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The central role of the propensity score in observational 
studies for causal effects 

BY PAUL R. ROSENBAUM 
Departments of Statistics and Human  Oncology, University of Wisconsin, Madison, 

Wisconsin, U .S .A .  

AND DONALD B. RUBIN 

University of Chicago, Chicago, Illinois, U . S . A .  

The propensity score is the conditional probability of assignment to a particular 
treatment given a vector of observed covariates. Both large and small sample theory 
show that  adjustment for the scalar propensity score is sufficient to remove bias due to 
all observed covariates. Applications include: (i) matched sampling on the univariate 
propensity score, which is a generalization of discriminant matching, (ii) multivariate 
adjustment by subclassification on the propensity score where the same subclasses are 
used to estimate treatment effects for all outcome variables and in all subpopulations, 
and (iii) visual representation of multivariate covariance adjustment by a two-
dimensional plot. 

Some key words: Covariance adjustment; Direct adjustment; Discriminant matching; Matched sampling; 
Nonrandomized study; Standardization; Stratification; Subclassification. 

1. DEFINITIONS 

1.1. The structure of studies for causal eflects 

Inferences about the effects of treatments involve speculations about the effect one 
treatment would have had on a unit which, in fact, received some other treatment. We 
consider the case of two treatments, numbered 1 and 0. I n  principle, the i th  of the N 
units under study has both a response r l i  that  would have resulted if i t  had received 
treatment 1, and a response roi that  would have resulted if it had received treatment 0. 
I n  this formulation, causal effects are comparisons of r l i  and rOi,for example rl i -roi  or 
rli/roi.Since each unit receives only one treatment, either r l i  or roi is observed, but not 
both, so comparisons of r l i  and rOi imply some degree of speculation. I n  a sense, 
estimating the causal effects of treatments is a missing data problem, since either r l i  or 
roi is missing. 

This formulation is that  used in the literature of experimental design, for example, in 
the books by Fisher (1951) and Kempthorne (1952), and follows the development by 
Rubin (1974, 2977, 1978, 1980a); Hamilton (1979) adopts a similar approach. The 
structure would not be adequate when, for example, the response of unit i to treatment t 
depends on the treatment given to unit j, as could happen if they compete for resources. 
The assumption that  there is a unique value rti corresponding to unit i and treatment t 
has been called the stable unit-treatment value assumption (Rubin, 1980a), and will be 
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made here. For discussion of some possible violations of this assumption, see Cox (1958, 
Chapter 2) or Rubin (1978, $2.3). 

I n  this paper, the N units in the study are viewed as a simple random sample from 
some population, and the quantity to be estimated is the average treatment effect, 
defined as 

E ( y 1 )  -E(ro), (1.1) 

where E( . ) denotes expectation in the population. 
Let zi = 1 if unit i is assigned to the experimental treatment, and zi = 0 if unit i is 

assigned t o .  the control treatment. Let xi be a vector of observed pretreatment 
measurements or covariates for the i th  unit; all of the measurements in x are made prior 
to treatment assignment, but x' may not include all covariates used to make treatment 
assignments. It is assumed that  the numbering of units is done a t  random, so that  the 
index i contains no information; observed information about unit i is contained in xi. 
Throughout, we ignore measure theoretic details. 

1.2. Balancing scores and the propensity score 

I n  randomized experiments, the results in the two treatment groups may often be 
directly compared because their units are likely to be similar, whereas in nonrandomized 
experiments, such direct comparisons may be misleading because the units exposed to 
one treatment generally differ systematically from the units exposed to the other 
treatment. Balancing scores, defined here, can be used to group treated and control units 
so that  direct comparisons are more meaningful. 

A balancing score, b(x), is a function of the observed covariates x such that  the 
conditional distribution of x given b(x) is the same for treated (z = 1) and control (z = 0)  
units; that  is, in Dawid's (1979) notation, 

The most trivial balancing score is b(x) = x. More interesting balancing scores are many- 
one functions of x. I n  $ 2 we identify all functions of x that  are balancing scores and 
identify the coarsest function of x that  is a balancing score, namely the propensity score. 
We also show that  easily obtained estimates of balancing scores behave like balancing 
scores. Also, we show that  if treatment assignment is strongly ignorable given x, as 
defined in $1.3, then the difference between treatment and control means a t  each value of 
a balancing score is an unbiased estimate of the treatment effect a t  that  value, and 
consequently pair matching, subclassification and covariance adjustment on a balancing 
score can produce unbiased estimates of the average treatment effect (1.1). Moreover in 
$ 3  we see that  common methods of multivariate adjustment in observational studies, 
including covariance adjustment for x and discriminant matching (Cochran & Rubin, 
1973), implicitly adjust for an estimated scalar balancing score. 

I n  order to motivate formally adjustment for a balancing score, we must consider the 
sampling distribution of treatment assignments. Let the conditional probability of 
assignment to treatment one, given the covariates, be denoted by 

e(x)= pr (z = 1 I x), 
where we assume 

N 

pr(zl , ...,Z, Ixl, ...,x,) = n e(xi)"{l - e ( ~ , ) ) ' - ~ '  
i =  1 
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Although this strict independence assumption is not essential, it simplifies notation and 
discussion. The function e(x) is called the propensity score, that  is, the propensity 
towards exposure to treatment 1 given the observed covariates x. In  2, e(x) is shown to  
be the coarsest balancing score. 

1.3. Strongly ignorable treatment assignment 

Randomized and nonrandomized trials differ in two distinct ways because in 
randomized experiments zi has a distribution determined by a specified random 
mechanism. First, in a randomized trial, the propensity score is a known function so that  
there exists one accepted specification for e(x). In  a nonrandomized experiment, the 
propensity score function is almost always unknown so that  there is not one accepted 
specification for e(x); however, e(x) may be estimated from observed data,  perhaps using a 
model such as a logit model. To a Bayesian, estimates of these probabilities are posterior 
predictive probabilities of assignment to treatment 1 for a unit with vector x of 
covariates. 

The second way randomized trials differ from nonrandomized trials is that ,  with 
properly collected data in a randomized trial, x is known to include all covariates that  
are both used to assign treatments and possibly related to the response (r,, r,). More 
formally, in a randomized trial, treatment assignment z and response (r,, r,) are known 
to be conditionally independent given x, 

This condition is usually not known to hold in a nonrandomized experiment. Moreover, 
in a randomized experiment, every unit in the population has a chance of receiving each 
treatment. Generally, we shall say treatment assignment is strongly ignorable given a 
vector of covariates v if 

for all v. For brevity, when treatment assignment is strongly ignorable given the 
observed covariates x, that  is, when (1.3) holds with v = x, we shall say simply that  
treatment assignment is strongly ignorable. If treatment assignment is strongly 
ignorable, then it is ignorable in Rubin's (1978) sense, but the converse is not true. 

2. THEORY 


2.1. Outline 


Section 2 presents five theorems whose conclusions may be summarized as follows. 

(i) The propensity score is a balancing score. 

( i i )  	Any score that  is 'finer' than the propensity score is a balancing score; moreover, x 
is the finest balancing score and the propensity score is the coarsest. 

( i i i )  	Tf treatment assignment is strongly ignorable given x, then i t  is strongly ignorable 
given any balancing score. 

( iv )  	At any value of a balancing score, the difference between the treatment and 
control means is an unbiased estimate of the average treatment effect a t  that  
value of the balancing score if treatment assignment is strongly ignorable. 
Consequently, with strongly ignorable treatment assignment, pair matching on a 



balancing score, subclassification on a balancing score and covariance adjustment 
on a balancing score can all produce unbiased estimates of treatment effects. 

(v) Using sample estimates of balancing scores can produce sample balance on x. 

2.2. Large-sample theory 

The results in this section treat e (x )as known, and are therefore applicable to large 
samples. 

THEOREM1. Treatment assignment and the observed covariates are conditionally inde- 
pendent given the propensity score, that is  

x l  zI e ( x ) .  

The above theorem is a special case of Theorem 2. Cochran & Rubin (1973)proved 
Theorem 1 in the particular case of multivariate normal covariates x; the result holds 
regardless of the distribution of x. 

THEOREX2. Let b (x )  be a  function of x. Then b(x)  is a  balancing score, that is,  

x 1x l b ( x ) ,  (2.1 

if and only if b(x)  isJiner than e(x)  i n  the sense that e (x )  = f  { b ( x ) )  for some function f. 

Proof. First suppose b(x )is finer than e(x) .Since e (x )= pr ( z  = 1 I x ) ,  to show b(x)is a 
balancing score it is sufficient to show 

pr {z  = 11 b ( x ) )= e(x) .  (2.2) 

Now by the definition of e ( x ) ,  
pr { x  = 1 I b ( x ) )= E{e(x )I b ( x ) ) .  

But since b(x )is finer than e (x ) ,  

E{e(x)I b(x ) )= e(x) ,  

as required, so that  b(x )is a balancing score. 
Now, for the converse, suppose b(x )is a balancing score, but that  b(x )is not finer than 

e (x ) ,so that  there exists x ,  and x2 such that  e(x,)  +e(x2)  but b(x , )= b(x2) .But then, by 
the definition of e( . ), pr ( x  = 1 Ix,)  S: pr ( 2  = 1 I x 2 ) ,SO that  x and x are not conditionally 
independent given b(x ) , and thus b(x )  is not a balancing score. Therefore, to be a 
balancing score, b(x)must be finer than e (x ) .  

Theorem 1 implies that  if a subclass of units or a matched treatment-control pair is 
homogeneous in e(x) ,then the treated and control units in that  subclass or matched pair 
will have the same distribution of x. Theorem 2 implies tha,t if subclasses or matched 
treated-control pairs are homogeneous in both e(x)and certain chosen components of x ,  
it  is still reasonable to expect balance on the other components of x within these refined 
subclasses or matched pairs. The practical importance of Theorem 2 beyond Theorem 1 
arises because it is sometimes advantageous to subclassify or match not only for e (x )but 
for other functions of x as well; in particular, such a refined procedure may be used to 
obtain estimates of the average treatment effect in subpopulations defined by compo- 
nents of x ,  for example males, females. 

Theorem 3 is the key result for showing that  if treatment assignment is strongly 
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ignorable, then adjustment for a balancing score b(x) is sufficient to produce unbiased 
estimates of the average treatment effect (1.1). 

THEOREM3. If treatment assignment is strongly ignorable given x,  then it is  strongly 
ignorable given any balancing score b (x ) ;  that is,  

and 

for all x  imply 

and 

for all b (x ) .  

Proof. The inequality given b(x ) follows immediately from the inequality given x. 
Consequently, it is sufficent to show that  

pr { z  = I 1 r,, r,, b ( x ) )  = pr{z = 1 l b ( x ) ) ,  

which by Theorem 2, equation (2.2),is equivalent to showing that  

pr { z  = 1 I r,, ro, b ( x ) )  = e(x) .  
Now 

pr { z  = 11 r l ,  Y o ,  b ( x ) }= E{pr (z  = 1 1 r l ,  Y O ,  x ) I T I ,  YO,  b ( x ) } ,  

which by assumption equals E{pr (z = 1 I x )  I r , ,  r,, b ( x ) ) ,  which by definition equals 
E{e(x )I r,, r,, b (x ) ) ,  which, since b(x )is finer than e(x) ,equals e (x )as required. 

Theorem 3 also can be proved using Lemmas 4.2(i)and 4.3 of Dawid (1979). 
We are now ready to relate balancing scores and ignorable treatment assignment to 

the estimation of treatment effects. 
The response r, to treatment t is observed only if the unit receives treatment t ,  that  is 

if z = t .  Thus, if a randomly selected treated unit, z = 1, is compared to a randomly 
selected control unit, z = 0 ,  the expected difference in response is 

Expression (2.3)does not equal (1.1) in general because the available samples are not 
from the marginal distribution of r,, but rather from the conditional distribution of r, 
given z = t .  

Suppose a specific value of the vector of covariates x is randomly sampled from the 
entire population of units, that  is, both treated and control units together, and then a 
treated unit and a control unit are found both having this value for the vector of 
covariates. In  this two-step sampling process, the expected difference in response is 

E x  { E ( r l  I x ,  z = 1)-E(ro1 % z = O ) ) ,  (2.4) 

where E x  denotes expectation with respect to the distribution of x in the entire 
population of units. If treatment assignment is strongly ignorable, that  is if (1.3)holds 
with v = x ,  then (2.4)equals 

Ex {E(r1 I x )-E(r0 I X I )  , 
which does equal the average treatment effect (1.1). 



Now suppose a value of a balancing score b(x)is sampled from the entire population of 
units and then a treated unit and a control unit are sampled from all units having this 
value of b ( x ) ,but perhaps different values of x. Given strongly ignorable treatment 
assignment, it follows from Theorem 3 that  

from which it follows that  

where Eb(,, denotes expectation with respect to the distribution of b(x )  in the entire 
population. In  words, under strongly ignorable treatment assignment, units with the 
same value of the balancing score b(x )but different treatments can act as controls for 
each other, in the sense that  the expected difference in their responses equals the average 
treatment effect. 

The above argument has established the following theorem and corollaries. 

THEOREM4. Suppose treatment assignment is strongly ignorable and b (x )  is  a balancing 
score. Then the expected dijerence i n  observed responses to the two treatments at b (x )  is equal 
to the average treatment eject at b ( x ) ,  that is,  

COROLLARY4.1. Pair matching on balancing scores. Suppose treatment assignment is 
strongly ignorable. Further suppose that a value of a balancing score b (x )  is  randomly 
sampled from the population of units, and then one treated, z = 1, unit and one control, z = 0 ,  
ur~itare sampled with this value of b (x ) .  Then the expected dijerence i n  response to the two 
treatments for the units in the matched pair equals the average treatment eject at b (x ) .  
Moreover, the mean of matched pair dijerences obtained by this two-step sampling process is  
unbiased for the average treatment eject (1.1). 

COROLLARY4.2. Subclassi$cation on balancing scores. Suppose treatment assignment is  
strongly ignorable. Suppose further that a group of units is  sampled using b (x )  such that: (i) 
b(x)  is constant for all units in the group, and (ii)at least one unit i n  the group received each 
treatment. Then, for these units, the expected di8erenc.e i n  treatment means equals the average 
treatment eject at that value of b (x ) .  Moreover, the weighted average of such dijerences, that 
is,  the directly adjusted dijerence, is  unbiased for the treatment eject (1.1), when the weights 
equal the fraction of the population at b (x ) .  

COROLLARY4.3.Covarianceadjustment on balancing scores. Suppose treatment assignment 
is  strongly ignorable, so that i n  particular, E{r,  I x = t ,  b ( x ) )  = E{r,  I b ( x ) )  for balancing score 
b (x ) .  Further suppose that the conditional expectation of r, given b (x )  is  linear: 

E { r , I z = t , b ( x ) ) = a , + f i , b ( x )  ( t = O , l ) .  
Then the estimator 

( & 1 - & 0 ) +  ($1-&)b(x) 

is conditionally unbiased given b(x i )  ( i= 1, ...,n)for the treatment eject at b ( x ) ,  namely 
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E{rl -ro I b(x)),if 2, and fit are conditionally unbiased estimators of a, and fit, such as least 
squares estimators. Moreover, 

(21 -20) + (P I  -Po)&, 

where 6= n- 'C b(xi), is unbiased for the average treatment eflect (1.1) if the units in  the 
study are a simple random sample from the population. 

2.3. Some small-sample theory 

Usually the propensity scores e(xi) must be estimated from available data,  
(xi, xi)(i= 1, ..., N ) .  Define the sample conditional proportion prop(A I B )  as the pro- 
portion of those vectors (xi, xi) satisfying condition B that  also satisfy condition A ,  
leaving prop(A1 B)  undefined if no vector satisfies condition B. For example, 
prop {z = 1 I x = (1,O)) is the proportion of the N units with z = 1 among all units with 
x = (1,O). Estimate e(x) by ?(a) = prop (z = 1 I x = a).If ;(a) = 0 or 1 then all units with 
x = a received the same treatment. Theorem 5, which parallels Theorem 1, shows that  a t  
all intermediate values of ?(a), that  is for 0 < ;(a) < 1, there is sample balance. Of course, 
intermediate values of ijx) will exist only when x takes on relatively few values. 

THEOREM5. Suppose 0 < ;(a) < 1. Then 

prop { z  = 0,x = a l?(x)= ;(a)) = prop {z = 0 I ;(x) = ;(x)) prop {x = a 1 i ( x )  = ?(a)). 

(2.6 

An analogous theorem about sample balance parallels Theorem 2, and the proofs 
parallel the corresponding proofs of Theorems 1 and 2 because proportions follow 
essentially the same axioms as probabilities. 

COROLLARY5.1. Suppose the N units are a random sample from an  infinite population, 
and suppose x takes on only finitely many values in  the population and at each such value 
0 < e(x)< 1. Then with probability 1 as N + co,subclassification on 2(x) produces sample 
balance, that is, (2.6) holds. 

I n  practice, except when x takes on only a few values, ?(a) will be either zero or one for 
most values of a.  Consequently, in order to estimate propensity scores, some modelling 
will be required. 

The propensity score can often be modelled using an appropriate logit model (Cox, 
1970) or discriminant score. 

Clearly, 

Elementary manipulations establish the following facts. 
( i )  Tf pr (x I x = t )  = N, (p,, R)  then e(x) is a monot,one function of the linear discrimi- 

nant xTR-I (pl-p2). Therefore, matching on e(x) includes discriminant matching 
(Cochran & Rubin, 1973; Rubin 1976a, b; 1979; 1980b) as a special case. Some related 
results appear in § 3.2. 

(ii) If pr (x I x = t )  is a polynomial exponential family distribution, i.e. if 



where P,(x) is a polynomial in x of degree k , say, then e(x) obeys a polynomial logit model 

where Q(x) is a degree k polynomial in x. This polynomial exponential family includes the 
linear exponential family resulting in a linear logit model for e(x), the quadratic 
exponential family described by Dempster (1971), and the binary data model described 
by Cox (1972). Related discussion is given by Dawid (1976). 

3. THREEAPPLICATIONS OF PROPENSITY SCORES TO OBSERVATIONAL STUDIES 

3.1. Techniques for adjustment in observational studies 

The general results we have presented suggest that, in practice, adjustment for the 
propensity score should be an important component of the analysis of observational 
studies because evidence of residual bias in the propensity score is evidence of potential 
bias in estimated treatment effects. We conclude with three examples of how propensity 
scores can be explicitly used to adjust for confounding variables in observational studies. 
The examples involve three standard techniques for adjustment in observational studies 
(Cochran, 1965; Rubin, 1983), namely, matched sampling, subclassification, and 
covariance adjustment, that is, the three methods addressed by Corollaries 4.1, 4.2 and 
4.3. 

3.2. Use of propensity scores to construct matched samples from treatment groups 

Matching is a method of sampling from a large reservoir of potential controls to 
produce a control group of modest size in which the distribution of covariates is similar 
to the distribution in the treated group. Some sampling of a large control reservoir is 
often required to reduce costs associated with measuring the response, for example, costs 
associated with obtaining extensive follow-up data on patients in clinical studies (Rubin, 
1973a; Cohn et al., 1981). 

Although there exist model-based alternatives to matched sampling, e.g. covariance 
adjustment on random samples, there are several reasons why matching is appealing. 

(I)Matched treated and control pairs allow relatively unsophisticated researchers to 
appreciate immediately the equivalence of treatment and control groups, and to perform 
simple matched pair analyses which adjust for confounding variables. This issue is 
discussed in greater detail below in $3.3 on balanced subclassification. 

(11)Even if the model underlying a statistical adjustment is correct, the variance of 
the estimate of the average treatment effect (1.1) will be lower in matched samples than 
in random samples since the distributions of x in treated and control groups are more 
similar in matched than in random samples. To verify this reduced variance, inspect the 
formula for the variance of the covariance adjusted estimate (Snedecor & Cochran, 1980, 
p. 368, formula 18.2.3), and note that the variance decreases as the difference between 
treatment and control means on x decreases. 

(111) Model-based adjustment on matched samples is usually more robust to 
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departures from the assumed form of the underlying model than model-based adjust- 
ment on random samples (Rubin, 197313, 1979), primarily because of reduced reliance on 
the model's extrapolations. 

(IV) I n  studies with limited resources but large control reservoirs and many 
confounding variables, the confounding variables can often be controlled by multi- 
variate matching, but the small-sample sizes in the final groups do not allow control of 
all variables by model-based methods. 

Ideally, treated and control units would be exactly matched on all covariates x, so 
that  the sample distributions of x in the two groups would be identical. Theorem 2 shows 
that  it is sufficient to match exactly on any balancing score b(x) to obtain the same 
probability distributions of x for treated and control units in matched samples. Moreover, 
Corollary 4.1 shows that  if treatment assignment is strongly ignorable, exact matching 
on a balancing score leads to an unbiased estimate of the average treatment effect. 
Unfortunately, exact matches even on a scalar balancing score are often impossible to 
obtain, so methods which seek approximate matches must be used. We now study 
properties of some matching methods based on the propensity score. 

A multivariate matching method is said to be equal per cent bias reducing if the bias in 
each coordinate of x is reduced by the same percentage (Rubin, 1976a, b). Matching 
methods which are not equal per cent bias reducing have the potentially undesirable 
property that  they increase the bias for some linear functions of x. If matched sampling 
is performed before the response (r , , ro) can be measured, and if all that  is suspected 
about the relation between (r,,  ro) and x is that  it is approximately linear, then matching 
methods which are equal per cent bias reducing are reasonable in that  they lead to 
differences in mean response in matched samples that  should be less biased than in 
random samples. 

The initial bias in x is 

Let us suppose that  we have a random sample of treated units and a large reservoir of 
randomly sampled control units, and suppose each treated unit is matched with a 
control unit from the reservoir. Then the expected bias in x in matched samples is 

where the subscript rn indicates the distribution in matched samples. I n  general, from 
Theorem 2, B, is a null vector if exact matches on a balancing score have been obtained. 
If B, = yB for some scalar y ,  with 0 < y < 1, then the matching method is equal per cent 
bias reducing: the bias in each coordinate of x is reduced by 100(1- y ) % .  If the method is 
not equal per cent bias reducing, then there exists a vector w such that  wB, > wB,so 
that  matching has increased the bias for some linear function of x. 

I n  32.3 we observed that  discriminant matching is equivalent to matching on the 
propensity score if the covariates x have a multivariate normal distribution. Assuming 
multivariate normality, Rubin (1976a) showed that  matching on the population or 
sample discriminant is equal per cent bias reducing. We now show that  matching on the 
population propensity score is equal per cent bias reducing under weaker distributional 
assumptions. It is assumed that  the matching algorithm matches each treated, z = 1, 
unit with a control, z = 0, unit drawn from a reservoir of control units on the basis of a 
balancing score, for example, using nearest available matching on a scalar balancing 
score. 
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THEOREM b ( x )  be a balancing score. For any  matching method that uses b alone to 6 .  Let b = 
match each treated unit,  x = 1, with a control unit,  z = 0 ,  the reduction in bias is  

B-B, = S ~ ( x I b ) { ~ r , ( b I z= 0 ) - p r ( b I z  = O))db, (3.3) 

where pr, (bI x = 0 )  denotes the distribution of b in matched samples from the control group. 

Proof. From (3.1)and (3.2)we have 

B - B ,  = S{E,(xIx = O,b)pr,(bIz = 0 ) - E ( x I z  = O , b ) p r ( b l z= 0 ) ) d b .  (3.4) 

For any matching method satisfying the condition of the theorem, 

because any matching method using b alone to match units alters the marginal 
distribution of b in the control group, z = 0, but does not alter the conditional 
distribution of x given b in the control group. However, by Theorem 2, 

E ( x 1 z = 0 ,  b)  = E ( x I b) .  (3.6 

Substitution of (3.5) and (3.6) into equation (3.4)yields the result (3.3). 

COROLLARY6.1. If  E ( x  I b )  = a +P f (b )  for some vectors a and P and some scalar-valued 
function f ( . ), then matching on b alone i s  equal per cent bias reducing. 

Proof. The per cent reduction in bias for the i th coordinate of x is, from (3.3) 

100 Pi [Em{ f  (b )I = 0 )  - E {  f (b )  I z = O ) ]
P i [ E { f ( b ) I x =  l ) - E { f ( b ) l ~ = O ) ]  ' 

which is independent of i ,  as required. 

The following corollary shows that  if subpopulations are defined using x so that  some 
function d ( x ) is constant within each subpopulation, then propensity matching within 
subpopulations is equal per cent bias reducing in each subpopulation. 

COROI,I,ARY = I b, d )  = a, +P, f, ( b )  for vectors 6.2. Let d d ( x )  be some function of x.I f  E ( x  
a,, P d ,  and some scalar-valued functions f, ( . ), then matching on b alone at each value of d is  
equal per cent bias reducing at each value of d ,  that is ,  

for scalar y,. 

Proof. Apply Theorem 6 and Corollary 6.1 within subpopulations 

Rubin's (1979)simulation study examines the small-sample properties of discriminant 
matching in the case of normal covariates with possibly different covariances in the 
treatment groups. Thus, the study includes situations where the true propensity score is 
a quadratic function of x but the discriminant score is a linear function of x. Table 1 
presents previously unpublished results from this study for situations in which the 
propensity score is a monotone function of the linear discriminant, so that  propensity 
matching and discriminant matching are effectively the same. The covariates x are 
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Table 1. Per cent reduction in bias due to matched sampling based on  the sample and 
population propensity scores 

Ratio of size 
control reservoir Initial bias along 

to size of treatment Type of standardized discriminant 
grc"-'P score 0.25 0.50 0.75 1.00 

2 Sample 92 85 77 67 
Population 92 87 78 69 

3 Sample 101 96 91 83 
Population 96 95 91 84 

4 Sample 97 98 95 90 
Population 98 97 94 89 

Assuming bivariate normal covariates with common covariance matrix, parallel linear response surfaces, 
sample size of 50 in treated and control groups. Estimated per cent reduction in bias from Rubin's (1979) 
simulation study. The largest estimated standard error for this table is less than 0.03. 

bivariate normal with common covariance matrix. In  the simulation, 50 treated units 
are matched using nearest available matching (Cochran & Rubin, 1973) on the sample 
discriminant with 50 control units drawn from a reservoir of 50R potential control units, 
for R = 2,3,4; details are given by Rubin (1979). 

Assuming parallel linear response surfaces, Table 1 shows that  even in the absence of 
additional adjustments, propensity, i.e. discriminant, matching alone can remove most 
of the initial bias if the reservoir is relatively large. Moreover, Table 1 shows that  the 
population and sample propensity scores are approximately equally effective in remov- 
ing bias, so that  no substantial loss is incurred by having to estimate the propensity 
score. It should be noted that  the conditions underlying Table 1 differ from the 
conditions underlying Theorem 1 because nearest available matching with imperfect 
matches provides only a partial adjustment for the propensity score. 

Propensity matching should prove especially effective relative to Mahalanobis metric 
matching (Cochran & Rubin, 1973; Rubin, 1976a,b; 1979; 1980b) in situations where 
markedly nonspherically distributed x make the use of a quadratic metric unnatural as a 
measure of distance between treated and control units. For example, we have found in 
practice that  if x contains one coordinate representing a rare binary event, then 
Mahalanobis metric matching may try too hard to match that  coordinate exactly, 
thereby reducing the quality of matches on the other coordinates of x. Propensity 
matching can effectively balance rare binary variables for which it is not possible to 
match treated and control units adequately on an individual basis. 

3.3. SubclassiJication on propensity scores 

A second major method of adjustment for confounding variables is subclassification, 
whereby experimental and control units are divided on the basis of x into subclasses or 
strata (Cochran, 1965, 1968; Cochran & Rubin, 1973). Direct adjustment with subclass 
total weights can be applied to the subclass differences in response to estimate the 
average treatment effect (1.1) whenever treatment assignment is strongly ignorable, 
without modelling assumptions such as parallel linear response surfaces; see Corollary 
4.2. 

As a method of multivariate adjustment, subclassification has the advantage that  it 
involves direct comparisons of ostensibly comparable groups of units within each 



subclass and therefore can be both understandable and persuasive to an audience with 
limited statistical training. The comparability of units within subclasses can be verified 
by the simplest methods, such as bar charts of means. 

A major problem with subclassification (Cochran, 1965) is that  as the number of 
confounding variables increases, the number of subclasses grows dramatically, so that  
even with only two categories per variable, yielding 2' subclasses for P variables, most 
subclasses will not contain both treated and control units. Subclassification on the 
propensity score is a natural way to avoid this problem. 

We now use an estimate of the propensity score to subclassify patients in an actual 
observational study of therapies for coronary artery disease. The treatments are coronary 
artery bypass surgery, x = 1, and drug therapy, z = 0. The covariates x are clinical, 
haemodynamic, and demographic measurements on each patient made prior to treat- 
ment assignment. Even though the covariates have quite different distributions in the 
two treatment groups, within each of the five subclasses, the surgical and drug patients 
will be seen to have similar sample distributions of x.  

The propensity score was estimated using a logit model for z given x. Covariates and 
interactions among covariates were selected for the model using a stepwise procedure. 
Based on Cochran's (1968) observation that  subclassification with five subclasses is 
sufficient to remove a t  least 90% of the bias for many continuous distributions, five 
subclasses of equal size were constructed a t  the quintiles of the sample distribution of the 
propensity score, each containing 303 patients. Beginning with the subclass with the 
highest propensity scores, the five subclasses contained 234 surgical patients, 164 
surgical patients, 98 surgical patients, 68 surgical patients and 26 surgical patients, 
repectively . 

For each of the 74 covariates, Table 2 summarizes the balance before and after 
sublassification. The first row describes the 74 F statistics, that  is the squares of the usual 

Table 2. Example of inc~reased balarzce using subclassi$catio? on estinzated propensity score 
as summarized by distributions of F statistics for 74 covariates 

Lower Upper 
Minimum quartile Median quartile >laximum 

Treatment main effect 4.0 6.8 10.9 16.8 51.8 
without subclassification 

Treatment main effect 0.0 0.1 0.2 0.6 3.6 
with subclassification 

Treatment by subclass 0.0 0.4 0.8 1.2 2.9 
interaction 

two-sample t statistics, for comparing the surgical group and drug group means of each 
covariate prior to subclassification. The second and third rows describe F statistics for the 
main effect of treatment and for interaction in a 2 x 5, treatments by subclasses, analysis 
of variance, performed for each covariate. Although there is considerable imbalance 
prior to subclassification, within the constructed subclasses there is greater balance than 
would have been expected if treatments had been assigned a t  random within each 
subclass. 

When subclasses are perfectly homogeneous in b(x ) ,Theorem 2 shows that  x has the 
same distribution for treated, z = 1,and control, z = 0, units in each subclass. Moreover, 
by Corollary 4.2, if treatment assignment is strongly ignorable, then the directly 
adjusted estimate with population total weights is unbiased for the average treatment 
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effect (1.1) .However, in this example, and generally in practice, subclasses will not be 
exactly homogeneous in the balancing score b ( x )that  was used in subclassification, so the 
directly adjusted estimate may contain some residual bias due to x .  

The corollary to the following theorem shows that  direct adjustment based on a 
balancing score b = b ( x )can be expected to reduce bias in each coordinate of x providing 
the adjustment reduces the bias in b. 

Let I ,  be the set of values of a balancing score which make up subclass s ( s  = 1 ,  . . . ,S), 
so that  b(a )E I ,  implies that  units with x = a fall in subclass s. Suppose the weight 
applied to subclass s in direct adjustment is w,. 

THEOREM7 .  The  bias in x after direct adjustment for the subclasses (I , ,  s = 1,  .. ., S )  i s  

B,= 1
S 

w , j ~ ( x I b ) { ~ r ( b ~ z =  E I , ) )db ,l , b  E I , ) - p r ( b I z = O , b  
s =  1 

where b = b(x ) .  

COROLI~ARY7.1. I f  E ( x  I b )  = a +(Jf(b) for some vectors a and (J and some scalar valued 
function f ( . ) of b, and if the subclasses are formed using b, then the subclassi$cation i s  equal 
per cent bias reducing in the sense that the per cent of bias in x remaining after adjustment i s  
the same for each coordinate of x ,  namely, 100 y ,  where 

where the sum i s  over s = 1, . . . ,S .  

Proof. Apply Theorem 7 and follow the argument of Corollary 6.1. 

I n  parallel with Corollary 6.2 direct adjustment based on a balancing score within 
subpopulations defined by x can be shown to be equal per cent bias reducing within those 
subpopulations. 

Subclassification on the propensity score is not the same as any of the several methods 
proposed by Miettinen (1976):the propensity score is not generally a 'confounder' score. 
For example, one of Miettinen's confounder scores is 

Moreover, under strong ignorability, 

so strong ignorability does not convert a confounder score into the propensity score. 

3.4. Propensity scores and covariance adjustment 

The third standard method of adjustment in observational studies is covariance 
adjustment. The point estimate of the treatment effect obtained from ali analysis of 
covariance adjustment for multivariate x is, in fact, equal to the estimate obtained from 
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univariate covariance adjustment for the sample linear discriminant based on r ,  
whenever the same sample covariance matrix is used for both the covariance adjustment 
and the discriminant analysis. This fact is most easily demonstrated by linearly 
transforming x to the sample discriminant and components orthogonal to  the sample 
discriminant which by construction have the same sample mean in both groups. Since 
covariance adjustment is effectively adjustment for the linear discriminant, plots of the 
responses r l i  and roi or residuals rki-Gi, where Gi is the value of rki predicted from the 
regression model used in the covariance adjustment, versus the linear discriminant are 
useful in identifying nonlinear or nonparallel response surfaces, as well as extrapolations, 
which might distort the estimate of the average treament effect. Furthermore, such a 
plot is a bivariate display of multivariate adjustment, and as such might be useful for 
general presentation. 

Generally, plots of responses and residuals from covariance analysis against the 
propensity score e(x) are more appropriate than against the discriminant, unless of 
course the covariates are multivariate normal with common covariance matrix in which 
case the propensity score is a monotone function of the discriminant. The reason is that ,  
by Corollary 4-3, if treatment assignment is strongly ignorable, then a t  each e(x) the 
expected difference in response E{rl I z = 1,e(x))-E(ro I x = 0,e(x)) equals the average 
treatment effect a t  e(x), namely E{rl 1 e(x))-E{ro I e(x)). This property holds for the 
propensity score e(x) and for any balancing score b(x), but does not generally hold for 
other functions of x; generally, plots against other functions of x are still confounded 
by x. 

Cases where covariance adjustment has been seen to perform quite poorly are precisely 
those cases in which the linear discriminant is not a monotone function of the propensity 
score, so that  covariance adjustment is implicitly adjusting for a poor approximation to  
the propensity score. I n  the case of univariate x, the linear discriminant is a linear 
function of x, whereas the propensity score may not be a monotone function of x if the 
variances of x in the treated and control groups are unequal. Intuitively, if the variance 
of x in the control group is much larger than the variance in the treated group, then 
individuals with the largest and smallest x values usually come from the control group. 
Rubin (197313, Tables 4 and 6, with r = 1 and z, as the estimator) has shown that  with 
nonlinear response surfaces, univariate covariance adjustment can either increase the 
bias or overcorrect for bias dramatically if the variances of x in the treated and control 
groups differ. Unequal variances of covariates are not uncommon in observational 
studies, since the subset of units which receives a new treatment is often more 
homogeneous than the general population. For example, in the observational half of the 
Salk vaccine trial, the parents of second graders who volunteered for vaccination had 
higher and therefore less variable educational achievement, x, than parents of control 
children who were parents of all first and third graders (Meier, 1978). 

I n  the case of multivariate normal x, Rubin (1979, Table 2) has shown that  covariance 
adjustment can seriously increase the expected squared bias if the covariance matrices in 
treated and control groups are unequal, that  is, if the discriminant is not a monotone 
function of the propei~sity score. I n  contrast, when the covariance matrices are equal,, so 
that  the discriminant is a monotone function of the propensity score, covariance 
adjustment removes most of the expected squared bias in the cases considered by Rubin 
(1979, Table 2). I n  summary, covariance adjustment cannot be relied upon to perform 
well unless the linear discriminant is highly correlated with the propensity score. 
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