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Nonparametric Bounds on Treatment Effects

By CHARLES F. MANSKI*

Assume that each member of a population
is characterized by values for the variables
(¥4 ¥B» 2, x). Here x is a vector describing a
person and z is a binary variable indicating
which of two treatments this person receives.
The treatments are labelled 4 and B. The
variables y, and y,p are scalar measures of
the outcomes of the two treatments.

For example, a cancer patient might be
treated by (A) drug therapy or (B) surgery.
The relevant outcome y might be life span
following treatment. An unemployed worker
might be given (A4) vocational training or
(B) job search assistance. Here the relevant
outcome might be labor force status follow-
ing treatment.

Assume that a random sample is drawn
and that one observes the realizations of
(z,x) and of the outcome under the treat-
ment received. Thus y, is observed if treat-
ment A is received but is a latent variable if
treatment B is received. Similarly, y, is
either observed or latent.

Suppose that one wants to learn the dif-
ference in expected outcome if all persons
with attributes x were assigned to treatment
A or B. This “treatment effect” is

(1) t(x) = E(yslx) — E(y,lx)
= E(yglx,z=4)P(z=A|x)
+ E(yg|x,z2=B)P(z=B|x)

~E(yulx,z=A4)P(z=A|x)

—E(y4|x,z=B)P(z=B|x).
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The central problem is identification. The
data are from a population in which some
people described by x received treatment A
and the rest received B. The sampling pro-
cess identifies the expected outcomes under
the treatment received, E(y,|x,z = A) and
E(yg|x,z= B). It also identifies the treat-
ment-selection probabilities P(z|x). But, the
sampling process does not identify E(y,|x, z
= B) and E(zgz|x,z= A). Hence it does not
identify the treatment effect.

An extensive literature on the estimation
of treatment effects brings to bear prior in-
formation that, in conjunction with the sam-
pling process, does identify ¢(x). (See, for
example, G. S. Maddala, 1983, and James
Heckman and Richard Robb, 1985.) Two
approaches have been dominant. One as-
sumes that, conditional on x, y, and yp are
mean-independent of z (i.e., E(y,|x,z= A)
= E(y,lx,z=B) and E(ys|x,z=A4)=
E(yglx, z= B)). This assumption, routinely
invoked in experiments with random assign-
ment to treatment, implies that

(2) #(x) = E(yglx,z= B)

—E(y lx,z=4).

The second approach imposes identifying re-
strictions through a latent-variable model ex-
plaining treatment selections and outcomes.
The latent-variable-model approach is widely
used in settings where people self-select into
treatment.

Suppose that one cannot confidently as-
sert mean-independence, an identifying la-
tent-variable model, or any other restriction
that identifies the treatment effect. It might
then seem that useful inference is impossible.
This paper proves otherwise. Section I ap-
plies results from my earlier paper (1989) to
show that an informative bound on the
treatment effect holds whenever the out-
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comes y, and y, are themselves bounded.
Section II derives a bound applicable when
the treatment selection rule is to choose the
treatment with the better outcome. Section
I1I shows that the bounds of Sections I and
II can be tightened if some component of x
affects treatment selection but not treatment
outcome. Section IV briefly discusses estima-
tion of the bounds.

1. Bounded Outcomes

Suppose that, conditional on x, y, is
bounded within some known interval [K ,,,,

K., where —o0o< K o <K, <oo. Then
obviously E(y,|x)€ [KAOx, K.l My ear-
lier paper observes that the sampling process
identifies a tighter bound, namely,

(3)  E(y4lx) €Y (x)
=[E(ylx,2=4) P(z=A4|x)
+ K 40, P(z=B|x),
E(ylx,z=A4)P(z=A|x)
+ K4, P(z=B|x)].

The lower bound is the value E( y,|x) takes
if y, equals its lower bound for all those
who receive treatment B; the upper bound is
determined similarly.

The width of the bound Y,(x) is (K4, —
K 40.)P(z = B|x). So the bound is informa-
tive if P(z = B|x) <1. The bound is opera-
tional because E(y,|x,z=A4) and P(z|x)
are identified by the sampling process. In
practice, one can estimate E(y,|x,z= A)
and P(z|x) nonparametrically, yielding a
nonparametric estimate for the bound (see
Section IV).

Now suppose that y, is also bounded, the
interval being [Kgq,, Kgz,]- Then the treat-
ment effect must lie in the interval [Kgq, —
K g0 K — K4o,)- The sampling process
identifies a tighter bound, obtained by ap-
plying (3) and the analogous bound for
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E(yg]x) to (1). The result is
(4) t(x)eT(x)
= [Kpo.P(z=A|x)

+ E(yglx,z=B)P(z=B|x)

— E(yalw, 2= 4) Pz = A]x)

— K. P(z=B|x),

Kp, P(z=A|x)

+ E(yglx,z=B)P(z=B|x)
~ E(ylx,2=A)P(z=A|x)
— K0 P(z=

B|x)].

The lower bound on ¢(x) is the difference
between the lower bound on E(yg|x) and
the upper bound on E(y,|x). The upper
bound on #(x) is determined similarly.

The width of the bound T(x) is

(5) w(x)= (Kp1x— Kpox) P(2=4]x)

+(K g, — K40.) P(z= Bx).

In general, this width depends on the treat-
ment-selection probabilities P(z|x). Sup-
pose, however, that the bounds on y, and

yg are the same (ie., [Kj o, Kg,l=
[Koxs Kpx))- Then,
(6) W(X) =I(lx-—I(Ox’

where [K,,, K,,] is the common bound on
the outcomes. The bound available without
the sample data is #(x) € [K,, — K, K}, —
K,,]- Thus, when the bounds on y, and yg
are the same, exploitation of the sampling
process allows one to bound #(x) to one-half
of its otherwise possible range. In this case,
the bound necessarily covers zero; it cannot
identify the sign of the treatment effect.
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The remainder of this section describes a
class of applications in which the bound
T(x) is particularly useful—binary logical
outcomes.

In many applications, the treatment out-
come is a logical yes/no indicator, taking
the value one or zero. For example, the
outcome of a medical treatment may be
(cured =1, not cured = 0); the outcome of a
vocational training program may be (com-
pleted =1, not completed = 0). In both cases,
K 40x=Kpo,=0and K, = Kp =1, so the
treatment effect must lie in the interval
[—1,1]). The expected value of a one/zero
indicator is the probability that the indicator
equals one. So the bound T(x) reduces to

(1) T(x)
=[P(yg=1|x,2=B)P(z=B|x)
—P(y,=1|x,z=A)P(z=A|x)
~P(z=B|x),P(z=A|x)
+ P(yg=1|x,z=B) P(z=B|x)
- P(y=1|x,z=A)P(z=A|x)].

The bound width is w(x) =1.

Binary logical variables are bounded by
definition rather than by assumption. So we
find that the sampling process alone, unac-
companied by prior information, suffices to
bound the treatment effect to one-half its
otherwise possible range.

II. Selection of The Treatment with
the Better Outcome

In some settings the treatment-selection
rule has the form

(8) z=Be yp2y,.

For example, a doctor may prescribe the
more effective of two medical treatments. An
unemployed worker may choose the employ-
ment program with the higher return.
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If (8) holds, the bound T(x) obtained in
Section I can be tightened. By (8),

(9) E(yA|x,z=B) =E(YA|x’YA5)’B)

<E(yx,y4> ys)
=E(ylx,2=4)

E(yle’ z=A) =E()’B|X’YB< )’A)
< E(yglx, yg= y,)

= E(yglx,z=B).

Thus E(y|x,z=A4) and E(yg|x,z=B)
are upper bounds on E(y,|x,z=B) and
E(yg|x, z= A), respectively. The conditions
E(y,lx,z2=A)<Ky, and E(yslx,z=B)
< K, must hold. Hence knowing that (8)
holds permits one to tighten the bound (4)
on the treatment effect to

(10) T(x) = [Kpo,P(2=4]|x)
+ E(yglx,z=B)P(z=B|x)
—E(yylx,z2=A), E(yslx,z=B)
—E(ylx,z=A)P(z=A|x)

- K, P(z=B|x)].

The tightened bound may or may not lie
entirely to one side of zero. If it does, the
sign of the treatment effect is identified.

I11. Level-Set Restrictions

The bound 7(x) on the treatment effect at
a given value of x does not constrain the
treatment effect elsewhere. This is to be ex-
pected as no restrictions have been imposed
on the behavior of 7(x) as a function of x.
Suppose that one has information on the
way #(x), or its determinants, vary with x.
Then one may be able to obtain a bound
tighter than 7(x).

This section investigates the additional
identifying power of level-set restrictions. A
level-set restriction is an assertion that some
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function of x is constant on some X,C X,
where X is the set of all possible values of x.
An important special case is the exclusion
restriction. Here one lets x = (x,, x,) and
asserts that, holding x, fixed, a function of x
does not vary with x,. Thus the function is
constant on the set X,= {x,} X X,, where
{x;} is the set containing only the point x,,
and where X, is the set of all possible values
of x,.

A. Level-Set Restrictions on
the Treatment Effect

It is often assumed in applications that the
treatment effect does not vary with x. In
particular, many studies specify a linear
model with E(y,|x)=xB and E(yg|x)=
xB + a, implying that ¢(x) = a. The assump-
tion that #(x) is constant on all of X is a
leading example of a level-set restriction.

Suppose it is known that #(x) is constant
on some set X, Then the collection of
bounds T(x), x € X, must have a non-null
intersection that contains the common value
of the treatment effect. That is, for each
g € X()’

(11) 1(§) eTy(X,) = N T(x)

X € Xy

=[ sup { KpouP(z=41x)

X € Xy

+ E(yglx,z=B)P(z=B|x)
— Eylx, 2= 4) P(z = 4]x)
—KAle(Z=B|X)}’

inf { Kp,P(z=4|x)

x € Xy

+ E(yglx,z=B)P(z=B|x)

— E(y4lx,z=A4)P(z=A4|x)
—KAOxP(z=B|x)} :

The bound Ty(X,) improves on T(§) for
at least some £ in X, unless T(-) is constant
on X,. Constancy of T(-) can occur in vari-
ous ways. The one most likely to arise in
practice is inclusion in x of an irrelevant
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component, one that affects neither K ,,,,
Kq. Kpow Kp,, P(z|x), E(y4lx,z=A),
nor E(yg|x,z= B). A restriction excluding
this component from the treatment effect has
no bite.

Although Ty(X,) improves on T(x), it
typically does not fix the sign of the treat-
ment effect. If T(x) covers zero for all x €
Xy, then so does T(X,). It was pointed out
in Section I that T(x) does cover zero when-
ever the bounds on y, and y, are the same.

B. Level-Set Restrictions on
the Outcome Regressions

Suppose it is known that E(y,|x) is con-
stant on some set X, C X, and that E( yg|x)
is constant on some Xz, C X. (This includes
cases in which one of the restrictions is triv-
ial; the set Xj,, for example, might contain
just one point.) Let X, pq= X, N Xpo. The
reasoning used in Section A above implies
that, for each £ € X ,,, the bounds Y, (&)
and Yg(£) defined in (3) can be tightened to

(12) E(y,lé) €Yyo(X0) = N Y,(x)

x € X9

=| sup {E(yx,z=A)P(z=A|x)

x€ Xy
+ K o, P(z=B|x)},

inf { E(ylx,z=A4)P(z=A|x)
X € Xy
+ K, P(z=B|x)}

ﬂ YB(X)

x € Xpg

E(yplé) €Yol Xpo) =

=| sup { E(yslx,z=B)P(z=B|x)

x € Xgg
+ Kpo P(z=A|x)},

inf { E(yg|x,z=B)P(z=B|x)
x € Xpq

+ K, P(z=4|x)}|.
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These bounds on E(y,|x) and E(yg|x) im-
ply a bound on #(§), namely,

(13)  1(¢) € Typo( X4po)

=| sup {E(yBIX,Z=B)P(Z=B|x)

X € Xpg
+KBOxP(z=A|x)}

— inf {E(y,lx,z=A4)

X € Xyo
XP(z=A|x)+ K4, P(z=B|x)},

inf { E(yg|x,z=B)P(z=B|x)
X € Xpo

+ Kp P(z=A|x)}

— sup { E(y,|x,z=A)

x € Xy

XP(z=A|x)+ K ,P(z=B|x)}|.

The treatment effect is constant on X p,.
Hence the bound Ty( X, ,) also applies here.
Comparison of (11) and (13) shows that
T, 50( X4p0) € To( X4po)- It is intuitive that
the present bound should improve on the
earlier one. The derivation of T,( X, z,) pre-
sumed only that #(x) is constant on X, g,.
The derivation of T,p,(X,p,) imposed the
stronger restriction that E(y,|x) is constant
on X,, and E(yjp|x) is constant on Xg,.

The bound T, zo( X, 5,) may lie entirely to
one side of zero. If so, the sign of the treat-
ment effect is identified.

IV. Estimation of the Bounds

The bounds developed in Sections I, 1I,
and III are functions of E(y,|x,z=A4),
E(yglx,z= B), and P(z|x). These quanti-
ties are identified by the sampling process
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and so generally can be estimated consis-
tently.

If the conditioning variable x takes finite-
ly many values, estimation is classical.
E(y,|x,z= A), E(ys|x,z = B), and P(z|x)
can be estimated by the corresponding sam-
ple averages. T(x) can be estimated by in-
serting these averages into (4) or (10), as
appropriate. Ty(X;), being a finite intersec-
tion of the T(x), can be estimated by the
intersection of the estimates of 7(x). As-
suming that the level-set restriction on #(x)
is correct, this intersection is nonempty with
probability approaching one as the sample
size increases. The bound T, 5,( X, 5,) can be
estimated similarly.

If x has continuous components, non-
parametric regression methods may be ap-
plied to estimate E(y,|x,z=A), E(yg|x, z
= B), and P(z|x). My earlier paper exposits
the main issues and presents an empirical
illustration estimating the bound Y,(x) on
E(y,|x). This work can be applied directly
to estimate the bound 7(x). Estimation of
To(X,) is a more subtle problem, because
this bound is the intersection of the infinitely
many bounds 7(x), x € X,,. A plausible ap-
proach, that warrants study, is to estimate
To( Xyo)- Here N is the sample size and Xy,
N=1,...,00 is a sequence of finite subsets of
X, chosen to converge to a set dense in X;.
The bound T, z,( X, o) could be estimated
similarly.
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