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Nonparametric Analysis of Covariance by Matching

Dana Quade

Department of Biostatistics, School of Public Health, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27514, U.S.A.

SUMMARY

The basic problem under consideration is the comparison of treatments with respect to a response Y
when a covariable X is taken inte account. Various methods involving matching may be regarded as
compromises between the standard analysis of covariance and the standard analysis of independent
matched pairs. First, there is no need to restrict attention to independent maiched pairs, but rather
all matched pairs may be incorparated. Then, if X is concomitant, that is, if its distribution is the
same regardless of treatment, methods may be used which are based ultimately on randomization
although in practice they are based on analysis of variance. When X is not concomitant, methods
related to partial correlation (hetween Y and ‘treatment’, given X) are applicable. All methods
considered may use either the actual magnitudes of Y or analogues of their ranks.

1. Iniroduction

Given data (Y, X;;}fori=0,1,...,kand j=1,..., n, the task at hand is tc compare the
k+1 samples with respect to the response Y while taking account of the covariable
X=(X,..., X,), where m = 1. In particular, do some samples more than others show a

tendency toward higher values of Y for fixed X? If so, what are the magnitudes of such
tendencies? Note that only univariate responses are considered, although the covariable
may be multivariate. Also, attention is restricted to one-way layouts. For convenience, the
sample with i = 0 is referred to as the ‘control’ and those with i=1, ..., k as ‘treatments’.
The two standard approaches to analyzing such data are first, through classical analysis
of covariance, in which a least squares or maximum likelihcod approach is applied, on the
assumption of a complicated model; and second, by formation of independent matched
groups, which allows a simple analysis under weak assumptions but may discard valuable
information. The purposes of this paper are to discuss the philosophical basis for these
standard methods, and the difference between them; and to suggest new compromise
methods (analysis of covariance by matching, and analysis of matched differences).

2. Assumptions

It will be assumed throughout either that the observations form independent random
samples (Assumption IA) or that they come from a completely randomized design
{Assumption IB). In this section we discuss some other assumptions which are commonly
made in performing analysis of covariance.

Let the joint distribution of Y and X, under Assumntion 1A, be

J(Y, X) = F(X)G(Y [ X),

Key wards: Concomitant variables; Adjusted values; Matched pairs; Matched groups; Caliper
matching; Category matching; Ranks; Dental caries; Randomization; Confidence interval.
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where F, is the marginal distribution of X and C is the conditional distribution of Y given
X. When attention is directed to the testing of a hypothesis, it will be that the conditional
distribution is the same in all populations: that is, simply,

Hy G(Y | X)=C(Y|X), i=0,...,k

This hypothesis is stated nonparametrically, in that nothing whatever is assumed about the
form of the commen conditional distribution function C.

However, the more interesting question of estimating the magnitudes of the differences
requires a definition of what is meant by treatment effects, and this may involve
parallelism (Assumption II}. The populations are said to be parallel if

C:(Y[X):C(Y_31|X)1 i':oal:'--aka

where §,=0 by definition; then §,,..., §, are called the ‘effects’ of the k treatments. (It
should be obvicus that the meaning of the effects can be usefully altered by suitable
transformation of Y, for example, for the treatments to produce constant percentage
changes in response, one may transform Y to log Y before making Assumption II.) On
the assumption that the populations are parallel, the null hypothesis can be expressed as

H0231= s =3k=0
Omne is now also in a position to test nonnull hypotheses such as

H(d):8=d,
where 8=1(5,,...,8,) and d=(g,,..., ¢.). This is done by defining new variables

Qs = Yo, Q=Y —¢y,..., Q=Y ¢y

whose treatment effects vanish if and only if H{d) is true: testing H (b} is then equivalent
to testing the null hypothesis with respect to the new response Q. Furthermore, it is well
established that the set of all values in the parameter space which a test accepts is a
confidence set for the parameter: that is, given that H(d) can be tested, the values ¢
which the test accepts form a confidence set for &.

The standard ‘parametric’ analysis of covariance also requires homogeneity (Assump-
tion IIT): usually this means that the conditional distribution depends on X only through
Y(X;B), the regression function of Y on X, as follows:

C(Y [ X} = G{Y - 4(X; B)},

where the distribution function C;{z) has median 0 for i=0,..., k. A possible weakening
of this assumption is to allow Y to depend on X also through a scale function o, so that

G(Y [ X)= CUY - ¢ (X; )}/ o (X;v)].

The standard analysis, on the contrary, strengthens Assumption III to include linearity
(Assumption IV), which means that

l||!’(XJ ﬁ): bGO_l—ﬁ].Xl_l_ T +D6me:

where B=(8q, B,---, Bw). The final requirement for the classical analysis is that the
conditional distribution funetion of Y given X be normal (Assumption V). Then, putting
together the Assumptions I-V, of independent random samples {or a completely ran-
domized design), parallelism, homogeneity, linearity and normality, one arrives at the
usual model

Yij =8+ Byt IGIXIfl ot erXq'm + Eu‘:

i=0,...
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where §,=0 and the E; are independent normal variables with mean 0 and common
standard deviation g.

The methods to be proposed in this paper do not require homogeneity, linearity and
normality, but for exact results in small samples they depend upon the concomitance of X
{Assumption VI}, which is not required mathematically for the classical analysis. This
means that the marginal distribution of X is the same in all populations: that is,

F(x)=Fx), i=0,1,...,k

where, however, nothing is stated about the form of F. Under this assumption, the joint
distribution function of ¥ and X is

J(Y,X)=FX)C(Y|X), i=0,1,... k

1

and the null hypothesis that the C; are equal can be re-expressed as
Hy (Y, X)=HY X), i=0,1,..., k

Thus, the concomitance of X turns the test of Hy into a special case of the comparison of
multivariate samples, the alternative to identify of the joint distributions being a difference
in the distribution of the single component Y.

Note that if Assumption IB {rather than IA)} holds, then the value of X is first
established for each experimental unit, after which the units are randomly assigned to be
controls or to have any particular treatment applied. In that case concomitance is a fact
which can logically deduced, and need not be assumed separately. Whether deduced or
assumed, however, concomitance justifies using 4 randomization analysis in comparing the
samples.

3. Concepts of Control

What does it mean to ‘control for’ or ‘take account of’ a covariable X? In this paper
consideration is limited to situations where the design has already been determined and
the data are in hand, so that the only question is how to proceed with the analysis. Then
there seem ta be two quite different concepts in the literature: adjustment for X, which
underlies the classical analysis of cavariance, and holding X constant, which underlies
procedures based on matching or blocking.

To adjust for X, one first establishes a relationship—a regression function §{X)-—which
is suitable for predicting Y from X in the sense that the residual R=Y - (X} is
concentrated about zero as closely as possible according to some reasonable criterion. The
‘adjusted value’ Y, adjusted to the common X-value x*, is

Y'= Y+ p(x*) - (X)) = ¢(x*)+ R.

The hypothesis of no treatment effects is then tested by comparing the adjusted values
from the different samples (or, what is equivalent mathematically, the residuals).

The intuitive idea behind the method of adjustment is that one may make equitable
comparisons amang responses at different covariate values by substituting the responses
which presumably would have been observed at the common covariate value x*. The
method stands or falls on the quality of the adjustment—in particular, on whether the
function 4, or at least its form, is well-chosen, assuming its parameters can be suitably
estimated. The analysis thus obviously involves the assumption of homogeneity. Howevez,
the assumption of concomitance may be needed also. That is because, when X is not
concomitant, although the standard analysis of covariance may still be justifiable from a
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purely mathematical standpoint, there is often a nagging doubt concerning its application.
For the classical method the assumptions of homogeneity and linearity establish a
structure under which one adjusts the respanses ohserved at different values of X to a
common value which may not be at all typical for some samples; one may wonder how to
interpret hypothetical responses at an atypical common covariate value x*. This amounts
to extrapolating data and involves all the usual pitfalls of such a procedure.

A standard approach in the spirit of holding X constant is to form independent matched
groups such that each contains m; observations from the ith sample, i=0,1,...,k, with
all M =3 m, observations within the group having the same value of X, or at least
sufficiently close to the same that comparisons of responses within the group are
considered equitable. (The most common special case is that of matched pairs, where
k=1, M=12, and my,=m,=1.) Various simple methods are available for dealing with
data of this form. Matching may be extremely wasteful, however, particularly if the
sample sizes are small, since then there will be many observations which cannot be
matched. Furthermore, matching generally involves an element of arbitrariness: suppose,
for example, that a treated observation can be matched with either of two controls, but m,
has been taken equal to 1; then one control must be chosen for comparison and the other
ignored.

One can avoid these disadvantages of matching, at the expense of some complication in
the analysis, by categorizing the covariable and forming blocks, each of which contains all
the observations with covariable values in a given category. This often involves another
kind of arbitrariness, however. Suppose the covariable is age of human subjects,
categorized in ten-year intervals such as 20-29, 30-39, etc., and subjects A, B and C are,
respectively, aged 24, 28 and 30 years. Then the analysis involves the comparison
between A and B, yet surely for almost any purpose it would be better to compare B and
C. Thus, it is intuitively preferable to use “caliper matching’ (based on some tolerance, say
£, the maximum amount by which two covariable values are allowed to differ) rather than
‘category matching’, standard analyses, however, require discrete matched groups.

The methods of analysis proposed in this paper are based on holding X constant by
caliper matching, but utilizing all matches: in the example of the preceding paragraph,
with the tolerance set at 5 years, say, they would compare B’s response with those of both
A and C, while yet not comparing A with C.

4. Analysis of Covariance by Matching

For cases where concomitance holds, the following general principle was enunciated by
Quade (1967):

If the hypothesis is true then the populations are all identical and the samples can be pooled. So use
the pooled sample to determine a relationship through which Y can be predicted from X. Then
compare cach observed response Y, with the value which would be predicted for it from the
corresponding X;;, and assign it a score Z, positive if Yy is greater than predicted, and negative if
smaller. Finally, compare the populations by performing an ordinary one-way analysis of variance of
the scores.

An intuitively obvious candidate for predicting ¥ given X =x is the average of the values
of Y observed for cases where X is at least approximately equal to x. To make this more
specific, let there be defined for all pairs (x4, ;) of possible values of X some distance
function D{x,, x,), and let the tolerance z be chosen such that the values x, and x, are
regarded ag approximately equal, or ‘matched’, if and only if D(x,, x,}=<¢. Then, writing
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I{:} for the indicator function of an event, the predicted value of Y} is

oM
Y'”. = Z Z Yi'j‘I{D(XIj! X,"}") = S}J;Mij:
P=0/=1
where f

ke 1’1(1
M;= ”20 _z.l DX, X, )< &}
=0 j'=

1s the number of observations in all samples which match observation (i, j}, and f’l-,- is their
mean response. The corresponding score is the difference Y - }A’;I-. Under the null
hypothesis of identical conditional {(and hence, using the concomitance assumption, joint)
distributions, these scores are interchangeable, and hence it is correct asymptotically (for
large sample sizes) to use them in an analysis of variance (see Quade, 1965). This may be
called ‘analysis of covariance by matching’. Note that if the tolerance ¢ is so increased that
all pairs are matched, then M; =N and Y’i;- =Y (the overall mean) for all (i, j), the scores
are just the deviations from the mean, and the test reduces to ordinary analysis of
variance. Thus the procedure proposed here is a generalization of the analysis of variance.

For an illustration of the analysis of covariance by matching, consider the artificial data
of Table 1. In this conveniently small numerical example {more realistic examples appear
in §7) there is one treatment (k =1), with n; =23 observations, and there are ny=4
controls. The covariable X is univariate, and the tolerance for matching is € = 10. The first
abservation (Yq,, Xo1) = (258, 17) is matched with itself (by definition) and four others
(Yoo, Xo2) = (240,20), (Y3, Xoa) =(242,21), (Y, X)) =(644,11), and (Y, X2 =
(526, 25}, sa My, = 5. The mean response for these five observations is 382, which is then
Yo, and the corresponding score is 258 —382 or —124. The other scores in the Table may
be checked similarly. The mean scores are —86 for controls and 152 for treated. Analysis
of variance of these scores is of course equivalent to a ¢ test, which produces ¢ = 2.74 with
5df, and an approximate significance level P= 020 for testing against a one-sided
alternative. For such small sample sizes the analysis of variance approximation cannot be
relied upon, but an exact randomization analysis is feasible. In this example the observed
result is the second most significant possible among the 7!/4! 31 =35 reallocations of the
observations between treatment and control, so the exact P value is 2/35=.057 (one
sided).

Table 1
Small example (ny=4, n, = 3} to illustrate caleulations
Data Analysis of variance Matched differences
PooXy Yy M, Y Y,-Y S M; Dy T
Control observations (i =0)
1 17 258 3 382 - 124 00 2 654 2
220 240 5 382 -142 -.80 2 690 2
3 21 242 5 382 ~ 140 ~.40 2 6486 2
4 38 888 2 826 62 50 1 —124 -1
Treated observations (i=1)
1 11 644 4 346 298 75 3 1192 3
2 25 526 5 406 120 .40 3 838 3
3 32 764 3 726 38 .00 1 - 124 ~1
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Assuming that the two populations are parallel, the point estimate of the treatment
effect is the difference between the mean scores, 152-(—86)=238. In this situation
(k= 1), it is easy to construct the randomization confidence distribution for the treatment
effect. After relabeling the observations to have a single subscript i=1,..., N, define

=0 if the ith observation is a control and w, =1 if it is treated, and let f, be the
proportion treated among those observations which match the ith. For any nontrivial
permutation v ={vy, ..., vy) of w={uy, ..., uy) let

S(y) = Y~ oY~ Y) .

Y (= 0w — 1)

Then the values 8(v) corresponding to the (N!fn,! n,1)~1 possible values of v are the
boundary points of the confidence distribution, and each gap in the array of values of &
has equal confidence ng! n!/N1. (For a proof see the Appendix.) In the example, if the
observations are ordered as in Table 1, then the values of w, are {0,0,0,0,%, 1,1}, the

values of « are (%, %,2,4,4, %, %), and for v={0, 1,0, 1,0, 1, 0), say, the correspanding & is

0(=124) — (- 142)+ 0(=140) - (62) + (298) + 0(1.20) + (38)
05~ (H+0=H-(-H+@H+0G +})

S(v)=

416

= m = 20975

The full array of 34 values of § is

—28.80 5273 120.00 12873 12982 188.80 200.67 208.74 209.75
213.33 220.44 220.56¢ 22091 221.23 221.33 226.59 24273
243.46 24400 24462 24546 25385 260.00 262.00 29896 317.21
318.14 318.58 319.65 32558 1328.14 366.96 380.87 382.61

Fraom this it follows that a one-sided interval with confidence coefficient 28/35 (say), or
80%, extends from 200.67 to +eo,

An analogous procedure can be obtained which generalizes the rank analysis of
variance, or Kruskal-Wallis test. For i=0,1,...,k and j=1,..., n; define scores

N ﬂ.‘.,
= ZG ): Sgn(Yi;‘_ Yi‘j‘)I{D(XIja Xi‘j‘}“{“s}}Mq;
i'=a j'=1
in words, S;; is the proportion of observations (Y”, X.i7) which have Y.< Y, minus the
proportion with Y;..>> Y}, among those in all the samples combined Whlch are matched
with (Y X;). Thcn an analysis of variance can be performed using these scores, or a
randomization test if the samples are sufficiently small. That this test does indeed
generalize the Kruskal-Wallis test can be seen by choosing ¢ sufficiently large that all
pairs of observations are matched: then each My =N and Si,- ={2R; —(N+1}}/N, where
R; is the rank of Y, among the N values of Y. Note that §; is related to the score Y;~ Y
of the previous test by a change of Y, - Y., to sgn(Y;, — Y,;) in the definition. This test
may be called ‘rank analysis of covariance by matchmg
The scores §; have also been entered into Table 1. For example, S;,=0 because,
considering the five observations matched with {Y,,, X}, the two cantrols other than
(Yor, Xq1} itself have smaller values of Y and the two treated observations have larger
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values. Given the values of S, a little computation will verify that the exact one-sided P
value is 5/35 or .143 for these data.

There does not appear to be any direct method for constructing a confidence distribu-
tion corresponding to rank analysis of covariance by matching. It is not difficult to see,
however, that if k=1, then the possible boundary points for confidence intervals are the
differences between responses in matched between-sample pairs. In the example, these
treated — control differences are {-124, 268,284, 286,386, 402,404}, and the interval
(—124, ) has confidence coefficient 34/35 or 97% for the treatment effect §.

5. Analysis of Matched Difierences

In this section the assumption of concomitance is not required mathematically. Except for
a few remarks at the end, however, attention is restricted to the situation where there is
only one treatment (k= 1).

A reasonable overall measure of the effect of the treatment is the sample ‘matched
difference in mean’, ’

Z',L_Z_I" (Yl;: YG;")I{D(XIL ng) =g}
i HDX, ), Xy = g} )

The population matched difference in mean, which this estimates, is the conditional
expected difference between the response of a treated observation and the response of 2
control observation, given that they are matched on X (within tolerance £). An alternative
measure is the ‘matched difference in probability’,

ZJ' 2," sgn(Y” Yo,)I{D(Xl; Xo;7) “HE}
E Z I{D(le XO;){S}

This estimates the population matched difference in probability, which is the conditional
probability that a treated observation will show a greater response than a control
observation, minus the conditional probability that it will show a smaller response, given
that they are matched on X (within tolerance &).

Either matched difference is essentially an average of condttional differences at fixed
values of X. This is most clearly seen in the special case where X is discrete, with possible
values {u.}, say, and the tolerance allowed is £ = 0. Then

5:

T_‘:

=2 L (Yy~ Yo)I{X,; = Xop = 0.}/ M;
and t
Tk = Z Z sgn( Y- Yoi) X = Xop = 0, }/ M,

are the sample conditional differences at o, where

M, = Z Z I{Xu = xa;": Uyt
Pi

is the number of treatment—control pairs with X = u,; and the corresponding matched
differences are the simple weighted averages D=YwD, and T=Y w, T, where w, =
M, /Y M,. The definitions of D and T given in the preceding paragraph are easily seen to
generalize these.



604 Biometrics, September 1982

Even if X is not discrete, one may define

d(x)= ’”(Y1~ Yo dC(Y | X=x) dC(Y | X =x)
and

f(x)= JJ sgn(Y,~ Y dC,(Y | X =x) dC{Y | X=x)

as the conditional differences in mean and in probability, respectively, given X =x (with
tolerance zero). The corresponding averages

5=3% J 5(x) d{Fox)F,(x)} and 6=} J 6(x) d{Fo(x)Fy(x)}

may be called the ‘partial differences’. These may be regarded as ideal measures of
differences between the populations when the covariable is completely controlled for (or
‘partialled out’). In the discrete case with tolerance zero, the population matched
differences are identical with them; otherwise, matched differences are only imperfect
approximations. _ _

Even in the most general case, D and T may be useful summary statistics; however, if
the populations are parallel, then other approaches seem reasonable. In this case &(x) and
8(x} do not depend on x, and the partial differences are equal to their common values;
furthermore, & is then the same as the treatment effect & defined previously. Thus,
assuming parallelism, one might estimate & by that constant which, when subtracted from
the response of each treated cbservation, makes D or T equal to zero. [t may be seen that
these statistics are respectively the ‘mean matched difference’ and the ‘median matched
difference’ between treatment and control in matched pairs. The first of these, however, is
just D itself: that is, the matched difference in mean is the same as the mean matched
difference.

A matched or partial difference defined as an average conditional difference is analog-
ous to a partial correlation defined as an average conditional correlation. To make this
analogy more explicit, let Z be a dummy variable tzking on the value 1 for treated
observations and ( for controls, and let a pair of observations be defined as relevant if it
consists of one treated and one control observation, matched on X. Then the matched
difference in probability is formally identical to the matched partial correlation coefficient
between Y and Z given X, as defined by Quade (1974}. This formal equivalence between
T and the matched partial correlation coefficient makes it possible to use computer
programs designed for the latter; for example, see Johnson, Quade and Langston (1981).
Furthermore, the classical analysis of covariance is formally equivalent to testing the
significance of the product-moment partial correlation between Y and Z given X. Note
also that in general if {Y,, Z;, X,) and (Y, Z,, X,) are two observations then

E{(Z, - Z)Y,~ Yo) | X=X, =x}=2cov(Y, Z | X =x),
but putting Z, =1 and Z,=0 yields
E{(Y,~Y,) | X, =X, = x} = 8(x);

thus the conditional difference in means is formally proportional to a conditional correla-
tion.
Both matched differences may be recognized as ratios of two-sample U-statistics: for
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example, their common denominator is the U-statistic

=YY HD®X,, Xo) <),
ally 5 g
which is a consistent estimator of the probability that z treated and a control observation
chosen at random will be matched within tolerance e From standard theory of U-
statistics, then, the two matched partial difference statistics are asymptotically normally
distributed as the sample sizes increase, with standard deviations estimable by extending
the method of components of Sen (1960) as in Quade (1974}, Fori=0,land j=1,..., R
let

i

M, =2 KD(X;, X, )<z}

j=1

be the number of observations matching X;; in the other sample. (Note that this is not the
same as the M, of the preceding section.) Then

M= i MG;': i Mlj
i=1 i=1

is the tota]l number of matched pairs.
Let

ny_,

D, =(-1y" Z (Y, YL—E,j’}I{D(XEja xl—f,j‘)gg};

i'=1

then D =¥ Do/M =Y D,;/M. Tts standard error may be written

s {3, oeoo) 1

from which one sees that var(D) is essentially proportional to the dispersion of the
‘microestimates’ DU/ME-. A less intuitive formula, but more convenient for computation, is

M‘* {M2 E D 2M§ D”Zf: DijM-ﬁ(Ef Di,.)z); M‘}]

Note that if £ is increased to such an extent that all pairs are considered matched, then
M=mngn,, D=¥,~ ¥, and with some algebra it can be established that

3 (Yo~ Yo L(Y,

2
Ry 1y

var{D) =

var(D) =

This is asymptotically equivalent to the usual formula for the standard error of ¥, = ¥q; to
achieve exact equivalence in finite samples one could adjust the two preceding formulas
by inserting the factor nf(n;—1) after the first summation. The standard error may be
used in the obvicus manner to construct a confidence interval for the population matched
difference in mean.
Similar remarks hold for the matched difference in probability. With
Ty= (-1 Y sgn(Y, ~ Yoo JD(Ky, Xy )<

i=1

T=3 To/M=Y T,/M, and its standard error is obtained by substituting Ty for D, in the
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formulas given above. In addition, with infinite tolerance,

#}
MZngn(Yl, Yo,)~——“,

oty Hofy

T

i

where U, and U, are the ordinary Mann-Whitney statistics for comparing the treated
observations with the controls; then SE(T) is equivalent to the usual standard error for
Preed Y12 ¥} calculated without the assumption that the treatment has no effect.

To illustrate the computations invalved, consider the example of the preceding section.
The values of Mq, Dy and T; are shown in the rightmost section of Table 1. For this
analysis M =7 is the total number of between- sam_p[e matched pairs, and the matched
differences are D =1906/7 = 272.29 (in mean) and T=2 =71 {in probability); the median
matched difference is 286. The corresponding standard errors, from the formulas pre-
sented above, are SE(D) = 101.86 and SE{T}=.41. (The sample sizes are of course too
small for these to be meaningful.)

Consider finally the situation where k> 1. It is always possible, and may be useful, to
calculate matched differences for each pair of samples. Suppose first that the treatments
have a natural ordering, such that a monotonic trend in the treatment effects might be
expected. Then the (matched) partial correlation between Y and Z (= sample number)
given X may be a suitable descriptive statistic; it is in fact a weighted average of the
matched differences. The corresponding test of the null hypothesis that the treatments
have no effect is formally the same as the test for no population matched partial
correlation, as presented by Quade (1974). Supposing instead that the treatments have no
ordering, it would be possible to perform a test by constructing a quadratic form in the
matched differences, asymptotically distributed as x? on k df under the null hypothesis,
but the details will not be given here.

6. Matched-Pair Charts

A useful diagram for illustrating the comparison of treated and control observations is the
‘pair chart' (Quade, 1973). To construct this chart, first draw a rectangle of width n, units
and height xr, units. Starting from its lower left corner, draw a line one unit to the right
(upwards) if the smallest response in the combined samples is a control (treated)
observation. Then, starting from the end of this line, draw another line to the right
{upwards) if the secand smallest response is a control (treated] observation. Continue
through all the observations, thus producing a path to the upper right corner of the
rectangle. Each unit square of the pair chart compares one control with one treated
observation; the square is below (above) the path according as the control (treated)
ohservation has the greater response.

By shading or blanking out the squares corresponding to unmatched pairs, an ordinary
pair chart may be converted into a ‘matched-pair chart’ which takes account of the
covariable. The matched difference in probability is then the difference between the
proportions above and below the path among the remaining squares. In addition, if each
unshaded square is labeled with the numerical value of the response difference for the pair
of observations which it represents, the me{dijan matched difference is the me(dijan of the
labels.

Figure 1 thus illustrates the matched difterences for the example considered previously.
It shows graphically how the treatment—control comparisons favor the treatment in a 9 to 3
{or 3 to 1) ratio when the covariable is ignored, and how this ratio becomes 6 to 1 when
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Figure 1. Matched-pair chart (N; =4, N, = 3).

the covariable is taken into account; this description corresponds to the matched differ-
ence in probability. Also, a rough ‘eyeball’ estimate of the average of the displayed labels
can be made: this approximates the me(di)an matched difference, which estimates the
treatment effect if the populations are parallel.

7. Examples

As a first example consider the data on p. 386 of Snedecor and Cochran (1980). There are
two groups of women, 11 from Iowa (arbitrarily called the ‘contrals’) and 19 from
Nebraska; the resporise Y is cholesterol concentration (mg/ml), and the covariable X is
age {years). Snedecor and Cochran checked the classical assumptions of homoscedasticity
and parallelism of regression lines for these data, and found no evidence of violation. The
classical analysis of covariance then yields the point estimate 28.7 for the treatment effect
(i.e. difference in cholesterol levels between the two States); the corresponding test
statistic is F=3.00 with (1, 27) df, and hence P=.095. For the analysis of covariance by
matching, allowing a tolerance on age of £ = 10 years, the estimated treatment difference
is 20.4; this corresponds to F=1.89 with (1,28) df, and hence P=.180. For the rank
analysis of covariance by matching, F=1.58 and P = .220. The corresponding matched-
pair chart is Fig. 2. It shows 73 between-sample matched pairs, out of 209 total, among
which 49 indicate higher cholesterol in Nebraska and only 24 in lowa, so the
matched difference in probability is (49-24)/73=.342, with standard error .236; the
median matched difference is 17. The matched difference in mean, or mean matched
difference, is 28.1+17.5. By any analysis, there is no significant difference between the
States.

A second example involves data obtained by Cartwright, Lindah] and Bawden {1968) in
their experiment to evaluate the effectiveness of topically-applied stannous fluoride (SE)
and acid-phosphate fluoride (APF) in reducing the incidence of dental caries, as compared
with a placebo treatment of distilled water (W). The data for the 69 female children who
completed the two-year study are given in Table 2, in which B and A represent the
number of decayed, missing or filled teeth (DMFT) before and after the study, respec-
tively; the response to be analyzed is the increment Y= A — B. (It is noted that one
increment is negative, which must indicate some observational or recording error, but no
correction will be made.) Covariables to be taken into account are first, B, and second, X,
the age in years at the beginning of the study. A third possible covariable, with values 1,2
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Figure 2. Matched-pair chart for comparing cholesterol levels in women from Jowa and Nebraska,
taking account of age.

and 3 representing three institutions where the children resided, is also presented, but this
variable will not be used, although it is as easy to match on as any other (whereas for the
standard analysis it would have to be replaced by two dummy variables).

The results for this example are as follows. By the standard analysis of covariance, the
adjusted treatment effects are —1.01 for SF and —1.73 for APF; the F statistic is 10.12 on
(2, 64) df, giving P<.001. Allowing tolerances of one year on age and one umit on initial
DMFT, analysis of covariance by matching yields point estimates of —.61 and —1.07 for
the treatment effects, and F=46.04 on (2, 66) df, with P=.004,; the corresponding rank
analysis gives F=4.04, with P =.022. Since the treatments are unordered, no overall test
is performed, but the pairwise matched differences are presented:

Pair In mean In probability
SF-W -1.12+.44 —-.58+.23
APF-~W -1.65+£.52 -.65+.20
APF-SF —-.56+.43 —.18:+.26

This example itlustrates, by the way, that matched differences are not generally transitive.
Note that the overall conclusions are essentially the same by any of the analyses: a
significant reduction in caries associated with fluoride treatment, and a suggestion
of greater reduction with APF than with SF,
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Table 2
An experiment to evaluate the effectiveness of fluoride in preventing caries
nﬁiﬁfir Institution X;E?S) D—E;META“ Group n?;:?ér Institution XA(§SS) %M% Group
1 1 13 7T 11 W 36 2 16 8 8 APF
2 1 17 20 24 W 37 3 8 2 4 W
3 1 16 21 25 W 38 3 16 13 18 W
4 1 13 1 2 W 39 3 14 g 12 W
5 1 10 i 7 W 40 3 16 15 18 W
6 1 17 20 23 W 41 3 12 13 17 W
7 1 13 9 13 W 42 3 8 2 5 W
8 1 g 2 4 W 43 3 14 9 12 W
9 1 14 11 13 S§F 44 3 9 4 6 SF
10 1 14 15 18 S8F 45 3 15 10 14 SF
11 1 11 7 10 APF 46 3 14 7 11 SF
12 1 15 17 17 APF 47 3 13 14 15 SF
13 1 11 9 11 APF 48 3 12 7 10 SF
14 1 7 1 5 APF 49 3 12 3 6 SF
15 1 11 3 7 APF 50 3 14 9 12 SF
16 2 16 10 14 W 51 3 13 8 10 SF
17 2 16 13 17 W 52 3 14 19 19 SF
18 2 7 I 4 W 53 3 14 10 13 SF
19 2 11 4 7 W 54 3 14 10 12 APF
20 2 15 4 9 W 55 3 11 7 11 APF
21 2 14 15 18 SF 56 3 14 13 12 APF
22 2 11 6 8 SF 57 3 9 5 8 APF
23 2 9 4 6 SF 58 3 11 1 3 APF
24 2 17 18 19 SF 59 3 12 & 9 APF
25 2 14 11 12 SF 60 3 14 4 5 APF
26 2 13 9 9 SF 61 3 10 4 7 APF
27 2 9 4 7 SF 62 3 12 14 14 APF
28 2 9 5 7 §F 63 3 11 8 10 APF
29 2 15 11 14 SF 64 3 11 3 5 APF
3a 2 10 4 6 SF 65 3 16 i1 12 APF
31 2 10 4 4 APF 66 3 15 16 18 APF
32 2 15 7 7 APF 67 3 10 § 8 APF
33 2 11 0 4 APF 68 3 6 0 1 APF
34 2 9 3 3 APF 69 3 7 3 4 APF
35 2 9 0 1 APF

8. Discussion

It should be pointed out that the word ‘analysis’ in the title of this paper is not just part of
the stock phrase ‘analysis of covariance'. By Assumption I, attention has been restricted
to the analysis of data already in hand rather than to the method of sampling. The
question arises, however, as to what could be done if the samples were matched by design.
The methods of this paper can be applied in such a situation, but with subtle differences in
interpretation, particularly concerning the population about which inference can be made.
Whether one should choose matched samples is another question, the answer to which
depends in part on the costs involved; for some recent work on this, using the matched
difference in probability, see the Ph.D. thesis of J. R. Schoenfelder (at the University of
North Carolina at Chapel Hill, 1981). Schoenfelder also investigates the asymptotic
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relative efficiency of the corresponding test when the covariable is discrete, and suggests a
modification to improve it.

Another guestion which has not been considered in this paper concerns the decision as
to whether a pair is matched or not. This might be regarded as a substantive question,
rather than 2 statistical one: the statistician may call two observations matched if the
mvestigator familiar with the subject matter area does so. If ties on the covariable are
plentiful, one may as well let the tolerance be zero. Otherwise, the proper choice is a
compromise: too small a tolerance leaves an insufficient number of matched pairs for
analysis, while too large a tolerance makes only an incomplete adjustment for the
covariable. Some researchers might prefer a generalized procedure in which pairs are not
dichotomously classified as ‘matched’ (and hence used} or ‘not matched’ (and hence
discarded), but are weighted according to their closeness with respect to the covariable.
Thus, one might want to give a pair of observations (Y,,X,) and (Y., X,), with
D(X,, X,}=d, the weight w(d)=exp(—d), say. This would cause no mathematical diffi-
culty whatever: simply substitute wid) for I{d =< £}, which is just a special case of w(d}, in
all the defining formulas of this paper.
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RESUME

On considére le probléme de la comparaison de traitements pour une réponse Y quand une
covariable X est prise en compte. Plusieurs méthodes utilisant I'appariement sont en fait des
compromis entre l'analyse de covariance classique et P’analyse de paires indépendantes classique.
IX’abord, aucune nécessité de se limiter aux paires indépendantes, mais toutes peuvent étre
introduites. Alors, si X est une variable concomitante, ¢'est-a-dire si sa distribution est la méme
quel que soit le traitement, on peut employer des méthodes fondées en fin de compte sur la
randomisation, bien qu’elles soient en pratique fondées sur 'analyse de variance. Quand X n'est pas
une variable concomitante, on peut appliquer des méthodes proches de la corrélation partielle {entre
Y et le traitement, & X donnée}. Pour toutes ces méthodes, on peut utiliser les valeurs ¥ ou leurs
rangs.
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APPENDIX

Finding the Randomization Confidence Distribution for the Treatment Effect (k =1)

Given nq control and n, treated observations, let € be any test criterion for the null hypothesis of no
difference attributable to the treatment. The randomization test involves calculation of Q for each
hypothetical data set obtainable by reallocating the observations to the samples. Jts P-value is then
equal to (1+ A)/C, where A is the number of reallocations producing a hypothetical Q as extreme
as that observed, or more so. There are € — 1 reallocations, where C= Ntfny' n,! and N=n,+n,.
These can he put in one-one correspondence with the nontrivial permutations, say v=_{u,,..., ty},
of u={(u, ..., ty), where the observations are indexed by the single subseript i=1,..., N, and
w, =0 or 1 according as (Y, Xi) is 2 control or is treated. To construct a confidence interval requires
testing the hypothesis H(8) that the treatment effect has the value &; but this is equivalent to testing
the null hypothesis after first substracting § from edch treated observation. So let Q(v, 8) be the
value of Q for testing H(§) calculated from the hypothetical data set obtained by that reallocation
of ohservations which corresponds to v. Then A is the number of times that Q{v, 8) = Q(u, §), the
value observed in the actual dataset.

In analysis of covariance by matching, after subtracting & from the observations which wete
treated, the ith score is
5 (Y- uS) DX, X)= ¢}

E,r {D(X, X = €}

(Y —ud)

Recall that
V.= YHD(X, X)<elfM,
i

where M, =%, HD(X,, X;}= £} is the number of observations (including itself) which match (Y, X},
and define

L= DX, X)<}/M,
:
the proportion treated among the ohservations which match (Y, X;). Then the ith score can be

re-expressed as .
(Y, —ud)—(Y: - td).

Now, a convenient test criterion, equivalent to Student’s ¢ statistic calculated from the scores, is the
sum of the scores for the treated observations. In the hypothetical dataset obtained from the
reallocation corresponding to v, this eriterion is

Qv, 8)= ), od(Y.~ u8)~(¥,—18)

=Z (Y, — YI&)'_SZ o — £,
and Qfv, 8)= Q(u, §) if and only if

L u)(Y - Y08 L (0~ udu ~ )20,
Or L lA
{21 (t,— oMY, - Y}
T tw — v — 1)
Thus, A is the number of boundary points §(v) which are greater than or equal to the hypothesized

effect; the P-value is 1/C for § greater than the maximum &{v), 2/C in the gap between the
maximum and the next largest value of §{v}, and so on; this establishes the confidence distribution.

&

=&(v}, say.



http://www.jstor.org

LINKED CITATIONS
-Pagelofl-

You have printed the following article:

Nonparametric Analysis of Covariance by Matching

Dana Quade

Biometrics, Vol. 38, No. 3, Special Issue: Analysis of Covariance. (Sep., 1982), pp. 597-611.
Stable URL:

http://links.stor.org/sici 2si ci=0006-341X %628198209%2938%3A 3%3C597%3ANA OCBM %3E2.0.CO%3B2-E

This article references the following linked citations. If you are trying to access articles from an
off-campus location, you may be required to first logon via your library web site to access JSTOR. Please
visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References

On Analysis of Variance for the K-Sample Problem

Dana Quade
The Annals of Mathematical Statistics, Vol. 37, No. 6. (Dec., 1966), pp. 1747-1758.
Stable URL:

http://links.jstor.org/si i 2sici=0003-4851%28196612%2937%3A 6%3C1747%3AOA OV FT%3E2.0.CO%3B2-A

Rank Analysis of Covariance
Dana Quade

Journal of the American Satistical Association, Vol. 62, No. 320. (Dec., 1967), pp. 1187-1200.
Stable URL:

http://links.jstor.org/sici?sici=0162-1459%28196712%2962%3A 320%3C1187%3ARA OC%3E2.0.CO%3B2-3


http://links.jstor.org/sici?sici=0006-341X%28198209%2938%3A3%3C597%3ANAOCBM%3E2.0.CO%3B2-E&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0003-4851%28196612%2937%3A6%3C1747%3AOAOVFT%3E2.0.CO%3B2-A&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0162-1459%28196712%2962%3A320%3C1187%3ARAOC%3E2.0.CO%3B2-3&origin=JSTOR-pdf

