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NOTES AND COMMENTS

IDENTIFICATION AND ESTIMATION OF TREATMENT EFFECTS
WITH A REGRESSION-DISCONTINUITY DESIGN

By JINYONG HAHN, PETRA TODD, AND WILBERT VAN DER KLAAUW!

1. INTRODUCTION

THE REGRESSION DISCONTINUITY (RD) data design is a quasi-experimental design with the
defining characteristic that the probability of receiving treatment changes discontinuously
as a function of one or more underlying variables. This data design arises frequently in
economic and other applications but is only infrequently exploited as a source of
identifying information in evaluating effects of a treatment.

In the first application and discussion of the RD method, Thistlethwaite and Campbell
(1960) study the effect of student scholarships on career aspirations, using the fact that
awards are only made if a test score exceeds a threshold. More recently, Van der Klaauw
(1997) estimates the effect of financial aid offers on students’ decisions to attend a
particular college, taking into account administrative rules that set the aid amount partly
on the basis of a discontinuous function of the students’ grade point average and SAT
score. Angrist and Lavy (1999) estimate the effect of class size on student test scores,
taking advantage of a rule stipulating that another classroom be added when the average
class size exceeds a threshold level. Finally, Black (1999) uses an RD approach to
estimate parents’ willingness to pay for higher quality schools by comparing housing
prices near geographic school attendance boundaries. Regression discontinuity methods
have potentially broad applicability in economic research, because geographic boundaries
or rules governing programs often create discontinuities in the treatment assignment
mechanism that can be exploited under the method. ‘

Although there have been several discussions and applications of RD methods in the
literature, important questions still remain concerning sources of identification and ways
of estimating treatment effects under minimal parametric restrictions. Here, we show
that identifying conditions invoked in previous applications of RD methods are often
overly strong and that treatment effects can be nonparametrically identified under an RD
design by a weak functional form restriction. The restriction is unusual in that it requires
imposing continuity assumptions in order to take advantage of the known discontinuity in
the treatment assignment mechanism. We also propose a way of nonparametrically
estimating treatment effects and offer an interpretation of the Wald estimator as an RD
estimator.

' We would like to thank Joshua Angrist, James Heckman, Guido Imbens, Alan Krueger, Tony
Lancaster, Sendhil Mullainathan, and Ken Wolpin for helpful comments. The paper has also
benefited from comments received at the 1997 Midwestern Econometrics Group conference, the
1997 AEA meetings, the 1998 Econometric Society Summer Meetings in Montreal, the University of
Michigan, the University of Rochester, the University of Wisconsin, the joint Harvard /MIT
econometrics workshop, and the joint Brown-Yale-NYU-Penn-JHU labor conference. Van der
Klaauw thanks the C. V. Starr Center of Applied Economics at NYU for research support. Todd is
grateful to the NSF for support under #SBR-9730688.
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2. REGRESSION-DISCONTINUITY DESIGN AND SOURCES OF [DENTIFICATION

The goal of an evaluation is to determine the effect that some binary treatment
variable x; has on an outcome y, The evaluation problem arises because persons either
receive or do not receive treatment and no individual is observed in both states at the
same time. Let y,; denote the outcome with treatment and y,; that in the absence of
treatment, and let x, =1 if treatment is received and x, = 0 otherwise. The model for the
observed outcome can be written as y; = «; +x;- B;, where a; =y, B;=y;; — Yo;-

There are two main types of discontinuity designs considered in the literature—the
sharp design and the so-called fuzzy design.” With a sharp design, treatment x; is known
to depend in a deterministic way on some observable variable z;, x;=f(z,), where z,
takes on a continuum of values and the point z,, where the function f(z) is discontinu-
ous, is assumed to be known. With a fuzzy design, x, is a random variable given z;, but
the conditional probability f(z) = E[x;|z;=z] = Pt[x;= 11z, =z] is known to be discon-
tinuous at z,. The fuzzy design differs from the sharp design in that the treatment
assignment is not a deterministic function of z;; there are additional variables unob-
served by the econometrician that determine assignment to treatment. The common
feature it shares with the sharp design is that the probability of receiving treatment,
Prlx; = 11z,], viewed as a function of z;, is discontinuous at z:

AssUMPTION (RD): () The limits x " =lim, , .+Elx;|z;=z}andx"=lim,_ . Elx;1z,=
3

z] exist. (i) x*#x".
Below, we focus on identification under the fuzzy design treating the sharp design as a
special case.

2.1. Constant Treatment Effects

Suppose that the treatment effect S is constant across different individuals. Let e > 0
denote an arbitrary small number. Suppose that we have a reason to believe that in the
absence of treatment, persons close to the threshold z, are similar. We would then
expect Ela;1z;=zy+ el = Elqa,|z, = z, — e}, which motivates the assumption:

ASSUMPTION (A1): Ele;iz; =z] is continuous in z at z,.

Below, we establish that 8 is nonparametrically identified solely under this continuity
restriction:

THEOREM 1: Suppose that B3; is fixed at B. Further suppose that Assumptions (RD) and
(A1) hold. We then have

) g=2 "

xt—x~

where y*=lim,_, . Elylz;=z]andy =1lim, . Ely/1z;=z]
> See Trochim (1984).
! Throughout this paper, we also assume that the density of z; is positive in the neighborhood

containing z,.
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ProoOF: The mean difference in outcomes for persons above and below the discontinu-
ity point is
Elylz;=zo+el—El[yiz;=z5—e]
=B-AE[x;1z;,=zy+el —Elx;1z,=z,—el}
HE[a;lz;=20+e] —Ela; 12, =z, — el}.
Under (Al), we have

lim E[y;lz;=z]— lim Ely1z=z]

732 22y

=B'{ lim E[x;iz;=z]— lim E[xt.lz,-=z]},

=z z-2z5
from which the conclusion follows. The denominator in (1) is nonzero by Assumption
(RD). Q.E.D.

With the sharp design, x*=1 and x~ =0 by definition. Therefore, 8 is identified by
(2 B=y'-y".

2.2. Variable Treatment Effects

Now we consider the question of identification when treatment effects are heteroge-
neous. To generalize the identification strategy in the constant treatment effect case, we
make the following assumption:

ASSUMPTION (A2): El[ B;1z; = z), regarded as a function of z, is continuous at z,.

We establish that the average treatment effect at z,, E[ B;|z; = z,], is nonparametri-
cally identified under the functional form restriction and a weak form of conditional
independence:

THEOREM 2: Suppose that x; is independent of B; conditional on z; near z,. Further
suppose that Assumptions (RD), (A1), and (A2) hold. We then have

yr=y~
xt—-x""

3) E[ Blz;=2y] =

PrOOF: The mean difference in outcomes for persons above and below the discontinu-
ity point is
Elylz;=zy+el—Elylz;=2z,—¢]
={Elx;-Blz;=zy+el —Elx;-Bilz; =z, —el}
+{Ela;lz;=zy+el—Ela;|z;=z,—el}.
By conditional independence, we have

Elx; Bilz;=zxel=E[B;/1z,=z+el Elx;|z,=z+e].
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Combined with (A1) and (A2), we obtain
lim Ely;|z;=2z]- lim Ely;|z;=z]

22y zZ2Zy
=E[B,-|z,-=zo]~{ lim E[x;|z;=z] - lim E[x,-lz,-=z]},
22 z-2zy

from which the conclusion follows. Q.E.D.

With a sharp design, E[ B;1z; = z,] is identified by
4 E[Bilz;=z))=y"—y".

The conditional independence assumption maintains that individuals do not select into
treatment on the basis of anticipated gains from treatment. Although such assumptions
are routinely invoked in the literature on matching estimators, this type of assumption
may be considered unrealistic in a world in which individuals self-select into treatment.*
To examine the consequence of dropping the assumption, we consider an alternative set
of conditions that allows selection into the program on the basis of prospective gains.
Suppose, as in Imbens and Angrist (1994), that for each observation i, treatment
assignment is a deterministic function of z, but the function is different for different
persons or groups of persons. Consider the following set of assumptions on impacts and
treatment assignment:

AssuMpTION (A3): () ( B, x(2)) is jointly independent of z; near z,. (ii) There exists
&> 0 such that x(z,+e)>x(z,—e) forall 0<e<e.

THEOREM 3: Suppose that Assumptions (RD), (A1), and (A3) hold. We then have

y -y

xt—x"

(5) lir{)L E[ Bilx(zg+e) —x,(zy—e) = 1]

ProoF: Invoking the reasoning in Imbens and Angrist (1994), we obtain
Elx; Bilz;=zy+el —El[x;"B;lz;=zy—e]
=E[Bilx(zo+e)—x,(zy,—e)=1]
AElx;lz;=zy+e]l —Elx;lz;=zy—el},
from which the conclusion follows. Q.E.D.

For e > 0 sufficiently small, the conditioning event {x,(z, +e) —x(z; ~e) =1} in (5)
corresponds to the subgroup of persons for whom treatment changes discontinuously at
z,- Therefore, (5) identifies the local average treatment effect (LATE) at z,,.

2.3. Discussion

In each of the cases considered, identification was made possible by comparing persons
arbitrarily close to the point z, who did and did not receive treatment. Without further
assumptions such as the common effect assumption, treatment effects can only be
identified at z = z,. This notion of identification is similar to the notion of identification
at infinity.>

*See Heckman, Lalonde, and Smith (1999) for related discussion.
5 See Chamberlain (1986).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




REGRESSION-DISCONTINUITY DESIGN 205

For identification of treatment effects, we relied heavily on a local continuity restric-
tion on Ele,|z;]and a known discontinuity in E[x;|z,;]. We now show, in the context of a
common effects model, that such functional form restrictions are necessary, and that
without them the model is nonparametrically unidentified. We can put the model for
outcomes in more familiar econometric notation by writing

yi=alz)+Bx;+u;

where a(z;)=Elq,|z;] and v; = a; — a(z;). We argue that the usual conditional mean
independence restriction, E[r;|z;] =0, is not sufficient for identification of the treatment
effect, even for the common treatment effect case. For this purpose consider another
DGP, where we have

yi=a*(z) +0-x; + ¥,
and where
a*(z)=alz) - BElx;lz;]l, vf=v,+B-{x,—Elx;|z]}.

These two models are equivalent except that the treatment effect in the former case is B
whereas in the latter case it is equal to 0. We cannot distinguish the models in the
population if E[¢;{z;]1= 0 is the only restriction available.

3. ESTIMATION

For both the sharp design and fuzzy design, the ratio

.

y -y

(6) —_—
xt—x"

identifies the treatment effect at z =z, Thus, given consistent estimators §*, 7, X7,

and £~ of the four one-sided limits in (6), the treatment effect can be consistently

estimated by

pr-g
R

In principle, we can use any nonparametric estimator to estimate the limits. We first
consider one-sided kernel estimation and observe that under certain conditions an
estimate based on kernel regression will be numerically equivalent to a standard Wald
estimator. We then argue that such an estimator may have a poor finite sample property
due to the boundary problem and propose to avoid the boundary problem by using local
linear nonparametric regression (LLR) methods.

Consider the special case where we use kernel regression estimators based on
one-sided uniform kernels. For the uniform kernel, it is not difficult to show that

ar TicaYi'w Ao ey (1—w)
ZIEJ’wl ' Y z,—eh,»(l - Wt) ’
LicoXi'w;  Ziegx(=w)
pro Zies Wi P ’
Lic oW, Tieol=w)
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where . denotes the subsample such that z,—h <z, <zy+h, w,=1(z,<z;<zy+ h),
and A >0 denotes the bandwidth. The estimator is numerically equivalent to an IV
estimator for the regression of y; on x, which uses w; as an instrument, applied to the
subsample .%. Denote this estimator by ,BAW.

It is interesting to note that the regression discontinuity can ‘justify’ a Wald estimator
even when the standard IV assumption is violated. To see this, put the model in more
familiar econometric notation by writing «; = E[a;] + ¢; = a + v;. Under the common
treatment assumption, this yields a model

yi=a+tx;B+u;.

Identification of 8 does not require that the error term v; be uncorrelated with z;. All
that is required is continuity assumption (Al). As long as the researcher is willing to
change 4 appropriately as a function of the sample size, éw is consistent. Thus éw is
motivated by a different principle than is the usual Wald estimator, but for a particular
choice of kernel and subsample they are numerically equivalent.

Although éw is numerically equivalent to a local Wald estimator, inference based on
éw will be different from that based on a Wald estimator. BAW will be asymptotically
biased, as are many other nonparametric-regression-based estimators, whereas the Wald
estimator is asymptotically unbiased by assumption. The bias problem is exacerbated in
the regression-discontinuity case due to the bad boundary behavior of the kernel
regression estimator: at boundary points, the bias of the kernel regression estimator
converges to zero at a slower rate than at interior points. Under conventional assump-
tions on the kernel function, the order of the bias of the standard kernel estimator is
O(h) at boundary points and O(4?) at interior points.® For our problem, ail the points of
estimation are at boundaries, so the bias could be substantial in finite samples.” It would
be misleading to use the conventional confidence interval based on the asymptotic
distribution of the (asymptotically unbiased) Wald estimator as the true coverage proba-
bility would be very different from the nominal coverage probability.

Because of the poor boundary performance of standard kernel estimators, we propose
instead to estimate the limits by local linear regression (LLR), shown by Fan (1992) to
have better boundary properties than the traditional kernel regression estimator. The
local linear estimator for y™, for example, is given by 4, where

n —
(4,b) = argmin ¥ (y,—a —b(z; - zo))zK( Z'h—zo)l(z,- > zy).
a, b i=1

Here, K(:) is a kernel function and A >0 is a suitable bandwidth. The smaller bias
associated with the LLR estimator implies that it is more rate-efficient than the
kernel-based estimator. Another advantage of LLR is that the bias does not depend on
the design density of the data. Because of these advantages, local linear methods are

®See Hardle (1990) or Hirdle and Linton (1994) for further discussion of the boundary bias
problem. Under slightly stronger assumptions than ours, Porter (1998) recently proposed an
alternative estimator for the sharp discontinuity design, constant effect model for which the
boundary bias problem does not exist.

" The boundary bias formula of the kernel estimator suggests that the bias is the smallest when
the conditional expectations E[y;!z;] and/or E[x;!z,] have one-sided derivatives around z, equal
to zero. We thus find that /§w has a small bias only for the case where «; has no correlation with z;,
i.e., the case where z; is a proper instrument and the Wald assumption is exactly satisfied near the
discontinuity.
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deemed to be a better choice than standard kernel methods. The asymptotic distribution
of the treatment effect estimator based on local linear regression is derived in the
Appendix.

4, SUMMARY

The RD method provides a way of identifying mean treatment impacts for a subgroup
of the population under minimal assumptions. An advantage of the method is that it
bypasses many of the questions concerning model specification: both the question of
which variables to include in the model for outcomes and of their functional forms. A
limitation of the approach is that it only identifies treatment effects locally at the point at
which the probability of receiving treatment changes discontinuously. However, in some
cases this localized parameter is precisely the parameter of interest. It would be of
interest, for example, if the policy change being considered is a small change in the
program rules, such as lowering or raising the threshold for program entry, in which case
we would want to know the effect of treatment for the subpopulation affected by the
change.

In this paper, we considered the question of identification and estimation under two
RD designs, the sharp and the fuzzy design. The estimator we propose uses recently
developed local linear nonparametric regression techniques that avoid the poor boundary
behavior of the kernel regression estimator. We also discussed why the regression-discon-
tinuity design sometimes provides a possible justification for the Wald estimator, even
when the zero correlation condition is violated.

Department of Economics, Brown University, Box B, Providence, RI 02912, U.S.A.,
Department of Economics, University of Pennsylvania, 3718 Locust Walk, Philadelphia,
PA 19104, U.S.A.,
and
Department of Economics, UNC-Chapel Hill, CB#3305, Gardner Hall, Chapel Hill, NC
27599, U.S.A.
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APPENDIX

We next present the distribution theory for the estimator é of the ratio (6), where the limits are
estimated by local linear regression. Define m(z) = Ely;|z; =z] and p(z) =[x;|z; =z], and define
the limits lim, _, .+ Ely,1z;=2], lim,, .- Ely;1z;=2] lim, , .+ Elx;1z;=z], and lim, _, .5 E[x; !z,
=z] by m*(z,), m(zy), p*(z,), and p~(z,), respectively. Additionally, define

0¥ (zy) = lim varly,lz;=z], % (zp)= lim var[y;lz;=z],
723 -z

n*(zy) = lim covly,x;1z;=2z], and % (zy)= lim covly;, x;1z;=z].
zozy z=-2zg

THEOREM 4 (Asymptotic Distribution): Suppose that:
(i) Forz>zy, m(z) and p(z) are twice continuously differentiable. There exists some M > 0 such
that Im™* (2|, [m"* (2, Im" *(2) and | p* (), | p'~ (2, | p" *(2)| are uniformly bounded on (zy, zy +
M. Similarly, |\m=(2)|, |m’ ~(2)|, Im" ~(2) and | p~ (2, | p' ~(2), | p” ~(2) are uniformly bounded on
[zo =M, zp)
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(i) The limits m™(zy), m~(zp), m"*(zp), m'~(zy), m"*(zy), m" ~(z), p*(zy), p (z),
p't(zo), p'(2), p" T(2y), and p” ~(z,) exist and are finite.

(iii)  The density of z;, f(z), is continuous and bounded near z,. It is also bounded away from zero
near z,.

(iv)  K() is continuous, symmetric, and nonnegative-valued with compact support.

) oz =var(y,|z,) is uniformly bounded near z,. Similarly, n(z;)=cowy;, x;1z,) is uni-
formly bounded near z,. Furthermore, the limits a* (z,), 0% (zy), n7(2,), and 17(z,) exist and are
finite.

i) lim, , .2 Elly, - m(z )1z, =2) and lim, _, 5 Elly; - m(zi)l‘q‘ z; =z] exist and are finite.

(vii) The bandwidth sequence satisfies h =h, = o-n~'/* for some 9. Then,
PV PT YTy
n> P - I _><A/(#j'10/’),
where
yioyT
pr=———(p*m" " (zy) —p~m" " (2y)) - ——=(p p" " (z)) = p7p" (2o},
xt—x (x"—x7)
and
= ——— (0 0 (z)) + 0~ 07 (zy))
(x"—x7)
yr-yT
—2——— (0" 7" (z)) + 0 7 ()
(xt=x7Y
=y . o B
+ (07 p ()1 —pT () + @ p7 (2,1 - p~(29))),
(x*=x7)
and where

ruK () du)’ — (oK () du) G uk () du) @
CfrutK () du)C[FK ) du) — (FuK(u) du) 27

pt=

. [z K(s) ds) — (sK(s) ds) 1) K (1) du
w’ =

fCz o (7K ) du)( K (u) du) — (fFuK (u) du)’T
with p~ and ™ similarly defined but now with the integral in the limits of integration over (—=,0).

PRrROOF: A derivation of the distribution of the estimator is available in Hahn, Todd, and Van der
Klaauw (1999), or upon request from the authors.
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