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Propensity-Score Matching with Instrumental Variables 


Propensity-score matching is a nonexperi-
mental method for estimating the average effect 
of social programs (see William Cochran, 1968; 
Paul Rosenbaum and Donald Rubin, 1983; 
James Heckman et al., 1998b). The method 
compares average outcomes of participants and 
nonparticipants, conditioning on the propensity- 
score value. The average comparison measures 
the average impact of a program. This method- 
ology has received much attention recently in 
econometrics (see Heckman et al., 1996, 1997, 
1998a, b; Jinyong Hahn, 1998; Rajeev Dehejia 
and Sadek Wahba, 1999; Jeffrey Smith and 
Petra Todd, 2000; Keisuke Hirano et al., 2000). 

The underlying identification requirement of 
the matching methodology is that the program 
choice is independent of outcomes conditional 
on a certain set of observables. While intuitively 
attractive in that the method replicates features 
of randomized experiments within observa-
tional data, the identification requirement ex- 
cludes a possibility that the program-choice 
decision could be correlated with the outcomes 
given the set of observables (see Heckman et 
al., 1997, 1998b). Unobservables that are cor- 
related both with an outcome and the program 
choice are not allowed. 

There are some efforts to estimate more gen- 
eral models using nonparametric methods (see 
Whitney Newey and James Powell, 1989; 
Heckman, 1997; Alberto Abadie, 2000; Serge 
Darolles et al., 2000; Matali Das, 2000; Jean- 
Pierre Florens, 2000; Ichimura and Taber, 
2000). One such effort is the use of the instru- 
mental-variable methods. Heckman (1997) has 
shown that the set of assumptions to justify 
instrumental-variable methods are very restric- 

* Ichimura: Department of Economics, University Col- 
lege London, Gower Street, London WClE 6BT, United 
Kingdom, and Institute for Fiscal Studies; Taber: Depart- 
ment of Economics, Northwestern University, 2003 Sheri- 
dan Road, Evanston, IL 60208. We thank Josh Angrist, Jim 
Heckrnan, Guido Imbens, and Chuck Manski for comments. 
Ichimura acknowledges NSF SBR-9730688 for support, 
and Taber acknowledges NSF SBR-9709873. 

tive from the perspective of behavioral models 
of program participation. We show that his con- 
ditions justifying instrumental-variable methods 
actually justify the matching method as a spe- 
cial case.' This observation ties the limitations 
of the matching method in line with those of 
instrumental-variable methods and also is use- 
ful in constructing specification tests for match- 
ing methods when valid instrumental variables 
are available. This is analogous to testing the 
validity of the identification conditions for or- 
dinary least-squares (OLS) estimators when 
there are overidentifying instrumental variables. 

We then present two different propensity- 
score methods that are based on instrumental 
variables. Both methods include standard pro- 
pensity-score matching as special cases. They 
help reduce the dimension of the conditioning 
variables without invoking functional-form as- 
sumptions in the same way that the standard 
propensity-score matching helps reduce the di- 
mension of the conditioning variables. We show 
how to use these ideas to construct estimators 
that can be easily implemented. 

I. OLS Propensity-Score Matching 
for the Standard Case 

Following the standard program evaluation 
literature we let D be a binary variable indicat- 
ing participation in a program. We let Y, denote 
the outcome for an individual if the person 
participates, and Yo the outcome if she does 
not.2 The observed outcome variable is thus 
defined as Y = Yo + D(Y, - Yo). The pro- 
pensity score is defined as P(X) = Pr(D = 

1 1x1. 
The identification condition of matching for 

the average treatment effect is 

E(Y,D, X) = E(YoIX) 

Heckman and Smith (1998) and Heckrnan et al. (1999) 
discuss a framework that includes both the instrumental- 
variable method and the matching method as special cases. 

We assume that all the moments written are finite. 
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120 AEA PAPERS AND PROCEEDINGS MAY 2001 

or equivalently 

Note that the symmetry between D = 0 and D = 

1 seems to be lost in the formulation, but given 
that the index 0 and 1 are arbitrary, it is not. Under 
these conditions it is easy to show that E [ Y ~ D ,  
P(X)I = E[YoIP(X)I + D x E[Yl - YoIP(X)I. 
Thus OLS of Y on D given P(X)  yields EIYl -
Y , I P ( x ) ]  as the coefficient on D (see Rosenbaum 
and Rubin, 1983).Note that the OLS estimator of 
the coefficient of D is the propensity-score match- 
ing estimator of EIYl - Y0IP(X)].We can esti- 
mate the average treatment effect A = E(Yl - Yo) 
by estimating EIYl - YoIP(X)]by OLS and then 
integrating up over the distribution of P(X).That 
is A = E(E [Y, - Yo1~(X)] ) .  

Note that the matching identification condi- 
tions ( 1 )and ( 2 )are equivalent to assuming that 
D itself is a valid exclusion restriction in the 
mean of the outcomes Yo and Y ,  conditional on 
observables X.  

11. Generalizing Matching Assumptions 

Heckman (1997) shows that the average 
treatment effect can be identified through an 
instrumental variable, Z under the following 
conditions: 

where P(Z ,  X )  = Pr(D = 1  Iz, X ) .  Under these 
conditions, OLS of Y on a constant term and 
P(Z ,  X )  given X will yield E ( Y ,  - Y , ~ X ).3  

Heckman (1997) discusses a Wald-type estimator. 

Conditioning variable D in the assumptions 
( 4 )  and (5) is replaced by Z.  This formulation 
makes clear that assumptions (4') and ( 5 ' )gen-
eralize assumptions ( 4 )and (5) .Note that when 
Z is D ,  P(Z ,  X )  = D .  

Heckman (1997) discusses how these condi- 
tions are restrictive from the perspective of be- 
havioral model of a program participation. 
However, he also points out that they are 
weaker than those specified by the dummy en- 
dogenous variable model, as they allow for 
some heterogeneity in treatment effects that are 
not correlated with Z.  For example, the condi- 
tion will be satisfied if we can write 

with E ( U ~ Z ,  X )  = 0. This is the case Das 
(2000) examine^.^ The assumption specified 
above is more general in that it allows the 
treatment impact Y ,  - Yo to depend on unob- 
servable~ so long as it is uncorselated with D 
given Z and X.  The generality allows us to 
embed the matching assumptions ( 4 )and ( 5 )as 
a special case. 

111. Regression-Based Propensity-Score 
Matching 

We consider the situation where Z takes on 
discrete values (one can always discretize a 
continuous Z ) .  In this case given X,  P ( Z ,  X )  
takes on discrete values. We discuss two differ- 
ent ways to generalize matching methods. First, 
we show that when assumptions ( 4 ' )  and ( 5 ' )  
hold, rather than running OLS of Y on a con- 
stant term and P ( Z ,  X )  conditional on the entire 
X vector, one can condition on two arguments: 

Note that when Z is D ,  P(Z ,  X )  = D ,  and 
both E [ P ( Z , x ) I x ]  and E [ P ~ ( z ,x ) I x ]  reduce 
to E ( D X ) ,  the propensity score. Thus, in the 

Newey and Powell (1989), Darolles et al. (2000), and 
Florens (2000) discuss nonparametric estimation of nlodels 
with continuous endogenous variables and additive enor 
terms. 
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special case, the method can be seen as a gen- 
eralization of the standard propensity-score 
matching. 

To see how this works observe that 

Note that 

and analogously 

and 

Thus. 

Therefore, in the same way that OLS is a special 
case of two-stage least squares, the simple match- 
ing estimator is a special case of this method when 
one can use Z and X as instsuments for D. 

This method can be implemented by estimat- 
ing the mean of Y ,  - Yo conditional on P ( X )  = 

E [ P ( Z , x ) I x ]  and Q ( X )  = E [ P 2 ( z ,x ) I x ]  by 
the sample analogue of 

and then averaging over the sample distribution 
of [ P ( X ) ,Q(x)l.Cov[Y, P ( Z ,  X)IP(X) ,  Q(X)1 
and Var[P(Z ,X )  P ( x ) ,  Q ( X ) ]  can be nonpara- 
metrically estimated using estimated P and Q .  
This estimator is quite similar to the kernel- 
based matching estimator discussed in Heck- 
man et al. (1997, 1998b). 

IV. Difference-Based Propensity-Score Matching 

An alternative way to generalize the match- 
ing estimator is to view matching as a Wald- 
type estimator. For any two values Z = z and 
Z = z ' ,  define 

Q ( X ) = Pr{Z = z Z  = z or Z = z ' ,  X ) .  

Then, 

E ( Y ,  - YolQ(X) ,  Z  = z or Z = z ' )  

Z = z ' ,  Q ( X ) ,  Z  = z or Z = z' i. 

Note that when Z is D, P ( Z ,  X )  = D ,  and 
Q ( X ) = P ( X ) . Thus, this method reduces to the 
standard propensity-score matching when one 
uses D as the instrumental variable. 

The key insight of Rosenbaum and Rubin 
(1983) is that, for any function g(X),  E [ ~ ( x ) D ,  
P(X)] = E [ g ( ~ ) ~ ( ~ ) ] .We exploit an analogous 
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result for Z. To see how this works, note that, 
writing A(X) = E(Y, - Y&), 

We have exploited 

= E[g(X) lQ(X) ,Z =  z o r z ' ]  

in the first equality above. 
If Z takes on two values, then one can esti- 

mate the average treatment effect by averaging 
over Q ( X ) .If Z takes on more than two values, 
there are different ways to proceed. For exam- 
ple, one could create binary values using Z and 
simply averaging over Q ( X ) ,or one can aver- 
age over different combinations of z and z ' .  
However, there may be efficiency losses in dis- 
cretizing Z when it is not binary to begin with. 

This method can be implemented in the same 
way as above using nonparametric regression or 
using a nearest-neighbor approach. To imple- 
ment the idea, for each z we need an alternative 
value z' for comparison. We do so by defining 
a transformation T from the support of Z to 
itself conditional on X such that T ( Z )  # Z 
almost surely. In the special case in which the 
instrument is binary T ( z ) = z' and T ( z l )= z. 

We also generalize Q and P so that Q ( X ;z )  = 

Pr(Z = Z X ,z E { z ,  T ( z ) ) )  and E ( D X ,  Z = 

2 )  = Pz(X) .  
For each Xi in the sample we match on pro- 

pensity scores Q(Xi )by finding another obser- 
vation j in the sample with Q ( x j ) = Q ( x i )and 
Zj = T(Z i ) .That is, we choose 

We can estimate A using 

This is a straight generalization of the stan- 
dard nearest-neighbor matching. If we take Z = 

D ,  T ( l )  = 0 , and T ( 0 ) = 1 ,  then we obtain the 
familiar estimator. To see this, notice that when 
Di = 1, P,, - P,(,,, = 1 and when Di = 0, 
PZ2- PqZ,, = - 1, and conditioning on Q(Xi ;  
Z )  is equivalent to conditioning on the propen- 
sity score. 

There are many different ways to form the 
transformation T.  Under some regularity condi- 
tions 8, should be a consistent estimate of the 
average treatment effect regardless of the trans- 
formation that we use. This can form the basis 
of a specification test. A finding that the esti- 
mated parameter varies considerably with the 
transformation we choose can be taken as evi- 
dence against the model. 

V. Conclusion 

We have shown that the conditions justify- 
ing instrumental-variable estimation of the 
average treatment effect justify the matching 
method as a special case. This observation 
can be used to construct a test for the identi- 
fying assumptions that justify the standard 
matching method. 

We also have constructed two propensity- 
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score methods that use instrumental variables. 
These methods have the same advantages and 
disadvantages and should be used with the same 
concern for the support conditions as those of 
the standard propensity-score methods. 

In this paper we have assumed that the 
parameter of interest is the average treatment 
effect and have focused on strong identifica- 
tion conditions. There are other models ex-
plored in the literature that allow for much 
more general unobservable effects than the 
conditions studied in this paper (see Heck- 
man, 1990; Charles Manski, 1990; Guido Im- 
bens and Joshua Angrist, 1994; Ichimura and 
Taber, 2000). The ideas in this paper can be 
extended to show that these approaches also 
have propensity-score matching analogues 
and thus can be implemented with the reduced 
dimension when certain conditional probabil- 
ities are estimated. 
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