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MATCHING TO REMOVE BIAS IN OBSERVATIONAL
STUDIES

Downaro B. Rupin!

Department of Statistics, Harvard University, Cambridge, Massachusells 02138, USA

SUMMARY

Several matching methods that mateh all of one sample from another larger sample on a
contintous matching variahle are compared with reapect ta their ability to remove the bias
of the matching variable, One method is a simple mean-matching method and three are
naarest available pair-matehing methods. The methads' abilities to remave bias are alse
compared with the theoretical maximum given fixed distributions and fixed sample sizes,
A summary of advice to an investigater is inclnded.

1. INTRODUCTION

Matehed sampling is a method of data collection and organization
designed to reduce bias and inerease precision in observational studies, ie.
in thosa studies in which the random assignment of treatments to units
{subjects) is absent. Although there are examples of observational studies
which could have been conducted as properly randomized experiments, in
many other cases the investigator could not randomly assign treatments
to subjects. For example, consider the Kihlberg and Robinson [1968] study
comparing severity of injury in automobile accidents for motorists using
and not using seatbelts. One would not want to randomly assigh subjects
to “seatbelt’” and “no seatbelt"” treatments and then have them collide at
varying speeds, angles of impact, ete. Neither, however, would one want to
simply compare the severity of injury in “random’ samples of motorists in
aceldents using and not using seathelts; important variables such as “‘speed
of antomobile at time of accident” may be differently distributed in the two
groups (i.e. seatbelted motorists are generally more cautious and therefore
tend to drive more slowly}. Hence, in observational studies, methods such
as matched sampling or covariance adjustment are often needed to control
bias due to specific variables.

Wa will investigate matched sampling on one continuous matching variable
X {e.g., speed of automobile at time of accident) and two treatment popula-
tiens, P, and P, (e.g., motorists in aceidents using and not using seatbelts).
Several articles have previously considered this situation. However, most of
these have assumed that the average difference in the dependent variable

1 Presant Address: Educational Teating Service, PrInceton,ENew Jersey 08540,
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between the matched samples is an unbiased estimate of the effect of the
treatment and thus were interested in the ability of matehing ta increase the
precision of this estimate. See, for example, Wilks [1932], Cochran [1953],
Greenberg [1953], and Billiwicz [1965). Here, we will investigate the ability
of matched sampling to reduce the bias of this estimate due to a matching
variable whose distribution differs in P; and P, (e.g., to reduce the biag due
to “speed at time of aceident™).

We assume that there is a random sample of size N from P, , say &1,
and a larger random sample of size *N, r > 1, from P, , say (1, . All subjects
in &, and @5 are assumed to have recorded scores on the matehing variable X,
Using these scores, a subsample of G, of size N will be chosen according to
some “‘matching method”; we ecall this subsample .. . The effect of the
treatment will then be estimated from the &, and @,. samples both of size .
If r is one, (s would be a random sample from P, , and matehing eould not
remove any bias due to X; if # is infinite, perfect matches could always be
obtained, and all of the bias due to X could be removed. We will study
maoderate ratios of sample sizes, basically » = 2, 3, 4, although some results
are given for r = 6, 8, 10,

Following Cochran [1968), we will use ‘“‘the percent reduction in the
bias of X due to matched sampling' as the measure of the ability of a mateh-
ing method to reduee the bias of the estimated effect of the treatment;
justification for this choice is given in section 2. Then section 3 states and
proves a theorem giving the maximum obtainable percent reduction in bias
given fixed distributions of X in P, and P, and fizxed samples sizes N and +N.
In gection 4, the ability of a simple mean-matehing method to reduce bias
will be compared with the theoretical maximum. In section 5, we compare
three ‘‘nearest available” pair-matching methods with respect to their
ability to reduce bias. Section 6 serves to present practical advice to an
investigator.

2. TERMINOLOGY; PERCENT REDUCTION IN BIAS

Suppose that we want to determine the effect of a dichotomous treatment
variable on a continuous dependent variable, ¥, given that the effect of a
continuous matching wvariable, X, has heen removed.’? The dichotomous
treatment variable is used to form two populations P, and P, . In P, and P,
X and Y have joint distributions which in general differ from P, to P, .
In P; the conditional expectation of the dependent variable ¥ given a partic-
ular value of X is called the response surface for ¥ in P, ,and at X = z is
denoted R {x).

The difference in response surfaces at X = =z, B,(z) — R.{z), is the effect
of the treatment variable at X = z. If this difference between response
surfaces is constant and so independent of the values of the matehing variable,

1 As Dachran [1968] paints out, if the matehing variable X is causally effected by the treatment variahle.
soma of the real affect of the treatment variable will be removed in the adjustment process.
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the response surfaces are called parallel, and the objective of the study is
the estimation of the constant difference between them. See Figure 1. For
linear response surfaces, “parallel response surfaces’ is equivalent to “having
the same slope’.

, (X)

| (X)

F DEPENDENT VARIABLE Y

EXPECTED VALUE O

MATCHING VARIABLE X
FIGURE 1

PABALLEL UNIVARIATE RESPONSE SURFACES
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If B,(x) — RE.(z) depends on z, the response surfaces ars non-parallel and
thers is no single parameter that completely summarizes the affect of the
treatment variable. In this case we will assume that the average effect of the
treatment variable (the average differecnce between the response surfaces)
aver the P, population is desired. Such a summary is often of interest, es-
pecially when P, consists of subjects exposed to an agent and P, consists

EXPECTED VALUE OF DEPENDENT VARIABLE Y

MATCHING VARIABLE X
FIGURE 2

NONPARALLEL UNIVARIATE RESPONSE SURFACES
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of controls not exposed to the agent; see for example Belsen's [1956] study
of the effect of an educational televigion program.?

The average difference between non-parallel response surfaces aver the
P population or the constant difference between parallel response surfaces
will be called the (average) sffect of the treatment variable or mare simply
“the treatment effect” and will be designated r:

r = E{R/(z} — R.{z}}, (2.1}

whera E, ig the expectation aver the distribution of X in P, .

Let 4,; and z,, be the values of ¥ and X for the jth subject in &, , and
similarily let ¥,; and z,; be the values of ¥ and X for the jth subject in Ga. ,
i =1, .-+, N, Using the response surface notation we can write

ysi = Rixyy) + ey =1, 2, 4=1---,N (2.2

where E,{¢;;) = 0 and E, is the conditional expectation given the z,; .
Wa assume that the difference between dependent variable averages in
@, and G,, will be used to estimate 7

1 i
To = N 2 Y — N E Yoi = 1. — Fa. (2.39)

Let E represent the expectation over the distributions of X in matched
samples and E.. represent the expectation over the distribution of X in
matched &,. samples. Then using (2.3) and (2.1) we have that the expected
hias of £, over the matched sampling plan is

EE‘(éq - T) = ElR:(IJ) - E:iRz(&l) (2.4)

since EE (4.} = E.R.(z) and EE.(,.) = E.E.(z). If the distribution of
X in matched G samples is identical to that in random G samples then
E Rz} = EyuR.(z) and 7, has zero expected bias. If » = 1, that is if the
(5. sample is a4 random sample from P, , then the expected bias of #, is
E Rz} — E,R.(z}) where E, is the expectation over the distribution of X
inP,.

In arder to indicate how much less biased #, based on matched samples
is than #, hased on random samples, Cochran {1968] uses “the percent re-
duction in bias" or more precisely “‘ths percent reduction in expected bias™:
100 X (1 — expected bias for matched samples/expected bias for random
samples) which is from (2.4)

1 Tn other cases, however, this averagze difsrence may not be of primary interest. Consider far exampla
the previously mentioned study of the efficacy of aeathelis, Assume that if automeabile speed ia hizgh seat-
belts reduce the severity of injury, while if automahile speed is law seatbelts inerease the severity af injury.
(See Figure 2, where P1 = matatists ysing seatbelts, P2 = motorista nat using seathelts, ¥ = automahile
apeed, and ¥ = severity of injury.) A report of thia result wonld be mare interesting than a report that thera
was na effect of seathbelfs an severity of injury when averaged over the zeathelt, wearer population. Binca
auch a report may ha af little interest if the response surfaces are markedly nonparallel, the reader should
generally assume “nonparallel” te mean “moderately ponparatiel.” If the response surfaces are markedly
nonparallel and the investigatar wanta to estimate the effect af the treatment variahle averaged aver Pz (the
population from whieh he has the larger sample), the methods and results presented here are nat relevant and
a mqre complex method such a3 covariance analysis would be more appropriate than simpla matehing. (See
Cochran [1969] for a discussion of covariance analysis in ahservational studies.)
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100{1 _ BRx) - EQ*RQ@)} = 100 BB = BB}y o

E Ry(z) — E,Ry(x) ER,(z) — E,R4(x)

Notice that the percent reduction in bias due to matched sampling depends
only on the distribution of X in P, , P, and matched @,. samples, and the
response surface in P, . If the response surface in P, is linear,

Rz(ﬂf) = p + ﬁq(ﬂi - 1‘.'2)

where

mean of ¥in P,

il

253

li

7. = mean of X in P,

and
82 = regression coefficient of Y on X in P, ,

we have for the denominator of (2.5), 8a{y, — 7a) and for the numerator of
{2.5) Ba{n+» — u2) where g, 18 the expected value of X in matched Gy samples,
B (z} {equivalently, #,. is the expected average X in (,. samples, E(z;)).

Thus, if G, is a random sample and the response surface in P, is linear,
the percent reduction in bias due to matched sampling is

Hae — Mo
6 = 100 —"= 2.6
T T ’ ( )
which is the same as the percent reduction in bias of the matching variable
X. Even though only an approximation if the P, response surface is not linear,
we will use 9, the percent reduction in the bias of the matehing variable, to
measure the ability of a matching method to remove bias.

3. THE MAXIMUM PERCENT REDUCTION IN BIAS GIVEN FIXED DISTRI-
BUTIONS AND FIXED SAMPLE SIZES

Assume that in P; X has mean »; (without loss of generality let 4, > 73),

variance oF and (X — #,)/0, ~ f., 4 = 1, 2. Define the initial bias in X to be

B—=-1"M" -
o + ot '
2
which if ¢ = ¢} i3 simply the number of standard deviations between the
means of X in P, and P, .
Then if @ is the percent reduction in bias of X due to some matching
method that selects & matehed sample, G,. , of N subjects from a random
sample, (5 , of ¥N P, subjects, we have

D(r, N)

6 < Ou = 100 —2 20
B\/l + al/a3

(3.1)

2
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where Q,(r, N) = the expected value of the average of the N largest abserva-
tions from a sample of size *N from f; .

Since a reduction in bias greater than 10097 is clearly less desirable than
1009, reduction in bias, if B, ¢1/a; , and Q.{r, N} are such that 6., = 100
this should be interpreted as implying the existence of a matching method
that obtains 1009, reduction in expected bias.*

This result follows immediately from (2.6): since 4, > %, , 6 is the largest
when »,. (i.e. E(Z,)) is largest, which is clearly achieved when the & subjects
in ¢, with the largest X values are always chosen as matches. The expected
value of these N largest values from a sample of *N is v, + a-fh(r, N). Hence,
the maximum value of 8 is

M B\/I + &/
9

B = 100 220N yqq Bl N)

The result in (8.1} is of interest here for two reasons. [irst, for fixed
distributions and sample sizes and given a particular matching method,
a comparison of 0 and min {100, O..,} clearly gives an indication of how
well that matching method does at obtaining a s sample whose expected
X mean is close to %, . In addition, the expression for 6,., will be used to
help explain trends in Monte Carlo results. When investigating mafching
methods that might be used in practice to match finite samples, propertias
such as percent reduction in bias are generally analytically infraetable.
Hence, Monte Carlo methods must be used on specific cases. From such
Monte Carlo investigations it is often difficult to generalize to other cases
or explain trends with much confidence unless there is some analytic or
intuitive reason for believing the trends will remain somewhat consistent.
It seems clear that if 9., is quite small {e.g. 20) no matching method will
do very well, while if ..., is large (e.g. 200) most reasonahle matehing methods
should do moderately well. Hence, we will use trends in 6,.,, to help explain
trends in the Monte Carlo results that follow.

Two trends for ... are immediately cbvious from (3.1).

(1) Given fixed #, N, f, and ¢?/¢2 , 6,,., decreases as B increases.
(2) Given fixed #, N, f, and B, 9,,.. decreases as a7 /a} increases.

Given fixed f, , B, and ¢%/4; two other trends are derivable from simple
properties of the order statistics and the fact that 6,,. is directly proportional
to 2.{r, N) (see Appendix A for proofs).

(3) Given fixed B, 63/} , f»and N, 6,,, increases as r increases: Iu(r, N) <
Dy + a, N), a = 0; N, »N, aN integers.

1 A matehing methed that hos ss its pereant redustion in sxpected biss min [100, Omez] may be of little
praatiesl intersat. For example, consider the following matohing method, With prabability £ = min {1, 1/8ma:|
choase tha ¥ Ga subjacts with the largest ohservations as the &2, gampla and with probability 1 — P choose s
random sample of size N as the 3, sample. It is sasily checked that the percent radustion in expectad hias vsing
this method is min {100, Omaa].
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(4) Given fixed B, ¢}/4; , f: and #, Oy, increases as N increases: Qu(r, N) <
Qir, N +b),b > 0; N, vN, rb integers.

From the fourth trend, we have Q(r, 1) < Q{r, N) < Q(r, o). Values of
Q(r, 1) have been tabulated in Sarhan and Greenberg [1962] for several
distributions as the expected value of the largest of + observations. Q{r, «)
can easily be calculated by using the asymptotic result

Qfy, @) = rf zf(z), where f F2) = 1/r.
Values of (r, 1) and ¢(r, =) are given in Table 3.1 for X ~ £33 (» = 2(2)10)
and X ~ Normal, and for r = 2, 3, 4, 6, 8, 10.

Table 3.1 can be summarized as follows.

(a) For fixed r and v, the results for +x? are more similar to those for
the normal than are those for —x? . This result is expected since the
largest N observations come from the right tail of the distribution
and the right tail of +x* is more normal than the right tail of —x?
which is finite.

(b) Given a fixed distribution, as r gets larger the results differ more
from those for the normal especially for --+2 . Again this is not
surprising because the tails of low degree of freedom x” are not very
normal, especially the finite tail.

{c) For r = 2, 3, 4, and moderately normal distributions (43 , v > 8)
the results for the normal can be considered somewhat representative.
This conelusion is used to help justify the Monte Carlo investigations
of a normally distributed matching variable in the remainder of
this article.

(d) Given a fixed distribution and fixed r, the values for Q{r, 1) are
generally within 209, of those for Qr, «), suggesting that when
dealing with moderate sample sizes as might commanly occur in
practice, we would expect the fourth trend (0,.. increasing function
of &) to be rather wealk.

In Tabhle 3.2 values of Q(r, N) are given assuming f normal, the same
values of + as in Table 3.1, and N = 1, 2, 5, 10, 100, «. Values were found
with the aid of Harter [1960]. For fixed r, the values of Q{(r, N) for N > 10
are very close to the asymptotic value Q{r, =), especially when ¢ > 2. Tiven
(2, 10) is within about 397 of (2, «). These results indicate that the values
for @(r, =) given in Table 3.1 may be quite appropriate for moderate sample
sizes,

4. MEAN-MATCHING

Thus far we have not specified any particular matehing method. Under
the usual linear model “mean-matehing” or “balancing” {Greenberg [1953])
methods are quite reasonable but appear to be discussed rarely in the litera-
ture. In this section we will obtain Monte Carlo percent reductions in biag
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TABLE 3.2
Q(r, N); f noBMAL

r=2 3 Y 6 8 10

N= 1 0.56 0.85 1.03 1.27 1.42 L1.5%
2 0.66 3.96 1.1L 1.38 1.53 1.64

5 0.7h 1.03 l.22 1.45 1.60 1.70

10 0.77 1.06 1.2h 1.bT 1.62 1.72

25 0.78 1.08 1.26 1.hg L1.64 1.74

50 Q.79 1.08 1.27 1.50 1.65 1.75

100 0.80 1.09 1.27 1,50 1,65 1.75

® 0.80 1,09 1.27 1.50 1.65 1.75

for a simple mean-matching method and compare these with the theoretical
maximums given by (3.1).

Assuming linear response surfaces it is simple to show from (2.3) that
the bias of #, for estimating r is 8,(y, — £,.) 4 8:(Z.. — =n,), where g, is the
regression coefficient of ¥ on X in P, and %, is the average X in the matched
samples. Using £, to estimate 4, or assuming parallel response surfaces
(48, = A.) one would minimize the estimated bias of 7, by choosing the N (7,
subjects such that |£ — %, | is minimized. A practical argument against
using this mean-matehing method is that finding such a subset requires the
use of some time consuming algeorithm designed to solve the transportation
problem. Many compromise algorithms can of course be defined that ap-
proximate this best mean-match.

We will present Monte Carlo percent reductions in bias only for the
following very simple mean-matching method. At the kthstep, & =1, --- | ¥,
choose the ¢, subject such that the mean of the eurrent (o sample of &
subjects is closest to £, . Thus, at step 1 choose the &, subject closest to
Z,, ; at step 2 choose the ¢, subject such that the average of the first Gy
subject and the additional &, is closest to &, ; continue until ¥ ¢, subjects
are chosen.

In Table 4.1 we present Monte Carlo values of 8,y , the percent reduction
in bias for this simple mean-matching method.* We assume X normal,
B=1%4% 1;6/00 =1, 1,2; N = 25,50, 100; and r = 2, 3, 4. Some limited
experience indicates that these values are typical of those that might oceur
in practice. In addition, values of » and N were chosen with the results of

5 Tha atandard ereors for alt Monte Catla values given in Tables 4.1, 5.1, 5.2, and 5.3 are generally less tian
0.5 and rarely greater than 19%.
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Tables 3.1 and 3.2 in mind—values for percent reduction in bias may be
moderately applicable for nonnormal distributions, especially when » = 2,
and values given when N = 100 may be quite representative for N > 100.
6 v exhibits the four trends given in section 3 for 9., .

(1} Given fixed N, », and ¢ /¢? , O,y decreases as B increases.

(2) Given fixed N, », and B, O, v decreases as ¢%/af increases.

(3) Given fixed B, ¢1/a2 and N, @, 5 increases as r increases,

(4) Given fixed B, ¢¥/a} and r, except for one value (679, for N = 5Q,
alfoy = 2, r =2 B = 1) 8y increases as N increases.

In Table 4.2 we present values of min {100, 8..,} for the same range of
N, B and +3/¢% as in Table 4.1. Note firgt that the 679 for N = 50, ¢3/6} = 2,
r = 2, B = 1 mentioned above is larger than the theoretical maximum and
thus suspect. Comparing the corresponding entries in Table 4.1 and Table 4.2
we see that the wvalues for N = 100 always attain at least $69 of
min {100, Ou.,}, While the values for N = 50 always attain at Jeast 919,
of min {100, B...}, and those for N = 25 always attain at least 87%, of
min {100, B..}. Hence this simple method appears to be a very reasonable
mean-matching methad, especially for large samples.

5. PAIR-MATCHING

Even though a simple mean-matching methad can be quite successful
at removing the bias of X, matched samples are generally not mean-matehed.
Usually matched samples are “individually”’ (Greenwood [1945]), ‘“preeision’
(Chapin [1947]), or “‘pair’’ (Cochran [1953]) matched, subject by subject.
The main reason is probably some intuitive feeling on the part of investigators
that pair-matched samples are superior. One theoretical justification is that
#, based on exactly mean-matched samples has zero expected bias only if
the P, response surface really is linear, while #, based on exactly pair-matched
samples has zero expected bias no matter what the form of the response
surface. Since an investigator rarely knows for sure that the P, response
surface is linear, if the choice is between exactly pair-matched samples
and exactly mean-matched samples of the same size, obviously he would
choose the exactly pair-matched samples.

The ease of constructing confidence limits and tests of significance is
a second reason for using a pair-matching method rather than a mean-
matching method. Significance tests and confidence limits that take advantage
of the increased precision in matched samples are easily conmstructed with
pair-matched data by using matched pair differences, while such tests and
limits for mean-matched data must be obtained by an analysis of covariance
{Greenberg [1953]).

Another reason for the uge of pair-matching methads is that each matched
pair could be considered a study in itself. Thus, the investigator might assume
the response surfaces are nonparallel and use the difference y,;, — #,; to
estimate the response surface difference at z,; . It follows from (2.2) that the
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bias of 4,; — ya; for estimating B (2:;) — Ralz:;) is Balz;)) — Ba(z,,). As-
gsuming this hias to be some unknown increasing function of |z, — 2.,
one minimizes the bias of each estimate, 1,; — #.; , by minimizing each
|21 — 24| rather than |£, — %, |.

If each @, subject is closest to a different (7, subject, assigning matches
to minimize each |¢,; — 24| is easily done. However, If two or moare ¢
subjects are closest to the same @, subject, the hest way to assign individual
matches is not obvious, unless the investigator decides upon some criterion
to be minimized, such as one proportional to the average squared bias of
the N individual estimates assuming parallel linear response surfaces,
1/N 3 (£, — ;)" As was already mentioned, in order to find the Ga.
sample that minimizes any such quantity, some rather time consuming
algorithm designed to solve the fransportation problem must be used.

Even though more complex pair-matehing metheds often may be superior,
we will investigate three simple “nearest available” pair-matching methods.
A nearest availlable pair-matching method assigns the closest match for
¢ & & from the yet unmatehed &, subjects and thus is completely defined
if the order for mateching the ¢; subjects is specified. The three orderings
of the (, subjects to be considered here are: (1) the subjects are randomly
ordered (random), (2) the subject not yet matched with the lowest score
on X is matched next (low-high), and (3} the subject not yet matched with
the highest score on X is matched next (high-low). The results will depend
on our assumption that 4, > n, , for if 4, were less than 4, , the values for
the low-high and high-low pair-matehing methods would be interchanged.

In Tablesg 5.1, 5.2, and 5.3 we present Monte Carlo values for the percent
reduction in bias for random ordering (@zp), low-high ordering (0. ,) and
high-low ordering (@ :). We assume the same range of conditions as given
in Table 4.1 for Oy . B4p and O, exhibit the four trends given in section 3
for 6,,.. and exhibited in Table 4.1 for Gy .

(1) Given fixed N, », and o3/c; , Bap and Oy, decrease as B increases.

(2) Given fixed ¥, r, and B, 0z, and 8y decrease as o2 /a7 increages.

(3) Given fixed B, o*/a% , and N, 85, and 8. increase as r increases.

(4) Given fixed B, 4}/a) and r, 8zp and 8, generally increase as N
increases.

These same four trends hold for all orderings if “©z, and @4, increase”
isreplaced by “Orp, Oas , and Oy x get closer to 1009, Values of @ greater
than 1009 indicate that 4,. > », which is of course not as desirable as
2 ™= 9, which implies @ ~ 100.

Camparing across Tables 5.1, 5.2, and 5.3 we sce that given fixed B,
a/cs ,rand N, 8,5 2 Opp = By . This result is not surprising for the
following reason. The high-low ordering will have a tendency not to use
those @, subjects with scores above the highest G4 score while the low-high
ordering will have a tendency not to use those G, subjects with scores below
the lowest @, scores. Since we are assuming B > 0 (g, > n4), the low-high
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ordering should yield the most positive £, foliowed by the random ordering
and then the high-low ordering, When ¢?/¢2 = £ and B < %, 6.4 can be
somewhat greater than 100 (e.g. 113) while 100 > 65, > 94. In all other
cases (6?/af > L ora?/a; = L and B < 1), 6.4 is closer to 1009, than 6z,
or @g; . In general the results for ©rp , O.x , and 94, are quite similar for
the conditions considered,

Comparing the results in this section with those in section 4, it is easily
checked that if ¢*/a3 < 1 the three pair-matching methods generally attain
more than 859 of min {100, 6., } in Table 4.2 indicating that they can
be reasonable methods of matching the means of the samples. However,
if 6}/s7 = 2, the pair-matching methods often attain less than 709 of the
corresponding €y, v in Table 4.1 Indicating that when ¢1/¢; > 1 these pair-
noatching methods do not mateh the means very well compared to a single
mean-matching method.

Remembering that pair-matching methods implicitly sacrifice closely
matched means for good individual matches, we also caleulated a measure
of the quality of the individual matches. These results presented in Appendix
C indicate that, in general, the high-low ordering yields the closest individual
matches followed by the random ordering. This conclusion is consistent with
the intuition to match the most difficult subjects first in order to obtain
close individual matches.

6. ADVICE TO AN INVESTIGATOR

In review, we assume there are two populations, P, and P, , defined by
two levels of a treatment variable. There is a sample, , , of size N from P,
and a larger sample, (, , of size *N from P, , both of which have recorded
scores on the matching variable X, The objective of the study is to estimate r,
the average effect of the trestment variable on a dependent variable ¥ over
the P, population, We assume that #, = #,, — #,. will be used to estimate ¢
where #,, is the average ¥ in the @, sample and 7, is the average ¥ in an
N-size subsample of G, matched to @, , G, .

Depending upon the particular study, the investigator may be able,
within limits, to control three “‘parameters”.

(a) N, the size of the smaller initial sample (G,); equivalently, the size
of each of the final samples.

(b} r, the ratio of the sizes of the larger initial sample (,) and the smaller
initial sample (G)).

{¢) The matching rule used to obtain the @i sample of size N from
the &, sample of size rN.

Below we present advice for choosing these “parameters’” in the order
first N, then r, and then the matching method.

{(a) Choosing N
We will use a standard method for estimating ¥ (Cochran [1963]) which
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assumes that the investigator wants #, to be within +A of r with probability
1 — a:Prob {|#, — 7| > A} = a. Letting s/+/N be the estimated standard
error of #, we would choose

N = 2*5*/4A% (6.1)

where 2 is the standard normal deviate corresponding to 1 — « confidence
limits (e.g. if & = 0.05, z =~ 2).° In order to use (6.1) we must have an estimate
of the standard error of %, , s/+/N.

Suppose that the response surfaces are linear with slapes 8, and 8, and
that £, will be exactly matched to £, in the final samples by using one of
the matching methods discussed in sections 4 and 5. Thus, E E (%) = +,
and it is easy to show that

S/IN = EE.(4y — 7)°
=K Ec[ﬁz(m - -’En.) -+ 181(3-:1. - 711) + &. — é2.]2- (6-2)

Betting £, = £, and assuming the usual independent error model where
Bl =, i =1, 2, (6.2) becomes

k'3 3
Te,y Tey

2
0, 2

SIN =

Rarely in practice can one estimate the quantities in (6.3). Generally, how-
ever, the investigator has some rough estimate of an average variance of ¥,
say ¢ , and of an average correlation between ¥ and X, say 4. Using these
he can approximate (1/N}{s? + o2,} by (2/N)2(1 — #°).

Approximating ¢}/N(8, — 8,)* is quite difficult unless one has estimates
of 8; and 8, . The following rough method may be useful when the response
surfaces are at the worst moderately nonparallel. If the response surfaces
are parallel o2/N (8, — 8,)° is zero and thus minimal. If the response surfaces
are at most moderately nonparallel, one could assume (8, — £,)* < 28
in most uses” Hence, in many practical situations one may find that 0 <
S/NB, — 8,)° < 2(e?/N)§} , where the upper bound ean be approximated
by 2(3°¢2/N). Hence, a simple estimated range for s is

2471 — ") < §* < 262, (6.4)
If the investigator believes that the response surfaces are parallel and
linear, the value of s* to be used in (6.1) can be chosen to be near the minimum

of this interval. Otherwise, a value of s* nearer the maximum wouldibe
appropriate.

{b) Choosing »

First assume that mean-matching is appropriate, i.e. assume an. essentially
linear response surface in P, , and that the sole objective is to estimate 7.

! Moderate samples (N > 20) are assumed. For amall samples & = £,2152/4 where £y, is the student-
deviate with ¥ — I degress of freedam carreapotding ta 1 — « canfidence lmita.
T A less conservative asaumption is (f1 — 81)7 < A2
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We will choose r large enough to expect 1009; reduction in bias using the
simple mean-matching method of section 4.

(1) Estimate ¥y = B[{(1 4 ¢%/02)/2]'”* and the approximate shape of the
distribution of X in P, . In order to compensate for the decreased ahility
of the mean-matching method to attain the theoretical maximum reduction
in bias in small or moderate samples (see section 4), if N is small or moderate
(N < 100) increase v by 5 to 159, (e.g. 109, for N = 50, 59, for N = 100).

(2) Using Table 3.1 find the row corresponding to the approximate shape
of the distribution of X in P, . Now find approximate values of #, and r.
such that Q{r;, 1} >~y and Q(r, , @) ~=+. I[f N is very small (N < 5}, r should
be chosen to be close to r, ; otherwise, results in. Table 3.2 suggest that r can
be chosen te be much closer to 7., . # should probably be chosen to be greater
than two and in most practical applications will be less than four.

Now assume pair-matches are desired, i.e. the response surfaces may be
nonlinear, nonparallel and each 3,; — y.; may be used to estimate the
treatment effect at 2,; . We will choose r large enough to expect 959, - re-
duction in bias using the random order-nearest available pair-matching
method of section 5. Perform steps (1) and (2) as above for mean-matehing.
However, since in section 5 we found that if «3/¢2 > 1 nearest available
pair-matching did not mateh the means of the samples very well compared
to the simple mean-matehing method, r should be increased. The following
is a rough estimate (based on Tables 5.1 and 4.1) of the necessary increase:

if ¢2/¢% = %, r remains unchanged
if ¢2/62 = 1, increase r by about 509
if ¢2/a? = 2, at least double r.

(c) Choosing a Matching Method

We assume @, and @, (l.e. r and N) are fixed and the choice is one of a
matching method. If the investigator knows the P, response surface is linear
and wants only to estimate r, the results in section 4 suggest that he can use
the simple mean-matching method described in section 4 and be confident
in many practical situations of removing most of the bias whenever » > 2.

If confidence in the linearity of the P, response surface is lacking and/or
the investigator wants to use each matehed pair to estimate the effect of
the treatment variable at a particular value of X, he would want to obtain
close individual matches as well as closely matcehed means. Results in section 5
indicate that in many practical situations the random order nearest available
pair-matching method can be used to remove a large proportion of the biag
in X while assigning close individual matches. The random order nearest
available pair-matching is extremely easy to perform since the @, subjects
do not have to be ordered; yet, it does not appear to be inferior to either
high-low or low-high orderings and thus seems to he a reasonable choice in
practice.

If 2 computer is available, a matching often superior to that obtained
with the simple mean-matching or one random order nearest available
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pair-matching may be easily obtained by performing the simple mean-
matching and several nearest available pair-matchings (i.e. several random
orderings, low-high ordering, high-low ordering) and chaosing the ‘best”
matching. There should be no great expense in performing several matchings.
Using Fortran IV subroufines given in Appendix B for the simple mean-
matching method and nearest available pair-matching methads, a matehing
of 100 &, subjects from 400 ¢, subjects takes about 11 seconds on an IBM
360/65.

In order to decide which matching is “best”, record for all matched
samples d = &, — &, and & = 1/N Y (z,; — z2;)". Pair-matches (and
thus ¢°) for the mean-matched sample can be found by using a nearest
available pair-matching method on the final samples. If several matchings
give equally small values of d, choose the matching that gives the smallest
value of d°. If d for one matched sample is substantially smaller than for
any of the other matched samples but d* for that sample is quite large, the
investigator must either (1) male a practical judgement as to whether closely
matched means ot close individual matehes are more important for his
study, or (2} attempt to find matehes by a matching method more complex
than the ones considered here.

Admittedly, the practical situations and methods of estimating 7 covered
abave are quite limited. The following article extends this work to include
regression (covariance) adjusted estimates of r and nonlinear parallel respanse
surfaces. Rubin [1970] includes extensions to the case of many matching
variables. Althauser and Rubin [1970] give a nontechnical discussion of some
problems that arise with many matching variables,
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CROIBEMENTS EN VYUE D'EFFACER LES BIAIS DANS DES ETUDES

RESUME

Plusieurs méthodes de eraisements qui eroisent tous lea niveatux d’un méme &chantillon
tiréd d'un autre échantillon plus grand sur une variable continue de eraisement. zont com-
parées en ce qui concerne leur pouvolr d'affacer le biais de la variable de eraisement. Une des
méthodes est une méthode croisant la moyenne et trois sont des méthodes croisant la paire
la plus proche. Les possibilités des méthodes en ce qui conecerne la suppression du biais
sont aussi compardss au maximum theorique &tant donné des distributions fixées et des
tajlles d’échantillon fixées. Un résumé paur aider le chercheur est inclus.
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APPENDIX A: PROOFS OF TRENDS (3) AND (4) IN 8ECTION 3

We prove the intuitively obvious trend (3) by considering a random
sample of size (a + )N from §, Call the order statistics xey , <<« Zem, “*° 5
Lo x Where z,, 18 the largest obgervation. The average of the N largest
observations from these (¢ 4 )N is 1/N 3.7 2., . By randomly discarding
alN of the original observations, we have a random sample of size r¥N from f.
But in any such subset the average of the N largest observations is less than
or equal to 1/N 3 ¥ x.;, . Averaging over repeated random samples we have
that Q(r, N) < Q(r + a, N), N, #N, alN positive integers.

We prove trend (4) by a similar but more involved argument. Consider
arandom sample of size r(N + by and let 2y, ¢, Zm, - * s Enetrs *
T weny be the order statistics. The average of the N 4 b largest from these
r{N 4 b)is L/(¥ + b) > NI? x(;, . Choosing a random rN-size subset of these
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observations, we have that the expected value of the average of the N largest
from such a subset is

1 Z N (total of largest N observations from S)

n g «3

where
8 = set of all distinet rN size subsets of original (N + &)
n = (T(Nr; b)) = the number of elements in S.

This expression can be rewritten as
1 1 r{N+b)
T )\;x i
n N ; @
where »; = number of elements of 8 in which z;, is one of the N largest
observationg, > A; = Nn.

Fori =1, --- , N, »; = the number of subsets in which z;, occurs = m =

(?(Nr;r—i) ; 1)- For all ¢ > N, A, £ m. Consider the above summation

as a weighted sum of the =z, where the weights are >0 and add to
1 {3 »,/aN = 1). Increasing the weights on the largest z;, while keeping
the sum of the weights the same cannot decrease the total value of the sum.
Thus,

r{¥+h)

1 1 Nah—1
)\.,-.1:(;) S ?‘;N {m Z iy + (ﬂN - m(N + b — -1))$(N+b)}
N+b—1 N
< %{ Z Ty F (nm (N 4+ b — 1))$(N+b1}

M+l
N + b {z x(a]}

since (m/nN) = 1/(N + b).

Hence, the expected average of the top N from a random +N-size suhset
is Jess than or equal to the average of the top b 4 N from the original r(b 4 N);
thus averaging over repeated random samples we have

Qlr, N} < Qfr, b + N), N, 7N, (b + N) positive integers.

11
S ADY

I/\

APPENDIX B

FORTRAN SUBROUTINES FOR NEBEAREST AVAILARLE PAIR MATCHING AND SIMPLE MEAN
MATCHING

Notation used in the subroutines
N1 = N = gize of G,
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= rN = size of initial &,

= vector of length N giving matching variable scores for G, sample,
i.e. Ist entry is first (7; subject’s score

= vector of length »N giving scores for ¢, on matching variahle

= &,

= £,. — &, ; outpuf for matched samples

= 1/N 3 (z;; — zs;)%; output for matched samples

= vector giving ordering of (; sample for nearest available matching
(a permutation of 1 --- N1}

= “current” ordering of &, sample. After each call to a matching

SUBROUTINE NAMTCHID D2 162, TGLsNL,N24XIa%21
SUBROUTIME TO PERFORM NEAREST AVAILAGLE MATCHIMNG
NECESSARY INPUTS ARE IG2y IG1ls Wle N2y X1y X2
DIMENSION IGLIL}41G2{)1)sX1(1)sX2(1}

N=0.

02=0.

DO 200 I=13N1
K=161(T}

CALL MATCHADB2 1G24 X1 (K141 N2 4X2)
D=D/FLOAT{NL]

D2=D2/FLOATINL}

RETURN

ENC

SUBROUTINE MMNMTCHIDsIG24sNLsNZ24X2,AVI)

SUBROUTINE TO PERFOAM SIMPLE MEAN MATCHING TO AVl
NECESSARY INPUTS ARE 1G24y Nls N2y X2y AV
DIMEMSION IG2(11, X21(1)

0=0.

D2=0.

B0 200 I=1.N%

XX=8V1+0

CALL MATCHIDD241G2¢ XXyIyN2yX2F¥
D=0/ FLOAT (ML}

RETURN

END

SUBRGUTINE MATCHID D2 41624 X1aK1aN2yX2)
SUARQUTINE PICKS G2 SUBJECT BETWEEN {INCLUSIVE) K1 AND N2 IN LIST
IG2 WHC HAS SCORE (IM X2) CLOSEST TO VALUE X1
HIS SUBJECT WNUMBER IS5 PUT JHN IG2(K1) AND PREVIOUS ENTRY IN IGZ2(K1l)
1S MOVED BEYOND K1 ENTRY

DIMENSTION X2(1),1G21{1}

LL=IG2{N2Z)

IF (K1l +EQ. N2] GO T3 410

DMIN=ARS (X1=X2{LL))

K2=M2-K1

00 400 LK=14+K2

K=N2~t K

L=1G2(K)

If (ABS(X1-X2{L}} .LT. DMIN) 60O TO 300
IG2(K+1t=L

GO TA 400

IGZIK+1}=LL

LL=}

OMIN=ABS (X1-%X2(LL))

CONTINUE

CONT INUE

IG2IK1}=LL

O=D+X1~X2{LL)

D2=02+{ X1=X2(LL ) }%#52

RETUARN

END
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subroutine, the & subject having subject number IG1(X) is matched
to G, baving subject number IG2(K), K = 1, --- , N1. Subject
anumber, of course, refers to order in vectors X1 and X2. Before
the first call to a matching subroutine one should set IGAUK) = K,
K =1, ---, N2, After this initialization G2 should be considered
output of matching routines,

APPENDIX C
TEE QUALITY OF INDIVIDUAL MATCHES:

E3 (v — 2, M/N

100 X X MORMAL*
(B*/2 + 1)oy + o)
a,2 1 2,2 2,2 .
=% a/op = 1 91/on =2
B=% % i 1 r + % 1 t ¥ 3 1
=l 4% B 72 81 35 W 63 77 35 %8 &% 76
¥ o2 ol 02 0OF 16 o2 05 18 16 0 13 19 28
L3 oo 0a 0l a2 oL a2 o5 o8 06 09 13 19
N L oo oo oo a1 aL oL o3 ob o 08 69 1%
dl
E 1 k2 855 70 fo I b7 B 76 AL W2 57 73
o w2 an 61 03 0B 01 03 o 15 a7 13 =23 25
g L3 a0 co 00 ol a0 01 a3 af ok 08 12 18
’g b g oo oo 00 00 0L 02 b a3 05 09 13
= 1 37 84 &1 & a5 k& 63 76 25 k1 &0 73
2 2 o0 oo 02 0f a1 02 o7 1k 66 12 19 27
< 3 0 o oo ol o0 Q1 02 05 03 ay 11 17
w ook 00 a o 00 a0 00 Al gk as o5 09 13
1 55 k2 L2 4y Wo26 31 k0 27 2B 3 45
w2 o1 o1 oz ol 02 03 a3 Q9 a8 ag 13 19
g 4 3 oo o0 01 ar gL 61 03 05 05 a8 ¢9 13
E E L o0 o0 00 ot 01 0L 02 %3 ok as ay 1L
= k) : L 5. 39 38 43 21 19 2 3 ;22 2o o
2 . A 2 000 01 01 03 a1 o2 ok ot 05 08 12 18
g 5 L 3 00 00 0@ a1 oo 01 62 03 03 03 a8 11
g & L o0 0 oo 0 00 00 o1 02 02 05 06 03
f pa! o 1 Lo 3 335 41 15 16 2 135 16 19 28 3
= g 2 oo 4o 0L 02 G0 0L a3 06 ok o7 11 17
& d 3 00 00 0 00 01 as a1 02 oz 03 o7 11
b g0 oo oo 00 0 0¢ 0L g2 6z 03 03 o8
i g% 108 122 126 71 92 108 119 55 77 96 1D
g 2 02 gk 10 =20 ay 09 17 26 13 19 27
£ 3 00 0L 42 05 ol 03 08 13 a7 12 1B 26
é‘ L ¢ oo qr o2 0L 62 oy o7 a9 a8 12 23
& 1 95 110 182 1% 49 92 110 1£0 e 71 91 108
- "2 o0 o0z o8 18 02 of 16 25 1L 19 25 36
& 3 op 06 0L 63 o 02 05 1l a6 11 18 24
o L o0 00 G oL 00 0L 03 07 ob a7 13 19
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*
If perfectly matehed, equals 00, If rendomly matched from random samples, equals 100.
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