;m(zz, a,8) =~ ;T (z0) =5 =0 (B.6)

where we let §(w) = Elylw] = 83(w)/31(w). This estimator is equivalent to the one in

(B.3).
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If we expand the left-hand side of (B.6) around o and solve for & — g we get

-1
. 1 - Om(z, 0%, 1 < ~
oy = - (1M o)

Oa 7 £
K3
-1

- l:lz Z—&n(zéf*’ﬂ in(0) (B.7)

i=1

where o is a mean value and, as in Newey (1994), we let M) =-7l1 i:lm(zi, a,8). Newey

i=
(1994) presents an uniform (in o) convergence result (Lemma 5.1) that is useful for show-
ing consistency of & and also of the Jacobian term in (B.7). Given this latter result, and
assuming nonsingularity of the probability limit of the Jacobian term in (B.7), asymptotic
normality of Mn(ap) will imply asymptotic normality of ap — & Newey (1994) gives con-
ditions under which /nhéfn(ap) 4N (0,V), for some § = 0. There are two steps for
obtaining this asymptotic normality result for 7, (o). The fisrt one involves a linearization
around s, and the second entails the asymptotic normality of such linearization. Newey
(1994) provides Lemmas for each of those steps.

. This is a Sobolev supremum norm

In what follows, let ||s||; =max sup H%‘%‘Q
€55 teT
of order j, and is the norm used by Newey (1994) to impose smoothness conditions on
m(z,q,s) as a function of s.
We start by showing convergence in probability of the Jacobian term in (B.7).
First, consider consistency of &. As in the proof of Theorem 1, note that we can see &
n
as an extremum estimator that maximizes the objective function % 2. 7(:)g(t, X;). The
i=
assumptions in Theorem 3 directly satisfy all conditions for the uniform converge result

(Lemma 5.1) in Newey (1994). Specifically, conditions (ix), (ii), (iili) and the bandwidth

conditions in Theorem 3 directly imply conditions (i)-(iii) in Newey’s Lemma 5.1. Hence,
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3

i ‘ 17‘ (z:) G(t, X;) converges uniformly in probability to Ex [ (2) E[Y|T =t, X =xz]] for

-
1l

all @ € 7. This latter result, along with assumptions (i) and (ix) in Theorem 3, guarantee
that the assumptions of Theorem 2.1. in Newey and McFadden (1994) are satisfied, so that
a5 ap.

Given the defnition of m(z;, @, S), we can write the Jacobian term in (B.7) as

As before, we use Newey’s Lemma 5.1 to show uniform convergence in probabil-
ity of the Jacobian term. Assumptions (ii), (iii), (iv), (vii) and the bandwidth condition
nh*+%/1n (n) in Theorem 3 directly imply conditions (i) and (ii) in Newey’s Lemma 5.1.
Finally, by applying the quotient rule for derivatives is not difficult to show that condi-

tion (iil) in Lemma 5.1 is also satisfied. Then, the conclusion in Lemma 5.1 states that

3

< . l'r (z;) 6%g(a, x;)/ Ot* converges uniformly in probability to E [7 (z) azgo(a,m)/atz] for

all @ € 7, and that E [7 (z) 8 go(a,x)/0t?] is continuous on 7. This, along with consis-
tency of &, implies

1 82'\@*,&02-2 gy (0, x PFE EYIT=qy,X=
5 ;T((Ei) g(at2 L E [T (x) goa(t20 )} — [T (x) ( 8It2 X .’13)]

Let M = E 1 (z) 8%go(c0, %) /8?t] . Given our assumption of M being nonsingular
(assumption (viii)), we obtain
-1
1< om(zi, o, ’s) P -1
{; ;T (z:) - } M (B.9)

The next step in the proofis to derive asymptotic normality of vnh3m,,(ag), where
n
Mn(op) = < S m(z, ag, 3) (See (B.7)). Let wg = [ag z]. Then we can write m(z;, ag,3) as

&
m(z,0,8) = Qﬂ%tw = 7 (wp) a[§2(w0g{§1(wo)]
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7 (wo) {[082(wo)/ %] 1 (wo) — [081(wo)/ Ot} Sa(wo) }
[51 (wo)]?

(B.10)

Given the form of m(z, ag, 5), we first use Lemma 5.4 in Newey (1994) to linearize

it. Let

. _T(wo) 632(w0)_ Sa(wo) | Os1(wo)
D(z,s,g)_gl(wo)[ ot {§1(wo)} o ] (B.11)

and, to simplify notation, let D(z,s) = D(z,s;s0). Using Newey’s Lemma 5.4 we obtain

that for some § > 0
«/fr'thé;-lz > Im(zi, 0, 8) = m(zi,a0,8)] = vrh® [m(8) — m(s0)] + op(1) (B.12)
=1

where m(s) = [ D(z,s)dF(z) and m(s) satisfies the conditions in Newey’s Lemma 5.3. This
latter lemma specifies conditions under which \/nAS [m(3) — m(sg)] 4 N (0,V), for some
V.

We now verify the hypotheis of Lemma 5.4 in Newey (1994). Note that our as-
sumptions (ii), (iii) and (iv) are equivalent to assumptions K, H and Y in Newey (1994).
Let 6§ =3/2, A = Ay = Ay =1, where A, Ay, and Ay are defined in Newey (1994), and
note that by assumption (iii) we have d > r + 1. Note that D(z, s) is linear in s on the
set {s: ||s|]]1 < oo}, and ||D(z,s)|| < ||s|]1. As before, it is straightforward algebra to
show that for all s with ||s — sl|; < ¢ we have ||m (2,5) — m(z,s0) — D (2,5 —s0)|| < C
l|s — so []f, for a given constant C. Now we consider the rate hypothesis in Newey’s Lemma
5.4. Here one needs to show that for 7,, = [ln(v'L)/(TLhk"'E’)]1/2 + k" we have: a) n, — 0; b)
Vah¥2E [b(2)] 72 — 0; and c) /nh**Y/2 — co. From assumption (x) we have that

nh2k+3 _ nhk+3 hk
In(n))>  In(n) In(n)

— OQ
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Since k > 0 and h — 0, we have that the second term goes to 0, so our assumption implies
that nh*+3/In(n) — co. Hence, 1, — 0 follows from this last result and the fact that r > 0

and h — 0. Now, to verify the next condition we note that

In(n —
k¥ = ﬁz:%/—z + 2[In(m)] Y KRR 4 e (B.13)
1/2
As for the first term note that \/Tl}’i@m = [%l;} — 0, since by assump-

tion (x) the term inside the parenthesis in the second expression goes to zero. For the second
term note that our asumptions require 3+ 2r > 2k + 3, which combined with the fact that
k > 0, implies that r > k/2. Let b =7 — k/2 (note that b > 0), and let h be of the form
h ~n7 with § > 0'. Then we can write the second term as 2 [ln(n)]l/2 e ~ [In(n)] Y2 e,
Using L’Hospital’s rule in this last expression, and using the fact that b6 > 0, we obtain
that 2[ln (n)}l/ 2 pr=k/2 — 0. As for the last term, remember that for centering the asymp-
totic distribution of ap — o around zero we assumed that nh?"+3 — 0. Hence, we have
that /nh23/2 = [nhtr+3]'/% = [p2r . ph2+3]Y% 0, since h?" — 0 and nh?*3 — 0 by
assumption. Therefore, since each of the terms in (B.13) goes to zero asymptotically, then
we have that /nh%/ 2 0.

Finally, we show that /nh**1/2 — co. This follows from writing /nh*t1/2 =
[nhzk“‘l]l/?' = [nh2k+3 .h_2]1/2 — 00, since h™2 — oo and, by assumption (x), nh%+3 ——>.
oo. Thus, the rate hypothesis of Newey’s Lemma 5.4 are satisfied.

Given that all conditions of Lemma 5.4 are satisfied, we have that (B.12) holds

with § = 3/2 and

m(s) = /D(z,s;so)dF(z)

'Here “~” stands for “proportional to”.
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— T(w(v)) [9sp(w(v)) _ f spo(w(®))) Bsp(w@))] 7\ o0
B /810(w(v))[ ot {Slo(w(v))} 5% ]fo( Ydv (B.14)

for v =z and w(v) = (ag,v).
We now turn our attention to showing asymptotic normality of /nh3/2[m(3)—
m(sp)]. As previously disccused, here we use Newey’s Lemma 5.3. Here, we need a matrix

of functions ¢(v) with domain R* and a vector of functions ¢(v) in R such that m(s) =

[ #(v) [8s(w(v))/6¢] dv for w(v) = (t(v),v). Let

6(v) = T 70 [ go(wiw)), 1 .19
s1o(w(v))
where t(v) = ag. Note that given our definition of m(s) used in (B.14), we can write
7(w(v)) ~ 9 ot
m(s) = /¢(U) [Os(w(v))/0t]dv = /ﬁ@%fo(v) [—go(w(v)), 1] s(w(v))/ dv
s (w(v)) /0t

for v = z anf w(v) = (ap,v). Also, given our assumptions on 7 (), fo, ff) and go, ¢(v)
is bounded and cotinuous almost everywhere and zero outside a compact set T (where
v € T). Thus, conditions (i) and (ii) in Assumption 5.1. in Newey (1994), which is needed
for Lemma 5.3 in Newey (1994), are satisfied. Part (iil) in Newey’s Assumption 5.1 and
assumptions K,H, and Y in Newey’s Lemma 5.3 are satisfied directly by our assumptions
in Theorem 3. Finally, we verify the rate hypothesis in Newey’s Lemma 5.3. Here, we need
to show that \/nh'/2 — oo and /nh"*3/2 — 0. For the first part note that \/nhl/2 =
[nh)H? = [nh2k+3. h‘z(k"‘l)]l/z — o0, since h~2*k*+1) — o0 and by our assumption (vi) we
have that nh?+3 — co. As for the second part, write /nh™%/2 = [nh2r+3]1/2 — 0, since
nh?r+3 — 0 by assumption (vi).

Therefore, the conclusion of Lemma 5.3 implies that

Vb2 [m(8) — m(s0)] > N(0,V) (B.16)
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where for K (uy,v) = [OK(u+ [0t(v)/87]v,v)/Bu dv and T(z) = E [¢q¢|x] we have

v=[ow [ { [ Rt Ko dul}]qs(v)’fo(w(v»dv (B.17)

We now derive the form of V for our case. First note that,
1 Elylw(v)]
1o ]| -
Elylw(v)] E [y*lw(v)]

1 wlv
Sw(v)) = g0 (w(v))
g0 (w(v)) E [y?|lw(v)]

Also, note that given that in our case dt(v)/ 0t = 0, we have that
K(ui,v /—lwd —/K u,v)d (B.19)

where we have defined K'(u, v) = 0K (u,v)/0u. Hence, plugging (B.15), (B.18) and (B.19)

1
w(v)

S(w(v)) = E [¢d|w(v)] = E [ [

y
so that

(B.18)

into (B.17) we find that

7 (v) gv! 1 wv
A b f“ ~golw >>]H gM”}
% (

0w ww)) E [y?w(v)]

s1o(w(v)) )

/K’ u,v)d uH XM { ~oole(v) } fo(w (v)) dv

/K’uvdv du}/uguo——-[go (W), 1]

v
/
LO : ))] } { _90(:)@)) ] N
J
U

/K' U, V) dv du}/ E [y lw()] - {g0 (w@))¥?| dv
/K’ u, v)dv du}/MuVar[ym—(ao,v)] dv (B.20)
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where in the second equality we use the fact that fo(w) = s10(w) by definition, and in the
last equality we use the definition of w(v) and the fact that Varly|w] = E[y?|w] —{E [y|w]}>%
Given the previuos results, we now show asymptotic normality of vnh3m,(ao),

where fin(ag) = 1 > Mz, @, 3) (See (B.7)). Write

=1

Vb3 Fin(00) = \/7_1h3/2'7-t Zm(zi,ao,@ - \/Tr-zhs/?% Zm(zi, ao, so) + (B.21)
f=1 i=1
n
\/7_zh3/27—1l > m(z, a0, 50)
i=1

= \/ﬁh3/2-7]; i [m{zs, a0, 8) — m(zi, a0, 80)] + 0p(1)

i=1

= k2 [m(8) = m(s0)] + 0p(1) ~2> N(0,V)

for V in (B.17). The second equality follows by noting that h3/2 il m(zi, ag, $0) /v/n 2 02,
=

In the third equality we have used the result we derived using Newey’s (1994) Lemma 5.4

(see (B.12)), and finally, to obtain asymptotic normality in the last line we have used the

conclusion from Newey’s Lemma 5.3 (see (B.16)).

Therefore, multiplying both sides of (B.7) by v/nh%2and using our results in (B.9)

and the last expression in (B.21) along with Slutzky’s Theorem, we find that

Vnh3? (8 — ag) = —

n PPN -1
% ZJ—Mm zga a.° } Jah¥ 2@ (ag) > N0, ) (B.22)
i=l

where

=M" QV—_{/[/KIU’U v] du}/MVar[ylw=(ao,v)] dv

(B.23)

’In this case note that m(2;, a0, 89) is only a function of z;, since oy and sy are held fixed. Thus,
we can write 1(zi) = m(zi, o0, s0), and using an appropriate Central Limit Theorem we would find that

Zn: W(z:)//n % N(E(¥(2)),T), for some variance I'. This, along with the fact that 43/? — 0 implies that
i=1

h3/2 E m(zi, 060,50)/ \/77/ ﬂ’ 0

i=1
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and M =0°E [r? (z) E (Y|T = a0, X =1z)] /6t>. ®
Now, we prove the joint asymptotic normality result in Theorem 4. Let & be as

in (B.3) and let the estimator of the size be given by

- o 18 -
E{Y (c0)} = iy, (@) = 27 (i) Gn,(@,24) (B.24)
where Gn, (0, z;) is the Nadayara-Watson estimator based on bandwidth hy. To simplify

notation, let E{Y (t)} = g (t). Then, the result in Theorem 4 states that:

k3@ — 0 Vi 0
(@ = o0) AN 1 (B.25)
VT3 (B, (@) = i (00) 0| | o w

with V1 as in theorem 3 and V2 = [f {fK(u,v)dv}2 du] x [ folao,z)~ 172 (z) f3(z)0? (a0, )
dz; and where K (w) is partitioned according to w = [t, ] and K(D(-) means the partial
derivative with respect to t.

Proof of Theorem 4.. According to the Cramér-Wold device we need to show

that for every real numbers A1 and A2 we have:

Ay/nhd (@ — ao) + dov/nhe (i, (@) — 1o (a0)) 2 N (0,A3V1 + M314) (B.26)

where V1 and V; are as above.

Asin the proof of Theorem 1, first we show that v/rhg (B, (@) ~ po (o)) is asymp-
totically equivalent to v/nha (Tin, (0) — po (0)), so that we could focus on the asymptotic
distribution of Ay /nh3 (& — o) + Aay/nhz (B, (o) — 1o (00)).

Using the mean value theorem we can write 7i,, (&) = Zip(a0) + /’lgl)(a*)(a — ap),

for some o* between @ and ag. Subtracting py(ag) from both sides and multiplying by



181

v/nho we have;
V/nhy (B2(@) ~ po(ao)) = /nha (Az(ao) = po(ae)) +v/nhafis” (a* )@ - 00)  (B.27)

Hence, we need to show that the second term to the right of (B.27) is 0p(1).
Again, for a suitable mean value o** between og and o* we can write ﬁgl)(a*) = ’,ngl)(ao) +

ﬁgQ)(a**)(a* — op). Thus we have that:
1 .
Vihapl (@) (@ - ap) = \/W\/nh%ué )(00)4/nh3 (@ ~ a) (B.28)
\/ e —— i (@) /nh3 (@ — o)+ /nkd (@ — aq)

Consider the first term to the right side of (B.28). Note that from Theorem 3

we know that \/n_h:f(a — ap) = Op(1). Also, by following the same steps as in Theo-
rem 3 is straightforward to show that given our conditions \/nh2u2 )( 0) = Op (1) (see,
for example, (B.21)). Specifically, the conditions on hy for the latter result require that
nh2¥t3/ In(n))> = oo and nh3™® — 0. The first condition is directly assumed in Theorem
4, and the second one follows from nhg’""'l — 0. Finally, given our assumptions on h; and

ho we have that
1

1 e —————————— I d
VRRRS il

Thus, the first term to the right of (B.28) is 0,(1). As for the second term to the

right of (B.28), note that since |o* — ag| < @ — ag|, then \/m(a* —a) = Op(1). Now,

consider the term \/h—zﬁg) (™). Write

Vo

< Vhasup [A2(0)| < Vi sup [ (1) - 7 ()] + VA sup | 1)

Given our assumptions, we know that +/hg sup 1982) (t)’ = o(l). As discussed in the
¢

proof of Theorem 3, the assumptions from Lemma 5.1 in Newey (1994) are satisfied.
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-1/2
Then, we have that sup, |7 ‘A(Q) (t) — (2) (t) ’ = Op <(1n (n) /nh’2°+5) / ) Thus, we have
VAN

have that v/hg l\/ﬁ;,uz (o)

~1/2
<0, < In (n) /n hk+4 / ) Given our assumptions on hy and hq, we

2,0 and 1/nh§ — 0. Therefore, the second term to the right

of (B.27) is op (1), which implies that v/nhg (la(@) — uo(on)) and vnhg (G (a0) — polao))
are asympttically equivalent. Hence, we focus on the asymptotic distribution of A;y/nh$(@—
ap) + A2yv/nha (fin, (@) — po (o). As in the proof of Theorem 3, the first step to show

asymptotic normality of A\ +/nhi(@ — ag) + A2v/nhg (T, (@) — po (o)) involves writing

this expression as a linear function of a kernel estimator. Let 3 = [87 %), with & (w) =
n n
1 Z K} (w—wj) and $(w) =4 3 y;K}i(w—w;); where we define Kj(u) = —77 > K(l)

1
(u/h)+ h’;\/h K (u/h) and, as in Theorem 3, we let w = [t z] and M = E'[7 (z) 0%g0( g, z)/

.
Il

82t]. Following similar steps as in the proof of Theorem 3, and using the same notation,

we find that we can write
M\ Jnh2(@ = a0) + dar/nlg (B, (8) — 19 (00) = VA I (87) —m (s0)] +0, (1) (B.29)

where m (s) is as defined in (B.14). The next step involves showing asymptotic normality
of the first term to the right of (B.29). Following similar steps as in the proofs of Theorems

1 and 3, and using Lemma 5.3 in Newey (1994), we obtain that
Vnm (3%) — m(so)] < N (0, M1 + B13) (B.30)

Therefore, the joint asymptotic normality result in (B.25) follows. ®
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Appendix C

Proofs: (GGeneral Approach to
Estimating Dose-Response

Functions and their Maximum

Finally, we present the proof of Theorem 5, which is an identification result for ¢¢,
where ¢ (Y (t)) = &; and there is a function ¢ (Y (¢), ¢;) such that E [y (Y (t),¢7)] = 0.
This proof follows similar steps as those found in Hirano, Imbens and Ridder (2003) and
Firpo (2002) regarding estimation of average and quantile treatment effects, respectively,
in the binary-treatment case.

Proof of Theorem 5.

{w (T,X) - (¥, 67)
Ew(T, X)|X]
1

= E {WE[LU(T,X)-MK%) |X =2z
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o o
- Erpamt OB @) T =t X =) X =]

S R T e
N E_E[w(T,X) |X]E[ (T,X)E{d)(Y(t),qbt)lT t, X }|X ]}
1

- E|promtl TR EW I (0),6)1X =a X =]

= E[E{ (Y (¢),60)]X ==z}]
= Ep (Y (1),¢0)]=0

The first and second equalities use iterated expectations. The fourth line uses the

unconfoundedness assumption, and the last one uses the definition of ¥ (Y (¢), ¢;). ®



