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Reducing Bias in Observational Studies Using 
Subclassification on the Propensity Score 

PAUL R. ROSENBAUM and DONALD B. RUBIN* 

The propensity score is the conditional probability of as- 
signment to a particular treatment given a vector of ob- 
served covariates. Previous theoretical arguments have 
shown that subclassification on the propensity score will 
balance all observed covariates. Subclassification on an 
estimated propensity score is illustrated, using observa- 
tional data on treatments for coronary artery disease. 
Five subclasses defined by the estimated propensity 
score are constructed that balance 74 covariates, and 
thereby provide estimates of treatment effects using di- 
rect adjustment. These subclasses are applied within sub- 
populations, and model-based adjustments are then used 
to provide estimates of treatment effects within these sub- 
populations. Two appendixes address theoretical issues 
related to the application: the effectiveness of subclas- 
sification on the propensity score in removing bias, and 
balancing properties of propensity scores with incomplete 
data. 

KEY WORDS: Bias reduction; Stratification; Logistic 
models; Log-linear models; Direct adjustment; Balancing 
scores. 

1. INTRODUCTION: SUBCLASSIFICATION AND 
THE PROPENSITY SCORE 

1.1 Adjustment by Subclassification in 
Observational Studies 

In observational studies for causal effects, treatments 
are assigned to experimental units without the benefits 
of randomization. As a result, treatment groups may dif- 
fer systematically with respect to relevant characteristics 
and, therefore, may not be directly comparable. One 
commonly used method of controlling for systematic dif- 
ferences involves grouping units into subclasses based on 
observed characteristics, and then directly comparing 
only treated and control units who fall in the same sub- 
class. Obviously such a procedure can only control the 
bias due to imbalances in observed covariates. 

Cochran (1968) presents an example in which the mor- 
tality rates of cigarette smokers, cigarlpipe smokers, and 

* Paul R.Rosenbaum is Research Statistician, Research Statistics 
Group, Educational Testing Service, Princeton, NJ 08541. Donald B. 
Rubin is Professor, Departments of Statistics and Education, University 
of Chicago, Chicago, IL 60637. This research was sponsored in part by 
U.S. Army Contract DAAG29-80-C-0041, U.S. National Cancer Insti- 
tute Grant P30-CA-14520 to the the Wisconsin Clinical Cancer Center, 
the Wisconsin Alumni Research Foundation, the Educational Testing 
Service, and the U.S. Health Resources Administration. The authors 
acknowledge Arthur Dempster for valuable conversations on the subject 
of this paper and Bruce Kaplan for assistance with Figures 1 and 2. 

nonsmokers are compared after subclassification on the 
covariate age. The age-adjusted estimates of the average 
mortality for each type of smoking were found by direct 
adjustment-that is, by combining the subclass-specific 
mortality rates, using weights equal to the proportions of 
the population within the subclasses. Cochran (1968) 
shows that five subclasses are often sufficient to remove 
over 90% of the bias due to the subclassifying variable 
or covariate. However, as noted in Cochran (1965), as 
the number of covariates increases, the number of sub- 
classes grows exponentially; so even with only two cat- 
egories per covariate, there are 2P subclasses for p co-
variates. If p is moderately large, some subclasses will 
contain no units, and many subclasses will contain either 
treated or control units but not both, making it impossible 
to form directly adjusted estimates for the entire popu- 
lation. 

Fortunately, however, there exists a scalar function of 
the covariates, namely the propensity score, that sum- 
marizes the information required to balance the distri- 
bution of the covariates. Specifically, subclasses formed 
from the scalar propensity score will balance all p co-
variates. In fact, often five subclasses constructed from 
the propensity score will suffice to remove over 90% of 
the bias due to each of the covariates. 

1.2 The Propenslty Score in Observational Studles 

Consider a study comparing two treatments, labeled 1 
and 0, where z indicates the treatment assignment. The 
propensity score is the conditional probability that a unit 
with vector x of observed covariates will be assigned to 
treatment 1, e(x) = Pr(z = 1 I x). Rosenbaum and Rubin 
(1983a, Theorem 1) show that subclassification on the 
population propensity score will balance x, in the sense 
that within subclasses that are homogeneous in e(x), the 
distribution of x is the same for treated and control units; 
formally, x and z are conditionally independent given e 
= 4 4 ,  

Pr(x, z 1 e) = Pr(x I e) Pr(z I e). (1) 
The proof is straightforward. Generally, Pr(x, z I e) = 
Pr(x I e) Pr(z I x, e). But since e is afunction of x, Pr(z I x, 
e) = Pr(z I x). To prove (I), it is thus sufficient to show 
that Pr(z = 1 I x) = Pr(z = 1 I e). Now Pr(z = 1 I x) = 
e by definition, and Pr(z = 1 1 e) = E(z 1 e) = 
E{E(z I x) I e) = E(e I e) = e, proving (1). 
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Expression (1) suggests that to produce subclasses in 
which x has the same distribution for treated and control 
units, distinct subclasses should be created for each dis- 
tinct value of the known propensity score. In common 
practice, e(x) is not known, and it is not feasible to form 
subclasses that are exactly homogeneous in e(x) and con- 
tain both a treated and control unit. In Section 2 we ex- 
amine the balance obtained from subclassification on an 
estimated propensity score. Appendix A considers the 
consequences of coarse or inexact subclassification on 
e(x). Of course, although we expect subclassification on 
an estimated e(x) to produce balanced distributions of x, 
it cannot, like randomization, balance unobserved co-
variates, except to the extent that they are correlated 
with x. 

Cochran and Rubin (1973) and Rubin (1970,1976a,b) 
proposed and studied discriminant matching as a method 
for controlling bias in observational studies. As noted by 
Rosenbaum and Rubin (1983a, Sec. 2.3 (i)), with multi- 
variate normal x distributions having common covariance 
in both treatment groups, the propensity score is a mon- 
otone function of the discriminant score. Consequently, 
subclassification on the propensity score is a strict gen- 
eralization of this work to cases with arbitrary distribu- 
tions of x. 

Subclassification on the propensity score is not, how- 
ever, the same as any of the several methods proposed 
later by Miettinen (1976); as Rosenbaum and Rubin 
(1983a, Sec. 3.3) state formally, the propensity score is 
not generally a "confounder" score. First, the propensity 
score depends only on the joint distribution of x and z, 
whereas a confounder score depends additionally on the 
conditional distribution of a discrete outcome variable 
given x and z, and is not defined for continuous outcome 
variables. Second, by Theorem 2 of Rosenbaum and 
Rubin (1983a), the propensity score is the coarsest func- 
tion of x that has balancing property (I), so unless a con- 
founder score is finer than the propensity score, it will 
not have this balancing property. 

2. 	FITTING THE PROPENSITY SCORE AND ASSESSING 
THE BALANCE WITHIN SUBCLASSES 

2.1 The First Fit and Subclassification 

We illustrate subclassification based on the propensity 
score with observational data on two treatments for cor- 
onary artery disease: 590 patients with coronary artery 
bypass surgery (z = I), and 925 patients with medical 
therapy (z = 0). The vector of covariates, x, contains 74 
hemodynamic, angiographic, laboratory, and exercise 
test results.* The propensity score was estimated using 

* The data analysis that follows is intended to illustrate statistical 
techniques, and does not by itself constitute a study of coronary bypass 
surgery. The literature on the efficency of coronary bypass surgery is 
quite extensive with many subtleties addressed and controversies ex- 
hibited. Furthermore, the data being used were considered "preliminary 
and unverified" for this application. 

a logit model (Cox 1970) for z, 

log [e(x)l(l - e(x)] = a + PTf(x), 

where ct and p are parameters and f (.) is a specified func- 
tion. 

Not all of the 74 covariates and their interactions were 
included in the logit model for the 1,515 patients in the 
study. Main effects of variables were selected for inclu- 
sion in the first logit model using an inexpensive stepwise 
discriminant analysis. A second stepwise discriminant 
analysis added cross-products or interactions of those 
variables whose main effects were selected by the first 
stepwise procedure. Using these selected variables and 
interactions, the propensity score was then estimated by 
maximum likelihood logistic regression (using the SAS 
system). The result was the first logit model. (Alterna- 
tively, stepwise logit regression could have been used to 
select variables, e.g., Dixon et a;. 1981.) 

Based on Cochran's (1968) results and a new result in 
Appendix A of this article, we may expect approximately 
a 90% reduction in bias for each of the 74 variables when 
we subclassify at the quintiles of the distribution of the 
population propensity score. Consequently we subclas- 
sified at the quintiles of the distribution of the estimated 
propensity score based on this initial analysis, which we 
term the first model. 

We now examine the balance achieved by this first sub- 
classification. Each of the 74 covariates was subjected to 
a two-way (2 (treatments) x 5 (subclasses)) analysis of 
variance. Above the word none, Figures 1 and 2 display 
a five-number summary (i.e., minimum, lower quartile, 
median, upper quartile, maximum) of the 74 Fratios prior 
to subclassification, that is, the squares of the usual two- 
sample t statistics for comparing the medical and surgical 
group means for each covariate prior to subclassification. 
Above the word one, F ratios are displayed for the main 
effect of the treatment (Figure 1) and the treatment x 
subclass interaction (Figure 2) in the two-way analysis of 
variance. Although there has been a substantial reduction 
in most F ratios, several are still quite large, possibly 
indicating that the propensity score is poorly estimated 
by the first model. Indeed, as a consequence of Theorem 
1 of Rosenbaum and Rubin (1983a), each such F test is 
an approximate test of the adequacy of the model for the 
propensity score; the test is only approximate primarily 
because the subclasses are not exactly homogeneous in 
the fitted propensity score. 

2.2 	Refinement of the Fitted Propensity Score and 
the Balance Obtained in the 
Final Subclassification 

Figures 1 and 2 display summaries of F ratios from a 
sequence of models constructed by a gradual refinement 
of the first model. At each step, variables with large F 
ratios that had previously been excluded from the model 
were added. All logistic models were fitted by maximum 
likelihood. If a variable produced a large F ratio even 
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N O N E  O N E  TWO THREE F 1 N A L  

M O D E L  

Figure 1. F Tests of Balance Before and After Subclassifications: Main Effects (5-point summary). (Minimum 0; lower quartile +; 
median x ;upper quartile A; maximum *.) 

N O N E  O N E  TWO THREE F 1 N A L  

M O D E L  

Figure 2. F Tests of Balance Before and After Subclassifications: Interactions (5-point summary). (Minimum 0; lower quartile + ; 
median x ;upper quartile A;maximum *.) 
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after inclusion in the model, then the square of the vari-
able and cross-products with other clinically important 
variables were tried. In the final model, f3 and f(x) in (2) 
were of dimension 45, including 7 interaction degrees of 
freedom and 1 quadratic term. There is considerably 
greater balance on the observed covariates x within these 
final subclasses than would have been expected from ran-
domized assignment to treatment within subclasses. 

Figures 3-5 display the balance within subclasses for 
three important covariates. Although the procedure used 
to form the subclasses may not be accessible to some 
nonstatisticians, the comparability of patients within sub-
classes can be examined with the simplest methods, such 
as the bar charts used here. For example, Figure 5 in-
dicates some residual imbalance on the percentage of pa-
tients with poor left ventrical (LV) contraction, at least 
for patients in subclass 1-that is, in the subclass with 
the lowest estimated probabilities of surgery. This im-
balance is less than would be expected from randomi-
zation within subclasses; the main-effect F ratio is .4 and 
the interaction F ratio is .9. Nonetheless, we would pos-
sibly want to adjust for this residual imbalance, perhaps 
using methods described in Section 3.3. 

2.3 The Fitted Propensity Score:Overlap of 
Treated and Control Groups 

Figure 6 contains boxplots (Tukey 1977) of the final 
fitted propensity scores. By construction, most surgical 
patients have higher propensity scores-that is, higher 
estimated probabilities of surgery-than most medical 
patients. There are a few surgical patients with higher 
estimated probabilities of surgery than any medical pa-
tient, indicating a combination of covariate values not 
appearing in the medical group. For almost every medical 
patient, however, there is a surgical patient who is com-
parable in the sense of having a similar estimated prob-
ability of surgery. 

PERCENT WITH LEFT NRIN STENOSIS 

Figure 4. Balance Within Subclasses: Left Ventricular Contrac-
tion. 

2.4 Incomplete Covariate Information 

Five variables-four related to exercise tests and one 
quantitative measure of left ventrical function-were not 
measured during the early years of the study, so many 
patients are missing these covariate values. If the pro-
pensity score is defined as the conditional probability of 
assignment to treatment 1 given the observed covariate 
information and the pattern of missing data, then Ap-
pendix B shows that subclassification on the propensity 
score will balance both the observed data and the pattern 
of missing data. Essentially, we estimated the probabil-
ities of surgical treatment separately for early and late 
patients, and then used these estimated probabilities as 
propensity scores. Subclassification on the correspond-
ing population propensity scores can be expected to bal-
ance, within subclasses, each of the following: (a) the 
distribution of those covariates that are measured for both 
early and late patients, (b) the proportions of early and 
late patients, and (c) the distribution of all covariates for 

NERN NUMBER OF DISEASED VESSELS 

MEDI CRL 

SURGI C R L  

PERCENT WITH POOR LV CONTRACTION 
Figure 3. Balance Within Subclasses: Number of Diseased Ves-

sels. Figure 5. Balance Within Subclasses: Left Main Stenosis. 
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M E D I C R L  P R T I E N T S  S U R G I C A L  P R T I  E N T S  
Figure 6. Boxplots of the Estimated Propensity Score. 

the late patients. (For proof, see Corollary B.l of Ap- provement to t years after cardiac catheterization if he: 
pendix B.) The observed values of these five covariates 1. is alive at years and 
were indeed balanced by our procedure: the main-effect 2. has not had a myocardial infarction before t years
Fratios were 2.1, . l ,  .3, .2, and .O; the interaction Fratios and 
were .4, 1.4, . l ,  .6, and .3. 3. 	is in class I or has improved by two classes (i.e., IV 

to 11) at every follow-up before t years; 
TREATMENT3- THE AVERAGE EFFECT otherwise the patient does not have uninterrupted im- 

provement to t years.
3.1 Survival; Functional Improvement; It should be noted that there is substantial evidence 

Placebo Effects that patients suffering from coronary artery disease re- 
In this section, we show how balanced subclasses may spond to placebos; for a review of this evidence, see Ben- 

be used to estimate the average effects of medicine and Son and McCallie (1979). Part or all of the difference in 
surgery on survival and functional improvement. Func- functional improvement may reflect differences in the 
tional capacity is measured by the crude four-category (I  placebo effects of the two treatments. 
= best, 11,111, IV = worst) New York Heart Association 3.2 Subclass-Specific Estimates; classification, which measures a patient's ability to per- 
form common tasks without pain. The current study is Direct Adjustment 

confined to patients in classes 11, 111, or IV at the Gme The estimated probabilities of survival and functional 
of cardiac catheterization, that is, patients who could im- improvement at six months in each subclass for medicine 
prove. A patient is defined to have uninterrupted im- and surgery are displayed in Table 1. (These estimates 
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Table 1. Subclass Specific Results at Six Months 

Substantial Improve-
Sumval to 6 Months ment at 6 Months 

Treatment No. of Standard Standard 
Subclas8 Group Patients Estimate Error Estlmate Error 

1 	 Medical 

Surgical 


2 	 Medical 

Surgical 


3 	 Medical 

Surgical 


4 	 Medical 

Surgical 


5 	 Medical 

Surgical 


Directly 

~djusted 

Across Medical - ,926 ( .022~) ,359 (.04Zb) 

Subclasses Surgical - ,903 (.03gb) ,669 (.05gb) 


a Based on estimated propensity score. 
Standard errors for the adjusted proportions were calculated following Mosteller and 

Tukey (1977. Chap. l l c ) .  

take censoring into account by using the Kaplan-Meier 
(1958) procedure.) In each subclass the proportion im- 
proved under surgery exceeds the proportion improved 
under medical therapy; the proportion surviving to six 
months is higher following medical treatment, although 
the standard errors are quite large. 

Each subclass contains 303 patients. Therefore, for 
medical therapy and surgery, the directly adjusted pro- 
portions, with subclass total weights, are simply the av- 
erages of the five subclass-specific proportions. These 
adjusted proportions are displayed in Table 2 for t = 6 
months, 1 year, and 3 years. Note that for t = 6 months, 
1 year, and 3 years, the medical versus surgical differ- 
ences in survival are small compared to their standard 
errors, but consistently higher probabilities of improve- 
ment are estimated for surgical treatment. As noted pre- 
viously, improvement may be affected by differential pla- 
cebo effects of surgery (Benson and McCallie 1979). 

If the subclasses were perfectly homogeneous in the 
propensity score and the sample sizes were large, the 
distributions of x for surgical and medical patients would 
be identical within each subclass. Consequently, if this 

Table 2. Directly Adjusted Probabilities of Survival 

and Uninterrupted lmprovement 


(and Standard Errors*) 


6 Months 1 Year 3 Years 

Pr SE Pr SE Pr SE 

Survival 
Medical .926 (.022) ,902 (.025) ,790 (.040) 
Surgical ,903 (.039) ,891 (.040) ,846 (.049) 

Uninterrupted 

lmprovement 


Medical ,359 (.042) ,226 (.040) ,126 (.036) 
Surgical ,669 (.059) ,452 (.060) .298 (.057) 

NOTE: Standard errors (SE) for the adjusted proportions were calculated following Mos- 

teller and Tukey (1977, Chapter l lc ) .  


were the case, the difference between surgical and med- 
ical adjusted proportions would have no bias due to x, or 
using terminology in Cochran (1968), subclassification on 
the propensity score (followed by direct adjustment) 
would remove all of the initial bias due to x. Of course, 
initial bias due to unmeasured covariates will be removed 
only to the extent that they are correlated with x. 

In our example, however, the five subclasses are not 
perfectly homogeneous in x. Results in Cochran (1968) 
show that for many examples of univariate x, five sub- 
classes will remove approximately 90% of the initial bias 
in x; Cochran did not consider multivariate x. Neverthe-
less, his results can be applied, using a theorem presented 
in Appendix A, to suggest that adjustment with five sub- 
classes based on the propensity score will remove ap- 
proximately 90% of the initial bias in each coordinate of 
multivariate x. 

3.3 Adjustment and Estimation Within 
Subpopulations Defined by x 

It is often of interest to estimate average treatment ef- 
fects within subpopulations. This section shows how bal- 
anced subclassification may be combined with model- 
based adjustment to obtain estimates of the average effect 
of the treatment within subpopulations defined by x. Spe-
cifically, we estimate the probabilities of uninterrupted 
improvement to six months for subpopulations of patients 
defined by the number of diseased vessels (N) and the 
New York Heart Association functional class at the time 
of cardiac catheterization (F). To avoid an excessive 
number of subpopulations, the small but clinically im- 
portant subset of patients with significant left main ste- 
nosis has been excluded. 

Patients were cross-classified according to the number 
of diseased vessels (N), initial functional class (F), treat- 
ment (Z), subclass based on the estimated propensity 
score (S), and condition at six months (I; improved = 
substantial treatment as defined in Sec. 3.1). A log-linear 
model, which fixed the ZZN, ZZF, ZSN, SZ, SF, and F N  
margins, provided a good fit to this table (likelihood ratio 
X 2  = 122.5 on 120 degrees of freedom). (Here ZZN de- 
notes the marginal table formed by summing the entries 
in the table over initial functional class F and subclass S ,  
leaving a three-way table.) 

The directly adjusted estimates in Table 3 were cal- 
culated from the fitted counts, using the NFS marginal 
table for weights; in other words, within each subpopu- 
lation defined by the number of diseased vessels (N) and 
the initial functional class (F), estimates of the proba- 
bilities of improvement were adjusted using subclass (S) 
total weights. In all six subpopulations, the estimated 
probabilities of substantial improvement at six months 
are higher following surgery than following medical treat- 
ment (between 30% and 387% higher). The estimated 
probabilities differ least for one-vessel disease, functional 
class IV, and differ most for three-vessel disease, func- 
tional class 111. The definition of substantial improvement 
has resulted in lower estimated probabilities of improve- 
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Table 3. Directly Adjusted Estimated Probabilities of 

Substantial Improvement 


No. of Initial Functional Class 
Diseased 
Vessels I1 111 IV 

1 
Medical Therapy ,469 ,277 ,487 
Surgery ,708 ,629 ,635 

2 
Medical Therapy ,404 ,221 ,413 
Surgery .780 ,706 .714 

3 
Medical Therapy 
Surgery 

.248 

.709 
.I33 
,649 

.278 

.657 

ment for class I11 patients than for class I1 and IV pa- 
tients. The estimated probabilities of improvement under 
surgery vary less than the estimated probabilities of im- 
provement under medicine. 

4. SENSITIVITY OF ESTIMATES TO THE ASSUMPTION 
OF STRONGLY IGNORABLE 
TREATMENT ASSIGNMENT 

The estimates presented in Section 3 are approximately 
unbiased under the assumption that all variables related 
to both outcomes and treatment assignment are included 
in x. This condition is called strongly ignorable treatment 
assignment by Rosenbaum and Rubin (1983a), and in fact 
Corollary 4.2 of that paper asserts that if (a) treatment 
assignment is strongly ignorable, (b) samples are large, 
and (c) subclasses are perfectly homogeneous in the pop- 
ulation propensity score, then direct adjustment will pro- 
duce unbiased estimates of the average treatment effect. 
In randomized experiments, x is constructed to include 
all covariates used to make treatment assignments (e.g., 
block indicators) with the consequence that treatment as- 
signment is strongly ignorable. 

Of course with most observational data, such as the 
data presented here, we cannot be sure that treatment 
assignment is strongly ignorable given the observed co- 
variates because there may remain unmeasured covariates 
that affect both outcomes and treatment assignment. It 
is then prudent to investigate the sensitivity of estimates 
to this critical assumption. 

Rosenbaum and Rubin (1983b) develop and apply to 
the current example a method for assessing the sensitivity 
of these estimates to a particular violation of strong ig- 
norability. They assume that treatment assignment is not 
strongly ignorable given the observed covariates x, but 
is strongly ignorable given (x, u), where u is an unob- 
served binary covariate. The estimate of the average 
treatment effect was recomputed under various assump- 
tions about u. A related Bayesian approach was devel- 
oped by Rubin (1978). 

5. CONCLUSIONS: THE PROPENSITY SCORE AND 
MULTIVARIATE SUBCLASSIFICATION 

With just five subclasses formed from an estimated sca- 
lar propensity score, we have substantially reduced the 
bias in 74 covariates simultaneously. Although the pro- 
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cess of estimating the propensity score for use in balanced 
subclassification does require some care, the compara- 
bility of treated and control patients within each of the 
final subclasses can be verified using the simplest statis- 
tical methods, and therefore results based on balanced 
subclassification can be persuasive even to audiences 
with limited statistical training. The same subclasses can 
also be used to estimate treatment effects within sub- 
populations defined by the covariates x. Moreover, bal- 
anced subclassification may be combined with model- 
based adjustments to provide improved estimates of 
treatment effects within subpopulations. 

APPENDIX A: THE EFFECTIVENESS OF SUB- 

CLASSIFICATION ON THE PROPENSITY 


SCORE IN REMOVING BIAS 


Cochran (1968) studies the effectiveness of univariate 
subclassification in removing bias in observational stud- 
ies. In this Appendix, we show how Cochran's results 
are related to subclassification on the propensity score. 

Let f = f(x) be any scalar valued function of x. The 
initial bias in f is BI = E(f I z = 1) - E(f I z = 0). The 
(asymptotic) bias in f after subclassification on the pro- 
pensity score and direct adjustment with subclass total 
weights is 

where there are J subclasses, and Zj is the fixed set of 
values of e that define jth subclass. The percent reduction 
in bias in f due to subclassification on the propensity 
scores is 100[1 - BsIBI]. 

Cochran's (1968) results do not directly apply to sub- 
classification on the propensity score, since his work is 
concerned with the percent reduction in bias in f after 
subclassification on f ,  rather than the percent reduction 
in bias in f after subclassification on e. Nonetheless, as 
the following theorem shows, Cochran's results are ap- 
plicable providing (a) the conditional expectation of f 
given e, that is E(f 1 e) = f ,  is a monotone function of 
e, and (b) f has'one of the distributions studied by Coch- 
ran. In particular, under these conditions, subclassifi- 
cation at the quintiles of the distribution of the propensity 
score, e, will produce approximately a 90% reduction in 
the bias o f f .  Note that in the following theorem, Coch- 
ran's (1968) results apply directly to the problem of de- 
termining the percent reduction in bias in f after sub- 
classification on f .  

Theorem A.1. The percent reduction in the bias, 100(1 
- BsIBI), in f following subclassification at specified 
quantiles of the distribution of the propensity score, e, 
equals the percent reduction in the bias in f after sub- 
classification at the same quantiles of the distribution of 
f ,  providing f is a strictly monotone function of e. 

Proof. First, we show that within a subclass defined 
by e E S, the bias in f equals the bias in f ;  that is, we 
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show that 

To show this it is sufficient to observe that for t = 0, 1, 

where the second equality follows from the fact that e is 
the propensity score (i.e., from Equation (1)). 

From (A.l) with S = [O, 11, it follows that the initial 
bias in f equals the initial bias in f .To complete the proof, 
we need to show that the bias in f after subclassification 
on e equals the bias in f after subclassification on $. Since 
by assumption .? is a strictly monotone function of e, 
subclasses defined at specified quantiles of the distribu- 
tion of e contain exactly the same units as subclasses 
defined at the same quantiles of the distribution of f .  It 
follows from this observation and (A.l) that the bias in 
f within each subclass defined by e equals the bias in f 
within each subclass defined by f .  Since (a) the initial 
biases in f and f are equal, (b) the subclasses formed 
from e contain the same units as the subclasses formed 
from f ,  and (c) within each subclass, the bias in f equals 
the bias in .?,it follows that the percent reduction in bias 
in f after subclassification on e equals the percent re-
duction in bias in .? after subclassification on .?. 

APPENDIX B: BALANCING PROPERTIES OF THE 
PROPENSITY SCORE WITH INCOMPLETE DATA 

In Section 2.4, we noted that several covariates were 
missing for a large number of patients. Let x* be a p-
coordinate vector, where the jth coordinate of x* is a 
covariate value if the jth covariate was observed, and is 
an asterisk if the jth covariate is missing. (Formally, x* 
is an element of {R, *)P.) Then e* = Pr(z = 1 1 x*) is a 
generalized propensity score. The following theorem and 
corollary show that e* has balancing properties that are 
similar to the balancing properties of the propensity score 
e. The notation a ll b 1 c means that a is conditionally 
independent of b given c (see Dawid 1979). 

Theorem B.1. x* II z 1 e* 
Proof. The proof of Theorem B.l is identical to the 

proof of Theorem 1 of Rosenbaum and Rubin (1983a), 
with x* in place of x and e* in place of e. 

Theorem B. 1 implies that subclassification on the gen- 
eralized propensity score e* balances the observed co- 
variate information and the pattern of missing covariates. 
Note that Theorem B. 1 does not generally imply that sub- 
classification on e* balances the unobserved coordinates 
of x; that is, it does not generally imply 

The consequences of Theorem B.l  are clearest when 
there are only two patterns of missing data, with x = (XI,  
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x2), where xl  is always observed and x2 is sometimes 
missing. Let c = 1 when x2 is observed, and let c = 0 
when x2 is missing. Then e* = Pr(z = 1 1 X I ,  x2, c = 1) 
for units with x2 observed, and e* = Pr(z = 1 1 X I ,  c = 

0) for units with x2 missing. Subclasses of units may be 
formed using e*, ignoring the pattern of missing data. 

Corollary B.1. (a) For units with x2 missing, there is 
balance on xl at each value of e*; that is, 

X I  II z I e*, c = 0. 

(b) For units with x2 observed, there is balance on (xl, 
x2) at each value of e*; that is, 

(XI ,  x2) ll z 1 e*, c = 1 

(c) There is balance on xl at each value of e* ; that is, 

xl ll z 1 e*. 

(d) The frequency of missing data is balanced at each 
value of e*; that is, 

c 1 z 1 e*. 

Proof. Parts a and b follow immediately from Theorem 
1 of Rosenbaum and Rubin (1983a), and Parts c and d 
follow immediately from Theorem B. 1. 

In practice, we may estimate e* in several ways. In a 
large study with only a few patterns of missing data, we 
may use a separate logit model for each pattern of missing 
data. In general, however, there are 2P potential patterns 
of missing data with p covariates. If the covariates are 
discrete, then we may estimate e* by treating the * as an 
additional category for each of the p covariates, and we 
may apply standard methods for discrete cross-classifi- 
cations (Bishop, Fienberg, and Holland 1975). 

[Received February 1983. Revised September 1983.1 
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