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CHARACTERIZING SELECTION BIAS USING 

EXPERIMENTAL DATA' 


Semiparametric methods are developed to estimate the bias that arises from using 
nonexperimental comparison groups to evaluate social programs and to test the identify- 
ing assumptions that justify matching, selection models, and the method of difference- 
in-differences. Using data from an experiment on a prototypical social program and data 
from nonexperimental comparison groups, we reject the assumptions justifying matching 
and our extensions of it. The evidence supports the selection bias model and the 
assumptions that justify a semiparametric version of the method of difference-in-dif-
ferences. We extend our analysis to consider applications of the methods to ordina~y 
observational data. 

KEYWORDS:Selection bias, program evaluation, training programs, semiparametric 
estimation. 

1. INTRODUCTION 

A STANDARD METHOD FOR EVALUATING social programs uses the outcomes of 
nonparticipants to estimate what participants would have experienced had they 
not participated. The difference between participant and nonparticipant out- 
comes is the estimated gross impact of a program reported in many evaluations. 
The outcomes of nonparticipants may differ systematically from what the 
outcomes of participants would have been without the program, producing 
selection bias in estimated impacts. A variety of nonexperimental estimators 

' A  previous version of this paper appeared under the title "Nonparametric Characterization of 
Selection Bias Using Experimental Data: A Study of Adult Males in JTPA. Part I. Definitions, 
Applications and Empirical Results." An earlier version of it appeared in August, 1994, under the 
title "Evaluating the Impact of Training on the Earnings and Labor Force Status of Young Women: 
Better Data Help A Lot." This research was supported by NSF SBR 91-11-455, NSF SBR 93-21-048 
and by a grant from the Russell Sage Foundation. This paper was presented as an invited lecture at 
the Latin American Econometric Society Meeting, Caracas, Venezuela, August 1994. We have 
benefited from comments received from workshops in September, October, and November 1994 at 
Yale, Princeton, Chicago, UC-San Diego, USC, Rand-UCLA, UC-Irvine, UC-Riverside, Northwest- 
ern, and U.C. London, and workshops in the Winter and Spring of 1995 at UC-Berkeley, Oslo, 
Washington-St. Louis, Tel Aviv, and Virginia and an NSF-sponsored conference on econometrics 
held in Madison, Wisconsin in June 1995. We also presented this paper in the Malinvaud Workshop 
in Paris, March, 1995. We are grateful to three anonymous referees, a co-editor, Derek Bandler, 
Lars Hansen, Bo Honor&, Lance Lochner, Thierry Magnac, Christopher Taber, Ed Vytlacil and 
Adonis Yatchew for helpful comments and Derek Bandler, Jingjing Hsee, Lance Lochner, and 
Annie Zhang for programming assistance. 
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adjust for this selection bias under different a ~ s u m ~ t i o n s . ~  certainUnder 
conditions, randomized social experiments eliminate this bias.3 

Social experiments are costly and the identifying assumptions required to 
justify them are not always ~at isf ied.~ However, it is widely held that there is no 
valid alternative to experimentation as a method for evaluating social programs 
(see, e.g., Burtless, 1995). In an important paper, LaLonde (1986) combines data 
from a social experiment with data from nonexperimental comparison groups to 
evaluate the performance of many commonly-used nonexperimental estimators. 
For the particular group of parametric estimators that he investigates, and for 
his particular choices of regressors, he finds that the estimators chosen by 
econometric model selection criteria produce a range of impact estimates that is 
unacceptably large. 

This paper uses data from a social experiment on a prototypical social 
program combined with data on comparison groups of persons who chose not to 
participate in the program evaluated by the experiment. As documented by 
Heckman, LaLonde, and Smith (19991, many programs in place around the 
world are very similar to the program we analyze in this paper. 

Our analysis is based on the following principles. Neither the experimental 
control group nor the comparison group we analyze receives treatment, so that 
differences in measured outcomes between the two groups can be attributed 
solely to selection bias. Instead of examining the performance of specific 
parametric estimators based on specific sets of regressors in eliminating selec- 
tion bias, as LaLonde (1986) and scholars who follow him have done, we use 
semiparametric econometric methods to estimate the functional form of the 
selection bias directly using a variety of regressors and data sets. We use the 
estimated bias functions to test identifying assumptions that have been main- 
tained in the literature, and to suggest estimators that might be effective in 
eliminating selection bias in future evaluations of similar programs. Our method 
for characterizing bias is general and can be applied in a variety of settings, 
including the study of the analytically similar problem of sample attrition. 

By characterizing the bias nonparametrically, and by examining the sensitivity 
of the estimated bias to many alternative sets of conditioning variables, we 
analyze the suitability of entire classes of estimators, rather than trying out a 
few parametric members of those classes with a limited set of conditioning 
variables. Evidence that a particular estimator with a particular set of regressors 
"works" in a particular data set is properly discounted by most serious analysts. 
There is always the suspicion that the success of an estimator in a particular 
instance is the consequence of a diligent specification search. We avoid that 

These estimators and the identifying assumptions that justify them are summarized in Heckman 
and Robb (1985, 1986), Heckman (1990a), Heckman and Smith (19961, and Heckman, Smith, and 
LaLonde (1999). 

See Heckman (1992), Heckman and Smith (1993; 1995a), and Heckman, Smith, and L a h n d e  
(1999) for statements of those assumptions. 

' b e e  Torp, et al. (1993), Heckman, Khoo, Roselius, and Smith (1996) and Heckman, Hohmann, 
Khoo, and Smith (1997). 
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difficulty in this paper by presenting the identifying assumptions that justify 
broad classes of estimators in a nonparametric setting, by testing the identifying 
assumptions using both nonparametric and semiparametric methods, by using 
two separate comparison groups drawn from different data sources, and by using 
a rich variety of conditioning variables. 

In particular, we test the nonparametric identifying assumptions that justify 
three widely-used types of estimators for eliminating selection bias. The first 
type of estimator is the class of "index-sufficient" models introduced in Heck- 
man (19801, which assumes that mean selection bias depends only on P, the 
probability of being selected into the program. The original parametric econo- 
metric models of selection bias are special cases of the index-sufficient model. 
We develop and apply a new test of index sufficiency and find support for this 
characterization of bias. However, the functional form of the index-sufficient 
selection bias that we estimate is different from that assumed in traditional 
econometric selection models. Regions of support where the selection bias for 
nonparticipants is negligible are required in order to use the index-sufficient 
selection estimator to construct the counterfactuals required to evaluate pro- 
g r a m ~ . ~ , ~Such regions are not found in our data. To produce them requires a 
comprehensive sampling plan for collecting the data on comparison group 
members. 

The second type of estimator whose identifying assumptions we test is the 
method of matching. It pairs participants and nonparticipants with common P 
values to estimate program impacts7 In general, matching is not guaranteed to 
reduce bias and may increase it (see Heckman and Siegelman (1993) and 
Heckman, LaLonde, and Smith (1999)). Moreover, matching is open to many of 
the same criticisms that have been directed against traditional econometric 
estimators because the method relies on arbitrary assumptions. Even with the 
rich data at our disposal, the method of matching is not, in general, an effective 
evaluation method. In our samples, it reduces but does not eliminate the 
conventional measure of selection bias. Matching eliminates bias aceraged over 
certain intervals of P but does not eliminate pointwise bias in P. We demon- 
strate that this feature of the method is shared with the classical econometric 
selection model based on index sufficiency. 

The third type of estimator whose identifying assumptions we test is an 
extension of the widely-used method of "difference-in-differences." Conditional 
on P ,  outcomes of participants before and after they participate in a program 
are differenced and differenced again with respect to before and after differ- 
ences for members of the comparison group. The unconditional version of this 
estimator and its close cousin-the fixed effects estimator-are widely used. 

'The  supports of P are the domains of P with positive density. 
%ee Heckman (1990a) for a discussion of '.identification at infinity," whereby parameters of 

interest can be identified from subgroups of individuals for whom there is no selection bias. 
The relationship between matching models based on P and classical selection models based on 

P was first discussed in Heckman and Robb (1986). 
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The assumptions required to justify the conditional version of this estimator are 
weaker than those required to justify matching. They are generally supported by 
our data. The effectiveness of the conditional difference-in-differences estima- 
tor is consistent with our evidence that the index-sufficient model characterizes 
bias. Since in our data selection bias as a function of P is constant over time for 
most values of P ,  it can be differenced out. 

A major finding of this study is that the empirical distribution of P for 
program participants is very different from the distribution of P for members of 
the comparison group. Not only are the shapes of the empirical distributions 
different over regions of common support, but the supports differ as well. 
Conventional measures of selection bias employed by Ashenfelter (1978), 
LaLonde (1986), and Heckman and Hotz (1989) do not distinguish the bias 
arising from comparing participants and nonparticipants at the same P values 
from the bias arising from comparing persons at different P values. 

We present a new decomposition of the conventional measure of selection 
bias that isolates these conceptually distinct sources of bias. We find broad 
regions of P values over which the difference between the outcomes of 
participants and nonparticipants conditional on a particular value of P is not 
defined because the supports of the distributions of participants and nonpartici- 
pants do not overlap. Comparing incomparable people contributes substantially 
to selection bias as conventionally measured. This finding, in conjunction with 
our evidence that the impact of the program measured in the region of common 
support differs from the overall impact of the program, reveals an important 
limitation of all nonexperimental methods for evaluating social programs. Even 
when these methods solve the selection problem, they can only identify the 
effect of treatment for participants who have counterparts in the comparison 
group. 

Our discovery of the empirical importance of imposing a common support 
condition in reducing bias as conventionally measured demonstrates the benefit 
of the nonparametric approach to econometrics. Rigorous application of non- 
parametric methods entails careful specification of the domain over which 
estimators can be identified and consistently estimated. 

This paper also shows the value of having good data. We show that access to a 
geographically-matched comparison group administered the same questionnaire 
as program participants and access to detailed information on recent labor force 
status histories and recent earnings are essential in constructing comparison 
groups that have outcomes close to those of an experimental control group. 
Data and method both matter in devising effective nonexperimental estimators 
of program impacts. 

In the concluding sections, we discuss how to extend and apply the methods 
analyzed in this paper to analyze the effect of treatment on the treated in the 
more common situation where analysts do not have access to experimental data. 
Two of the three methods require no modification. The semiparametric selec- 
tion bias estimator requires additional exclusion restrictions when applied to 
ordinary observational data. 
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2. THE EVALUATION PROBLEM, THE PARAMETER OF INTEREST IN THIS 

PAPER AND HOW RANDOMIZATION ESTIMATES IT 

Following Fisher (19351, Roy (19511, and Quandt (1972), we assume that each 
person has two possible outcomes, Y, and Y,, in the untreated and treated 
states, respectively. Let D = 1 signify receipt of treatment and D = 0 its ab- 
sence. General equilibrium effects are ignored so that the outcomes for any 
person do not depend on the overall level of participation in the program." 

The problem of program evaluation arises because we observe only Yo or 
Y1 for each person, but never both. That is, we observe Y where Y =  DY, + 
(1 -D)Y,. Thus we cannot form the gross gain A = Y, - Yo for anyone. In the 
standard evaluation problem, analysts have access to participant records and to 
data on a comparison group of nonparticipants. Hence, one can construct the 
conditional distribution of Yl given a vector of conditioning variables X and 
D = 1, and the conditional distribution of Y, given X and D = 0, and can 
consistently estimate Pr(D = 1 I X )  = P(x ) .~  

This paper only considers the evaluation problem for mean impacts.10 We 
focus on the parameter that receives the most attention in the evaluation 
literature: the effect of treatment on the treated, defined as 

or an averaged version for X in some region K, 

The average impact parameter is the focus of many evaluation studies, especially 
those based on the method of matching. Other aspects of a program may also be 
interesting, but parameters (1) and (2) are useful in evaluating the gross benefit 
of an existing program-the main ingredient required to make a decision to 
continue it or shut it down.",'2 

To make the parameter (1) clearly interpretable, we require that the condi- 
tional distribution of X satisfy F ( X  I Yo, Y,, D )  =F ( X  I Y,, Y,), i.e. that condi- 

Lewis (1963) discusses the failure of this assumption in the context of evaluating the effects of 
unionism on wages. This assumption is relaxed in an evaluation of skill promotion policies in 
Heckman, Lochner, and Taber (1997, 1998). 

'Thus we do not consider the intrinsically more difficult evaluation problems considered by 
Marschak (1953) and Lancaster (1971), who consider forecasting the effects of policies never 
previously implemented (Marschak) or estimating the demand for goods never previously consumed 
(Lancaster). 

lo Heckman (1990b, 19921, Heckman, Smith, and Clements (1997; first draft 19931, and Heckman 
and Smith (1993, 1995a, 1998) consider the identification and estimation of distributions of impacts. 

l1 See Heckman and Robb (19851, Heckman (19921, Moffitt (19921, Heckman (1997), Heckman 
and Smith (1993, 1995a, 19981, and Heckman, Smith, and Taber (1998) for discussions of alternative 
oarameters of interest. 

12 In a cost-benefit analysis the other required ingredient is the cost. See, e.g., Heckman and 
Smith (1998). 
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tional on potential outcomes, realized D does not "cause" or predict X. This 
avoids the problem of conditioning on variables that are determined by D and 
hence masking the total effect of D. This condition is not strictly required but it 
simplifies the interpretation of our estimates. See Heckman, LaLonde, and 
Smith (1999) for further discussion. 

Data on program participants identify E(Yl IX, D = 1). Missing is the infor- 
mation required to identify E(Yo I X, D = 1). The method of comparison groups 
uses data on nonparticipants to estimate it. The method assumes that, condi- 
tional on X, the outcomes of nonparticipants approximate what participants 
would have experienced had they not participated; that is, it assumes E(Yo I 
X, D = 0) EE(Yo IX, D = 1). The selection bias, B(X), associated with the pro- 
gram impact E (  A I X, D = 1) that arises when this assumption fails to hold is 

Under certain conditions, the parameter of interest can be identified with 
data from a social experiment. If experiments do not disrupt the program being 
evaluated, and if control group members do not have access to close substitutes 
for the experimental treatment, then experimental data identify E(Y, I X, D = 1). 
Thus E ( 4  I X, D = 1) can be identified for any set of conditioning variables X 
within the support of X for D = 1with data from a social experiment.I3 When it 
is valid, randomization avoids all of the traditional econometric problems of 
model selection. It avoids the need to specify the functional forms of the 
estimating equations that relate Yl and Yo to X, or to specify which variables 
are included in or excluded from outcome equations or program participation 
equations. This is an important advantage of randomization compared to other 
evaluation procedures. 

3. CHARACTERIZING SELECTION BIAS 

Since social experiments are costly, there is considerable interest in knowing if 
a nonexperimental strategy can be devised that produces estimates close to what 
would be produced from an ideal experiment on a prototypical job training 
program. This paper uses the data from the control group in a social experi- 
ment, together with unusually rich comparison group data collected under our 
supervision, to characterize the selection bias, B(X), for different specifications 
of X. Knowledge of B(X)  is informative about the effectiveness of entire 
classes of selection bias correction methods. We now briefly describe the three 
types of estimators considered in this paper. 

l3 Randomization is an instrumental variable that identifies parameters (1) and (2) even when all 
of the X are endogenous variables in the traditional sense of the term. See Heckman (1996) for an 
elaboration of this point. 
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3.1. The Method of Matching 

To our knowledge, the method of matching was first used by Fechner (1860). 
It has been extensively applied to the evaluation of job training programs in 
studies conducted in the late 70's and early 80's.'~ The method is based on the 
identifying assumption that, conditional on some X ,  Y, is independent of D. In 
the notation of Dawid (1979), it assumes that 

for some set x,, where "L"denotes independence and variables to the right of 
"I" are the conditioning variables.15 This assumption produces a comparison 
group that resembles the control group of an experiment in one key respect: 
conditional on X ,  the distribution of Y, given D = 1 is the same as the 
distribution of Y,given D = 0. In particular, when the means exist, 

so that pointwise in X, bias B(X)  = 0. 
Many matching estimators have been proposed that exploit (A-1) or its 

implication (4). Traditional matching methods pair nonparticipants with partici- 
pants that are "close" in terms of X using different metrics.I6 For each 
observation i in the participant sample, a weighted average of comparison 
sample observations is formed to estimate the effect of treatment on i: 

where {D = 0) is the set of indices for the nonparticipants and {D = 1) is the 
set of indices for participants, N, is the number of observations in the compar- 
ison group, {D = O}, Nl is the number of observations in the treatment group, 
{D = 11, and C jE(o=,)W ,&,N,(i, j )  = 1 for all i.17 

Matching estimators differ in the weights attached to members of the compar- 
ison group. Define a neighborhood C(X,) for each participant i. The persons 
matched to i are in A i  where A, = { jE {D= 0) jX, E C(X,)). Different match- 
ing methods use different neighborhoods. Nearest neighbor matching sets 
C(X,) = {X, IX, = min,llX, -Xjll, j E {D= 0)) where I I  I I  is a norm, WNoN,(i, j )  = 

14 See the detailed references to the historical literature in Heckman, LaLonde, and Smith (1999). 
"A stronger version of ( A - 1 ) is usually stated: ( Y o ,  Y , ) a  D IX. Given our focus on parameters ( 1 )  

and (21, this stronger version is not needed. The omitted assumption of conditional independence of 
Y ,  and D given X would be useful if we sought to evaluate the impact of lack of treatment on the 
untreated, E ( Y o  -Y, 1 X ,  D = O), using the outcomes of participants to proxy what nonparticipants 
would have earned had they participated. Note that we can estimate the impact of the program on a 
randomly selected person as a combination of the impact of treatment on the treated and treatment 
on the untreated. 

"See Heckman, Ichimura, and Todd (1997, 1998; first drafts 1993) for a detailed discussion of 
alternative matching methods. 

"The  weights are allowed to depend on N o  and N, to allow for use of an optimal bandwidth. 
See Heckman, Ichimura, and Todd (1996; first draft 1994). 
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1, j EAi, and ~vu , l ( i ,  j )  = 0 othenvise.'"earest neighbors may be very far 
apart. For that reason a criterion must be imposed to ensure that the match is 
close in some sense. Caliper matching defines C(X,) = {X, IIIX, -X,II < E)where 
E is arbitrarily prespecified (see Cochrane and Rubin (1973)). If there is no such 
X,, the observation i is not matched to any observations. If more than one 
person is in A,, the nearest neighbor in terms of norm I /  I /  is used to pick the 
match. 

Kernel matching defines 

where Gi,= G((Xi -Xk)/aNo) is a kernel that downweights distant observations 
from Xi and alvo is a sequence of smoothing parameters with the property that 
limNo,,aNo= 0. Nonzero values of this weight implicitly define C(Xi) for this 
version of matching. In Section 5 of this paper, we extend kernel matching to 
permit regression adjustment of outcome equations. To estimate impacts over a 
set K as in (2), form a weighted sum of (5) over K: 

(6) M ( K ) =  W N 0 i , j Y ,1 for X , E K ,  
i ~ ( D = l }  j ~ ( D = 0 }  

where ~ , ~ , ~ ( i )  is a weight accounting for scale and possibly heteroskedasticity as 
well as the choice of support K. 

Regression estimators have also been proposed that exploit (A-1), or its 
implication (4), in a linear regression setting. The econometric procedure of 
Barnow, Cain, and Goldberger (1980) assumes that Y, is linearly related to 
observables X and an unobservable U,, so that E(Y, I X, D = 0) =X P  +E(U, I 
X, D = O), and that E(U, I X, D = 0) =E(U, IX) is linear in X. Under these 
assumptions, controlling for X via linear regression allows one to identify 
E(Y, IX, D = 1) from the data on nonparticipants E(Y, I X, D = 0). These func- 
tional form assumptions do not exploit the richness of assumption (4), which can 
be used to produce a nonparametric estimator of treatment effects using 
conditioning instead of projection or linear regression methods. Moreover, in 
practice, users of the method of Barnow, Cain, and Goldberger (1980) do not 
impose a common support condition in generating the estimates obtained from 
the method. The distribution of X may be very different in the {D = 01 and 
{D= 1) samples, so that comparability is only achieved by imposing linearity and 
extrapolating over different regions. 

Recently, attention has focused on matching techniques that compare persons 
based on their probability of participation. Define the probability of participa- 
tion or "propensity score" as P ( X )  = Pr(D = 1 I XI.  A theorem of Rosenbaum 

IS There are two versions of this method that differ depending on whether or not each 
comparison group observation may be matched to more than one participant observation. For 
expositional simplicity, we ignore ties. 



SELECTION BIAS 

and Rubin (1983) demonstrates that if (A-1)is satisfied, then 

(A-2) Y,LDIP(X) for XEX, ,  

provided 0 <P(X) < 1 for X Ex,, so that there is a positive probability that the 
events D = 0 and D = 1 occur for all elements in x,. Conditioning on P(X) 
rather than on X produces conditional independence. An implication of (A-21, 
and not (A-2) itself, is all that is required to construct the desired counterfactual 
conditional mean. That implication is 

where (7) could be assumed directly in place of (A-2) or (A-1). Conditioning on 
P(X) sets B(P(X)) = 0 and reduces the dimension of the matching problem 
down to matching on the scalar P(X). Below we test condition (7)as a statistical 
hypothesis and reject it in our data. 

Rosenbaum and Rubin (1983) assume that P(X) is known rather than 
estimated. They do not present a distribution theory for the pointwise estimators 
of (1) or (2). Heckman, Ichimura, and Todd (1997, 1998; first drafts 1993) 
present the asymptotic distribution theory for the kernel matching estimator for 
the cases where P is known and where it is estimated.I9 

Comparison groups produced assuming (A-1) is valid differ from the control 
groups produced by a random experiment in an important way. Randomization 
equates the distributions of characteristics in the treatment and control groups. 
Without randomization, the distributions of characteristics in the treatment and 
comparison groups are not necessarily equated even if (A-1) is satisfied. The 
supports of the distributions of X may be different in the two groups and the 
shapes of the distributions may be different over regions of common support. 
Because counterparts to participants cannot always be found in the comparison 
group, estimators based on (A-1) or equation (7) do not necessarily identify 
treatment impacts for all values of X among program participants, unless the 
impacts do not depend on X. 

A major advantage of the method of randomized trials over the method of 
matching in evaluating programs is that randomization works for any choice of 
X. In the method of matching, there is the same uncertainty about which X to 
use as there is in the specification of conventional econometric models. Even if 
one set of X values satisfies condition (A-l), an augmented or reduced version 
of this set may not. Heckman, Ichimura, and Todd (1997; first draft 1993)discuss 
tests that can be used to determine the appropriate choice of X variables. We 
discuss this problem in Section 4.3 below. Since nonparametric methods can be 
used to perform matching, the method does not, in principle, require that 
arbitrary functional forms be imposed to estimate program impacts. 

l9 Heckman, Ichimura, and Todd (1998; first draft 1993) also answer the question, "If P ( X ) were 
known would we match on it or on X?" Using the variance of the average impacts (2)as the choice 
criterion, the answer is "it depends." 
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3.2. Index SufJicient Methods and the Classical Econometric 
Selection Model 

The traditional econometric approach to the selection problem adopts a more 
tightly-specified model relating outcomes to regressors X.  This is in the spirit of 
much econometric work that builds models to estimate a variety of counterfac- 
tual states, rather than just the single counterfactual required to estimate the 
mean impact of treatment on the treated, the parameter of interest in most 
applications of the methods of matching or random assignment.20 In the 
simplest econometric approach, two functions are postulated: Yl =g,(X, U,) and 
Y, =g,(X, U,), where Uo and U, are unobservables. A selection equation is 
specified to determine which outcome is observed. Separability between X and 
(U,, Ul) is assumed, so that 

(8) Yl = g l ( X )  + U, and Yo =g , (X)  + U,, 

where E(Ul) =E(Uo)= 0. This assumption defines functions called structural 
functions that do not depend on unobserved variables. In this notation, the 
parameter of interest defined in (1) becomes 

Parameter (9) is an unconventional object for an econometric investigation. It 
combines the g l (X)  and go(X)  functions that are the usual objects of econo- 
metric interest with the conditional mean of the difference in unobservables 
E(U, - U, IX, D = 1). 

Much applied econometric activity is devoted to eliminating the mean effect 
of unobservables on estimates of functions like g, and gl .  However, the mean 
difference in unobservables is an essential component of the definition of the 
parameter of interest in evaluating social programs.21 In the traditional separa- 
ble framework, the selection bias that arises from using a nonexperimental 
comparison group is 

In the standard evaluation problem, the goal is to set B (X)  = 0, not to 
eliminate dependence between (U,,  Ul) and X. The X can fail to be exogenous 
and parameters (1) and (2) can still be identified. 

The conventional economic approach partitions the observed variables X into 
two not necessarily disjoint sets ( R ,2)corresponding to those in the outcome 
equations and those in the participation equation, and postulates exclusion 

20 This emphasis on econometric models as devices to generate a variety of counterfactuals can 
be traced back to Haavelmo (1944) or Marschak (1953). 

21 If Ul = UO.as is assumed in the dummy endogenous variable model, then E(U, - U, I X ,  D = 1) 
= 0.If U, - U, is not forecastable with respect to X and D = 1 at the time the decision to 
participate in the program is made, then E(Ul - U, I X .  D = 1) = 0.See Heckman (1992, 1996, 1997) 
and Heckman and Smith (1993, 1996, 1998). The model Y = Y , D  + Y,(1 -D )  = g , ( X )  + [ g , ( X )-
g o ( X )+ Ul - U o ] D+ U, is a model with a random coefficient on D .  
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restrictions. Thus it is assumed that certain variables appear in Z but not in R. 
The conventional approach further restricts the model so that the bias B(X)  
only depends on Z through a scalar index. Note that exclusion restrictions are 
neither required nor used to justify matching as an estimator of (1) or (2).22 

The latent index variable model with index I motivates the characterization 
of bias as a function of a scalar index. Define I=H ( Z )  - v where H ( Z )  is the 
mean difference in utilities or discounted earnings between the participation 
and nonparticipation states and v Thenis assumed to be independent of z . ~ ~  
D = 1 if I > 0 and D = 0 otherwise, so that Pr(D = 1 I Z )  =F,(H(Z)). The 
conventional econometric selection model further assumes that the dependence 
between D and (U,, U,) that gives rise to bias (10) arises only through v and 
that R and Z are independent of (U,,  U,). This implies that 

Therefore, both B(Z) and the mean gain of the unobservables, E(U, - U, I 
Z ,  R, D = I), depend on Z only through the index H(Z).  When F, is assumed 
to be strictly monotonic almost everywhere, we may write H ( Z )  =F,-I (Pr(D = 1 

1 Z)) and the bias and mean gain terms depend on Z solely through P .  The bias 
is 

This is the "index sufficient" representation where P(Z),  or equivalently H(Z),  
is the index.24 Conventional econometric models (see, e.g., Amemiya (1985)) 
assume that the latent variables v and Uo are symmetrically distributed around 
zero, so that B(P(Z)) is symmetric around P = i.Figure 1 presents an example 
of a normal selection model. If P itself is symmetrically distributed around P = i, 
the average bias over symmetric intervals around that value is zero even though 
the pointwise bias is nonzero. Thus, the classical selection model sometimes 
justifies matching as a consistent estimator of parameter (2) over intervals of P 
where the bias cancels out. To test the index sufficient model, we use our pooled 
sample of controls and comparison group members to determine if the esti- 
mated bias is solely a function of P ( Z )  for different sets of variables Z, or if a 
more general conditioning set (R,  Z )  is required to characterize the bias. 

22 Heckman, Ichimura, and Todd (1998; first draft 1993) extend the theory of matching to 
consider separable models and models with exclusion restrictions and discuss the efficiency gains 
from using such restrictions. Exclusion restrictions are natural in the context of panel data models 
where the variables in the outcome equation are measured in periods after the decision to 
participate in the program is made. 

23 Absolute continuity of v is often assumed although technically it is not required. 
24 This argument is due to Heckman (1980). If there are multiple decision rules for admission into 

the program, then a multiple index model is required. See Heckman and Robb (1985). 
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.l'orp. This is the  index nlodel i i~ t roduced i i ~  Section 3.2 %,here 1, ;iild tio are  assumed to h e  llormal and  u,= 1. ITU,,  = 375. 
and p =  C O \ ( L ' ~ .v)/u(,,=n.16. 

FIGURE1.-Prototypical selection model, normal example: B( P( X ) )  = E(U, I P( X ) ,  D = 1) -
E ( U , 1 P ( X ) ,D = 0). 

Index sufficiency is only a necessary condition for applying the classical index 
sufficient selection model in a nonparametric or semiparametric setting. As 
noted by Heckman (1990a), it is also necessary to know a point or interval of P 
where E(U, I P(X1, D = 0) = 0. Unless this condition is satisfied, it is not possi- 
ble to use the index-sufficient selection model to construct the required counter- 
factual.2s Thus in order to implement this method, it is necessary (a) that such a 
point or interval exist and (b) that it be possible to discover it. 

The traditional selection-correction method parameterizes the bias function 
B(P(Z)) and eliminates bias by estimating B(P(Z)) along with the other 

25 To see why this condition is necessary, suppose that Y o= P ,  + U, and that index sufficiency 
holds. Then E(Yo 1 X ,  D = 0)= po +E(Uo I P ( X ) ,  D = 0). To construct E(Yo I X ,  D = 11, the classical 
selection bias model requires that E(U,) = 0 and that Po be identified along with E(U, 1 P ( X ) .  D = 

0). Then using the fact that 

E ( U , )= E ( U , I P ( X ) ,  D = 1 ) P ( X )+ E(U, I P ( X ) .D = 0 ) ( 1 -  P ( X ) )  = 0 ,  

it follows that 

To  use this result to construct E(Yo I X ,  D = 0 ) nonparametrically. it is necessary to know Po.  If this 
is known, then E ( Y ,  X ,  D = 0 )- p, = E(U, 1 P ( X ) ,  D = 0). and it is possible to construct 

Heckman (1990a) shows that Po is identified only if there is a set of values X such that 
E(Uo 1 P ( X ) , D = 0 ) = 0. If there is no such set. then one cannot separate a constant associated mith 
E(Uo I P ( X ) ,  D = 0 ) from Po. 
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parameters of the model.26 Heckman and Robb (1985, 1986) term the depen- 
dence between U, and D operating through the v "selection on unobservables" 
while the dependence between Uo and D operating through dependence be- 
tween Z and Uo is termed "selection on observables." In their framework, the 
method of matching assumes selection on observables, because conditioning on 
Z controls the dependence between D and Uo,producing a counterpart to (4) 
for the residuals: E(Uo I Z ,  D = 1)=E(Uo 1 Z,  D = 0).When selection is on unob- 
servable~, it is impossible to condition on v and eliminate the selection bias. 
Thus the choice of an appropriate econometric model critically depends on the 
properties of the data on which it is applied. 

The classical before-after estimator compares the outcomes of participants 
after they participate in the program with their outcomes before they partici- 
pate. With the difference-in-differences estimator, common time and age trends 
are eliminated by subtracting the before-after change in nonparticipant out-
comes from the before-after change for participant outcomes. This method can 
be generalized to include regressor^.^' The simplest application of the method 
does not condition on X and forms simple averages over the treatment and 
comparison groups. 

In this paper, we introduce conditional semiparametric and nonparametric 
versions of the difference-in-differences estimator to a panel or to repeated 
cross sections of persons. Differencing is done conditional on X. The critical 
identifying assumption in our proposed method is that conditional on X ,  the 
biases are the same on average in different time periods before and after the 
period of participation in the program so that differencing the differences 
between participants and nonparticipants eliminates the bias. 

To see how this estimator works, let t be a post-program period and t '  a 
preprogram period. The method identifies parameters (1)and (2)conditional on 
X under the assumption 

(12) B , ( X )  -B , , ( X )= 0 ,  for some t , t ' ,  

where B, denotes the bias in time t ,  defined in (10). This method extends the 
method of matching because it does not require that the bias vanish for any X ,  
just that it be the same for some t and t '  conditional on X .  Notice further that 
(12) is implied by the conventional econometric selection estimator if E(Uo,I 
P ( X ) ,D = 1)-E(U,,. I P ( X ) ,D = 1) is the same for some choice of t and t ' .  In 
application, (12)is often assumed to hold for all t and t '  or for t and t '  defined 

26 ~ e c k m a n  and Robb (1985), Heckman (1990a), and Cosslett (1991) discuss this strategy in a 
semiparametric model. 

27 Heckman and Robb (1985, p. 218) discuss the difference-in-differences estimator and demon- 
strate that it can be implemented using repeated cross-section data. They also present economic 
models that justify its use. See also Heckman, LaLonde, and Smith (1999). 
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symmetrically around t = 0, the date of participation in the program (i.e., 
t = - t t ) .  

We now compare B ( X ) to the more conventional measure of bias used in the 
literature. 

4. RE-EXAMINING THE CONVENTIONAL MEASURE OF SELECTION BIAS 

The selection bias measure B ( X )  is rigorously defined only over the set 
of X values common to the D = 1 and D = 0 populations. Define S I X= {XI  
f ( X  D  = 1)> 0) to be the support of X for D = 1, where f ( X l  D  = 1) is the 
conditional density of X given D = 1. Let Sox= {XI  f ( X  I D = 0)> 0) be the 
support of X for D = 0 and let S, = SoxnS I X denote the region of overlap. 
Using the X distribution of participants, we define the mean selection bias &x 
as 

A comparable definition of BSpreplaces X with P ( X )  in the definition of 
qX.The conventional measure of selection bias B =E(Y,  ID = 1)-E(Y,  ID = 

0) used by LaLonde (1986) and others does not condition on X. 
The conventional measure of bias B can be decomposed into a portion 

corresponding to a properly-weighted average of B ( X )  and two other compo- 
n e n t ~ . ~ ~First note that 

Decompose B into three terms: 

(14) B = B , + B , + B , ,  

where 

'%ne can place the conventional method in a regression framework. Run a least squares 
regression of Yo on D,  with Yo= n-,, + r l D  + 7, and E ( T )= 0. Then plim i r ,  =B as long as a law of 
large numbers is valid for the (Yo,D )  data sequence. 
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where P, = lSxdF(X I D = 1) is the proportion of the density of X given D = 1 
in the overlap set S,, S,,\S, is the support of X given D = 1 that is not in the 
overlap set S,, and S,,\Sx is the support of X given D = 0 that is not in 
the overlap set S,. 

Term B, in (14) arises when Sox\S, or Slx\S, is nonempty. In this case we 
fail to find counterparts to E(Yo IX, D = 1) in the set Sox\Sx and counterparts 
to E(Yo IX, D = 0) in the set S,,\Sx. Term B, arises from the differential 
weighting of E(Yo I X,  D = 0) by the two densities for X given D = 1and D = 0 
within the overlap set. Term B, arises from differences in outcomes that remain 
even after controlling for observable differences. Selection bias, rigorously 
defined as q X ,  may be of a different magnitude and even a different sign than 
the conventional measure of bias B. 

Matching methods that impose the condition of pointwise common support 
eliminate two of the three sources of bias in (14). Matching only over the 
common support necessarily eliminates the bias arising from regions of nonover- 
lapping support given by term B, in (14). The bias due to different density 
weighting is eliminated because matching on participant P values effectively 
reweights the nonparticipant data. Thus P,&,~ is the only component of (14) 
that is not eliminated by matching.29 Bsxis the bias associated with a matching 
estimator. 

4.1. Examining the Validily of Matching on P 

We examine the validity of matching on P ( X )  by estimating the three 
components of the bias B. If matching is valid, the third component of the 
decomposition should be negligible for each value of P(X) .  Form the orthogo- 
nal decomposition of the conditional mean given X into two components: 
E(Yo IX, D = 1) =E(Yo I P (X) ,  D = 1) + V where V =E(Yo I X ,  D = 1) -E(Yo I 
P (X) ,  D = 1) and E(V I P (X) ,  D = 1) = 0. Heckman, Ichimura, and Todd (1997, 
1998; first drafts 1993) show that constructing the mean conditional on P ( X )  
permits consistent, but possibly inefficient, estimation of the terms in decompo- 
sition (14). The conditional means are integrated against the empirical counter- 
parts of the conditional distributions for P(X) ,  F( P ( X )  1 D = I), and F( P ( X )  I 
D = O), i.e., the means are self-weighting. 

Before presenting our estimates of the components of (14), we describe the 
data used to generate them and the variables Z that best predict participation in 
the program. 

The data used in this study come from four training centers participating in a 
randomized evaluation of the Job Training Partnership Act (JTPA).,' Along 

29 Since B, and B2 may be of any sign. the matching estimator may have a bias component bigger 
than B. 

30 See Orr. et al. (1995) for a description of the National JTPA Study. 
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with data on the experimental treatment and control groups, information was 
collected on a nonexperimental comparison group of persons located in the 
same four labor markets who were eligible for the program but chose not to 
participate in it at the time random assignment was conducted. These persons 
are termed ENPs-for eligible nonparticipants.31 

Random assignment took place at the point where individuals had applied to 
and been accepted into JTPA (i.e., admitted by a JTPA administrator). Under 
ideal conditions, randomization at this point identifies parameters (1) and (2). 
Members of the control group were excluded from receiving JTPA services for 
18 months after random assignment. The controls completed the same survey 
instrument as the ENP comparison group members." This instrument included 
detailed retrospective questions on labor force participation, job spells, earnings, 
marital status, and other characteristics. In this paper, we analyze a sample of 
adult males age 22 to 54. Table I defines the variables used in this study. 
Appendix B describes the data more fully and gives summary statistics for our 
sample. 

4.3. Determining the Probability of Program Participation P 

The participation probability P ( X )  plays a central role in our analysis. In this 
paper, participation means that a person applies and is accepted into the 
program. Heckman and Smith (1995b) find that for all groups, including adult 
males, recent (past six months) labor force status transitions, not the pre-pro- 
gram earnings dip emphasized by Ashenfelter (1978), are the key predictors of 
participation. The relative participation rates presented in the fifth column of 
Table I1 demonstrate this point. Persons recently entering unemployment are 
the most likely to seek to participate in the program. Participation in job 
training is a form of job search for many unemployed workers. Earnings at the 
time of the participation decision are an important secondary predictor of 
participation. 

Table I11 presents the estimated coefficients of the logit model P(X) .  
Variables are included in the model on the basis of two criteria: (a) minimiza- 
tion of classification error when P(x)  > P C  is used to predict D = 1 and 
:(XI 5 PCis used to predict D = 0, where PC= E(D); and (b) statistical signifi- 
cance of the included regressors. For adult males, the two criteria produce the 
same model. See Appendix C for a more extensive discussion of the variable 
selection criteria used in this paper. 

Figure 2 presents the distributions of the estimated P ( X )  in the {D = 0) and 
{ D= 1) groups. We obtain similar distributions for P ( X )  using alternative sets 
of regressors." This figure indicates the potential importance of defining bias on 

31 See Smith (1994) and Appendix B for descriptions of the ENP sample. 
32 Treatment group members did not complete the long baseline survey instrument administered 

to the controls and ENPs, and so cannot be used in the estimation of the participation model. 
33 These results are available on request from the authors. 
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TABLE I 

Variable Name 	 D e ~ c ~ l p l ~ o n  

Training Center: Indicator variables for the geographic location of 
Corpus Christi, Fort Wayne, the individual. 
Jersey City. Providence. 

Race and Ethnicity: 	 Indicator variables for the race/ethnicity of the 
black, white, Hispanic. 	 individual. Individuals who reported Asian or 

"other" were included in the Hispanic category 
in R but not in 2. 

Age: Indicator variables for the age of the i~ldividual 
age 22-29, age 30-39, age 40-49, calculated using the average age in years of the 
age 50-54. individual within the quarter of the observation 

Education: Indicator variables for the educational attainment 
less than 10th grade, 10-11th grade, of the individual at the time of random 
12th grade, 1-3 years of college, 4 or assignment or eligibility determination. 
more years of college. Missing values are imputed:' 

Marital Status: 	 Indicator variables for marital status at the time of 
currently married, random assignment or eligibility determination 

last married 1-12 months before RA/EL, (RA/EL). Missing values are imputed." 

last married > 12 months before RA/EL, 

single, never married at RA/EL. 


Children less than 6 years of age Indicator variable for the presence of young chil- 
dren in the household at the time of the base- 
line interview. Missing values are imputed." 

Calendar Quarter: 	 Indicator variables for the calendar quarter 
quarter I ,  quarter 2, quarter 3, quarter 4. 	 for the observations. Quarter 1 refers to 

January, February, and March etc. If an obser- 
vation overlaps two quarters. then the variable 
takes on fractional values. 

Calender Year: 	 Indicator variables for the calendar year of the 
year 1987, year 1988, year 1989, year 1990. 	 observation. If the observation overlaps two 

years, then the year indicators take on 
fractional values. 

Local Unemployment Rate 	 This variable gives the monthly unemployment 
(Sources: U.S. Department of Labor's rate. The data are published at the county 
publication "Labor Force, Employment, and and metropolitan area levels. We calculate the 
Unemployment Estimates for States. unemployment rate as a population-weighted 
Labor Market Areas, Counties, and Selected average of the unemployment rates of the 
Cities" for the years 1986-1991 provide the counties and metropolitan areas served by 
unemployment rates. Population weights are each of the four training centers in the 
obtained from annual total population data JTPA data. 
available in the U.S:, Department of 
Commerce's Regional Economic 
Information System (REIS)). 
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TABLE I-Continued 

Variable Name 

Labor Force Status Transition: 
employed -t employed, 
unemployed + employed, 
OLF -t employed, 
employed + unemployed. 
unemployed -t unemployed. 
OLF -t unemployed. 
employed -t OLF, 
unemployed + OLF, 
OLF + OLF. 

Number of Persons in the Household 

Earnings in the Month of Random 
Assignment or Eligibility Determination 

Ever had Vocational Training 

Currently Receiving Vocational Training 

Number of Job Spells in the 18 Months 
Prior to Random Assignment or Eligibilib 
Determination: 
zero, one, hvo, more than two. 

Work Experience 

Description 

The two most recent labor force statuses during 
the period composed of the month of random 
assignment or eligibility determination and the 
six preceding months define a set of nine labor 
force status patterns. In each case, the second 
status is that in the month of random assignment 
or eligibility determination and the first status 
(if different) is the most recent preceding status. 
Repeated patterns such as "employed + 

employed" indicate persons in the same 
labor force status for all seven months. 
Missing values are imputed." 

Continuous variable indicating the number of 
persons in the individual's household as of the 
baseline interview. Missing values are imputed." 

Self-reported monthly earnings in the month of 
random assignment or eligibility determination 
from the baseline survey. Persons for whom 
the survey covers only a part of the month 
have their responses scaled up to a full month. 

Indicator variable for whether the respondent ever 
had vocational or technical training as of the 
baseline interview date, excluding courses 
taken while in high school. Missing values 
are imputedP 

Indicator variable for current receipt of vocational 
or technical training as of the baseline interview. 
Excludes courses taken in high school. Missing 
values are i m p ~ t e d . ~  

Categories for the number of full or partial job 
(not employment) spells experienced 
during the 18 months prior to random 
assignment or eligibility determination. 
Missing values are imputed." 

Continuous variable indicating months of work 
experience prior to random assignment or 
eligibility determination. It is calculated using 
the Mincer method, (age-education-6)*12, for 
the period prior to our data, adding in actual 
experience in months for the five years prior 
to RA/EL. 

"An appendix available upon request from the authors descr~bes the lmputatio~i procedure for these variable?. 
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TABLE I1 

ESTIMATED FORCE CELLSA N D  THE PROBABILITYOFBIASBY LABOR STATUSTRANSITIOT 
PARTICIPATIONAND ITS LOGITBY LABORFORCESTATUS, CRUDERATES. 

A h D  RATESIMPLIEDBY LOGIT 
Quarterly Earnings Expressed in Monthly Dollars, Experimental Control and 

Eligible Nonparticipant (ENP) Samples, Adult Males, 508 Controls and 388 ENPs 

Difference ~n Diftercnce ~n 
Population Logits of  

Percentage Percentage Est~rnated  Program A r w a g s  Coeffic~ent Program 
of Controls of E N P S  Bias Par t lc~pat ion  Derlvat~r,e From Pai t ic ipa t~on 

Cell In Cell in Cell In Cell,' ~ates-rom Logit" ~ o g i t "  ~ n t c s "  

Employed 
+Employed 

Unemployed 
-t Employed 

OLF -t Employed 

Employed 
-t Unemployed 

Unemployed 
+Unemployed 

OLF 
-t Unemployed 

Employed -,OLF 

Unemployed 
-.OLF 

OLF -,OLF 

"This c o l u ~ n n  gives the  mean difference in monthly earnings of the  experimental controls and eliglble nonpartic~pailts 
conditional on  labor force status transition patterns in the  slu months prlor to random asslgnmcnt ( \ c s  Tablc I for thc 
def in l t~on of the  labor force transition categories). T h e  mean 1s calculateil o \ e r  thc IS months after tliz dntc of random 
ass ienment /e l ig ib~l~tydetermination. 

"These  columns give differences in the  population participation rates and in t h e  logits of the  population partlclpation 
rate, relat1r.e t o  the  Employed + Employeil cell. 

a common support of P ( X ) . For the sample of controls, the histogram of P ( X )  
values has support over the entire [O, 11interval. Surprisingly, however, the mode 
of the distribution of P ( X ) for controls is near zero. Many controls have a low 
estimated probability of participation. In the sample of ENPs, the support of 
P ( X )  is concentrated in the interval [0,0.225]. Thus, the bias measure &,>, 
which is the bias defined conditional on P ( X ) rather than X ,  is defined only 
over a fairly limited interval. As a result of this restriction on the support, any 
nonexperimental evaluation can nonparametrically estimate program impacts 
defined only over this interval. As we demonstrate below, the difference be- 
tween the distributions of the estimated values of P has important implications 
for understanding the sources of selection bias as conventionally measured. 
Before presenting this decomposition, we first develop some econometric tools 
that are used to generate many of the empirical results reported in this paper. 
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TABLE I11 

COEFFICIENTESTIVATESAND p VALUES PARTICIPATIONFROM WEIGHTED LOG IT^ 
BEST PREDICTOR FOR THE PROBABILITY PARTICIPATION^MODEL OF 


Experimental Control and Eligible Nonparticipant (ENP) Samples 

Dependent Variable: 1 for Experimental Control, 0 for Eligible Nonparticipant 


Adult Males, 508 Controls and 388 ENPs 


Variables Coeff Std Error p ValueC 

Intercept -5.07 
Fort Wayne, IN 2.45 
Jersey City, NJ 0.66 
Providence, RI 2.19 
Black 0.49 
Hispanic 0.43 
Other race/ethnicity 0.61 
Age 30 to 39 -0.50 
Age 40 to 49 -0.60 
Age 50 to 54 -0.29 
Fewer than 10 years schooling -0.83 
10-11 years schooling 0.66 
13-15 years schooling 0.90 
16 or more years schooling - 1.38 
Last married 1-12 months prior to RA/EL~ 0.42 
Last married > 12 months prior to RA/EL -0.03 
Single, never married at RA/EL 0.71 
Child age less than 6 present in household -0.16 
Unemployed -,Employed 1.52 
OLF -,Employed 0.79 
Employed -,Unemployed 2.46 
Unemployed -,Unemployed 2.67 
OLF -t Unemployed 3.27 
Employed -,OLF 2.55 
Unemployed -t OLF 2.30 
OLF -t OLF -0.15 
One job in 18 months prior to RA/EL 0.41 
Two jobs in 18 months prior to RA/EL 0.57 
More than two jobs in 18 months prior to RA/EL 1.87 
Enrolled in vocational training at RA/EL 1.94 
Ever had vocational training? -0.28 
Total number of household members -0.25 
Earnings in the month of RA/EL -0.00 

*Weights are used in the estimation procedure to account for choice-based sampled data. I t  is assumed that In a random 
sample Controls represent 37c and ENPs 977c of the eligible populat~on 

b ~ h eomitted training center is Corpus Christi, TX; the omitted race 1s white; the omitted age group IS 22-29, the 
omitted schooling category is twelve years: the omitted marltal status is currently married at RA/EL; the omltted labor 
force transition pattern is Enlployed - Employed; the omitted number of lob spells in the 18 months prlor to RA/EL is 
zero. 

'Reported p-values are for two-tailed tests of the null hypotheses that the true coefficient equals zero. 
d ~ ~ / ~ ~indicates the month of random assignment (RA) for the experimental controls and the month of eligibility (EL) 

for Eligible Nonparticipants (ENPs). 
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Value of P 

FIGURE2.-Density of estimated probability of program participation for adult male controls and 
eligible nonparticipants. 

5.  NONPARAMETRIC TOOLS FOR ESTIMATING SELECTION BIAS B ( X )  AND 

OTHER OBJECTS OF INTEREST 

In an econometric sample selection model, the usual goal is to consistently 
estimate p in Yo =Xp + U,, where E(Y, IX, D = 1) =Xp +E(Uo1 X, D = 1) 
and E(Y, I X,D = 0) =XP +E(U, I X, D = 0). In this paper, the goal is to esti- 
mate the bias B(X)=E(U,1 X, D = 1)-E(U, IX, D = 0) that arises from using 
a comparison group to identify the parameter E( A I X, D = characteriza-
tion of B ( X ) suggests which nonexperimental strategies, if any, are likely to be 
effective in eliminating it. Our emphasis is thus very different from the standard 
approach that treats bias terms as nuisance functions to be eliminated.35 

In the case where the X variables are all discrete, estimation of the bias is 
straightforward. Only cell means are required. The regression equation used to 
estimate the bias on comparison and control samples is 

34 In a context where the treatment impact and not the bias is being estimated, the methods we 
use can be applied directly by substituting data on Y,for participants for the data on Yo for 
controls. To  apply the semiparametric index sufficient selection model (but not the other methods 
we consider) requires an exclusion restriction-some variable in Z not in R. We expand on this 
point below in Section 11. 

35 See, e.g., Heckman (19791, Cosslett (19911, or Ahn and Powell (1993). 
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where B ( X )=E(U, IX,  D = 1)-E(U, X ,  D = 0 ) and E ( E  X ,  D )  = 0. B ( X )  can 
be estimated from a least squares regression of Y, on a constant and D 
interacted with dummy variables for each X cell. The interactions between D 
and X identify B ( X )  at the discrete coordinates of X even though P is not 
identified unless E(Uo X ,  D = 0 ) = 0,  an assumption not required to identify 
B ( X ) .  If conditioning on X eliminates bias, as is assumed in the method of 
matching or in the analysis of Barnow, Cain, and Goldberger (1980), then 
B ( X ) = 0 for each value of X .  

A simple application of this method is presented in Table IV. We compute 
the mean bias within cells defined by a subset of the variables included in the 
logit for P. This subset and the cells themselves were chosen by cross-validation 
to minimize the sample misclassification rate using the "hit or miss" method 
described in Section 4.3 and using the Classification and Regression Tree 
(CART) method that partitions the data into the best-predicting groups.36 
Within cells, the bias B ( X ) is large, just as it is in the fourth column of Table 11. 
Averaging over cells using the cell weights for the D = 1 population, the 
estimated bias is much smaller. Thus, although the biases tend to cancel across 
cells, the method of matching per se is not justified by this partition of the data, 
nor is the method advocated by Barnow, Cain, and Goldberger (1980). 

When E(U, 1 X ,  D = 0 )  and E(Uo I X ,  D = 1) are specified more generally as 
nonparametric functions of continuous variables, equation (15) is termed the 
partial linear regression In this paper we focus on nonparametric 
estimation of the B ( X ) , rather than on estimating the parametric portion of the 
model, and use the local linear regression methods described in detail in 
Appendix A. 

Our data have a panel structure with individuals observed in periods 
t = 1 , . . . ,T. Individuals are subscripted by "i." Define the bias functions as 
K I t ( P I )=E(U,,, I Pi, Di = 1) and Ko,(P,)=E(Uoi,I Pi, Di = 01, and let E ~ ,= UOir-
D,K, , (P,)- (1 -D,)K,,(P,) where E(U,,,) = 0. To conserve on notation we 
suppress the subscript " O n  on Yo in the rest of this section and in Appendix A. 
Define y = (y , ,. . .,I.;,.)', X i  = ( X , , ,. .. ,Xi,.)', K,(P,)= (K,,(Pi),.. . ,Kj,(Pi))', 
j = 0,1,  and E, = ( E , , ,  . .., E,,.)'. Precise assumptions about E are stated in 
Appendix A. In this notation, the seemingly-unrelated partial linear regression 
model used in this paper is 

'"he method of picking the best predictors is formalized as the CART method developed in 
Breiman, Friedman, Olshen, and Stone (1984). We use the CART algorithm in S + . See Chambers 
and Hastie (1993). The method described in Section 4.3 was applied using a parametric logit model. 
CART is a nonparametric rnethod that searches for the best-predicting partitions of the data and 
explicitly considers interactions in constructing the model. In fitting the parametric logit model, we 
do not include interactions terms. 

37 See, e.g., Robinson (1988) and Hastie and Tibshirani (1990). For discrete X, the method used 
to estimate (15) is fully nonparametric. 

38 In Appendix A, we relax the restriction that P is constant across time periods. Robinson (1988) 
first proposed the partially linear model in the seemingly-unrelated regression framework. 
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Average Ealnings in thc 18 ivlonths Following Random Assignrncnt Exprcsscd in Monthly Dollars 

Expcrimcntal Control and Eligible Nonparticipant (ENP) Samples, Adult Males, 508 Controls and 388 ENPs 

Cell Charnctciislicr 

Mean Earnings in 6 Nomhc~ Nurnhcr 

I5irnings a1 Months Prim #Jot> of or 


Cell" 1.abor Force Slatu\ KA/EI. tn RA/EI. Site Spells Education Controls ENPS E~tiniatcd Bias 


consistently unc~nploycd o r  had Fort Wayne, IN and 

labor force transition in 18 Jersey City, NJ 

months prior to  KA/EL 


(2) 	 samc aa (1 )  Providencc, RI and 

Corpus Christi. TX 


(3) samc as  (1) 	 . . . 

(4) consistently employed, consistently 	 Fort Wayne, IN and 0 or  1 > 3 ycars 1 14 
out  of the labor h r c e  o r  missing 	 Jcrsey City, NJ and collcge or  


Prov~dence.  R I  missing 

(5) 	 same as (4) ?amc as  (4) U o r l  < l0 ,10-11 ,  41 10 


12 o r  some 

collcgc 


all < 10, 10-1 1, 11 7 
Icvcl? I2 o r  romc 

collegc 
samc as  (4) 	 Oor  1 < 10, 10-11, 6 20 

or  some 
collegc 

( 8 )  	 samc a \  (4) same as  (4) 2 or  57 18 

more 


(9) aame aa (4) same as  (4) 	 . . . . . . 44 I35 

(10) aalne as  (4) 	 Corpus Chrlsli, TX 

Average Cell Bias' 

" ~ a r i a b l e sincluded in the CAR'!' analyak that were no1 selected as cells wcrc age. averase etirnings lo, I2 rnr,ntl~r p1101 10 ar\lgnmcnt ru cl~grh~lity rr i~~>dom dctc~minatron. 
number of hooschold men~her\. race. , ~ n d  curtent a l ~ d  past vocal~onnl training 

"A hias or \tandatd error value of '.NA" indicntca that the ccll contains only indiv~duals r,f r,ne typu. cithcl all cr,nt~r,l\ on all el~piblc nonpartlclpants. ro thnt the bra, could not W 
LC 

he calcr~lated. If theic is exactly one ohacrvatiol~ i l l  a ccll. then a h ~ a s  	 hot a v a ~ ~ n n c c  " rr~drcatcs that the call hc ~~tlculated cnnnol (ujh~ch I \  thc caw w ~ t h  ccll (1)).A value o f "  
variable was no1 included as a ccll conditioning varlablc \o thnt all values ot that v;ir~ahle ; ~ l c  included In lhc ccll. 

'The average bia\ 1s obtained by a weighted Incan of the ccll bins values. using the conl~ol  d~rtr~botion cells arc omitted in tak~ng mean\. ncro\s cell\ ar the wc~ghts. '.NA'' 

0 
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Participants ( D  = 1) are oversampled in our data relative to their population 
proportions. We reweight the data to random sample proportions, and use the 
parametric logit model to estimate Pi." In the general case, KO, and K,, are 
functions of more than just Pi. In the classical selection model and the extension 
of the matching method developed in Heckman, Ichimura, and Todd (1997, 
1998; first drafts 19931, however, these functions depend only on P,. The 
extension of the estimation method to vector-valued arguments for the K 
functions is straightfonvard. 

We estimate the bias functions using the "double residual regression" method. 
Form expectations of equation (16) conditional on Pi and Di to obtain 

Remove the portion of Xi and y that depends on Pi and D, (i.e., the 
conditional means) to form an adjusted version of (16): 

Run "adjusted" least squares on this equation to estimate P."" The conditional 
expectations E(y.  Pi,Di) and E(Xi Pi,Di) are consistently estimated using this 
method under conditions stated precisely in Appendix A." 

To estimate the components of the bias term B(P(X)),  we use a l9cal linea; 
regression estimator applied to the X-adjusted residuals, ci = Yj -Xi  P, where ,8 
is estimated using the first stage procedure just described. The pointwise 
estimator of K,(P,,) in the neighborhood of Po is denoted K,(P,), where 
Z?,,(P,) and ?,(Po) are defined as 

(18) 	 argmin [c, -K,(P,,) - Y,(P , , ) (~-P,)]'G 
Kc?,Yd ,€ { D= (1) 

39 The weights are given in the footnote to Table 111. As is common in many evaluations (see the 
discussion and methods of solution in Heckman and Robb (198511, persons in the { D = 1) group are 
oversampled compared to persons in the { D= 01 group. This gives rise to the problem of choice-based 
sampling. The problems raised by choice-based sampling are a special case of the problem of 
weighted distributions first analyzed by Rao (1965: 1986) and the solution is the same as his: weight 
the sampled distributions back to population proportions using population weights. Amemiya (1985) 
discusses applications of Rao's method in econometrics. Todd (1995) discusses estimation of the 
model in the text using nonparametric estimators for P. Her evidence suggests that estimation of P 
assuming a logit functional form is innocuous in our sample. Heckman, Ichimura, and Todd (1996; 
first draft 1994) show that the correction for choice-based sampling is strictly not required to 
estimate the bias functions. We reweight the data in order to derive estimates of the selection bias 
functions that are functions of P. 

40 The "adjusted" least squares trims out observations for which f ( P  I D = 1)  is too small. Such 
"trimming" is required to obtain uniform convergence of the estimator. See Appendix A for details 
and for the conditions required to secure consistency and asymptotic normality of P.  Yatchew (1997) 
presents a simpler alternative estimator that avoids this first step procedure for estimating 0. 

41 See Malinvaud (1970) for references on the origins of the double residual regression method. 
Robinson (1988) extends it to semiparametric models. 
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where Po is a given point in the support of pi for { D = d l ,  G is a kernel with 
properties fully characterized in Appendix A, {a,} is a sequence of smoothing 
parameters, and piis the ith individual's estimated value of P. If y,(P,) is set to 
zero for all Po, (18) becomes the standard kernel regression estimator. Introduc- 
ing y,,(P,) removes the linear bias term in the neighborhood of Po, gives an 
estimator that is robust to the distribution of the regressors, and produces better 
boundary behavior than is produced using standard kernel regression. We 
account for the estimation of the parameters of P in deriving standard errors 
and test statistics. See Appendix A for further discussion. 

The local linear regression method can be used to construct matches and to 
extend matching to regression-adjust for X.  As demonstrated in Heckman, 
Ichimura, and Todd (1997; first draft 1993)' local linear matching on P defines 
the vVO,, l ( i ,j )  in ( 5 )  to be 

where 

This weight can be used to construct consistent pointwise estimators of (1 )  or 
averaged estimators of (2). Consistency and asymptotic normality of these 
estimators is established under conditions specified in Heckman, Ichimura, and 
Todd (1998; first draft 1993). Regression-adjusted local linear matching removes 
X p  from Yo.Applied to participant and comp~rison group data, formula ( 5 )  o; 
(6) is used with weights (19) and with (Y,-XI  ,B) in place of y. The estimates P 
are obtained from the first stage estimator of equation (17). 

We obtain nonparametric estimates of each of the components in (14) by 
decomposing our estimate of the bias i? into the sample analogs of the three 
terms in (14) as follows: 
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where 

P, E S, 

where N, denotes the size of the D = 1 sample, No denotes the size of the 
D = 0 sample, "*" indicates an estimate, P, =P(X,)  for person i, Y,(P,) is the 
value of Yo, for person i with probability P,, where S,, SIP \Sp, Sop \Sp are 
analogous to S,, Slx\Sx,  and S,,\S, in (14) and where the counterfactual 
outcome in the no-treatment state for a D = 1 observation with probability P,, 
E(Y,, I PI,D, = 01, is estimated by a local linear regression of Yo, on P, using 
data on persons for whom D = 0. Each term in the summations on the 
right-hand side of (20) is self-weighted by averaging over the empirical distribu- 
tion of the P in either the D = 1 or D = 0 sample. Under random sampling, 
each term is consistently estimated and times each term centered around its 
expected value is asymptotically normal.42 

Following the analysis of the JTPA experiment reported in Bloom, et al. 
(1993), we use quarterly earnings and total earnings in the 18 months after 
random assignment as our outcome measures. Table V presents consistent and 
asymptotically normal estimates of the three components of decomposition (14) 
using the earnings data from the JTPA experiment and estimated using the 
formulas presented below equation (20). The control group sample gives infor- 
mation on Yo for those with D = 1 and the sample of eligible nonparticipants 
gives Yofor those with D = 0. The first column in Table V indicates the quarter 
(three month period) for which the estimates are constructed. These quarters 
are defined relative to the month of random assignment or eligibility determina- 
tion. Each row corresponds to one quarter, with the bottom row reporting 
averages over the first six quarters (18 months) after ranndom assignment. 
Column (1) reports the estimated mean selection bias B. The next three 
columns report estimates of the components of the decomposition in (14). The 
top number in each cell is the estimate, the number in parentheses is the 
bootstrap standard error, and the number in square brackets is the percentage 
of B for the row that is attributable to the given component. The first 
component, B^,, is presented in column (2) of the table. The component arising 
from misweighting of the data, B2, is givpn in column (3), and the component 
due to selection bias rigorously defined, B1, appears in column (4). Column ( 5 )  

42 The asymptotic normality of each component is justified by Theorem A. l  of Appendix A. 
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SELECTION BIAS 

TABLE V 

DECOMPOSITION BIASFOR THE BESTPREDICTOR FOR THEOF MEANSELECTION MODEL 
PROBABILITY PARTICIPATION^OF PROGRAM 


Experimental Control and Elig. Nonparticipant (ENP) Samples, Adult Males, 

508 Controls and 388 ENPs 


(1) (2) (3) (4) ( 5 )  ( 6 )  (7) 
Mean Nonoverlap Density Selection Average ~ ~ *vetage ~~i~~ (gs,,) ~ 

~ i f f e r e n c e ~  Support' Weighting Bias Bias Treatment as of % of 
Quarter ( B )  (&I  ( 1  (gs,,) Impact Treatment 1mpactd 

Q t r l  - 420 190[- 45701 - 627[149%] 17[- 4%] 29 5 566% 
(38) (31) (32) (34) (63) (30) 

Qtr2 -352 2091-59%1 - 581[165%] 191-6%1 32 37 88% 
(47) (41) (45) (35) (65) (33) 

Qtr3 - 343 221[- 65961 -576[168%1 12[- 3%1 20 57 35% 
(55) (39) (50) (43) (79) (34) 

Qtr4 - 294 234[- 80%1 - 568[194%] 41[- 14%] 68 60 114% 
(57) (40) (46) (42) (79) (34) 

Qtr5 -311 232[-75%1 -576[185%1 33[- l o%]  54 44 121% 
(57) (40) (51) (41) (77) (35) 

Qtr6 - 334 223[ - 67961 - 573[172%1 16[- 5%1 27 61 44% 
(63) (45) (51) (44) (81) (34) 

Average 	 - 342 218[ - 64%1 -584[170%1 23[ - 7%] 38 44 87% 
of 1 to 6 (47) (38) (41) (33) (63) (14) 

"The best predictor model for the probability of program participation includes training center ~nd~ca to r s ,race, age, 
education, marital status, children aged less than 6, labor force status transitions, job spells, current and past vocational 
tra~ning, total number of household members, and earnings in the month of random assignment or eligibility determination. 
(See Table 111 for model estimates and Appendix C for prediction rate comparisons) 

he percentage of the mean difference attributable to each component appears in square brackets in the appropriate 
column. Bootstrapped standard errors based on 50 replications with 100% sampling appear in parentheses. 

'A 2% trimming rule was used in determining the overlapping support region, and a 0.06 fixed bandwidth was used for the 
nonparametric estimates (See Appendix A for details.) Proportion of controls in the overlap region S p = 0 60, proportion of 
ENPs In S ,  = 0.96. 

d ~ h efinal column gives the ratio of the absolute value of zs to the absolute value of the experimental impact estimate, 
times 100. The experimental impact estimate is based on the f:ll treatment and control sample. 

A A 

presents qP(Gxevaluated with X =P) ,  the selection bias for those in the 
overlap set S,. Column (6) presents the experimental impact estimate calculated 
using the full control and treatment group samples while column (7) 

A 

expresses qpas a fraction of the experimental program impact estimate. All of 
the values in the table are reported as monthly dollars. Thus the first row and 
first column of Table V reports a mean earnings difference of -$420 per month 
over the three months of the first quarter after random assignment. The 
percentages of controls and ENPs in the common support region for Pi are 
reported in the table notes. 

A remarkable feature of the estimates in Table V is that for the overall 18 
month earnings measure, terms B, and B, are substantially larger than the 
selection bias component B,.The selection bias is a small fraction (only 7%) of 
the conventional measure of selection bias and is not statistically significantly 
different from zero.43 These results on the bias for the overall impact of the 

43 For adult women and for youth the estimated selection bias is proportionately higher, although 
the conventional measure B is lower than for adult males. For adult women and vouth the bias 
measures B and B3 are of the same order of magnitude. These results are reported in Heckman, 
Ichimura, and Todd (1997; first draft 1993). 
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program appear to provide a strong endorsemen; for matching on P as a 
method of program evaluation. However, the bias GPthat is not eliminated by 
matching is still large relative to the estimated treatment effects, as is shown in 
the last two columns. 

The decompositions for quarterly earnings tell a somewhat different story. 
There is more evidence of selection bias in quarters 4 and 5 ,  although even in 
these quarters the selection bias is still dwarfed by the other components of bias 
in (20). Expressed as a fraction of the experimental impact estimate, the 
quarter-by-quarter biases are substantial. 

The evidence for the empirical importance of selection bias that cannot be 
removed by matching is even stronger when we examine the bias at particular 
deciles of the P, distribution (conditional on D = I )  in the overlap set. Table 
VII, discussed below, shows that the estimates of bias at the deciles of the 
control distribution of P are large, negative, and statistically significant at the 
lowest decile, and large and positive at the upper decile. The apparent success of 
matching on P in eliminating some of the conventionally-measured selection 
bias in the overall estimate of program impact masks substantial bias over 
subintervals of P. The bias that remains after matching is a large fraction of the 
experimentally-estimated program impact. Our evidence of substantial pointwise 
bias that averages out to small bias over certain intervals is reminiscent of what 
can occur in the classical selection bias model, as noted in the discussion 
surrounding Figure I .  Moreover, it is inconsistent with the identifying assump- 
tion used to justify matching. This empirical regularity occurs in the other 
models estimated below and is a central empirical finding of this paper. 

7. TESTING THE CONDITIONS THAT JUSTIFY MATCHING, OUR EXTENSION 

O F  MATCHING, THE INDEX SUFFICIENCY HYPOTHESIS, AND THE 

CONDITIONAL DIFFERENCE-IN-DIFFERENCES METHOD 

We now refine our characterization of the bias function by testing several 
important hypotheses. The first hypothesis is the fundamental identifying as-
sumption (7) required to identify parameter (1)using matching. Rejection of this 
hypothesis for a broad array of probabilities of participation P, selected on the 
basis of various criteria, leads us to test the validity of regression-adjusted 
matching. In that method, we postulate econometric separability and exclusion 
restrictions and write X = ( R ,  Z ) ,  Yo  = R'P + ql, and E(Uo I X, D )  = E(UoI 
Z ,  D). In place of (71, we postulate conditional mean independence for the 
disturbances that parallels the conditions specified in (A-1) and consider Uo.IL D 

I Z or the disturbance parallel of (A-2),U, li D I P ( Z ) or its implication 

Separability is a familiar econometric restriction. Exclusion restrictions are 
motivated by the temporal structure of the program we analyze. Outcomes are 
affected by variables R,  like local labor market variables and time effects, that 
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are experienced after participation decisions are made due to uncertainty about 
future labor market shocks. 

Our evidence on hypothesis (21) is mixed. Using conventional asymptotic 
standard errors, we reject (21). Using standard errors that adjust for estimation 
of p, which are justified in an extensive Monte Carlo analysis reported in 
Heckman, Ichimura, and Todd (1996; first draft 1994), we do not reject the 
hypothesis. However, the estimated pointwise bias expressed as a function of P 
is large. We are reluctant to declare a sizable estimated effect to be zero based 
on these tests and we conclude that even after adjusting for R,  matching is not 
vindicated in our sample. However, the regression-adjusted method improves on 
simple matching on P in producing somewhat lower average bias over certain 
intervals. 

We test the index sufficiency hypothesis (10,  and do not reject it, although 
the power of our test is not high in the empirically-relevant range of alterna- 
tives. Therefore, a key necessary condition justifying the classical econometric 
selection bias model is consistent with our data. Large pointwise bias and small 
average bias over certain intervals are consistent with the econometric selec- 
tion model. Finally, we test the identifying assumptions of the conditional 
difference-in-differences estimator and find that they are satisfied in our data 
for all but low values of P in time periods near the date of random assignment 
or eligibility determination. 

7.1. Testing the Validity of Matching on P 

We construct our test of the hypothesis (7) from estimates of iii,(P) =$yo I 
P,D = 1) and n?l,(P) =&(yo I P ,  D = 0) obtained from the separate local linear 
regressions of Yo on P for observations with D = 1 and of Yo on P 
for observations with D = 0. The asymptotic normality of the two terms 
(Nda , , , ) 1 /2 (M; , , (P ) -~~d(P) )-N(T,,Vd), d = 0 , 1  is discussed in Section A.5 
of Appendix A, where T, and V, are also defined. (See Theorem A.3.) We pick 
the smoothing parameters to satisfy a,\l = a,\,,,= a,v. The statistic used to test 
hypothesis (7) is 

(i i i l(P) - ~ ( / N )a + a no)^ - iii,(P)) 

- x2(1> ,  
where I/, is a consistent estimator of V, for d E {O, 1) and N, and No are the 
sample sizes for D = 1 and D = 0, respectively. For te~ting~hypothesis (21), the 
test statistics are analogous except that Yo is replaced by U,. The test statistics 
and estimators of the variances for this case are presented in Appendix A, 
Section A.6. The Monte Carlo evidence reported in Heckman, Ichimura, and 
Todd (1996; first draft 1994) suggests that adjustment for the estimation of ,8 is 
required to produce correct standard errors for samples of size 500-1,000 with 
the variation in the regressors found in the samples used in our analysis. 

Tables VIA and VIB present the "p values" (rejection rates under the null) 
for these hypotheses for various values of the probability of program participa- 
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TABLE VIA 


TESTSOF CONDITIONAL OF EARNINGS
MEANINDEPENDENCE AND RESIDUALS 
BASEDON ASYMPTOTIC ERRORSSTANDARD WITHOUT ADJUSTMENT 

FOR ESTIMATIONOF pa  
E x p e r i m e n t a l  Controls and Elig. N o n p a r t i c i p a n t  (ENP) Samples 

Adult Males, 508 Controls and 388 ENPs 

p-Values from Tests of Condit~onal Mean Independence of Earningsh 
H,: E ( Y o l P , D =  l j = E ( Y o I P , D = O j  

Joint Test Joint Test 
for Quarters for Quarters 

Value of P i = l t 0 t = 6 ~  I =  - 6 t o l =  - 1  

0.0025 
0.005 
0.01 
0.02 
0.03 
0.04 
0.05 
0.10 


Joint 


p-Values from Tests of Conditional Mean Independence of ~ e s i d u a l s ~  
H O :  E ( U o l P , D  = 1 j =  E ( U o l P , D  = 0) 

Joint Test Joint Test 
'for Quarters for Quarters 

Value of P t = l t o t = 6  I =  - 6 t o f =  - 1  

0.0025 
0.005 
0.01 
0.02 
0.03 
0.04 
0.05 
0.10 

J o i n t  

"Dens~tiesmere estimated using a biweight kernel and using the fixed banduidth proposed in 
Silverman (1986) (defined in Appendix A, Section A.2). Conditional means were estimated by 
local h e a r  regression using a fixed bandwidth of 0.06 and a biweight kernel. (See Append~x A, 
Section A.l for a description of local linear regression and Section A.6 for a description of the 
test procedure.) 

h ~ i n a lrow presents the p-value from a joint test. 
'The number of observations uithin one bandwidth of P =  0.0025 in quarter 1 are 140 

controls and 328 ENPs. For other P points, the numbers of observations are the follouring: 143 
controls, 331 ENPs ( P  = 0.0051, 150 controls and 336 ENPs ( P  = 0.01), 158 controls and 345 
ENPs ( P = 0.021, 170 controls and 350 ENPs ( P  = 0.031, 184 controls and 353 ENPs ( P  = 0.041, 
198 controls and 355 ENPs ( P =  0.051, and 120 controls and 52 ENPs ( P  = 0.1). The number of 
obselvations in other quarters are similar, but valy slightly because of the unbalanced panel 
data. 
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TABLE VIB 

TESTSOF CONDITIONAL OF RESIDUALS ONMEANINDEPENDENCE BASED 
ASYMPTOTIC ERRORS FORSTANDARD WITH ADJUSTMENT 

ESTIMATIONOF pa  
Experimental Controls and E l i g .  N o n p a r t i c i p a n t  (ENP) S a m p l e s  

Adult Males, 508 Controls and 388 ENPs 

p-Values f rom Tests of Condi t~onal  Mean Independence of Residuals" 
H,,. E(L1,  I P ,D = 1) = E(U0 1 P .  D = 0) 

Joint Test Joint Test 
for Q u a r t e ~ s  for Quarters 

Value of I' l = l t o i = b  i =  - 6 t o i = l  

0.0025 
0.005 
0.01 
0.02 
0.03 
0.04 
0.05 
0.10 

Joint 

' D e n s ~ t i e s  k e l e  e s t ~ m a t e d  uslng a biweight kernel and using the  fixed bandnidth  
proposed In S~lvel.man (1986) (dehned In A p p e n d ~ u  A. Section A.2). C o n d ~ t ~ o n a l  means 
were estimated by local linear r s g ~ e s s i o n  uslng a fixed bandwidth of 0.06 and a bineight 
k e ~ n e l .  (See Appendix A.  S e c t ~ o n  A.1 for a descrlptlon of local l l n e a ~  regression and 
S e c t ~ o n  A.6 for  a d e s c ~ i p t ~ o n  of  the test procedure.) 

h ~ ~ n a lron presents t h e  ji-value from a joint test. 

tion P located at least one bandwidth apart, so that the test statistics are 
statistically independent. The top portion of Table VIA reports tests of hypothe- 
sis (7). The relevant period over which the test should be performed is the 
post-random assignment period ( t = 1,.. . ,6) since it is post-entry time periods 
on which the program would be evaluated. For the sake of completeness, 
however, we also record the test results for the pre-random assignment period 
( t  = - 1,. . . , -6).44 The bottom portion of the table reports tests of hypothesis 
(21). Hypothesis (71, which justifies matching on P, is decisively rejected. In 
addition, hypothesis (21) is rejected, so regression-adjusted matching is also 
inconsistent with our data. When second order-adjusted standard errors are 
used that account for the estimation of p, as in Table VIB, the evidence is less 
clear cut. However, the pointwise bias is large (see Figure 3 for bias from the 
best-predictor P )  and it seems inappropriate to ignore this bias and accept the 
null of no selection bias when an asymptotically-equivalent test of the same 
hypothesis rejects it. Table VII reports the pointwise bias estimates at deciles of 
the distribution of P for controls. The bias is large, negative, and statistically 
significant at low values of P and large and positive at high values of P, which is 
inconsistent with the null hypothesis that matching is a valid estimator. 

44 The same inferences are found when we test over all 12 periods although such a test is not 
e s p e c i a l l y  i n t e r e s t i n g  f o r  judging the performance of matching as an evaluation estimator on 
post-random-assignment d a t a .  
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Average Earnings over Six Post-Program Quarters 
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FIGURE3.-Local linear regression estimates of pointwise bias ( B ( P ( X ) ) ) ,adult males. best 
predictor P model for the probability of program participation; bandwidth = 0.06, trimming = 2%. 

7.2. Testing Index Suflciency 

Our data are consistent with the hypothesis of index sufficiency. Appen- 
dix A, Section A.6.2, presents the test statistic for this hypothesis. We test 
E(U,, I P ,  Z, D = 1) -E(U,, I P,Z ,  D = 0) =K,,(P, Z )  -K,,(P, Z )  for different 
discrete regressors, Z, shown in the subtable headings of Table VIII, using the 
best-predicting P score selected on the basis of tests discussed in Appendix c .~ '  
For most cells, and tests over all cells using conventional significance levels, we 
do not reject the hypothesis in the relevant post-random assignment period 
( t  = 1, ... ,6) or for that matter in the pre-random assignment period ( t  = 

- I , .. ., -6). P values are chosen at least one bandwidth apart so that the test 
statistics are statistically independent. A Monte Carlo analysis of the test 
statistic presented in Appendix D reveals that the test is consistent but quite 
conservative. It rejects at a far higher rate (25%) than the normal size (5%). On 
the other hand, the power of the test is not especially high (roughly 20%) for a 
large range of alternatives away from the null. A similar pattern of acceptance 

45 Since the terms E(Uo, 1 P , Z , D = 1)and E(Uot 1 P ,  Z , D = 0) are identified only up to unknown 
constants. we do not test the hypotheses K,,,(P. Z ) =K, , (P)  and K, , (P .  Z ) =K, , (P) .  Our test of 
index sufficiency is different from that of Fan and Li (1996) because we test the hypothesis that 
differences are index-sufficient, not levels. Our test is also different from that of Ait-Sahalia, Bickel, 
and Stoker (1994) because we test for index sufficiency of a subfunction and not an entire function 
and we use local linear regression methods which greatly simplify the derivation of the sampling 
distribution of test statistics. See the discussion in Appendix A. 



TABLE VII 

ESTIMATEDS ~ I . ~ C T I O NBIASAT D~CII.ES FOR 'THb Bbsr PREDICTOR01: T H E  C O N ~ R O I .  P DISTRIBUTION P MOI)FI" 
Quarterly Earnings Stated in Monthly ~ o l l a r s ~  

E x p e r i m e n t a l  Control and Elig. Nonparticipant (ENP) S a m p l e s ,  Adult Males, 508 C o n t r o l s  and 388 ENPs 

Dccilc o l Lhe Control Empirical Distribution ol PL 
(Dccilc houndaries shown in brackets) 

1 2 3 3 5 f1 7 8 9 
Quar ter  [0.0002,0.0023) [0.0023.0.00S7) [000X7,0.0152) [0.0152,0.0269J [0.0269,0.0410) [0.0410,0.0X22) [O.OX22,0.09S3) 10.0983,0.1337) I0.1337,0.25311 
~ -

Qtrl  -338 - 22') - 139 - 83 -20 84 66 -2 517 
(121) (92) (83) (86) (101) (122) (131) (175) (320) 

Otr2 -260 - 194 - 144 - 95 - 23 130 157 228 492 

(139) (10')) (94) (86) (97) (131) (127) (165) (348) 
Qtr3 -295 - 195 - 118 -59 6 176 202 275 442 

(140) (1 11) (96) (86) (95) (134) (127) (193) (378) 
Qtr4 - 1'13 - 103 -50 - 21 38 193 152 54 530 

(133) (107) (95) (90) (102) (133) (132) (183) (376) 
Qtr5 -246 - 146 -84 - 45 22 257 246 - 163 519 

(139) (112) (102) (97) (11')) (169) (176) (240) (398) 
Otrb -359 262 - 173 -76 3 169 191 97 428 

(117) (94) (88) (102) (130) (175) (191) (205) (342) 
Avcragc 0 1  - 282 - 188 - 118 - 63 3 168 169 81 488 

I to 6 (116) (91) (81) (79) (98) (130) (117) (147) (281) 

" T h c  best predictor rnodcl ir given in Table 111. 
%ootstrap s tar~dardcrrorr a r e  rhown in parenthcscs. ' lbcy a r e  hascd o n  50 repl ica t~onswith 100% rampling. Por Lhe nonpararnetric estirnales, a t i e d  bandwidth ol 0.06 arid a 

biweighl kernel funclion were used. (Scc Appendix A,  S c c t i o ~ ~ sA.l and A.5.2 lor additional details concerning the  crtimation procedure.) 
'The  deciler a r e  based o n  t h e  dislribution of control probabi l i l~eso l  participation in t h e  region ol overlapping support,  S p .  A 2% rule was i ~ s c dill dclcrmining thel c ~ m m ~ n g  

ovcrlapplng rupport reglon, and 21 0.06 fixed bandwidth was urcd  for the  nonperametric estlrnales. (Scc Appendix A for  dctallr.) Propoctlon ot contruls In the  overlap 1cglo11 
SI' -- 0.60, proportion of ENPs in S p  = 0.9f1. 'I'bcre are  too few cligihle nonparticipant observations t o  cstimatc the  biar reliehilily in Lhe IOlh decile 
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TABLE VIII 

p-VALUES OF INDEX aFROM TESTS SUFFICIENCY 
Experimental Controls and Elig. Nonparticipant (ENP) Samples 


Best Predictor Model for the Probability of Program Participation 

Adult Males, 508 Controls and 388 ENPs 


Tests by Race and ~ t h n i c i t ~ ~  

Joint Test Joint Test 
for Quarters for Quarters 

Value of P t = l t o t = 6  t =  - 6 t o  t =  - 1  

Tests by Training cen te rb  

Joint Test Joint Test 
for Quarters for Quarters 

Value of P t = l t o t = 6  t =  -610 t =  1 

0.008 0.4942 0.8503 
0.026 0.3404 0.1392 
0.044 0.0952 0.0230 
0.062 0.0925 0.0626 
0.080 0.4062 0.2633 
Joint 0.4667 0.5959 

Tests by Years of Schooling categoriesh 

J o ~ n tTest Joint Test 
for Quarters for Quarters 

Value of P t = l t o t = 6  t =  - 6 t o t =  - 1  

0.003 0.4717 0.4646 
0.022 0.5736 0.2842 
0.042 0.2576 0.0967 
0.061 0.0792 0.0188 
0.080 0.0967 0.0964 
Jointc 0.1718 0.1686 

aDensities were estimated using a biweight kernel and using the fixed bandwidth 
proposed in Silverman (1986) (defined in Appendix A, Section 14.2). Conditional 
means were estimated by local linear regression using a fixed handwidth of 0.06 and 
a biweight kernel. (See Appendix A, Section A.l  for a description of local linear 
regression and Section A.6 for a description of the test procedure.) Standard errors 
used in the test are asymptotic and are not adjusted for higher order terms (as 
described in Appendix A, Section A.6). When adjustment is made for estimation of 
p, the estimated standard errors are substantially larger. 

h ~ h etests hy race and ethnicity include "White" and "Black" groups. The tests 
by training center include "Fort Wayne," "Jersey City," and "Providence" The 
tests by years of schooling category include "Fewer than 10 years of schooling," 
"10-11 years of schooling," "12 years of schooling," and "More than 12 years of 
schooling." 

'Joint tests shown include only a subset of the P points that are at least one 
handwidth apart. 
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of the null of index sufficiency is found for all specifications of P shown in Table 
VIII, except when P scores are used which exclude both earnings and recent 
labor force transition information. 

Our acceptance of index sufficiency is necessarily qualified because the power 
of our test is not especially high. The test partitions the data by demographic 
group, by training center at which the experiment was conducted, and by 
education group. This partitioning sometimes produces very small cells and it 
greatly restricts the range of P over which the test can be performed. When 
certain cells are deleted, the range of P values over which the test can be 
performed is greatly expanded. For this reason, the tests reported in Table VIII 
omit the "Hispanic" race/ethnicity and the "Corpus Christi" training site cells. 
Unlike the case of our test of the conditional independence assumptions that 
justify the conventional matching estimator, where the rejections are firm, here 
we can only make the guarded statement that the data are consistent with the 
null hypothesis of index sufficiency and that further tests with larger samples 
would be highly desirable." The pointwise differences in the bias are sometimes 
substantial (see Figure D-2 displayed in Appendix D), but so are the standard 
errors. 

Moreover, as noted in Section 3.2, in order to use the index-sufficient model 
to construct the desired counterfactual (1) it is necessary to be able to determine 
a set of X values where E(U,, I P (X) ,  D = 0) = 0. The restricted support of 
P ( X )  evident in Figure 2 precludes this identification strategy unless parametric 
restrictions are invoked. The restriction on the-support of P in our sample also 
eliminates the possibility of a more general statement about the shape of B(P)  
over the full support of P for program participants. Future evaluations should 
select comparison groups to enlarge S ,  to the full support of program partici- 
pants in order to allow valid inferences about the entire sample of participants. 

7.3. Testing the Identifying Assumption Justifying the Conditional 
Difference-in-Differences Method 

Maintaining index sufficiency to characterize bias B(X)  simplifies the testing 
of identifying assumption (12). In light of our evidence on index sufficiency we 
can reformulate it in the following way: 

(22) B , (P (X) )  -B, , (P (X) )  = 0, for some t , t '  

where t is a post-program period and t '  is a pre-program period. 
Figure 4 plots the pointwise bias estimates over all t .  The B,(P) are not 

constant over time, or even equal for time periods t = - t '  at low values of P for 

46 In general, a multiple index model would characterize participation in the program, reflecting 
the preferences of the individuals and those of the bureaucrats who accept people into the program. 
Heckman, Smith, and Taber (1996) report the absence of cream-skimming behavior at one of the 
JTPA training centers analyzed in this paper. (The required data are not available at the other 
centers.) In a larger sample, or with different decision rules used by program officials, the single 
index model might be rejected in favor of a multiple index model. Local linear regression methods 
can easily be modified to estimate models with multiple indices using higher dimension kernels. 
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(a) Pointwise Bias Estimates, P= 0.0025 

Time 

(b) Pointwise Bias Estimates, P= 0.005 
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FIGURE4.-Local linear regression estimates of pointwise bias B , ( P ( X ) )over time, adult males, 
best predictor P model for the probability of program participation; bandwidth = 0.06, trimming = 

2%. 
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(c) Pointwise Bias Estimates, P= 0.01 

00 -
N 

Time 
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FIGURE4.-C011tin~~ed 
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(e) Pointwise Bias Estimates, P= 0.03 

s -

Time 


(f), Pointwise Bias Estimates, P= 0.04 
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FIGURE4.-Continued 
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(g) Pointwise Bias Estimates, P= 0.05 
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(h) Pointwise Bias Estimates, P= 0.1 
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FIGURE4.-Continued 

time periods near the time of the participation decision. In general, however, 
the identifying assumption justifying the conditional difference-in-differences 
estimator is consistent with our data. The fourth column of Table IX presents p 
values for tests of hypothesis (22) for symmetric differences around t = 0.47Only 

j7 The inference using the unadjusted standard errors is the same as that reported in Table IX. 
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TABLE IX 

p-VALUESFROM TESTS EFFECTFOR FIXED AND DIFFERENCE-IN-DIFFERENCES 

~ P E C ~ F ~ C A T ~ O N SFORTHE BIASFUNCTION 
A l l  Tests are S y m m e t r i c  Around T i m e  t = 0"' 

A d u l t  M a l e s ,  508 C o n t r o l s  and 388 ENPs 

Value of P 
(1) 

Null tested jo~ntly over t E ( 1 , 2 , 3 . 4 , 5 , 6 ) C  

Fixed Effect Fixed Effect 
Test for Controls Test for ENPs 

(2) (3) 

0.0025 
0.0050 
0.0100 
0.0200 
0.0300 
0.0400 
0.0500 
0.1000 

O v e r a l l  

Null tested jointly over t E (1.2,3IC 

0.0025 
0.0050 
0.0100 
0.0200 
0.0300 
0.0400 
0.0500 
0.1000 

O v e r a l l  

Null tested jointly over t E {4.5,6IC 

0.0025 
0.0050 
0.0100 
0.0200 
0.0300 
0.0400 
0.0500 
0.1000 
Overall 

0.9456 
0.8779 
0.7217 
0.6256 
0.7353 
0.8467 
0.8522 
0.4140 
0.9498 

0.9968 
0.9832 
0.9115 
0.8132 
0.8901 
0.9206 
0.9263 
0.9931 
0.3141 

Difference-in-

Differences Test 


(4) 

0.9386 
0.8424 
0.6266 
0.6123 
0.8768 
0.9772 
0.9906 
0.9966 
0.9376 

aDensitles were estimated uslng a b~u , e~gh t  kernel and using the fixed bandwidth proposed In Silverman (1986) (defined in 
Appendix A,  Section A.2). Conditional means were estimated by local linear regression using a fixed bandwidth of 0.06 and 
a blwelght kernel. (See Appendix A, Sect~on A. l  for a description of local linear regrewon and Section A.6 for a description 
of the test procedure.) Standard errors used in the test are asymptotic and are not adjusted for higher order terms (as 
de~c r ibed  in Append~v A,  Section A.6). When adjustment i5 made for estimation of P. the estimated standard errors are 
substantially larger. 

%ull hypothesis for fixed effect5 test for controls i5 H o :  K , , ( P ) - K , , , ( P ) =  for fixed effect test 0: null h y p o t h e ~ i ~  
for ENPs is Ho :  Ko , (P )  - KO, _ , ( P I  = 0: null hypothesis for difference-in-differences test is H o :  [ K , , ( P )  - K1,_,(!')I -
[Ko , (P )- KO, _,(PI1 = 0: where ( - t )  is a pre-program period t periods before random assignment or  eligibility determina- 
tion. 

C V a l ~ ~ e sof P in the overall test are at least one bandwidth apart.  
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for the lowest values of P in the joint test over all six pairs of quarters is the 
null close to being rejected at conventional levels. Outside the interval t E 
[ -3,31, hypothesis (22) is never close to being rejected for any values of P. 
Table X presents the bias by P decile in a format comparable to that of Table 
VII. For most deciles, the bias is substantially lower than for the matching 
estimator. Pointwise, the estimated bias using the difference-in-differences 
matching estimator, which is a differenced version of the regression-adjusted 
matching estimator, is lower than that for the cross-sectional matching estimator 
or the regression-adjusted matching e~t imator .~ '  

Column (2) of Table IX reports p values for the test of the identifying 
assumption of the fixed effect model (K,,(P) =K,,(-,,(P)). In a stationary 
environment, the fixed effect method applied to controls ( D = 1) is sufficient to 
identify the parameter of interest." This hypothesis is decisively rejected overall 
for the ENPs and in most cases for the controls, but the data are consistent with 
the hypothesis of fixed effects in the interval outside t E [ - 3,3]. The results in 
column (3) of Table IX show that the same conclusions apply to the hypothesis 
Kot(P)= Ko,(-rl(P).  

8. ESTIMATED SELECTION BIAS UNDER ALTERNATIVE ESTIMATORS AND 

SEWSITIVITY OF ESTIMATES TO ALTERNATIVE SPECIFICATIONS OF THE 

OUTCOME AND PARTICIPATION EQUATIONS 

This section presents estimates of selection bias associated with the alterna- 
tive estimators described above and explores the sensitivity of the estimated -
average selection bias, BSP,to variations in the variables included in the 
outcome equations ( R )and in the participation equation ( Z ) .We also compare 
the selection bias, rigorously defined, that is obtained from the method of 
Barnow, Cain, and Goldberger (1980) with the bias from the local linear 
regression estimator. 

Table XI presents estimates of selection bias associated with different match- 
ing estimators, where matching is performed using the best-predictor model for 
P. The first column of Table XI gives the benchmark difference in raw mean 
earnings between the control and ENP groups. Column (2) is the bias for a 
local-linear P matching estimator without regression-adjustment, which imposes 
a common support condition and uses nonparametric local linear regression 
methods in constructing matches. The average bias estimate of $47 improves 
substantially over a simple mean-difference estimator. Column (3) gives the 
estimated bias for the regression-adjusted version of the same estimator. The 
fourth and fifth columns present the bias estimates for the difference-in-dif- 

j8 The bias by decile for the regression-adjusted matching method is only slightly smaller (less 
than 10%) for each decile. For the sake of brevity we do not display these results. 
"See Heckman and Robb (1985). 
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TABLE XI 

COMPARISON SELECTION ESTIMATORSO F  ESTIMATED BIASUNDER ALTERNATIVE 
O F  PROGRAM FOR THE BEST PREDICTOR IMPACTS MODELFOR 

Quarterly Earnings Stated in Monthly Dollars 
Experimental Control ( D = 1) and Elig. Nonparticipant (ENP) ( D = 0) Samples 

Adult Males, 508 Controls and 388 ENPs 

(1) (5) 
( 3 )  Differcncc-ln- D i f f e r c n c e ~ ~ n  

(1) ( 2 )  Regression- Difference5 Differences 
Difference Local Linear A d j u ~ t e d  Local Llnear Regrcss~on-Adjusted 

in P Score Local Llnear P Scorc Local Llnear 
Quar ter  Means  Matchlng Matchlng Matchlng Matchlng 

Qt r l  -418 (38) 33 (59) 39 (60) 97 (62) 104 (63) 
Qtr2 -349 (47) 37 (61) 39 (64) 77 (89) 77 (92) 
Qtr3 -337 (55) 29 (78) 21 (80) 90 (114) 74 (114) 
Qtr4 -286 (57) 80 (77) 65 (82) 112 (90) 98 (91) 
Qtr5 -305 (57) 64 (77) 50 (83) 19 (95) -5  (99) 
Qtr6 -328 (63) 37 (82) 17 (90) 4 (105) -35 (111) 

Average of 1 to 6 -337 (47) 47 (60) 39 (64) 67 (71) 52 (74) 

As a YGof impact 775% 107% 88% 153% 120% 

"The best predictor model was u5ed for the  probability of  participation. I t  1s glr,en in Table 111. 
h ~ o rthe nonparametrlc eTtlmates, a fixed handwldth of 0.06 and a hiwelght kerncl function were used. (See Appcndlx A ,  

Section5 A . l ,  A.1, and A.5 for  addltlonal detall5 concerning the estlmatlon procedure.) B o o t ~ t r a p  ~ t a n d a ~ d  error5 are shown 
In parentheses. They are  based o n  50 replications wlth 100% \ampling. 

ferences and regression-adjusted difference-in-differences estimators, respec- 
tively. The estimated bias is slightly higher.50 

In Table XII, we explore the sensitivity of the bias estimates to alternative 
sets of variables included in the outcome equation. That is, we use the best-pre- 
dictor P model defined in Appendix C throughout the sensitivity analysis but 
vary R. Table XI1 reveals that there is relatively little sensitivity in the estimates 
of selection bias across specifications of the outcome equations. For example, 
comparing the baseline specification with Model I, which includes no regressors 
except for an intercept, shows little effect of inclusion of the baseline regres- 
sors on the estimated overall bias. Addition of training center indicators, 
race/ethnicity, age, and calendar quarter and year dummies (Model 11) to the 
stripped-down Model I decreases the estimated overall selection bias roughly by 
a factor of two. Augmenting the regressors of Model I1 to include measures of 
previous training, work experience, the local unemployment rate, and a dummy 
variable for whether or not a child is present (Model 111) increases estimated 
overall selection bias only by a small amount compared to Model 11. Adding 
schooling, age, and marital status to the Model I11 specification to produce 

50 Heckman, Ichimura, and Todd (1997; first draft 1993) apply the conditional difference-in-dif- 
ferences estimator to data from three other demographic groups and find that it generally yields bias 
estimates similar to those obtained using cross-sectional matching estimators. 
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TABLE XI1 

SELECTION OUTCOMEBIASUNDER DIFFERENT EQUATION MODEU: 
ESTI~IATEDBIASFROM REGRESSION-ADJUSTED LOCALLINEARMATCHINGESTIMATOR"' 

Quarterly Earnings Stated in Monthly Dollars 
Experimental Control ( D = 1)and Elig. Nonparticipants (ENP) ( D = 0) Samples 

Adult Males. 508 Controls and 388 ENPs 

Method of Barnow 
Quarter Baseline' Model 1' Model l l c  Model I l l L  Model l V C  Model V C  Caln and ~ o l d b e r g e r ~  

Qtrl  39 (60) 33 (59) 32 (68) 38 (68) 33 (65) 63 (62) 150 (34) 
Qtr2 39 (64) 37 (61) 33 (64) 38 (68) 32 (63) 63 (65) 126 (28) 
Qtr3 21 (80) 29 (78) 5 (76) 14 (78) 4 (76) 40 (83) 82 (16) 
Qtr4 65 (82) 80 (77) 40 (78) 54 (78) 41 (79) 82 (82) 125 (27) 
Qtr5 50 (83) 64 (77) 32 (75) 44 (78) 28 (77) 66 (80) 142 (45) 
Qtr6 17 (90) 37 (82) -5 (81) 9 (85) - 7  (84) 38 (87) 108 (53) 

Average of 1 to 6 39 (64) 47 (60) 23 (61) 33 (63) 22 (62) 59 (65) 134 (51) 

As a %of  impact 88% 107% 52% 76% 50% 135% 304% 

aThe  regression-adjusted average blas is defined ill Appendix A,  Section A.5.3. In  the estimation of the model, densities 
wcre cstlmatcd uslng a blwcight kerncl and the fivcd bandwldth proposed In Sllvcrnian (1986) (defincd in Appendlx A,  
Sectlon A.2). Thc h ~ a s  funct~on was estlmatcd by local lincar rcgression using fixed bandwldth ot 0.06 and a hlwcight 
kerncl. Thc o\crlapplng support leglon was determined using a 2'-2 trimining rulc and a hlwcight kerncl function. (Scc 
Appendlx A, Sectlon A.l for a de\criptlon of local linear regression, and Section A.4.1 for the method used to  determine 
the overlapping \upport reglon.1 

h ~ o o t s t r a pstandard errors are shown in parentheses. They are based on 50 replications with 100% \ampling. 
'Baseline outcome model includes dummy \ariable\ foi specific training center. race or  ethniclty, schooling. age, and 

previous training. It also includes work experience. local unemployment rate. an  lndlcator for mar~ ta l  status. an indicator for 
ptesence of a child age less than \ix. and quarter and year ~ndlcator \ .  

Outcome Model I ~ncludes  no R \as~ables  and is equivalent to loc;~l linear P score rnatchlng. 
Outcome Model I1 augments 1 wlth tralnlng center lndlcator\, race or  ethnicity, age. and quarter and year indicator\. 
Outcome Model I11 augments I1 with previou~ training. woik experience, local unemployment rate. and presence of a 

child age le\s than six. 
Outcome Model IV  augment\ I1 with local unempioyment rate, presence of a child age less than \LY, \chooling, and a 

marrtal \tatus ~ndicator. 
Outcome Model V augments the basel~ne model w ~ t h  labor forcc transition lnd~cators. 
he Barnon, Cain. and Goldberger (1980)method is based on equation (15) In thc text i%ith the X =  ( R , Z ) the same as 

In thc baseline modcl, and B ( X )= B ( Z )  and E(Uo IX. D = 0) = E(U0 I R .  D = 0) = E(Uo I R )  assumed linear. \Vc Jrnpose a 
common support restrlctlon In definlng the sample used for estlrnarion where ohser \a t~ons are used with P ( Z ) E S p  for the 
baselme model. The blas is computed using the d l s t r~bu t~on  1 = 1 .of P D 

Model IV barely changes the estimated selection bias. Adding the labor force 
transition variables (Model V) that prove useful in estimating the probability of 
participation substantially increases the estimated selection bias. These variables 
are not included in the baseline model and are typically not used as regressors 
in earnings equations. 

The final column of Table XI1 presents the selection bias that arises from 
using the method of Barnow, Cain, and Goldberger (1980). This is a weighted 
linear regression version of our method of regression-adjusted matching. Using 
the same outcome variables (R) and selection variables (Z )  that appear in 
the baseline model, we estimate linear regression (15) where B(X)  =B(Z) is 
postulated to be a linear function of Z and E(Uo IX, D = 0) =E(U, I R ,  D = 0) 
=E(Uo I R)  under their hypothesis, is postulated to be linear in R. We impose 
the condition of common support to secure estimates from the method by using 
the observations with P ( Z )  E f p ,  and we impose common weighting in estimat- 
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ing the regression across ENP ( D = 0 )  and control samples by weighting the 
ENP observations by the ratio of the estimated control and ENP densities 
f i ~D = l ) / f i ~D = O)." The estimated selection biases are large when com- I I 
pared with those obtained from the baseline semiparametric model. Our semi- 
parametric alternative to linear regression methods offers substantial benefits in 
reducing selection bias.52 

Table XI11 presents a sensitivity analysis of the effect of changes in Z on the 
estimated selection bias for both the regression-adjusted local linear matching 
estimator and the difference-in-differences version of the estimator. The base- 
line regressors R from the previous table are maintained through all of the 
specifications examined here. The second column of the table presents the 
baseline selection bias for the regression-adjusted model. "Coarse P I" is a 
model that only includes demographics, schooling, and training center dummies 
in Z.  If there is no access to information on earnings or labor force histories to 
include in Z, the estimated bias for the local linear estimator is substantial. For 
the difference-in-differences estimator, the quarterly bias estimates are also 
substantial but they average out to a low value of $32 per month. Access to 
information on earnings from the year preceding random assignment or eligibil- 
ity determination greatly improves but does not eliminate the estimated selec- 
tion bias for the local linear regression estimator, as shown by the estimates for 
the "Coarse P 11" model. The estimates for the "Coarse P 111" model 
demonstrate that adding local labor force transition variables to the "Coarse P 
I" model greatly reduces the estimated selection bias. The importance of recent 
labor force transitions in predicting P and eliminating selection bias is a major 
empirical finding of this paper. This information was not used in earlier 
evaluations of U.S. job training programs because it was not available. 

9. SENSITIVITY OF THE ESTIMATED BIAS TO ALTERNATIVE DEFINITIONS 

OF ELIGIBILITY, MISMATCH OF GEOGRAPHY, AND ALTERNATIVE 

FORMATS OF SURVEY QUESTIONS 

National comparison group samples are commonly used to evaluate local 
programs. These samples do not place comparison group members and partici- 
pants in the same labor markets. Moreover, the variables and interview formats 

5 I Following the analysis of White (19801, such weighting reduces misspecification error for 
E(Uo I X, P ( Z ) ,D = 1 )  -E(U, I X .  P ( Z ) ,  D = 0)when the bias function is assumed to be linear and is 
in fact not linear. The densities are estimated by kernel methods using the kernel defined in 
Appendix A. Imposing the common support condition ensures that the denominator is nonzero. In 
results not reported for the sake of brevity, we use an alternative way to impose the common 
weighting condition. A regression is first estimated without rewriting to obtain an estimate of B ( X , )  
for each person. and then the common weighting by f (P I D = 1) is used in averaging individual 
B ( X ) estimates. Introducing weighting in the first stage regression makes a substantial difference in 
the resulting estimates of bias. The estimated bias is about four times larger if the regression is 
unweighted and the weighting is performed in the second stage. 

52 Below, in Table XIX, we report estimated bias for a more standard version of the Barnow. 
Cain. and Goldberger (1980)estimator that does not impose common support or common weighting. 



TABLE XI11 

COMPARISONOF ESTIMATEDSELECTION UNDER DIFFERENT FOR BIASBIAS&,judj) MODELS P ESTIMATED FROM REGRESSION-ADJUSTED 

LOCALLINEAR AND DIFFERENCE-IN-DIFFERENCESMATCHING; ESTIMATOR 	 ESTIMATOR"'^ 
Quarterly Earnings S t a t e d  i n  M o n t h l y  Dollars E x p c r i r n c n t a l  Control ( L ) = I )  and Elig. N o n p a r t i c i p a n t  

(ENP) ( L ) = 0) Samplcs, Adult M a l e s ,  508 C o n t r o l s  and 388 ENPs 

Bcst Difference-in- Diflerence-ill- Dilfcrcncc-in- Difference-in-
Prcdictor dillerences Coarse dilferences Coarsc diflcrenccs Coarsc dil lcrences 

Uuartcr P C  Rcst Prcd~ctor P PI '  Coarse P I  PITC Coarse PI1 P111' Coarse PI11 

Q t r l  

Qtr2 
Qt r3  

Qtr4 
Qtr5 
Qt r6  

Average of 
1 t o 6  

As a % 
of i m p a c t  

"Thc rcgrcss~on-adjustcd werage bias is delined in Appendix A, Section A.5.3. In thc estimation of the nlodel, densities were estimated using a biweight kcrncl and thc 
fixcd bandwidth proposcd in S~lverrnan (1986) (delined in Appendix A, Scction A.2). The bias (unction was estimated by local linear regression using a fixcd bandw~dth of 
0.06 	and a biweight kcrncl. (Scc Appcndix A, Scction A I for a description ol Local linear regression.) 

h1300tstrappcd standard crrors are shown in parenthcses. Thcy are based on 50 replications with 100% sampling. 
'I3est predictor modcl for P is thc sarnc as shown in Tablc 111. 
Coarse P modcl 1 includcs indicator variables lor training silc, race or ethnicity, age, schooling, marital status, and prcscncc of a child agc lcss than six. 
Coarse P model 11 augrncnts 1 w ~ t h  carnings lrorn thc year prior to random asslgnmcnt or eligibility dctcrmination. 
Coarse P model 111 augrncnts 1 with thc Labor force status transition pattcrns used in thc best predictor rnodcl lor program participation. 
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sometimes differ across surveys creating further sources of discrepancy between 
participant and comparison groups unrelated to selection bias, rigorously de- 
fined. LaLonde (1986) uses comparison groups situated in different markets 
from his participants, all of which were administered different questionnaires 
than those given to participants. Part of the bias that he reports arises from 
market and survey mismatch. This section investigates these sources of bias and 
also explores the impact on the estimated bias of imposing different eligibility 
criteria in creating nonexperimental comparison group samples. 

We use SIPP (Survey of Income and Program Participation) data to investi- 
gate these issues. These data are sufficiently rich that it is possible to determine 
whether surveyed persons are eligible for JTPA. However, because of sample 
size and confidentiality restrictions, it is not possible to make close geographical 
matches between controls and nonparticipants. In addition, the SIPP survey asks 
questions about earnings and labor force participation in a different format than 
does the survey used to produce our data.53 

Table XIVA presents estimates of the bias ( B ) ,the average bias after local 
linear matching on P,&,,,and the regression-adjusted bias, &F(adj), from three 
alternative comparison samples. The first sample ("full sample") uses all SIPPs. 
The second sample uses SIPPs screened for eligibility for JTPA using the rough 
guidelines employed by Ashenfelter and Card (1985) in their evaluation of the 
closely-related CETA program. The third sample used only JTPA-eligible per- 
sons." The raw bias B greatly diminishes as more refined eligibility criteria are 
imposed to create comparison samples. For the first two samples, matching and 
regression-adjusted matching eliminate a substantial portion of the raw bias but 
the bias that remains is still large relative to the program impact. Imposing 
eligibility actually increases the measured bias obtained from either method of 
matching for the SIPP sample of persons, constructed using either the Ashenfel- 
ter-Card criterion or exact eligibility for JTPA. Table XIVB presents analogous 
estimates for the difference-in-differences estimators but the benefits of impos- 
ing eligibility criteria on the sample are small. Using samples of eligible 
individuals as comparison group members may be intuitively appealing but is not 
guaranteed to reduce selection bias compared to the estimates obtained from 
other samples. The estimator performs comparably for the full sample and the 
Ashenfelter and Card (1985) eligible sample, but the bias increases for the 
sample imposing the more refined eligibility criterion. 

Our estimates demonstrate the importance of basic data quality in producing 
valid program evaluations. The bias from use of SIPP data is generally substan- 
tially greater than the bias that arises from using the ENP data (compare the 
biases in Table XIVA and XIVB with the biases in Table XI). 

Unlike the SIPP sample, the ENP sample was drawn from the same geo- 
graphic locations as program participants and was administered the same sur- 
vey questionnaire. To isolate the effect of geographic mismatch in producing 

53 Our data are collected in the format of the NLSY. For elaboration of these issues, see Smith 
(1995). 

54 See Devine and Heckman (1996) for an analysis of eligibility for the JTPA program. 
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TABLE XV 


EFFECTOF GEOGRAPHY BIAS
ON ESTIMATED 
COMPARING 47. TWO SITES TO ELIGIBLE AT TWO SITES CONTROLS NON-PARTICIP.~YTS 

Earnings in the 18 Months After Random Assignment 
Quarterly Earnings Expressed in Monthly Dollars 

Elig. Nonparticipant (ENP) Sample at Corpus Christi and Fort Wayne 
Experimental Control Sample at Jersey City and Providence 

Adult Males, 149 Controls and 276 ENPs 

Difference-in-
Regression-Adjusted Difference-in differences for 

D~fference Local Linear Local Linear differences for Regression-Adjusted 
in Means Matching" Matching Local Linear Local L ~ n e a r  -

Q u a ~ t e r  B Bs ,  &,(adj) Match~ng Matching 

Qt r l  -534 (53) -203 (85) - 184 (110) - 143 (111) - 135 (126) 
Qtr2 -504 (73) - 166 (107) - 154 (120) - 125 (118) -72 (130) 
Qtr3 -515 (78) - 177 (120) - 147 (127) -73 (131) -9 (141) 
Qtr4 -485 (78) -200 (121) - 164 (132) -87 (141) 19 (151) 
Q t d  -527 (72) -272 (127) -211 (132) -254 (160) - 136 (167) 
Qtr6 -524 (75) -281 (110) - 189 (112) -257 (162) -82 (165) 
Average of -515 (63) -216 (95) - 175 (108) - 157 (110) -69 (123) 

1 to 6 
As a 10 1183% 497% 40210 36010 159% 

of impact 

"2% rrlmmlng is used to estlmate the overlapping support region. A fned bandwidth of 0.06 is used for the nonparametric 
es~irnates. (See Appendix A for more deralls on the estimation procedure.) Bootstrap standard errors are shown in 
pa~entheses. The1 are based on 50 replications witti 1005; sampling. 

bias, and to evaluate the effectiveness of econometric methods in reducing the 
bias, we scramble the ENP-control data and mismatch by geography within 
these samples. Since all observations are administered the same questionnaire, 
this enables us to estimate a pure geographic mismatch effect. Table XV reports 
the result of matching ENPs ( D = 0) in two training centers to controls ( D  = 1) 
from two other training centers. For three of the estimators, the bias B in Table 
XV is two or three times as large as the bias in the geographically-aligned data 
(compare with the results in Table XI). Matching and regression-adjusted 
matching reduce, but by no means eliminate, the bias (compare the second and 
third columns of Table XV with the second and third columns of Table XI). 
When data are geographically misaligned, the difference-in-differences estima- 
tors generally perform better than the cross-sectional estimators. Geographic 
mismatch is an important source of bias in evaluating training programs.5','6 

ii 
- - Roselius (1996) builds on our analysis and creates a variety of SIPP samples using alternative 

definitions of region and city size. She finds substantial bias in all of her SIPP san~ples that is far in 
excess of the ENP-control bias reported in the text. Adjusting for labor market variables like the 
unemployment rate in the state or metropolitan statistical area does not reduce the bias she 
estimates. 

56 Smith (1995) uses other data sources and considers the consequences of alternative definitions 
of variables and survey instruments on the estimated bias. 
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Access to comparison samples of persons who are administered the same 
questionnaire and located in the same labor market as participants greatly 
improves the quality of nonexperimental evaluations. Econometric methods 
generally reduce, but do not eliminate, these sources of bias and are no panacea 
for the problems created by using bad data to evaluate social programs. 

10. THE CONSEQUENCES OF P-DEPENDENCE O F  THE IMPACTS 

If the program impact E(Yl -Yo I P, D = 1) depends on P ,  then econometric 
methods applied to nonexperimental comparison groups that have P support in 
regions different from the support of the participant group estimate a parameter 
that differs from what is estimated by an ideal experiment. This is true even if 
there is no selection bias so that B(P(X))  = 0 everywhere. This section presents 
evidence on this additional source of bias. 

Using data on eighteen-month outcomes from the treatment and control 
groups of the JTPA experiment, we use local linear regression methods to 
determine how E(Yl - Y,, I P,D = 1) depends on P. The estimates are graphed 
in Figure 5. The point estimates suggest a modest dependence in the neighbor- 
hood of P = 0.15, but the formal statistical test whose results we report in Table 
XVI does not allow us to reject the null hypothesis of no dependence.'' 

However, measuring the program impact only over the limited support of the 
overlap set S ,  adds an additional -$I9 to the bias arising from using a 
nonexperimental estimator adapted to a common support. The overall impact 
estimated over S ,  is $38 per month. The overall impact for the program 
estimated without any restriction on the support is $57 per month. Thus the 
restriction to a common support reduces the estimated program impact by 33%. 
The difference between the two estimates of program impact is statistically 
significant. (See Table XVII.) A major lesson of this paper for the design of 
future evaluations is that comparison groups should be selected to have P 
distributions similar to those of program participants in order to mitigate the 
support problem. 

11. IMPLEMENTATION O F  ESTIMATORS WITH ORDINARY 

NONEXPERIMENTAL SAMPLES 

The methodologies that we have devised to estimate the bias in samples that 
combine experimental and nonexperimental data can also be applied to ordinary 
nonexperimental samples to estimate a variety of evaluation parameters of 
interest. For the nonparametric sample selection estimator, the only new ingre- 
dient that is required is an exclusion restriction-at least one variable in Z not 
in R-that satisfies certain conditions specified below. 

57 The test statistic is forn~ally equivalent to the test for index sufficiency of the outcome 
differences for a model with R = 1. 
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Probability of Program Participation, P 

FIGURE5.-Adult males, experimental treatments and controls, P dependence of treatment 
impacts, E(Y, -Yo I P ) , bandwidth = 0.03. 

TABLE XVI 


P-VALUESAND POINTESTIMATES OF OF
FROM TESTS P-DEPENDENCE 
TREATMEYTIMPACTS 

Ha: E(Yl -Yo 1 P, D = 1)-E(Yl -Yo 1 D = 1)= 0 

Experimental Control and Treatment Samples 


Avelage Monthly Earnings Over the First Six Quarters After Random 

Assignment, Adult Males, 649 Controls and 1478 Treatments 


Test Values of P p-values" Polnt Estlmatesh 

dkbandwidth equal to 0.06 and a biweight kernel were used for the  nonparametric 
estimates (see Appendix A,  Sections A. l  for additional details concerning the estimation 
procedure). The distribution of the test statistic is chi-squared with one degree of 
freedom under the null. 

b ~ a l u e sshown are the difference between the conditional and unconditional esti- 
mated means. 
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TABLE XVII 

COMPARISONOF MONTHLYIMPACTSESTIMATED 
OVERTHE ENTIRESUPPORTAND OVERTHE RESTRICTEDSUPPORT^ 

Q u a r t e r l y  Earnings Expressed in Monthly D o l l a r s  

Experimental C o n t r o l  and T r e a t m e n t  Samples 
Adult M a l e s ,  649 C o n t r o l s  and 1478 Treatments 

Quarter 
Estimated Impact 

Using Entire ~ u ~ ~ o r t ~  
Estimated Impact 

Using Restricted Support Difference 

Qtrl  

Q t r 2  

Average of 
1 t o  6 

"ootstrap standard errors are shown in parentheses. They are based on 50 replications with 100% sampling. 
our data the experimental control group was administered a long baselme survey that gathered five years of 

retrospective data while the experimental treatment group was not (seeUAppendix B). Since information on recent labor 
force status and on recent earnings IS missing for treatments, we are only able to obtain coarse estimates of P lor the 
treated group. In particular, we use the coarse I1 model described in the notes to Table XIII. The support region in the 
nonexperimental analysis is determined using the best predictor P model, so it is necessary to estimate which treatment 
group members would be excluded by the common support restriction in order to obtain Impact estimates within the 
support region that would be estimated by a nonexperimental method. The adjusted treatment impacts were obtained as 
follows. For controls and treatments. we first div~de the coarse P distribution into 20 equal-size bins, then aithin-bin 
treatment impacts are estimated. The average unadjusted impact estlmate is obtained as the weighted average of the 
within-bin estimates. with weights given by the proportion of controls wlthin each bin. The adjusted impact estimate 1s equal 
to the weighted average of the within-bin estimates, with the weights given by the proportion of controls within each bin 
after deleting controls whose values of P lie outside the overlap reglon. 

Consider equation system (8) and suppose that index sufficiency characterizes 
the bias term and that 

and 

If there is at least one element in Z not in R that satisfies the conditions 

(24a) lim E(Ul I P(Z),D = 1)= 0
z-ZCI 

and 

(24b) lim E(U,IP(Z),D=O)=O,
z- zco 

where Z'O and ZC1may be values or sets of values, and need not be the same 
sets of values, we can identify g,(R) and g,(R) following the argument in 
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Heckman (1990a, b). This enables us to construct E(Yl - Yo I R)  and E(Yl - Yo I 
R ,  P(Z), D = 1). To see how to construct the latter, observe that the left-hand 
sides of (23a) and (23b) can be constructed from sample data using, e.g., local 
linear regression methods. If (24b) holds, and E(U, I P(Z))  = 0, we can use the 
iterated expectation argument and construct 

Thus we can construct 

E(Y, IZ,  R ,  D = 1) - [g , (R)+ E(U, I P ( Z ) ,  D = 111 

= E ( Y , - Y , I Z , R , D = l ) .  

Observe that condition (24a) is not required. The empirical evidence on the 
support of P presented in this paper suggests that producing the sample 
counterparts to (24b) or (24a) may be difficult in practice. 

Cross-sectional matching and difference-in-differences methods considered in 
this paper can be applied as formulated to nonexperimental data.58 They do not 
require the limit sets defined by (24a) and (24b). 

12. SUMMARY, SYNTHESIS, AND CONCLUSIONS 

This paper develops a framework for combining experimental and nonexperi- 
mental data to test the identifying assumptions that justify three widely-used 
nonexperimental methods of evaluating social programs based on comparison 
groups: (i) the method of matching; (ii) the classical econometric selection bias 
model which represents the bias solely as a function of the probability of 
participation P; and (iii) the method of difference-in-differences. 

We decompose the conventional measure of bias into three components 
corresponding to (a) differences in the supports of the regressors between 
participants and members of the comparison group; (b) differences in the shapes 
of the distributions of the regressors in the two groups in the region of common 
support; and (c) selection bias, rigorously defined at common values of the 
regressors for both groups. The first two components are eliminated by matching 
on characteristics that are "close" in the two groups. Only the third component 
-selection bias-remains. 

We apply our methods to unusually rich data from the control group of a 
random experiment on a prototypical job training program combined with a 

'"s noted by Heckman and Smith (19961, the difference-in-differences estimator identifies the 
"treatment on the treated" parameter only when no baseline observations have received treatment. 
For the general case, see their paper. 
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nonexperimental comparison group of nonparticipants. Our decomposition re- 
veals that selection bias rigorously defined is generally the smallest of the three 
components of bias as conventionally measured but it is still a substantial 
fraction of the experimentally-determined impact of the program we study. In 
our data, both of the forms of matching we examine reduce but do not eliminate 
the conventional measure of bias. Matching cannot eliminate a nonzero selec- 
tion bias, rigorously defined, and in fact the method is based on the assumption 
that it is zero. In related work, Heckman, Ichimura, and Todd (1997; first draft 
1993) find that for other demographic groups, matching sometimes increases the 
estimated bias, at least for some sets of conditioning variables. 

Our data are consistent with the index sufficiency assumption that underlies 
the classical selection bias model. This model cannot be implemented semipara- 
metrically in our data because the support of P is limited. To apply the method 
semiparametrically in future evaluations, it is necessary to enlarge the support 
of P for comparison group members so that it matches the full support of 
participants ( P  E (0,l)). 

Our data are also consistent with the identifying assumptions required to 
justify application of a conditional version of the method of difference-in-dif- 
ferences to the evaluation of job training programs for all but low values of P. 
The conditional difference-in-differences estimator is consistent with the index- 
sufficient model of selection bias and only requires that the bias be the same 
before and after the date of the program participation decision, or at least be 
the same in symmetric intervals around the date of the program participation 
decision. 

The method of matching and the classical selection bias model share one 
important feature: under the assumptions that justify each method, selection 
bias B ( X )  averages out to zero ocer certain inten'als. Matching is based on the 
assumption that selection bias is zero for all intervals, however small. Our tests 
clearly reject this assumption, which also underlies the regression method 
advocated by Barnow, Cain, and Goldberger (1980). The cross-section bias 
detected in our analysis is characterized by a crossingproperty. Sizeable negative 
bias in some cells or intervals is offset by sizeable positive bias in other cells or 
intervals. A weighted average across cells can reduce the overall bias substan- 
tially. This is why some form of matching reduces the bias in our sample, 
although it does not eliminate it. 

As shown in Figure 3, estimated selection bias as a function of P is sizeable, 
especially in the vicinity of P = 0. In that neighborhood, the shape is broadly 
consistent with the form of the classical selection bias displayed in Figure 1. 
However, our analysis rejects the application of the normal selection bias model 
of Heckman (1979). The dashed lines in Figure 3 reveal a large difference 
between the estimates of selection bias obtained using the nonparametric 
methods developed in this paper and the classical parametric selection bias 
model based on the inverse Mills' ratio. 

We also demonstrate the substantial benefits of having access to nonexpe- 
rimental data that (a) place nonparticipants in the same labor markets as pro- 
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gram participants; (b) administer the same questionnaire to both groups; and 
(c) include information on recent labor force status histories. Recent labor force 
status transitions turn out to be more important predictors of program participa- 
tion than the recent earnings histories emphasized in the analysis of Ashenfelter 
(1978). Failure to use comparison groups of persons situated in the same labor 
markets as participants and administered the same questionnaires contributes 
substantially to the bias as conventionally measured. These sources of bias are 
empirically more important than selection bias, rigorously defined. Access to 
recent labor force histories in estimating the probability of program participa- 
tion considerably improves the performance of nonexperimental methods. These 
findings enhance our ability to design future nonexperimental evaluations of 
training programs. Since the JTPA program we consider is typical of a variety of 
training programs in place around the world, the lessons from our study apply 
more generally. (See Heckman, LaLonde, and Smith (1999).) 

Although further testing with larger samples would be highly desirable, our 
analysis suggests that semiparametric sample selection bias methods of the sort 
proposed by Heckman (1980), Cosslett (1991), and Ahn and Powell (1993) are 
one potentially promising method for evaluating training programs provided that 
comparable data are collected on nonparticipants and participants located in the 
same geographic areas and administered the same questionnaire and provided 
that the support of the distribution of P for nonparticipants is enlarged. Labor 
force status history variables, local labor market variables and personal charac- 
teristics that determine participation (i.e., Z variables) but are excluded from 
the outcome equations are valid exclusion restrictions for identifying the semi- 
parametric selection model. The iemporal structure of the program makes some 
of the Z and R variables distinct. 

Another very promising method that does not require an exclusion restriction 
is our extension of the method of difference-in-differences. Conditioning on P ,  
the bias function B,(P) tends to be constant over all time periods t ,  except 
possibly for low values of P in time periods near the date of random assign- 
ment or eligibility determination. It is for this reason that the index sufficient 
selection model and our conditional version of the method of difference-in- 
differences are consistent with each other. 

We stress the importance of collecting information on recent labor force 
status histories and of designing nonparticipant samples so that the distributions 
of P have the same support for both participants and nonparticipants. It is 
essential to get the full support to identify parameters (1) and (2) for the entire 
population of participant^.^^ Lack of common support-comparing the incom- 
parable-is a major source of selection bias as it is conventionally measured. 
Our evidence leads us to a rigorous reformulation of the definition of selection 

4 In practical terms. for training programs such as JTPA, stratified sampling of nonparticipants 
based on their labor force status or labor force status histories seems a promising strategy. The 
original ENP data collection plan called for stratification on labor force status, but this plan was 
abandoned for cost reasons. 
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bias so that it excludes bias arising from gaps in the common support and from 
differences in the weights applied to participant and comparison group samples 
over the region of common support. 

Using a common support and a common set of weights applied to participant 
and comparison group samples goes a long way toward improving the perfor- 
mance of any econometric evaluation estimator. Table XVIIIA clearly demon- 
strates this point. Column (1) presents the raw bias ( B )  quarter-by-quarter and 
overall using the means for the control and ENP samples. Column (2) shows 
how the bias is reduced simply by matching to the nearest neighbor using P. 
(Recall that nearest neighbors can be far apart.) Column (3) shows how the 
imposition of the common support condition improves the nearest-neighbor 
matching estimator. Quarter-by-quarter, there is a substantial reduction in bias. 
However, the overall average is slightly higher in (3). Column (4) presents 
estimates of the bias that arise from local linear matching (on P )  while column 
( 5 )  presents the estimates that arise from regression-adjusted local linear 
matching. Both procedures impose common support and common weighting and 
both improve over the raw mean or crude nearest-neighbor estimators. 

TABLE XVIIIA 

COMPARISON MEAN BIAS OF ESTIMATED 
UYDER ALTERNATIVE OF MEANPROGRAMESTIMATORS IMPACTS" 

Quarterly Earnings Expressed in M o n t h l y  Dollars 
A d u l t  Males, 508 E x p e r i m e n t a l  Controls and 388 E l i g .  Nonparticipants (ENPs) 

Difference Nearest Neighbor Nearest Neighbor Local Linear Regreysion-Adjusted 
in Means  w / o  Common Support w/Common Support Matching Local Linear Matching 

Quar ter  (lib (2) (3) (4) ( 5 )  

Qtrl  -418 (38) 
Qtr2 -349 (47) 
Qtr3 -337 (55) 
Qtr4 -286 (57) 
Qtr5 305 (57)-

Qtr6 -328 (63) 

Average of -337 (47) 
1 to 6 

As a % 775% 
of impact 

"ootstrap standard errors a r e  shown in parentheye?. They a r e  based on 50 replications with LOOr% reyampling. 

b ~ h e 
estimates for each column are  defined as follows: 
(1) 4 = E^(Yo,l D = 1 )  f?(y0, 1 Dn= O), i rhere  f? denotes the  sample mean.  
( 2 )  B =  & ~ D = ~ , ( Y O  = 1)- ,)(YO I D  = 0) where E t ( p l n =  ,,(Yo I D = I )  is the sample mean of ( D  = 1) out- I D  E f c p l D =  

comes and E t ( p  D - ,)(Yo I D  = 0, P )  the sample mean of  nearest neighbor matched ( D  = 01 outcome?. The nearest neighbor 
match for  each observation in { D  = 11 is the  observation in ( D  = O) that is closest in terms of P .  Matching is done with 
replacement. (3ee Section 3 1 in the  text.) 

(3) Err = E f ( p l p t  A,, D =  I)(Yo P E S p , D  = 1)  - E ^ f r P l p t  i r , D =  ],(Yo P E S F ,  D = 0). Same estimator as ( 2 ) except tha t  
matches are  only constructed within the  region of  over lapp~ng support S p ,  which is preciyely defined in Appendix A. 

(4) Eytimates are  constructed using local linear regresyion on P ,  as deycrlbed in the text. There  are no  variables in the  
outcome equation,(See Section 5.0 in the text . )  

(5) &p(n , i l )  = E f ( p p  ipD =  ,)(YO- R p  l P  E Sp.  D = 1 ) - E ^ f , p l  p t  a, ,nA= l I , Y o R p ^ l  P E S p , D  = 0). This is the same 
estimator as In (4) except matching is performed on the residuals Y,, - R p  instead of o n  outcomes Yo. (See Section 5.0 in 
the text.) T h e  following regressors R are  Included in the outcome equation: dummy variables for  t r a i n ~ n g  cznter,  race, 
schooling, age, previous training, work experience in  m o ~ ~ t h s ,  local unemployment rate, marital status. presencc of a child 
age less than six, and quarter and year effects. 
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TABLE XVIIIB 

COMPARISON MEAN BIAS OF ESTIMATED 
UNDER ALTERNATIVE OF MEAN PROGRAM ESTIMATORS IMPACTS" 

Quarterly Earnings Expressed in M o n t h l y  Dollars 
Adult Males, 508 Experimental C o n t r o l s  and 388 E l i g .  N o n p a r t i c i p a n t s  (ENPs) 

Regression-Adjusted 
Conditional on P Conditional on 

D~iference-in- Difference-in- P Difference-in-
Differences Differences Differences 

w /o  Common w/Common w/Common 
Quarter Support ( I ) ~  Support (2) Support (3) 

Qtrl  
Qtr2 
Qtr3 
Qtr4 
Qt rS  

Q t r 6  

Average of 1 to 6 

As a % of i m p a c t  

%ootstrap standard errors are shown in parentheses. They are based on 50 replications w ~ t h  100Vr ssampllng. 
b ~ h eestimates for each column are deiined as f9llows: 
(1) ED= E(Yo,,l D = 1 )  E(Yo,(_,) 1 D = I )  [E(Yo ,ID = 0) - E(Yo, ( , )  I D = 011, where E denotes the sample mean. 

( 2 )  %,A, .  = E ^ ~ ~ P I F ~ S ~ , D = I ) ( Y ~ , ~ I ~ E S ~ ~ D = ~ ) E ~ ( F I ~ ~ ~ , , , D - I ) ( Y ~ . , ~ P ~ S F ~ D = ~ ) - [ E ^ ~ ~ F ~ ~ ~ S ~ , D = I ) ( Y O , ( , ) ~  
P E  Sp,D = , ( - ,  , lP  E S p , D  011. where E ^ E 7 1 ( P l F t  - E SF. D = 1) is the sam- l ) -E^f(p lp ts,, D =  ])(YO = A,, D =  l)(YO, Yo,+,, P 
ple mean of the D = l outcomes, and E f ( ,  e A p , D =  I,(Y,,,r I'(l,(-i,P E SF,D = 0) is the sample mean of the D = 0- I 
matched outcomes. Matches are constructed by local linear regression on P as described In the text (see Section 5.0 ~n the 
text). The model does not Include regressors in the outcome model 

(3) Same as ( 2 )  except the folloiring regressors are included In the outcome equation. tralnlng site, age. educat~on,  
marital status, chlldren les? than 6 ~ n d ~ c a t o r ,indicator for currently enrolled In training. labor market experience, local 
unemployment rate, season and year. 

Similar patterns appear in Table XVIIIB for the difference-in-differences 
estimator. Simple differencing symmetrically before and after the date of 
random assignment or eligibility determination eliminates person-specific com- 
ponents of bias. Compare column (1) of that table with column (1) of Table 
XVIIIA. Imposing common support and common density in column (2) gener-
ally reduces the quarter-by-quarter bias. However, as we found for the nearest 
neighbor estimator, the overall average bias is slightly higher. Using regressors 
to adjust for the bias reduces it slightly as shown in column (3). Note in 
comparing Tables XVIIIA and XVIIIB that the overall bias from our condi- 
tional difference-in-differences estimator and from the cross-sectional matching 
estimator are of the same order of magnitude. Column (3) of Table XVIIIC 
reveals that even though the inverse Mills' ratio as typically applied is badly 
biased (see the estimates in the first column), weighting by a common density 
( f ( P I D = 1)) greatly improves the performance of the e~t imator .~ '  Imposing 

''For cplumn (31, t h e  ENP o b s e r v a t i o n s  (for which D = 0) in the regression are weighted by 
the r a t i o  f(P I D = l)/f(P I D = O), where t h e  d e n s i t i e s  are e s t i m a t e d  by s t a n d a r d  kernel methods. 
I m p o s i n g  the common support c o n d i t i o n  ensures t h a t  the w e i g h t s  are nonzero. The c o n t r o l  

observations are s e l f - w e i g h t i n g  by the f (P I D = 1) d i s t r i b u t i o n .  
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TABLE XVIIIC 

COMPARISON MEANBIASOF ESTIMATED 
UNDERALTERNATIVE OF MEANPROGRAMESTIMATORS IMPACTS" 

Quarterly Earnings Expressed in Monthly Dollars 
Adult Males, 508 Experimental Controls and 388 Elig. Nonparticipants (ENPs) 

Inverse Mills' Rat io  Inverse Mills' Rat io  Inverse Mills' Rat io  
w / o  Common Support w/Common Support w/Coninion Support 
a / o  Density W e ~ g h t i n g  a / o  Density Weighting a / D e n s i t y  Weighting 

(lib (2) (3) 

Qt r l  
Qtr2 
Qtr3 
Qtr4 
Qtr5 
Qtr6 

Average of 1to 6 

As a % of impact 

"Bootstrap s tandard  er rors  are  shown in parentheses. They are based o n  50 replications wlth 100% sarnpllng. 
b ~ h eestimates for  each column a r e  defined as follows: 
( 1 )  B^, = I ? ( ~ , ( P )D = 1 )- f?(icl(I') 1 D = 0) .  where i denotes  the sample mean,  f i l  is an  estimator of E(Uo X ,  D = 1 )1 

obtained under  the Mills' ratio assumption and A(] i? an  estlniator of E ( U U I X ,D = 1). 
(2) B,A = I ? ( f l ( l ) ) 1 P t S p ,D = 1 )- I?(iO(I') I P t S p ,D = 01, where E denotes the  sample mean.  ilis an estimator of 

E(Lr0IX,bP=I )  and A(] i? an  estimator of E(Uo X ,  D = 0) obtained under  the Mills' ratio as?uniption. (Same a? ( 1 ) except 
mean is only taken over observations in the overlapping support,  S F . )  

(3) g?,,,, I ? ( f I ( l ' ) 1 P t s,, D = 1)- I ? [ ( ~ ( I JD = 1 ) / f ( P 1 D = o ) ) ~ , ( P )P E S,, D = 11. This estimator is same as (2)= I I 
except w ~ t h  density weighting as described in t h e  text. 

common support alone without reweighting does not lead to substantial im- 
provement, as shown in column (2). 

It is instructive to contrast the biases defined over a common support and with 
common weighting with the biases defined in the conventional way (e.g., as in 
Ashenfelter (1978) or LaLonde (1986)). One conventional measure of bias is the 
OLS estimate of rr in the model 

applied to controls and comparison group members, where g (X)  depends on 
the specification used. The normal selection bias method introduces the inverse 
Mills' ratio terms into g (X)  in conducting a cross-section analysis. The differ- 
ence-in-differences method uses Y or regression-adjusted Y differenced sym- 
metrically around the date of random assignment or eligibility determination. 
Estimates of T reveal the bias in the conventional common coefficient model 
(U, = U,), where the program impact is assumed not to depend on X.  This 
estimate of bias combines the three sources of bias distinguished in this paper 
plus any bias arising from correlation between U, and X.61 In contrast, esti- 
mates of the bias that condition on a common support and impose a common 
weighting of participant and comparison group data produce an estimate of 
selection bias as rigorously defined in this paper. 

61 Heckman and Todd (1994) decompose the bias n for the model with g(X)=XP and present 
the contribution for the case where Uo is correlated with X. 
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TABLE XIX 

COMPARISON MEANBIASOF ESTIMATED 
UNDERALTERNATIVE OF MEANPROGRAMESTIMATORS IMPACTS" 

Q u a r t e r l y  E a r n i n g s  Expressed i n  M o n t h l y  D o l l a r s  

A d u l t  M a l e s ,  508 E x p e r i m e n t a l  C o n t r o l s  and 388 El ig .  N o n p a r t i c i p a n t s  (ENPs) 

Nearest Method of Barnow. Difference-
Neighbor Cain and Goldberger in-Differences Inverse Mills' Ratio 

Difference w / o  Common w / o  Common Suooort .. w / o  Common w / o  Common Suuoort .. 
in Means Support w)o Density Weighting ' Support w)o Density Weighting 

Quarter (lib (2 (3) (4) ( 5 )  

Qtrl  
Qtr2 
Qtr3 
Qtr4 
Q t r 5  

Qtr6 

Average 
o f  1 to 6 

A s  a % 
o f  i m p a c t  

%ootstrap standard errors are  shown in parentheses. They are  based on 50 replications wlth 100% sampl i~~g .
he estimates for each c o l u m ~ ~  are  defined as follows: 

(1) B = 1 D = 1)- I D = 0) where E denotes the sample mean. E^(YO 
(2) E = f ? f ( P I D =  = l ) - ~ , ( P I D = I j ( Y o l DI)(Y,IID = 0). irhere Ef(p D=,) (YolD= 1) i? estimated by the sdmple mean of 

{D = 1) outcome? and E , ( ? D =  ,)(Yo ID = 0) by the ?ample mean of {D = O) nearest neighbor matches. (See Section 3.1 in 
the text.) 

(3) Sname :s described in lqotnote d In Table XI1 except without impoying a common ?upport reytriction. 
(4) B D ~  ID = I)A-t(Ya,,- , jD = I ) [ i<Yo, ,  D = where E  ̂ denotes the sample mean. E(Yo , I ID = O)-f?(Yo,(, , I  !)I. 
( 5 )  ~ ? ( A , ( P ) I D  E(Aa(P)ID = 01, irhere E denotes the sample mean, A l  is the estimator for E(Uo IR, D  = 1)= 1)-

under the Mills' ratlo assurnptlon. and f i , ,  is the estimator of E(LroI R, D  = 0) 

The estimates of .rr for the different methods are presented in Table XIX. 
Except for the inverse Mills' ratio, the overall biases ( n ) from the other 
commonly-used estimators are of the same order of magnitude. All except the 
inverse Mills' ratio estimator produce biases that are smaller than the raw mean 
B.  At the same time, all are large relative to the program impact and exhibit 
substantial variability across quarters. The different sources of bias tend to 
cancel each other out. This is especially true of the Barnow, Cain, and Gold- 
berger (1980) estimator. (Compare Column (3) of Table XIX with the last 
column of Table XII). 

By decomposing the bias T into its components, we determine whether a 
small estimated T is due to a fortuitous combination of offsetting biases or 
whether each component of the bias is small. Sources of bias such as the failure 
of common support and discrepancies in the weights across participants and 
comparison group members depend on the sampling plan used to collect the 
data for the comparison group and so are likely to vary across evaluations. The 
factors generating self-selection are more likely to be similar across evaluations. 
The focus in this paper is on the estimation of the stable components of the 
conventional measure of bias. Knowledge of these components facilitates gener- 
alization of the evidence from any one study to other environments, and is more 
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informative about the sources of bias than the measure B or T traditionally 
used to summarize bias. Our decomposition demonstrates that in our data, 
selection bias, rigorously defined, is large relative to experimentally-estimated 
program impacts but is small relative to the conventional measure of bias. 

Our analysis highlights the benefits of randomized trials. While the bias is 
reduced using nonexperimental methods that impose common support and 
common weighting, it is not eliminated. Experiments avoid the need to specify 
precise functional forms of econometric models or to select regressors to appear 
in outcome or participation equations. Typically, experimental treatment and 
control groups reside in the same location and are administered the same 
questionnaires. Experiments solve the problem of common support by balancing 
the distributions of characteristics between treatments and controls and produc- 
ing an impact estimate for all P values. However, experiments have their own 
important limitations (Heckman, LaLonde, and Smith (1999)). If a nonexperi- 
mental evaluation method is used, semiparametric selection bias models esti- 
mated on data with full support for nonparticipants or conditional difference- 
in-differences estimators fit outside the period immediately surrounding the 
period of initial participation in the program appear to be promising methods 
that deserve much further exploration and testing. 
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Dept. of Economics, University of ~ i t t sbur~h ,  Quadrangle, 230 4M35 Forbes 
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APPENDIX A 

A.1. T H E  LOCAL LIVEAR REGRESSION ESTIMATOR 

Fan (1992, 1993) develops the distribution theory for the local linear regression estimator of 
E ( Y  1 P =Po),  where Y and P are random variables. The estimator of the expectation at Po is 
defined as q,, the solution from the problem 

[Y, y, P ~ ) I ' G ( ( P ~( A - 1 )  	 min - - Y,(P, - - ~ , ) / n , ) ,  
Y l l Y 2  ,<!V 

where G(.) is a kernel function and a, is a bandwidth parameter. The local linear estimator at each 
point is obtained by weighted least squares, with greater weight given to points closer to Po when G 
is a symmetric single-peaked function. 9 ,  consistently estimates the first derivative of E ( Y  I P =Po),  
a result we use below. Higher order derivatives can be consistently estimated under additional 
smoothness assumptions on E(YI P =Po)  from the coefficients of the higher order terms in (P ,  - P o )  
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in a local polynomial regression. For example, if it exists, the qth-order derivative of the regression 
function can be estimated as the coefficient on [(PI-Po)"/q! of the local polynomial regression. 

There are several advantages of local linear estimation over standard kernel methods. If 
E(Y I P =Po) is twice continuously differentiable with respect to Po, then the bias of the local linear 
regression estimator is of the same order in the boundary regions of the support of P as it is in the 
interior regions, whereas the kernel estimator suffers from a lower order bias at boundary points. As 
shown in Figure 1 in the text, conventional selection bias methods exhibit the greatest bias in the 
neighborhood of the boundary values P E {O,  I ) ,  and as shown in Figure 2 a lot of our data is near 
P = 0, so the better performance of local linear estimators at these values is potentially important 
for our study. In addition, the first order bias of the local linear estimator does not depend on the 
distribution of P. This property makes the local linear estimator robust to different distributions of 
P and produces dramatic simplifications in the distribution theory of our test statistics, compared to 
what would be obtained from standard kernel methods. 

We adopt the following notation. The R variables appear in the outcome equation. The Z 
variables appear in the probability that D = 1, Pr(D = 1 I Z )  P(Z '0); In this paper, a logit model is 
used to estimate P. Estimators are designated by "^", and P, =P(Zj0).  

A.2.1. Estimation Method 

The outcome model that we estimate is 

Y j , = R : , p + K 1 , ( P , ) + ~ , , ,  for i ~ { D = l } ,  ~ E Y ,  

~ , = R ~ , p + K o , ( P , ) + ~ , , ,for i E { D = O ) ,  ~ E Y ,  

where { D = 1) is the set of i indices for which D, = 1, ( D  = 0)  is the set of i indices for which 
D, = 0, and Y is the set of time periods used to estimate the model, Y =  (1, .  .. ,T ) .N =No +N, and 
No and N, are the number of observations in { D = 0)  and ( D = 11, respectively. 

We may write these equations as 

In implementing this model, we replace P, with pi. Let Ri = (R, , , . . . ,R,,)' denote the matrix of 
stacked regressors for individual i over all time periods and let q,= (R,, , ...,R,,) denote the 
submatrix for individual i through period t. For t > t ' ,  we assume, (i) E{E,, l q , ,  Z,,D,) = 0, 
(ii) E{~~lq~,Z,,D~=d)=~,~(q,,Z~,D,=d),(iii)E(&,,&,,.I~t,Z,,D,=d)=a(~l,Z,,D,=d).This 

model is an extension of the partially linear regression model of Wahba (1984)and Robinson (1988). 

We first estimate P, =P(Z:O) by weighted logistic regression. Using the estimator Pi, we then 
estimate p, K,,(P,), and Ko,(P,). The slope coefficients p are restricted to be the same for 
observations with Di = 0 and D, = 1 and are assumed constant over time. The nonparametric 
components K,, and KO,are allowed to vary across groups and over time. 

We use the observations for which D, = 1 to nonparametrically estimate E(Y,, I P,, D, = 1) and 
E(R, , I P,, D, = 1) and observations with D, = 0 to nonparametrically estimate E ( x , 1 P,, D, = 0) and 

E(R , , I P,, D, = 0). Let t,,,= x,-&R,, 1 p,, D, = d )  and R,,,= R,, - .6(R,, I p,,D, = d l ,  where d E 

( 0 , l )and we leave the choice of bandwidth aNdimplicit. Throughout t h ~ s  paper aNo= aNl  = a N .  p is 
estimated by pooling observations across groups over 9 7  
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where Q,, and Q,, are indicator functions thatAexclude a small fraction ( 2 % )  of the data with low 
estimated densities. More precisely, Q,, = l { f ( P ,1 D, = d )  > 4,,), where the estimated density of P, 
given D, = d ,  f?p,ID, =d ) ,  is obtained using a standard kernel densiy estimator with the biweight 
kernel and where Q2,, is the second percentile of the estimates of f i ~ ,ID, = d ) .  The expression for 
the biweight kernel is 

\ IJ otherwise. 

Such "trimming" is required to ensure that the nonparametric estimator is uniformly ~ons+tent .~:  
Estimates of K, , (P , )  and K,,(P,) are then obtained by local linear regression of T I-R:, P on P, 
performed separately within the { D  = 1) and { D  = 0) groups. If P is allowed to vary across different 
t ,  the estimator is 

The terms K , ,  and KO,are then estimated using a local linear regression of E;, -R:, p on f,for the 
two groups ( D ,= 0,1) for each period. 

A.2.2. Choice of Kernel Fcirzctiorz and Sr?zootlzirzg Parameters 

Heckman, Ichimura, and Todd (1996) establish that the choice of G(.) does not affect the 
asymptotic variance of P but does affect the variance of the estimator of the nonparametric 
components K O ,and K,, .  We use a fixed bandwidth of 0.06 in constructing the estimates of P. The 
empirical results are not sensitive to perturbations of the bandwidth in the interval [0.04, 0.081. 

Heckman, Ichimura, and Todd (1996) establish the asymptotic properties of the estimators and 
test statistics used in this paper under the following assumptions. Our analysis allows for data to be 
randomly missing for some quarters. To  focus on the main ideas, and to simplify the notation, we 
abstract from this complication in stating the propositions, but in presenting computational formulae 
we allow for it. 

ASSUMPTIONI :  ( ( R , ,  . . ,R , , T ;x,I,. . . ,I / ; , i ;  2,;D,)), i D  d = (0,I )  are indepenrlent across irz- 
dii~icluals i for. each d ,  but datcz nzczj be co~~elaterl across time for each indiciclual. 

ASSUMPTIOY2: P(Z:O) is twice contirzuousb differentiable with respect to 0 and both dericatices 
have finite second nzornents. 

This condition is satisfied for a logit because the first and second derivatives of the logit CDF are 
uniformly bounded and because of Assumption 3 which we now present. Let [ . I 2  denote the 
Euclidean norm. We make the following assumption: 

"The global bandwidth parameter for the density estimates is chosen following the recommen- 
dation of Silverman (19861, which in our case gives a,  = ~ ( ~ / 1 . 3 4 ) ~ - ' / ' ,  is a constant wkere A 
that depends on the kernel ( A  = 2.7768) and H is the interquartile range of P,. 
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We estimate 0 by a weighted logistic likelihood to account for choice-based sampling. (See, e.g., 
Arnemiya (1985).) Let O^ denote the estimator of 8. Asymptotic ~~ormality for the weighted score 
vector 

is assumed where L, is the contribution of the ith observation to the weighted logistic likelihood, 
N =hi, + .Vl, and ,hi, and N,arc the number of observations in {D = 0) and {D = 11, respectivcly. 

ASSU~\.IPTION 8)  = ( D = O ) u( D  , )h(Zi ,D,) + op(l) converge: in distribution to 4: f l ( H ^ - N-"'CI 
a .,&(O, Va)mrzdom vector, where V, i.7 the asyn~ptotic r'ariance-coouriance mutrix of 0. 

To state the next assumption, we define 

where the upper and lower limits of integration, u(Po) and /(Po), satisfy cr(1) = 0, u(Po)= if 
Po E [O, 1) and l(0) = 0, /(Po) = - Y - if Po E (0,1]. Operationally, when the estimated P is within a 
bandwidth t r ,  of 0 or 1, C, changcs discontinuously for J = 1,2,3. 

We impose the following conditions pn G and on C,(G), C,(G), C,(G): 

Assubr~~ lox5:  (a) The second derir'ntice of G(s) isfinite; (b) C,(G) i0; and (c) C,(G), C,(G), and 
C3(G) a1.e firzire. 

Observe that ~ , ( G ) / [ / , ; ' ~ ~ f ) ( ; ( s ) d ~ ~  acorresponds to the variance of random variable with 
density G(s)//,;'$?) G(.F) ds if G(s) 2 0. Assumption 5 holds, for example, if G(.) is taken to be a 
smooth density supported in a finite interval. These restrictions on the kernel function are satisfied 
by the biweight kernel that we L I S ~(defined in A.2.1). 

Since 8 is estimated. we impose the following two regularity conditions on the behavior of the 
conditional expectations and the conditional densities of P, given D, = O or D, = 1,f,,(P 1 D = 0) and 
,f i , iP I D = 11, in the neighborhood of the true value 0 = 00: 

;~SSL~RIPTION6: E(R,, / P, ,  D, =d )  and E(I.;, P,, D, = d), rl E (0, I}, are twice cotztit~uously d<I'f'ercn- 
tiubie ,r it17 rerjlect to 8 in the neighboi.llood of 0 = Oo. 

Assubi.1~~10~7: For rl E (0,1), (a) fei,(P 1 D = rl) is hounded and continuous on [O, 11, and (b) for 
ail)' E > O tllr're e.YIsts S > 0 such tlzat if i j  8 - 00/1< 8 ,  then 

sup i , f~ , (P ID=d) - f , o (P ID=d) i<~ .  
O<P4 1 

It is possible to weaken Assumption 6 and still obtain consistency and asymptotic normality of the 
estimated /3 and K functions, but the advantages of the local linear estimator described in Section 
A.l materialize only when it is maintained. 
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To construct a consistent estimator of the asymptotic variances we make the following assump- 
tion. 

ASSU~~PTIONPo he rlze true [:allre of P. For d E {O,l),var(Y,, I P,, D, = d )  and var(Y,, -8: Let 
Ri, P o  I P,, D, = cl) are contiizuo~rs,fi~i~ctroi~s =o f P ei.rrluated at 0 0,. 

A 4.DECOhfPOSING T H E  COVLENTIOVAL M E A S U R E  OF SELECTIOV B I 4 S  

A.4.1. Estiiimtron Metlzods 

To obtain consistent and asymptotically normal estimates of B,,, B?,, and B,, defined below 
equation (14) in the text, it is necessav to estimate the overlapping support region, S,, and 
E ( y ,  I P,, D, = 0).  T o  estimate the region of overlapping support, S,,Awe estimate the densities 
f,,,(. ID = cl) for d E {O,l) ,using a standard kernel density estimator, f,o(. ID = d ) ,  applied to the 
estimated values of P for each group.6' 

The estimated density is evaluated at all o b s e i ~ e d  data points. For both the D = 0 and D = 1 
distributions, all points with zero density and the points corresponding to the lowest two percent of 
estimated density values are eliminated or "trimmed."6' S, is the subset of the points from both 
densities that survive trimming and share a common support. In our application, roughly 50% of the 
control observations ( D  = 1) and 80% of the ENPs ( D  = 0 )  lie in the overlap region. We estimate 
E(Y,, I P,, D, = 0 )  by local linear regression using the estimated values of P. 

The sample analogue estimators of B,, B2. and B, defined below equation (20) in the text are. 
for period t ,  

where [ = 1{p,E j,}, = 1{p,E j$ ) ,  the superscript c denotes complement, h:, denotes the 
number of obsei~ations in the set { D  = d )  for d t {O,1),and hr= IV, + N ~ . ~ '  

A.4.2. A?).~nptotic Distrihz~tion of rlze Esrin~iltors 

Heckman, Ichimura, and Todd (1996) establish that El , ,  &,,  and i,,are consistent and 
asymptotically normal nonparametric estimators when estimated regressors are used to estimate 
unknown conditional mean functions. Define p,, = lim,, ,IV~, /Nfor cl E {0,1)and $,,(p) = E ( y ,  I 
P, = p ,  D, = 01, and let P,' = dP(Z;O)/ri(Z:O)and $h,(p) = t iho , (p) /dp ,  the asymptotic variance- 

63 For all nonparametric estimates, we use the biweight kernel defined earlier. 
" In estimating the density, we find that it is important to use a kernel that is zero outside a finite 

interval. With a normal kernel, or any other kernel with unbounded support, no points are estimated 
to have zero density. This makes it difficult to choose a trimming level that will eliminate the low 
density points. With a kernel supported over a finite i n t e n d ,  some points are estimated to have a 
density of zero. so that they can with positive be eliminatcd along with 2% of the obse~~lat ions 
estimated densities. With a kernel that has unbounded support, estimates of mean bias tend to be 
sensitive to the trimming level but with a kernel supported on a finite i n t e n d  they are not. For 
further discussion. see Heckman, Ichimura, and Todd (1996). 

65 If we allow for random attrition, as we do in our empirical work, the sets { D= 1) and { D  = 0 )  
and the values of N,and No are time indexed. 
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covariance matrix o f  @ ( B ^  - 8,) as V, and 

c =E{*A,(P,)P:[Z, - E ( Z ,  P , , D ,  = 0 ) ] '  ID, = 1).  

The  following theorem holds. 

THEOREMA.l :  Suppose Assur?zptions 1-8 hold and p, > 0 for d E {O,1) .  If the deterministic or 
stochnstic bandwidth satisfies plim, ,,a,vll/h,ll= a ,  for a positive constant a f l  and a determiizistic 
sequence hN  for which 

lim hr,h:r/log No = m and lim ~ ~ h : . ~ ~= 0 ,  
I&--. No-= 

then N " ~ ( ~ , ,-Bit) cor~cerges in distribution to .&lo, u:) where 

u; =var(E;,I: ID = O?/po +var(k;,I: ID = l ) / p l ,  

N ' / ~ ( B ^ , ,  B,,) corzl'erges in distribution to N(0,  v i )where-

u,', = var{E(k;,I,I P,, D, = 0 )  ID, = O)/po+ var{E(k;,I,I P,, D, = 0 )  ID, = l ) / p ,  

+ E { [ ( ~ , ~ ( P ,I D ,= I D ,= 0 ) )-i ) / f o o ( ~ ,  11' 

x[E; , I ,  -E (k ; , I ,  lP, ,D, =0) l21D,=0}/p , ,+c 'r / ,c ,  

and N ' / ~ ( B ~ ,B3,)  conl'erges in distribution toN(0 ,  0;)where-

v: = E{var(k;,I,I P,, D, = 0 )  ID, = l ) / p l  

+ E { [ ~ , ~ ( P ,= ID, = 0)12var(l /; ,~,  = 0 )  ID, = 0 } / p o  + c l & c .  I D ,  l ) / f o , , ( ~ ,  P , , D ,  

For simplicity the above expression assumes that the score vector o f  6 and k;, are not 
correlated." W e  estimate the asymptotic variances using bootstrap methods, so we do not discuss 
estimation o f  the variances by the plug-in method. Modifications to allow for random attrition are 
straightforward and for the sake o f  brevity are deleted. 

W e  next present results on the asymptotic distributions o f  our estimators o f  p ,  KO,  and K , , ,  and 
B,,,,(adj?. 

Let f,,, = R, ,  -E ( R , , I P,, D, = d )  and Z,d  = Z ,  -E ( Z ,  I P,, D, = d) .  Throughout we assume that 
a .h u = a .,,I = aA and h,\-u=h,\-,=h,\-. 

THEOREMA.2: U~lder.Assunlptiorzs 1-8, if the (deterininistic or stochastic) bandwidth a,, satisfies 
~ l i m , ~ ,,a,v/h,v = a,,> 0 for soine deternrinistic sequence h ,  for. which lim,, ,,N l z ~ / l o gN = m and 
lim ., ,~ 1 1 ; .  = 0, and H, ,  defined below, is nonsirlgular, and po is the trzre calue of P ,  the11 

66 Note that when P, has the same distribution under D, = 0 and D, = 1 this assumption is not 
necessary because c = 0 in that case. The  derivation for the more general case is available on 
request from the authors. 
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where H I  = Z,,,-Ed. i o , l l  ID, = and ford t (O,l} ,  

H 2 ,  =E(K&(P, )P:? , ld2:dQdi  ID, = d l r  

where Q,, is as rlefirzed in Seciior? A.2.1, except in thjs expressiorl true rather than estimated calzies are 
used. We estimate the cariance-coi:ariance matrit- of p by 

where 

and where = Z k  - E ( z k  / pk, DL = d ) ,  R , , ,~  - / t, = = ( X I  -ikri = R,,,( E ( R , , ~  D,  d ) ,  i.,,,/ R:,i )  

-E(Y,,-R',[p I P,,D, = d l ,  

and cli(Z,, D , )  is defined below As~unzption 3. 

In an extensive Monte Carlo analysis, Heckman, et al. (1996) show that the asymptotic theory for 
is very reliable for samples of the size used in this paper and that bootstrap and asymptotic 

standard errors agree. 

A.5.2 Asymptotic Distributior~s of K,,, nrld K 1 ,  

We prove the following central limit theorem for the estimator k,,(.)in Heckman. !chimura, and 
Todd (1996). Let K,/(P,,)= (K, ,  ,(Po), . . . , Kd,,(P0)) ' ,  and K,/(P,,)= ( K o , , ( P 0 ) ,. . . , Kd,,(P0))' for 
d E {O,1}. 

THEOREMA.3: Under Ass~lnzptions 1-8, if the bandwidtl~ satisfies plim,,, ,a , / h ,  = cue > 0 for 
some deterministic sequence h,, for iuhiclz lim .,,Nh;./log N = cc and lim, ,,~ 1 1 ; .= c for some 
c > 0,  then 

wlzere the ( s ,  t )  elenlent of V, is 

E ( E , \ E ; ,  l P i = P o , D , = d )  

f,"(P,, ID, = d ) p j C , ( G )  ' 

and where C 1 ,  C Z ,  and C3 are defined just before Assumption 5 .  
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The asymptotic bias is 

A.5.3. Asymptotic Distribution Theory of E~tifization of BrSp(adj)  

We next discuss the asymptotic properties of our estimator of the regression-adjusted average 
bias B,sP(adj),which is defined as 

where S p  is the common support defined earlier. B,,,,(adj) is consistently estimated by 

where for i t { D = 0)u { D = 1) is defined in Section A.4.1. These terms ensure that the estimated 
control functions KO,and K,, are compared at common points of support and keep the denomina- 
tors of K,,  and KO,from becoming too small so that the statistical properties of this average are 
well defined. Denote the conditional expectation of a random variable given P E S, by ESPand let 
v,,= [ K l l ( P , )-K"t(P,)II, -E{[Kl t (P , )  -Kilt(P,)I 11,). 

THEOREM A.4: Under Assun~ptions 1-8 if the bandwidth satisfies plim,\-, ,a , /h ,  = a ,  > 0 for 
some detenninisric sequence 11 for ivhich Jim,, ,,~ h ; / l o g  N = = and lim,\-, ,Nh;. = 0, then the 
a~).'nlptoticdistribution of ih?(BtSp(adj) -Bts1,(adj)) is the same, to the first order, as 

[ p i / 2 ~ r ( ~t S p  I D = 111 

- [ E S P ( X I IID, = 1) - IP,, D, =E s p ( E h p ( X , i  0) ID, = l ) l t f l (  i-pi,) 

- [Esp(Kb,(P,)P, 'Z,  =ID 1) 

-EsP(Esp(K~,(P, )P, 'Z ,  0 )  ID, = l ) l l i f i (H^ -  8,). P , ,  D, = 

Note that if the distributions of P for the ENP and control groups are the same, then the estimation 
of p and H does not affect the first order asymptotic distribution since the latter two terms in this 
expression are zero. In this paper, we bootstrap to estimate the standard errors, so we do not present 
details of how to construct plug-in estimates of the variances. 

Testing for the absence of selection bias, B, , (P)= 0 for all t ,  or the equivalent hypothesis of 
mean independence of U,,, conditional on P,  E(Uo,, I P, =P,  D, = d )  =E(Uo,,I P, =PI ,  and testing 
for index sufficiency are central tasks of this paper. All of the required test statistics are derived 
from the results presented in Theorem A.3. An important consequence of this theorem is that if the 
same kernel G and bandwidth a,. are used to estimate K,,  and KO,,the associated bias terms (the 

h i  In samples with a few thousand obsclvations, estimation of p affects the sampling error of the 
estimated functions. Since p converges at rate N ' / ' ,  and thc bias functions converge more slowLy, a 
conventional argument assumes that " N  is big enough" to ignore the effect of estimating P in 
deriving the asymptotic distribution of the estimated K functions. This assumption turns out to be 
quite misleading in samples of the size at our disposal. 
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second term on the right-hand side of equation (A-4) )cancel when K,,  = K O , ,as is postulated under 
the null hypothesis of no selection bias. Because we use the local linear regression estimator, the 
bias does not depend on the distribution of the regressors on which K, ,  and K O , are estimated. 
These convenient properties allow us to avoid having to adjust the test statistics for noncentrality 
parameters. Exactly the same elimination of noncentrality parameters occurs when testing for 
conditional mean independence, which in this context is the same as testing for the absence of bias 
conditional on P.  A similar simplification emerges in testing for index sufficiency. In that case, it is 
postulated that K , ( P ,  J , )  K o ( P ,  J , )  are the same for all discrete-valued J,, lT 1:. . . , L. Under thc -

null hypothesis of index sufficiency, the bias term that arises from forming K , ( P ,  J,) -KO(:. J , )  is 
the s y z e  for all !,. The test for index sufficiency is based on differences [ K , ( P ,  J,) -K,,(P,  J I ) ]  -
[ K , ( P ,  J,.) -K o ( P ,  J,,)] for J, f J,,.  The bias term is the same and differences out under the null 
hypothesis. 

Recall that I?,, and K,,, are estimated via local linear regression of the residuals c0,,= x, R:, p-

on p! for the samples for which D = 1 and D = 0, respectively. In constructing the tests, the 
asymptotic t h e o q  suggests that estimation of P sl~ould not affect the distribution of the test 

a - which are lower. statistics, because p converges at rate fibut K ,  and converge at rates 6, 
However, Heckman, Ichimura, and Todd (1996) report in a simulation study that for samples of the 
size used in this paper, failure to account for the effects of estimated P on the variance of the test 
statistics produces tests that reject at too high a rate relative to the nominal significance level and 
hence are conservative. 

A.6.1. Test Of N o  Bias Or Conditional Mean Inileperzdence 

Under the conditions of Theorem A.3, and under the null hypothesis B , ( P ) = K , , ( P )  -K,, , (P) = 

0, if the same kernel and bandwidth are used to estimate K,,  and K O , ,then 

Arraying the K,,  and K,,, into a T x 1 vector K ,  -K O ,under the conditions of Theorem A.3 applied 
to all t ,  

where Kit  is a consistent estimator of y,,, d t {O,l},and a,vo= a,v,. 
We now present methods for estimating the variances Vo and V , .To consenre on notation, and to 

anticipate the expression for the variances required in the test of index sufficiency, we present 
expressions for the variances conditional on strata JI ,1 = 1,.  . . , L. In testing for mean independence, 
there is only one stratum-the whole sample. We first present the estimator of the variance that 
does not adjust for higher order terms. 

A.6.1.1. Unadjusted Valiance Estimator. Define 

~ ~ P , , ~ = ~ I ~ ~ ~ ~ , ~ ~ P , , . J ~ ~ , ~ ~ ~ ~ P , , , J ~ ~ ,. . , ~ I , ( ~ ~ , , J ~ ) ~ ~ , , ( ~ O , J L ) )  


For d t {O,lI,  

consistently estimates v,,where CG= c,(G)/c:(G), G is the same kernel density function used in 
the local regression estimator, and L equals the number of discrete values of J, with L = 1 in the -
test for mean independence. Further, var(k;, -R',, P o  I P = Po,  J = J,, D = 1 J = JI ,D =d ) , h l 1 ( P o  cl), 
and P ^ ( J  = J, I P = P,,, D = cl) are consistent estimators of the conditional variance of F,,,  the 
conditional density of P,, and the conditional probability of J=J , ,  respectively. To  test mean 
independence at S different values of P simply add the test statistics over all points separated by at 
least 2a,\-. Each test statistic is independent and thus the overall asymptotic distribution is X ' ( ~ ~ ) .  
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To estimate one diagonal component of T/), Heckman, Ichimura, and Todd (1996) justify the 
estimator 

and the weights I.i;',(P,)where Bidr= ( x i  -R:, -K ~ ~ ( P ~ ) ? Q ~ ,  are 

where Glk= G((P,-P k ) / a ,  ). Although they show that this is a consistent estimator, their Monte 
Carlo study reveals that this estimator underestimates the true variance by about 50%. This 
evidence motivates our proposal to use the adjusted variance defined in A.6.1.2 below. 

Over all time periods, the natural estimator of the variance-covariance matrix for the full T X 1 
vector K d  at P = P o  is 

where Z i d  = ( F i d l , .. . , FidT).However, this estimator is not feasible when the panel is not balanced 
as is the case for our data.@ Consistent estimates of each component in the variance-covariance 
matrix are not guaranteed to produce an estimated covariance matrix that is positive definite. 
Instead, we use an alternative consistent estimator that is guaranteed to be positive semi-definite: 

where 

and where ~ ( i ,= t )  0 otherwise.I )  1 if observation i has data available in period t and ~ ( i ,= 

A.6.1.2. Adjustingfor Estinmting P.  To adjust for higher-order variance terms, we apply the delta 
method to add two terms to y,,: 

where 

A.6.2. Testing Index Szlficiencj) 

Testing index sufficiency is a central goal of this paper. Unlike the test proposed by Ait-Sahalia, 
Bickel, and Stoker (1994), we test for index sufficiency of a subfunction rather than of an entire 
function. We ask if the K,, functions can be written solely in terms of Pi, so that we can represent 
equation (A-2)  as x, = R',, P +D,[K, , (P , )-Ko,(P,)]+ K,,(P,) + 6,. We are not interested in the 
question of whether the conditional mean function for x,  can be expressed solely as a function of 
P,, which is the question addressed by Ait-Sahalia, et al. (1994). 

68 Recall that for simplicity we have ignored the unbalanced case in presenting the asymptotic 
theoq.  Modifying it to account for random attrition is straightforward but notationally burdensome. 
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Using discrete regressors, the null hypothesis of index sufficiency is as follows. Letting J, be the 
value of the discrete regressor in the it11 group, 

K l , ( P ,  J,) - K o , ( P ,  J,) = K l , ( P ,  J, -K, , , (P ,  J ,  ) all for 1 and 1' ( i , i ' = l ,...,L )  

and for all P and t EKWe test for equality of the conditional mean bias functions for different 
subgroups within the population. 

We estimate K,/,(P, J,) for some fixed finite number of points P =P,, s = 1,. . . ,S ,  all of which are 
in the support of P given J, for 1 = 1, . . .,L ,  and compare the estimated functions at the chosen 
points. We construct the test at points where the conditional densities are bounded away from zero, 
to guarantee that estimators of each K,,(P, J,) are uniformly consistent and converge at the same 
rate." 

The statistic for testing the null hypothesis of index sufficiency at a point P,, in period t is 

where 

and 

so that A,(P,) is a vector of ( L  - 1) contrasts and h , ( P )= M(=(P)),M', where 

and where ( D  = d l ,  is the set of i values for D = d associated with discrete regressor J,, and &,, is 
the number of observations in the cell d , t , I. 

A te?t of the hypothesis over T timeperiods at point P under the null is based on the entire 
vector d ( P o )of length ( L  - 1)T where d ( P o )= ( d , (P , ) ,. . . , d,(P,,))'. The test statistic is 

where 

h ( P , , )= [ I ,  8 M I [ = ( P ~ ) I [ I ,@ M I '  

and where E(P,)diag((~(~~))~,(~(~~)),,. . .,(%Po)),), is the T X T identity matrix and = I ,  
@ denotes a Kronecker product. For values of P that are at least hvo bandwidths a,v apart, the 
chi-square tests are independent when the kernel is supported on [ - 1, I ] ,  and we can perform an 
overall test for S values as a sum of the ,y2 statistics over P. The resulting statistic is , y 2 ( s ( ~- 1)T).  
To adjust for estimation error in p replace @,(Po, J,) by the appropriate adjustment for cell d , t , i  
analogous to the adjustment given in A.6.1.2. 

h9 The same '.trimming rule" discussed in Section A.4.1 is used to estimate the densities for the 
different subgroups on the J,, 1 = 1, .. .,L. 
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APPENDIX B 

B.1. SAMPLES USED IN THE ANALYSIS 

Our data consist of four samples: the experimental control group sample, the experimental 
treatment group sample, the eligible nonparticipant (ENP) sample, and the Survey of Income and 
Program Participation (SIPP) sample. The first three of these samples were collected at four of the 
training centers participating in the National JTPA Study: Corpus Christi, Texas, Fort Wayne, 
Indiana, Jersey City, New Jersey, and Providence, Rhode Island. 

The control and treatment group samples consist of persons who took part in the JTPA 
experiment. They applied to the JTPA program, were determined eligible for JTPA services under 
Title 11-A of the Act, were accepted into the program, and were recommended for particular JTPA 
selvices. About one third were assigned to the control group and excluded from JTPA services for 18 
months while the rest were assigned to the treatment group and given access to JTPA services. 

Nonexperimental data were collected on a sample of eligible nonparticipants residing in the same 
geographic areas as the experimental groups. The ENP sample is composed of individuals who were, 
on the basis of a screening interview, determined to be (i) eligible for JTPA due to economic 
disadvantage; (ii) 22 to 54 years of age; (iii) not in junior high or high school; and (iv) not 
permanently disabled." Our other nonexperimental comparison group sample is drawn from the 
1988 SIPP Full Panel. We treat month 12 of the panel as a single cross-section in constructing the 
sample. 

To  match the ENP sample, we impose criteria (ii) and (iii) on the remaining samples. We are 
unable to impose criterion (iv) due to data limitations. Criterion (i) is imposed on the SIPP eligible 
subsample used in Tables XIV. The other SIPP subsamples are defined in the notes to that table. In 
all of the samples individuals missing data on Bey variables such as race or date of eligibility 
screening are omitted. Table B-1 summarizes the number of individuals omitted due to each 
criterion in the ENP and control samples. 

We also impose a rectangular sample restriction based on our outcome variable, quarterly 
earnings. For the ENP and control samgles, this restriction requires (i) at least one month of valid 
earnings data prior to random assignment (for the controls) or eligibility screening (for the ENPs) 
(hereafter the date of random assignment or eligibility determination is denoted as RA/EL); 
(ii) valid earnings data in the month of RA/EL; and (iii) at least one month of valid earnings data in 
months 13-18 after RA/EL. Table B-I indicates the number of additional observations lost due to 
this restriction for the ENP and colltrol samples. Due to data limitations, only restricton (i) is 
applied to the treatment group sample. For the SIPP, we require valid earnings data in the first and 
final month of the panel for sample inclusion. 

The Long Baseline Sulvey (LBS) gathered five years of retrospective data on earnings and 
employment, demographic characteristics, household composition, recent training histoly, and 
transfer program participation for the ENP and control group samples. Controls completed the LBS 
within one or hvo months after random assignment. For them, the survey covers the five years prior 
to random assignment. The ENPs completed the LBS from 0 to 24 months after eligibility screening. 
For them, the sulvey covers the five years prior to the sulvey date. The response rate on the LBS 
was 90 percent for the controls and 78 percent for the ENPs. 

Both the first and second follow-up surveys collected detailed retrospective data on job spells, 
hours and rates of pay, social program participation, training and job search activities, as well as 
background and demographic information. The surveys are basically identical except for the time 
periods covered. The first follow-up survey was administered to treatments, controls, and ENPs and 
covered the period from 12 to 24 months after random assignment for the experimental groups and 
from 12 to 48 months after the LBS interview date for the ENPs. The second follow-up sulvey was 

70 For more information on the sampling frame for the ENP sample, see Smith (1994). 
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TABLE B-I 

NUMBERSOF OBSERVATIO\~S RESTRICTIONSOMITTED DUE TO S ~ M P L E  
Experimental Control and Elig. Nonparticipant (ENP) Samples, Adult Males 

ENP Control 
Res t r~ct ion  Sarnplc Sample 

Total number of observations 827 864 
Number dropped due to missing date of eligibility screening 4 0 
Number dropped due to missing value for race 7 0 
Number dropped due to having no valid earnings observations 56 54 
Number dropped due to rectangular sample restriction 372 302 
Final analysis sample size 388 508 

.?vote T h e  rectangular sample r e s t r ~ c t ~ o nrequires that each observation included have a t  least one  month  o i  valid 
earnlngs data In the  18 months prior to random assignment or (RA/EL),  v a l ~ d  earnlngs data in the  el~g~blllt:  s c r e e ~ ~ i t i g  
month  of RA/EL, and at least one  month  of valid earnlngs data in months 13 to 18 after RA/EL.  

administered to a random sample of experimentals, including approximately one quarter of the 
adults. This survey covered the period from the first follow-up survey to the second follow-up survey 
date, which was from 24 to 48 months after random assignment.71 The response rate to the first 
follow-up survey was 81 percent for the experimental groups and 79 percent for the ENPs. The 
second follow-up survey, administered only to the experimental groups, had a response rate of 
80 percent. Experimentation with alternative methods for dealing with attrition and nonresponse 
sustains the findings reported in the text. 

At the time of random assignment, control and treatment group members completed a Back- 
ground Information Form (BIF) that collected information on demographic characteristics, social 
program participation, training and schooling activity, and recent labor market experience. We use 
the BIF data only to fill in background variables missing on the other surveys due to item 
nonresponse. 

For the experimental and ENP samples, we use the monthly total earnings variables constructed 
by Abt Associates, the firm hired by the U.S. Department of Labor to produce public use data files 
for the JTPA experiment. These variables are based on information about average hours worked and 
average rates of pay on individual job spells. These variables include tips, bonuses and overtime, 
which are smoothed over each job spell. For the seam month between the LBS and the follow-up 
sulveys, we calculate earnings by weighting up the information from the LBS sulvey. 

The monthly earnings data from the LBS and follow-up surveys are combined to form a panel of 
up to 90 months for each individual. We organize the data by month relative to RA/EL rather than 
by calendar time. Since the ENPs were screened for eligibility prior to completing the LBS, we 
realign the data so that the month of eligibility screening for the ENPs corresponds to the month of 
random assignment for the controls. 

The monthly earnings data from the SIPP are based on direct responses to questions about 
earnings on up to two jobs and from up to two businesses in each month of each four month SIPP 
survey reference period. Earnings on additional jobs or from additional businesses, as well as casual 
earnings, are collected from an additional sulvey question. The SIPP earnings variables also include 
tips, bonuses and overtime, but they are not smoothed over job spells as in the data from the JTPA 
e ~ ~ e r i m e n t . ~ '  

71 For control and treatment group members not responding to the first follow-up suney, the 
second follow-up collected information on the entire period from random assignment to the second 
follow-up survey interview date. 

72 For more information about the monthly earnings variables, see Smith (1995). 
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For our regression analyses, the monthly data were converted to quarterly data. Average monthly 
earnings per quarter are formed from the monthly data by taking an average over the three months 
that comprise each quarter. If there are missing data on earnings, the quarterly average is taken over 
the available months. In calculating the quarterly data, the quarters begin with the first month after 
RA/EL. The top one percent of the quarterly earnings values are trimmed in each quarter from the 
combined sample of ENPs and controls. No trimming is performed on the SIPP earnings data as 
they appear to be less prone to outliers. 

We align the ENP data relative to the controls in the month in which we know with certainty that 
both the controls and ENPs are eligible for JTPA. Aligning the groups in this way requires 
individual realignment of the ENPs due to differences across persons in the lag between measured 
eligibility and administration of the baseline survey. All of the regression-adjusted estimates include 
variables for calendar time. However, these variables are not substantively important. 

The calendar year and month of each observation in the panel are determined from variables 
giving the date of random assignment for control (and treatment) group members and the date of 
eligibility screening for the ENPs. We construct the monthly age variables using each individual's 
date of birth. For the control group, the date of birth is taken from the BIF while for the ENPs it is 
taken from the LBS. 

Demographic and background variables, such as race, marital status, and education, are usually 
obtained from the LBS. Missing values are replaced using information from the BIF or from a 
follow-up survey where possible. Missing values due to item nonresponse on the variables used to 
estimate the possibilities of participation for the ENP and control samples are imputed. For 
continuous variables, values are imputed from a linear regression with the following regressors: 
indicators for race/ethnicity, indicators for age categories, an indicator for receipt of a high school 
diploma or GED, and site indicators. These variables had no missing values after imposing the initial 
sample restrictions. All covariates are interacted with a control group indicator. Missing values of 
dichotomous variables are replaced with the predicted probabilities estimated using a logit equation 
with the same covariates. Missing values of indicator variables with more than two categories, such 
as the five indicators for highest grade completed, are replaced by the predicted probabilities from a 
multinomial logit model where the underlying categorical variable used to construct the indicators is 
the dependent variable. No imputed values were generated for the SIPP sample as the rates of item 
nonresponse in that sample are very low. Table B-I1 presents descriptive statistics on the variables 
used to analyze the ENP and control samples. Further details on the construction of the variables 
and the samples appear in an expanded version of this appendix, and are available on request from 
the authors. 

APPENDIX C 

SELECTION OF VARIABLES FOR USE IN ESTIMATIKG THE PROBABILITY OF 

PARTICIPATION, P 

This appendix presents the criteria used to select the Z variables in the probability of participa- 
tion, Pr(D = 112).We have richer data than that available to previous analysts. Human capital 
theory suggests that younger people are more likely to benefit from training. Previous research 
suggests the importance of marital status, household size, and family income in affecting schooling 
and training decisions. Ashenfelter's (1978) analysis demonstrates the importance of recent earnings 
in determining participation in training programs. 

T o  select among the variables suggested by theory, we use the two criteria discussed in Section 4.3 
of the text: (a) the fraction of observations correctly predicted using the population proportion of 
controls as a cutoff value; and (b) statistical significance. For (a), we look at both the simple mean of 
the control and ENP correct prediction rates and the control correct prediction rate by itself. For 
(b) we "test up" by iteratively adding variables starting with the training center indicators and 
demographic variables. Variables which are statistically significant at conventional levels and which 
increase the prediction rates by a substantial amount are retained in the final specification. 

Table C-I presents the control and ENP correct prediction rates, along with the simple average of 
the two rates, for five alternative models of P. The first three rows correspond to the three "coarse" 
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TABLE B-I1 

DESCRIPTIVE FOR VARIABLESSTATISTICS USEDIK THE PAPER 
Experimental Control and Elig. Nonparticipant (ENP) Samples 

Adult Males, 508 Controls and 388 ENPs 

ENPa Controls ENPs Controls 
Variable Kames (Effects) Mean Mean Std Error Std Error 

Corpus Christi, T X  0.418 
Fort Wayne, IN 0.317 
Jersey City, NJ 0.121 
Providence, RI  0.144 
White 0.387 
Black 0.119 
Hispanic 0.441 
Other Races 0.054 
Age 25 to 29 0.173 
Age 30 to 39 0.397 
Age 40 to 49 0.216 
Age 50 to 54 0.052 
Less than 10th Grade 0.341 
10th-11th Grade 0.183 
12th Grade 0.270 
1-3 Years College 0.131 
4 + Years College 0.075 
Last Married 1-12 Months Prior to RA/EL 0.020 
Last Married > 12 Months Prior to RA/EL 0.038 
Single, Never Married 0.255 
Children Age Less than 6 0.332 
Quarter 1 0.277 
Quarter 2 0.227 
Quarter 3 0.174 
Quarter 4 0.321 
Year 1986 0.000 
Year 1987 0.126 
Year 1988 0.715 
Year 1989 0.147 
Year 1990 0.012 
Year 1991 0.000 
Ever had Vocational Training 0.247 
Currently Having Vocational Training 0.016 
In School or Training in the Month of RA/EL 0.097 
Last in School or Training 1-3 Months 0.019 

before RA/EL 
Last in School or Training 4-6 Months 0.015 

before RA/EL 
Local Unemployment Rate 7.719 
Employed + Employed 0.731 
Unemployed -, Employed 0.067 
O L F  + Employed 0.019 
Employed + Unemployed 0.042 
Unen~ployed+ Unemployed 0.042 
OLF + Unemployed 0.014 
Employed -, OLF 0.012 
Unenlployed -, OLF 0.006 
OLF -, OLF 0.067 
One Job Spell in 18 Months Prior to RA 0.580 
Two Job Spells in 18 Months Prior to RA 0.229 
Three or More Job Spells in 18 Months 0.095 

Prior to RA 
Total Number of Household Members 4.132 
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TABLE C-I 

PERFORMANCEOF ALTERNATIVEPROBABILITY PARTICIPATIONOF PROGRAM LOGIT SPECIFICATIONS 
COMPARINGCOARSEAND RICH PROBABILITY PARTICIPATIONOF PROGRAM SPECIFICATIONS 

(Estimated Standard Errors in Parentheses) 

Experimental Control and Elig. Nonparticipant (ENP) Samples 


Adult Males, 508 Controls and 388 ENPs 


E N P ~  
Pred~ction 

controlh 
Pred~ction 

Equal-Welghtc 
Pred~ction 

Specification Percentage Percentage Percentage 

Coarse Scores I "  69.07 
(2.35) 

Coarse Scores 11" 72.42 
(2.27) 

Coarse Scores 111" 79.38 
(2.05) 

Best Predictor P a  81.96 
(1.95) 

Best Predictor P Without Earnings" 82.47 
(1.93) 

"ee the definitlons of the variables In these models presented under Table XIII. The variables in the optimal scores are 
presented in Tahle 111. 

h he "ENP Pred~ction Rate" and '.Control Pred~ctionRate" columns glve the percentage of ENPs and controls correctly 
predicted, respectively, uslng the hit or mlss rule. 

'The .'Equal-Weight Prediction Rate" column Elves the s~mplemean of t h e  ENP and control correct prediction rates. 

participation probability models used in the analysis reported in Table XIII; these models are 
defined in the notes to that table. The demographic variables in the coarse scores I model do a 
surprisingly good job of predicting participation. Adding annual earnings, which has a statistically 
significant coefficient in the logit, improvks the prediction rate for both groups. However, using the 
recent labor force status history variables defined in Table I, instead of annual earnings, improves 
the prediction rates even more-over 10 percent for the ENPs and nearly 8 percent for the controls. 
The coefficients on the labor force status history variables are also statistically significant when 
added to either Coarse I or Coarse 11. It is instructive to compare the Coarse Scores I11 row with the 
fourth row, which displays the prediction rates for the best-predictor P specification used to 
generate the main results in this paper. Over two-thirds of the difference in prediction rates between 
the best-predicting models is due to the addition of the labor force transition variables. The 
importance of these variables in predicting participation in this program is a new finding, discussed 
in detail in Heckman and Smith (199%). 

The last row of Table C-I presents prediction rates for a slightly reduced specification that 
discards the variable measuring earnings in the month of random assignment or eligibility screening 
used in the best P predictor model. The coefficient on earnings in the month of random assignment 
or eligibility screening is highly statistically significant when it is included in any specification, and its 
inclusion substantially improves the control ( D = 1) prediction rate. However, as shown in the fourth 
column of Table C-I, including it in the model decreases the simple average of the ENP and control 
prediction rates by 0.07. Since a model that includes the earnings variable dominates on two of the 
three prediction criteria, and since the associated coefficient on the variable is statistically signifi- 
cant, we include the earnings variable in our best predictor equation. 

APPENDIX D 

MOKTE CARL0 STUDY OF THE TEST FOR IKDEX SUFFICIENCY 

To study the size and power of our test for index sufficiency, we perform a Monte Carlo study 
using 100 generated samples, each with 896 obselvations-the size of our sample. We investigate the 
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size and power of our test using an additional variable besides P. We test the hypothesis that 
{ K , ( P 1 r. = 1)- K,(P 1 r. = 1)) - {K, (P 1 r. = 0 )- K o ( P I r. = 0 ) )= 0,  where r. E {0 ,1)  indicates race 
group. 

The data are generated from the following procedure. We first estimate earnings function (16) 
with K,(P)  and K , ( P )  parameterized as quadratic functions of P so that K o ( P I r. = 1) = K o ( P I r. = 

0 )= a, ,  P  + a 2 , P 2 , and K,(P 1 r. = 1 )  = K,(P 1 r = 0 )= a , ,P  + a:,  P 2 .  We estimate this function us- 
ing a combined sample of blacks and whites, imposing a common /3 across groups. This defines the 
base model for the null hypothesis. 

Using the realized data for R , ,  and the estimated P ,  denoted p, we generate residuals for each 
observation as follows: 

Using these residuals we estimate the variance of E,  which is assumed to be common across race 
groups but allowed to vary across D. We assume that s,,,.-/If(O. ~$1, d r {O,l) in generating the 
data for the analysis. We assume that the departures from the null operate through the linear term 
of the K , ( P )  function. Thus K,(P 1 r. = 1) = ( a , ,  + y ) P  + a 2 , P 2  and K , ( P  I r. = 0 )= a l , P  + a 2 , ~ ' .  
The assumption K o ( P I r. = I )  = K,(P 1 I. = 0 )  is maintained throughout. 

The specified value of y determines how far the data deviate from the assumption of index 
sufficiency. For larger values of y ,  the model deviates more from the index sufficient model, and one 
would expect to see more rejections. We compute the number of rejections as a function of y for 
our index sufficiency test using a 5% chi-squared critical value. The results of this analysis are 
displayed in Figure D-1, which plots the number of rejections against the average deviation from 
index sufficiency, defined here as yP,  where P is the mean of the probabilities of participation taken 
over the region of common support for all ( D ,r . )  subgroups. 

At y = 0, the null hypothesis of index sufficiency is correct, and we can determine the size of our 
test for the sample sizes used in the paper. We obtain 25 out of 100 rejections at y = 0 despite a 

Power Function 

FIGURE D-1.-Power function for joint index sufficiency tests. K , ( P  r. = I )  = K l ( P I r. = 0 )+ yP 
and K o ( P I r = 1) = K o ( P I i .  = 0). 
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nominal size of 5%. Thus there is a tendency to reject the null hypothesis too frequently when it is 
true and our test is conselvative. In addition, the power function is very flat over a broad region of 
the data. 

Figures D-2 graph the estimated bias functions for quarter 3 by the site, race, and education 
categories that underlie the tests on index sufficiency reported in Table VIII. These are typical of 

Training Center 

- Fort Wayne----- Jersey Cny 

-. -...--,-

2. -.-,' . 

Probability of Program Participation 

419 Controls, 216 ENPs 

Race and Ethnicity 

8' 

Probability of Program Participation 

399 Controls, 189 ENPs 

FIGURED-2.-Estimated bias as a function of P ,  adult males, best predictor P model for the 
probability of program participation; bandwidth = 0.06, trimming = 2%. 
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C _".'' 
,# .- .- -- __.._",... .. .. ....*. .-" 

Probability of Program Participation 

504 Controls, 372 ENPs 

FIGURED-2.-Continued 

the biases found in other quarters and of the differences tested in VIII. While the agreement in the 
estimated bias functions is close for some groups, there are clearly differences in the bias for the 
other groups. Our failure to reject the null hypothesis of index sufficiency may be a consequence of 
the low power of our tests. The large disparity between the bias functions for certain groups does not 
necessarily imply that index sufficiency does not characterize the bias witlziiz those groups. However, 
the samples at our disposal are too small to make such a test meaningful. Overall, we do not reject 
the null hypothesis of index sufficiency but in light of the relatively low power of the test, our 
acceptance of the null hypothesis is necessarily a qualified one. 
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