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The conventional approach to social programme evaluation focuses on estimating mean 
impacts of programmes. Yet many interesting questions regarding the political economy of pro- 
grammes, the distribution of programme benefits and the option values conferred on programme 
participants require knowledge of the distribution of impacts, or features of it. This paper presents 
evidence that heterogeneity in response to programmes is empirically important and. that classical 
probability inequalities are not very informative in producing estimates or bounds on the distribu- 
tion of programme impacts. We explore two methods for supplementing the information in these 
inequalities based on assumptions about participant decision-making processes and about the 
strength in dependence between outcomes in the participation and non-participation states. 
Dependence is produced as a consequence of rational choice by participants. We test for stochastic 
rationality among programme participants and present and implement'methods for estimating the 
option values of social programmes. 

And the Lord said, Because the cry of Sodom and Gomorrah is great, and 
because their sin is very grievous; I will go down now, and see whether they have 
done altogether according to the cry of it, which is come unto me; and if not, I 
will know . . . And Abraham drew near and said, Wilt thou also destroy the 
righteous with the wicked? Peradventure there be fifty righteous within the city; 
wilt thou also destroy and not spare the place for the fifty righteous that are 
therein?. . . And the Lord said, I f  Ifind in SodomJiSty righteous within the city, 
then I will spare all the place for their sakes. 

Genesis 18: Verses 20-26, King James Version 
487 
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1. INTRODUCTION 

Most evaluations of social programmes focus exclusively on mean impacts. Yet, as the 
passage from Genesis reveals, features other than the mean are often of interest. Just as 
Abraham convinced the Lord to spare Sodom and Gomorrah if he could find 50 righteous 
persons living there, so many persons would judge programmes to be successful if enough 
persons, or enough of the right kinds of persons, reaped benefits from them even if the 
average participant did not. 

The case for using the mean impact to evaluate a programme rests on two key 
assumptions: (a) that increases in total output increase welfare; and (b) that undesirable 
distributional aspects of programmes are either unimportant or are offset by transfers 
governed by a social welfare function, or its counterpart for families or groups. Both of 
these assumptions are strong. Many programmes produce outputs that cannot easily be 
redistributed (c.g. vaccinations or other nontransferable payments in kind). Programme 
outputs cannot always be valued and summed to produce a measure of total welfare. 
Appeal to a mythical social welfare function begs fundamental questions of political econ- 
omy. The distribution of the benefits (and costs) from a programme determines the support 
for a programme if voters are self-interested or if they are altruistic. In median voter 
models, the mean is irrelevant unless it coincides with the median. An altruistic voter may 
wish to see the lot of the worst-off advanced if he adopts Rawls' (1971) maximin criterion 
for social justice. 

Measuring the distribution of impacts across persons is an intrinsically difficult prob- 
lem. The fundamental aspect of the programme evaluation problem is that one cannot 
simultaneously observe the same person in a programme and out of it. Thus it is not 
possible to determine the programme impact for any person. However, one can construct 
the outcome distribution for participants and the outcome distribution for nonparticipants. 
If the outcome distribution for nonparticipants coincides with what participants would 
have experienced had they not participated, or can be adjusted to do so, then the difference 
in the means of the participant and nonparticipant distributions is the mean impact of the 
programme. The distribution of impacts, or even its median, is more difficult to obtain. 
From the two marginal distributions for participants and nonparticipants, it is generally 
not possible to estimate the joint distribution of outcomes and so it is generally not possible 
to estimate the distribution of impacts or its median. 

One important special case where it is possible dominates the textbook literature in 
econometrics. This special case is the "common effect" model where the programme is 
assumed to have the same impact on everyone (or everyone with the same observed 
characteristics). In this case, the impact distribution is degenerate and is concentrated on 
the mean impact.' 

The conventional assumption of identical programme impacts across persons, while 
convenient, is implausible, and we present evidence against it for a prototypical job training 
programme. How then can one identify the distribution of programme impacts in the 
more general case? One way to recover features of joint distributions from marginal 
distributions is to use the classical probability inequalities of Hoeffding (1940) and Frechet 
(1951) that bound joint distributions from known marginals.' For our prototypical pro- 
gramme, these inequalities are not very informative in the sense that they do not produce 
precise estimates or bounds on the quantiles or the other features of the distribution of 
impacts. 

1. The centrality of the common effect model in conventional econometric policy evaluation analysis is 
stressed in Heckman and Robb (1985, 1986) and Heckman (1992). 

2. Lavine, Wasserman and Wolpert (1991) apply these inequalities in a Bayesian framework to study clinical 
trials and produce negative results similar to the ones reported in this paper. 
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The failure of a purely statistical approach to determine the distribution of programme 
impacts leads us to supplement the classical inequalities in two related ways. First, we 
investigate the value of assumptions about dependence between potential outcomes in the 
treated and untreated states. Second, we investigate strategies that exploit assumptions 
about the decision rules governing participation in the programme. These two approaches 
are linked. If agents follow the decision rules we investigate, dependence is induced in the 
potential outcomes across the treated and untreated states for programme participants. 
Evidence on programme participation decision rules justifies certain assumptions about 
dependence in outcomes that can be used to construct or bound distributions of impacts 
using the observed marginal distributions of outcomes for participants and for 
nonparticipants. 

Estimates of decision rules can be used to compare participant "subjective" 
assessments of outcomes with direct "objective" measures of outcomes to see if they agree. 
Both measures provide useful information for evaluating the welfare state (Heckman and 
Smith (1997)). If participant self-selection decisions are solely determined by programme 
outcomes, subjective and objective evaluations agree. In this case it turns out to be possible 
to extrapolate estimates of impacts obtained in one economic environment to other 
environments as we demonstrate below. 

This paper proceeds in the following way. We present evaluation problems where the 
distribution of impacts is a central concern and show how the traditional common effect 
model readily answers those problems. We then consider the more general, and plausible, 
case where impacts are heterogeneous. We present several different definitions of the option 
value of a social programme. 

We estimate impact distributions using data from a social experiment where there is 
no selection bias. (Heckman and Smith (1997) consider the more general case of inference 
from nonexperimental data.) We demonstrate two points using data from a prototypical 
job training programme. First, classical probability inequalities do not resolve much of 
the uncertainty about impact distributions. Second, the inequalities, together with our 
other findings, provide strong evidence of variability in programme impacts. Heterogeneity 
in the response to treatment is an important feature of the data. 

We examine the strength of the dependence between outcomes in the potential out- 
come states required to produce plausible impact estimates. Very strong dependence is 
required to produce credible impact estimates in our data. We also present evidence 
on programme participation decision rules, and test to see if programme participation 
decisions satisfy stochastic rationality. Many identifying assumptions have testable 
implications which we examine in this paper. 

We demonstrate how information about agent decision rules facilitates extrapolation 
of estimates of impacts obtained in one evaluation environment to other environments. We 
examine the benefits of randomization for models with different programme participation 
decision rules used by agents. We also estimate the option value conferred on persons 
eligible for social programmes. The paper concludes with a summary of the main results. 

2. THE EVALUATION PROBLEM AND THE CRITERIA OF INTEREST IN 
EVALUATING SOCIAL PROGRAMMES 

In the simplest version of the programme evaluation problem, there are two potential 
states of the world for each individual, (Yo, YI ). We treat YI as the outcome obtained 
given participation in the programme being evaluated and Yo as the outcome in the 
benchmark state of non-participation. Let D denote participation, where D = 1 if a person 
participates and D =0 otherwise. Coverage of the programme may be partial or universal. 
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For simplicity, we ignore general equilibrium effects. Our analysis closely approximates a 
full general equilibrium policy analysis if Yo is the outcome in the no-programme state. 
Heckman and Smith (1997) present precise conditions under which the partial equilibrium 
"no treatment" state approximates the general equilibrium no-programme state. In gen- 
eral, the nonparticipation outcome state for a given programme is not the same as the 
no-programme state for any person, so some approximation error is unavoidable in any 
partial equilibrium evaluation. 

If analysts could observe (Yo, Y, ) for everyone, there would be no evaluation prob- 
lem. In that case, one could form the traditional measure of gain, A =  YI- Yo, for each 
individual and for various populations of interest, and use this measure to answer a variety 
of interesting questions. The conventional approach to programme evaluation focuses on 
estimating mean impacts. The mean that receives the most attention is E( Y1- Yo1 D = 1), 
the effect of "treatment on the treated." This mean is useful in determining the gross gain 
from an existing programme.3 

(a) Criteria of interest besides the mean 

Many interesting evaluation questions require knowledge of features of the distribution 
of programme gains other than the mean. From the standpoint of a detached observer of 
a social programme, such as the "social planner" of welfare economics, who equates Yo 
with the no-programme state for an individual and hence takes the base state values as 
those that would prevail in the absence of the programme, it is of interest to know, inter 
alia. 

(a) the proportion of people taking the programme who benefit from it, 

(b) the proportion of the total population that benefits from the programme, 

(c) selected quantiles of the impact distribution, 

infA (A: F(A I D= 1)>q),  where q is a quantile of the distribution; 

(d) the distribution of gains at selected base state values, 

Each of these measures can be defined conditional on observed characteristics X. Measure 
(a) is of interest in determining how widely programme gains are distributed among 
participants. Detached observers with preferences over distributions of programme out- 
comes or an electorate in a democratic society would be unlikely to assign the same weight 
to two programmes with the same mean outcome, one of which produced favourable 
outcomes for only a few persons while the other distributed gains more broadly. This is 
especially true if programme benefits are not transferrable or if restrictions on feasible 

3. Heckman (19976) and Heckman and Smith (1997) discuss the relationship of this parameter to those of 
conventional cost-benefit analysis and establish conditions under which "treatment on the treated" estimates an 
economically interesting parameter that can be used in a meaningful cost-benefit analysis. 
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social redistributions prevent distributional objectives from being attained. It is also inter- 
esting to determine the proportion of participants who are harmed as a result of pro- 
gramme participation: Pr (Y, < YoI D = 1). A negative mean impact might be acceptable 
to many observers if most participants gain from the programme. 

Measure (b) is the proportion of the entire population that benefits from the pro- 
gramme, assuming that costs are broadly distributed and are not perceived to be related 
to the specific programme being e~a lua t ed .~  If voters have correct expectations about the 
joint distribution of outcomes, it is of interest to politicians, and to students of political 
economy, to determine how widely programme benefits are distributed. At the same time, 
large programme gains received by a few persons may make it easier to organize interest 
groups in support of a programme than if the same gains are distributed more widely. In 
a study of the political economy of interest groups, it is useful to know which groups 
benefit from a programme and how widely distributed are the programme benefits. Criteria 
(c) and (d) reveal the distribution of impacts for participants and for subgroups of partici- 
pants with particular outcomes in the nonparticipation state. These are of interest to 
persons interested in "social justice." All of these measures require knowledge of features 
of the joint distribution of outcomes for participants for their computation, and not just 
the mean. 

The traditional literature on programme evaluation focuses on mean impacts, which 
can be used to measure the effect of a programme on total social ouiput. The theme of 
that literature is that "a dollar is a dollar," regardless of who receives it. However, an 
emphasis on efficiency to the exclusion of distribution is not universally accepted in the 
economic literature on programme evaluation.' An emphasis on efficiency is premised on 
the transferability of outcomes among participants or on the assumption that distributional 
issues are either irrelevant or are settled by some external distribution mechanism using a 
family or social welfare function. 

Outcomes from health interventions, educational subsidies and training programmes 
are not transferrable. Moreover, even if all programme outputs can be monetized, the 
assumption that a family or social welfare function automatically settles distributional 
questions in an optimal way is questionable. Many programmes designed to supply merit 
goods are properly evaluated by considering the incidence of their receipt and not the 
aggregate of the receipts. 

Even if distributional issues are ignored and the criteria of cost-benefit analysis are 
accepted, conventional econometric evaluation estimators do not supply the information 
required to implement the criteria. Heckman (1997b) and Heckman and Smith (1997) 
demonstrate that the parameters that receive the most attention in the programme evalua- 
tion literature, including the mean impact of treatment on the treated, do not provide the 
information required to compute the gain in GDP that results from a programme. All 
ignore costs and few answer well-posed economic questions, except under special 
circumstances. 

Social programmes confer options, and it is of interest to assess their option values. 
Persons offered a subsidized job may take it or opt for their best unsubsidized alternative. 
The option of having a subsidized alternative job may be worth something. The option 
may be conferred simply by eligibility or it may be conferred only on participants. If the 
programme creates an option only for participants, then prior to participating in it their 
only available option comes from distribution Fo( y o ) .Following or during participation 

4. A more comprehensive analysis would include costs. 
5. See, e.g. Dreze and Stern (1987) and Weisbrod (1968). Kaplow (1993) presents a dissenting view. 
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in the programme, the individual has a second option Z drawn from distribution F Z ( .  ). 
If both options are known prior to choosing between them, and agents are outcome 
maximizers, then the observed outcome YI is the maximum of the two options, Y1= 

max ( Yo, Z) .  The option Z may be available only during the period of programme partici- 
pation, as in a wage subsidy programme, or it may become a permanent feature of the 
choice set as when a marketable skill is a ~ q u i r e d . ~  It is useful to distinguish the case where 
the programme offers a distribution FZ from which new offers are received each period 
from the case where a permanent Z value is created. Much of the literature on programme 
evaluation implicitly equates Z with YI . This would follow under the assumption that 
treatment is an irreversible condition that supplants Yo. Alternatively, this would follow 
under the assumption that Z >  Yo for all draws of Z and Yo.In either case, persons always 
choose Z over Yo.In either case, Yl =Z and the estimated distribution of Yl is equivalent 
to the estimated distribution of Z. For the general case it is useful to determine what a 
programme offers to potential participants, what the offer is worth to them, and to distin- 
guish the offered option from the realized choice. 

The expected value of having a new option Z in addition to YOis 

(OP- 1 ) E(max (Yo, Z)ID=l)-E(YoID=l), 

assuming that participants can pick freely between Yo and Z. This is the difference in 
expected outcomes between a two-option world and a one-option world, assuming that it 
is costless to choose between Yoand Z and both are known at the time the choice is made. 
Assuming that participants can choose between realized Z and Yooffers, social experiments 
estimate (OP-1). It is useful to distinguish the opportunities created from the programme, 
Z, from the options selected. The programme extends opportunities to participants. Provid- 
ing a new opportunity that may be rejected may improve the average outcome among 
persons who choose Yo over Z in the sense that 

even though the value of Yoreceived by all persons is assumed to be the same irrespective 
of whether or not they receive draws from the distribution F:.' This effect is a pure 
compositional phenomenon arising from self-selection. 

If a programme gives participants a second distribution from which they receive a 
new draw each period, and if realizations of the pair (Yo, Z )  in each future period are 
statistically independently and identically distributed, then the addition to future wealth 
of having access to a second option in every period is 

where r is the interest rate. If Z is available only for a limited time period, as would be 
the case for a job subsidy, (OP-1) is discounted over that period and expression (OP-2) 
should be appropriately modified to adjust for the finite life of the first term.R 

6. Wage subsidy programmes may create lasting skills. See the evidence in Heckman, Lochner, Smith and 
Taber ( 1997). 

7. In a general equilibrium setting, the existence of Fz may alter 6.Thus a new skill may affect the market 
for old skills. We abstract from these considerations in this paper. 

8. Let g(r)=l-e-"/r ,  where r is length of life, then (OP-2) is g(r)E(max ( Y , , , Z ) I D = I ) -  
( I / r )  E(YolD=l) .  
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Returning to the case of a single draw, if the realizations (YO, Z )  are not known at 
the time decisions to exercise the option are made, (OP-1) should be modified to 

A fourth definition of option value recognizes the value of having uncertainty resolved at 
the time decisions to choose between Z and YO are made. That definition is 

Option value (OP-1) is produced from experimental data. The empirical challenge is to 
recover FZ or E(Zl D =  1) from the experimental data, a task attempted in Section 8. 

(b )  The evaluation problem and the conventional approach to solving it 

The evaluation problem poses fundamental limitations on our ability to answer all of the 
questions posed in subsection (a). The problem arises because we do not observe (Yo, YI ) 
for everyone. Thus it is not possible to estimate the joint distribution of (Yo, Y, ) or the 
distribution of gains directly. This problem is explicitly discussed by Fisher (1951), Cox 
(1958), Roy (1951) and other^.^ From ordinary non-experimental data on participants 
(D = 1) and non-participants (D=0) we can determine the conditional outcome 
distributions : 

F,(yl I D =  1) (participant outcomes), (la) 

and 

Fo(yo1 D =0) (non-participant outcomes. (lb) 

If programme coverage is universal, there is no information on (lb) because D =  1 
for everyone. Even if coverage is partial, we do not know YO for participants or YI for 
non-participants, so without additional information it is not possible to construct the 
counter-factual conditional distributions: 

(what participant outcomes would have been had they not participated), (lc) 

and 

(what non-participant outcomes would have been had they participated). (Id) 

Since we never simultaneously observe both the treated and untreated states either for 
participants or for nonparticipants, we also do not know the conditional joint outcome 
distributions : 

9. The recent statistical literature sometimes calls this the "Rubin" model. In biostatistics, it is called the 
model of competing risks. This model is known as the switching regression model in econometric theory, see. 
e.g. Quandt (1972) or Quandt (1988). It is known as the Roy model in labour economics after an early paper 
by Roy (1951), who expressed the mathematics of the Fisher model verbally and examined the consequences of 
self-selection on income inequality. See Heckman and Honore (1990) for an exposition of the Roy model and 
proofs about its nonparametric identifiability. 
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and 

Unless participation in the programme is random with respect to outcomes, so that 
Fo(yoI D = 1)=Fo(yoI D =0), it is not possible to use the non-experimental data, ( la)  and 
(1 b), to estimate either the conventional parameter of interest, the mean impact of treat- 
ment on the treated, E(Yl - Yo1 D = I), or many of the other parameters of economic 
interest introduced in the preceding discussion. From the population means of programme 
participants and non-participants, we obtain 

Only if there is no selection of participants on the basis of Yo will the selection bias term 
in braces be zero. Under ideal conditions, social experiments solve the selection bias 
problem by producing Fa(yoI D = l).1° They do not recover (ld), because one cannot force 
non-participants to participate. Social experiments unaided by additional assumptions do 
not recover (le) and ( I f )  because one cannot observe both coordinates of (Yo, YI) for 
anyone. Without invoking further assumptions, it is only possible to determine features 
of the joint distribution that depend solely on Fl(yl I D = 1) and Fo(yo I D = l), even using 
experimental data. 

One important feature that can be recovered from an ideal social experiment is the 
mean impact of treatment on the treated, E( Y1 - YoI D = 1). In contrast, medians or other 
quantiles of the impact distribution cannot be consistently estimated from the marginal 
distributions provided by experimental data (Heckman (1992)). 

However, in the special case where Y1 - Yo= a, and a is a function of observed 
variables X, the distribution of gains is degenerate since everyone with the same X has the 
same gain. This is the "dummy endogenous variable" model of Heckman (1978). In this 
case, Heckman (1992) shows that ideal experiments recover the joint distribution of 
(Yl,  Yo) since Fo(yo 1 X )  =FI(yo+a I X), and hence social experiments can be used to 
answer all of the evaluation questions. 

Assuming no bias is induced by randomization, social experiments determine the 
mean impact of treatment on the treated." However, the mean does not answer many 
interesting questions if persons respond differently to treatment. 

3. UNCERTAINTY ABOUT IMPACT DISTRIBUTIONS 

If the responses to a programme of all persons with identical observable characteristics 
are identical, the problem of evaluating it simplifies greatly. In this section, we present 
evidence that variability in impacts is an empirically important phenomenon. We first 
consider the case where outcomes are continuous random variables. 

(a) The continuous case 

Assume access to data from an ideal social experiment. For simplicity, assume samples of 
N individuals in the treatment state and N in the non-treatment state and that outcomes 

10. See Heckman (1992), Heckman (1996) or Heckman and Smith (1993, 1995) for a statement of conditions 
under which experiments produce this distribution. Heckman, Hohmann, Khoo and Smith (1997) present 
evidence that questions those assumptions in the context of a prototypical job training programme. 

1I .  This is true whether randomization is administered at the date of enrollment into the programme or at 
eligibility. See Heckman and Smith (1993) or Heckman (1996). 



HECKMAN ET AL. ACCOUNTING FOR HETEROGENEITY 495 

are continuously distributed. Ranking individuals in the order of their outcome values 
from the highest to the lowest, let Y)" be the outcome for the i-th highest-ranked person 
in empirical distribution j. Ignoring all ties, we obtain two N x 1 vectors of outcomes : 

Treatment Outcome: F1(y l  I D = 1) Non-Treatment Outcome: Fa(yoID = 1) 

From an ideal social experiment, we can identify the marginal data distributions 
Fl(yl I D = 1) and Fa(yo1 D = 1), but we do not know where person i in the treatment 
distribution would appear in the non-treatment distribution. Suppose that we have access 
to a random sample of outcomes with the empirical distributions close to the true distribu- 
tions. Corresponding to the ranking of the sample non-treatment outcome distribution, 
there are N! possible patterns of outcomes in the treatment outcome distribution. By 
considering all possible permutations, we can form a collection C of possible impact 
distributions, i.e. alternative distributions of 

~ l = y I - n l ~ o ,  l = l , .  . . ,N ! ,  

and associated joint data distributions for (Yo, Yl ), where Ill is a particular N x N permu-
tation matrix in the set of all N !  permutations associating the ranks in the YI distribution 
with the ranks in the Yo distribution.I2 By considering all possible permutations, we obtain 
all possible sortings of treatment (Y1 ) and non-treatment ( Yo) outcomes using realized 
values from one distribution as counterfactuals for the other. Taking all possible permuta- 
tions of the discrete data distribution, as N becomes large, we obtain an increasingly 
accurate approximation to the convex hull of the space of all admissible joint distributions 
of outcomes with pre-specified marginals.I3 

To gauge the intrinsic uncertainty about the set of impact distributions consistent 
with given marginals, assign equal weight to all possible permutations. Using the sample 
outcome distributions, we can pair TI with each possible permutation of _Yo and in this 
way generate all possible permutational contrasts bl obtained from the sample distribu- 
tions. More generally, in place of permutation matrix HI, which shifts mass points across 
distributions, we could allocate the mass more smoothly, but we do not do so in this 
paper. A more general approach is described in Section 4. 

Two complications preclude direct application of the simple idea of constructing all 
possible permutations of rankings from the empirical distributions. First, in most data 
sets there are unequal numbers of persons in the two empirical distributions ( N Y IZ NY, , )  
and ours is no exception. To circumvent this problem, we permute the quantiles of the 

12. Each row or column of an N x  N  permutation matrix has a single "1" value and all other values are 

"0". 


13. More precisely, Whitt (1976).shows that collection C coincides with the set of extreme points of the 
set S of all cumulative joint sample distribution functions having the empirical counterparts of FI  I D = 1 )  
and Fo(yoID =  1) as  marginal distributions. If the elements of )', and _Yo are each distinct, then C corresponds 
to the set of all N  x  N  permutation matrices while the set of all cumulative joint distribution functions corresponds 
to the set of all N x N doubly stochastic matrices. An N x N doubly stochastic matrix B has I;=, 1 andB,, = 

12,B, = 1 and all elements are non-negative. The data distributions are dense in the space of all probability -. . -
measures in the topology of weak convergence. In the limit as N - t c o ,  we can obtain any adnlissible bivariate 
distribution that lies in S by operating on C using doubly stochastic matrices. Thus C is the convex hull of S. 
T o  simplify the analysis presented in the text we work with the data distributions, passing to the limit as required. 
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two distributions using the distribution with the smaller number of observations to set the 
spacing in the distribution with the larger number. Then min (NYo, NY,)  is the maximum 
number of quantile spacings considered in the distribution with more observations. All 
elements in a given quantile class determined in this manner are treated as the same by 
fixing all values at the within-quantile mean or median or by randomizing which elements 
within each quantile in the larger distribution are associated with elements in the smaller 
distribution. 

Second, for N sufficiently large, it is computationally demanding to consider all pos- 
sible permutations of the data distribution. To solve this problem, we collapse both distri- 
butions down to a small number of quantile classes and use mean values within each 
quantile class to summarize the class. Permutations are then done with respect to the 
reduced classes. Distributions of impacts constructed from such permutations obviously 
understate the full range of values that could be obtained from permuting the quantiles 
of the true impact distribution. 

We obtain estimates using data on self-reported earnings in the eighteen months 
following random assignment from an experimental evaluation of the employment and 
training programmes funded under Title 11-A of the U.S. Job Training Partnership Act 
(JTPA). This programme provides classroom training, on-the-job training and job search 
assistance to the disadvantaged. As the impacts of training for adult women (age 22 or 
older) are of substantial interest given current attempts to reform welfare in the U.S., we 
focus our empirical analysis on this group. Appendix A describes the data in greater detail. 

Using percentiles as the finest quantile partition, we obtain loo! possible different 
permutationally-generated impact distributions. Without invoking any prior information 
connecting outcomes across the two distributions, any one of these permutation patterns 
is equally likely. To examine the variation consistent with the experimentally-determined 
marginals, we take a random sample of 100,000 from the population of loo! percentile 
permutations. Table 1A presents means and selected quantiles of the distributions of the 
extremes and the 5th, 25th, 50th, 75th and 95th percentiles of the impact distributions 
corresponding to this sample of permutations of the quantiles. Table 1B presents means 
and selected quantiles of parameters of interest for the sample of joint outcome distribu- 
tions generated by the permutations, including the fraction with a positive impact, the 
impact standard deviation, and several measures of dependence between Yoand Y I. 

Tables 1A and 1B demonstrate substantial variability in the quantiles of the impact 
distributions we generate. For example, the lowest percentile of the medians is -$I999 
compared to the highest percentile of $3636. The 5th percentile of the impact distributions 
has an interquantile range of almost $2500 in this sample. The true variability is even 
greater since the permutations producing the most extreme values of the impact percen- 
tiles-those wherein the best in one distribution are matched with either the best or the 
worst in the other-are also very few in number. As a result, they appear very rarely in 
random samples of this size. 

Table 2 displays selected percentiles of the impact distribution for the two extreme 
cases in which either (1) the two marginal distributions are matched in ascending order 
or (2) the distributions are matched in reverse order. These two special cases reveal wide 
variation, with the 5th percentile of the impact distribution equal to $0 in the case of 
perfect positive quantile dependence and -$22,350 in the case of perfect negative quantile 
dependence. The 95th percentile of the impact distribution equals $2003 in the first case 
and $23,351 in the second. 

Without additional information, the evidence from experimental data is consistent 
with a broad range of distributions of programme impacts and interpretations of the 
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TABLE IA 

Percentiles ofparameters of the impact distributions implied by a random sample of 100,000percentile permutations 
(National JTPA Study 18 month impact sample; adult females) 

Distn of Distn of Distn of Distn of Distn of Distn of Distn of 
Statistic minimum 5th Pctl 25th Pctl 50th Pctl 75th Pctl 95th Pctl maximum 

Mean -40690.34 -1827874 -6426.64 272.31 763206 18991.88 59516.06 
(6506.09) (713.35) (313.41) (133.26) (307.82) (675.32) (12506.11) 

Minimum -48606.00 -22350.00 -10814~00 -1999.00 3340.50 12205.00 19207.00 
(7986.12) (818.59) (443.03) (333.23) (406.16) (548.91) (6373.10) 

5th Percentile -48606.00 -21348.00 -81 14.00 -41.00 6038.00 16173.00 45808.00 
(7986.12) (913.24) (319.22) (119.48) (305.29) (532.35) (9292.33) 

25th Percentile -47551.00 -19512.00 -7055.00 0.00 6935.00 17789.00 54542.00 
(7964.97) (802.85) (31 6.39) (0.00) (307.90) (61 1.23) (1 1791.40) 

50th Percentile -41 969.00 -1835900 -642600 0.00 7647.00 19006.00 61 3 18.00 
(7097.89) (709.75) (305.08) (143.40) (297.03) (696.56) (13404.04) 

75th Percentile -35049.00 -17035.00 -5787.00 510.00 8253.00 20275.00 66860.50 
(5199.60) (641.74) (325.72) (226.50) (321.38) (733.39) (13845.22) 

95th Percentile -27450.00 -15409.00 -4777.00 1 197.00 9297.00 22088.00 67156.00 
(3498.30) (574.54) (290.52) (256.32) (322.02) (976.11) (13854.83) 

Maximum -	1571 3.00 -11280.00 -227400 3636.00 11707.00 23351.00 67156.00 
(1245.41) (526.96) (401.04) (326.56) (380.13) (680.61) (13854.83) 

1. The values in this table are calculated using the percentiles of the two distributions. Each of the 100,000 
impact distributions is constructed by matching the percentiles of the Y , distribution to a random permutation 
of the percentiles of the Yodistribution. The difference between each percentile of the Y , distribution and the 
percentile of the Yodistribution associated with it by the random permutation is the impact for that percentile. 
Taken together, the percentile impacts form the distribution of impacts. It is the mean, minimum, maximum 
and percentiles of these impact distributions that are reported in the table. 

2. Bootstrap standard errors appear in parentheses. 

impact of the programme. Additional information is required to narrow down this class 
in order to obtain more precise answers to the questions posed in Section (I). This paper 
considers several plausible assumptions that help to narrow the class of admissible distribu- 
tions. Before turning to the list of candidate assumptions, we first review the standard 
statistical approach to bounding features of the distribution of programme impacts using 
only the information in Fo(yo1 D = 1) and Fl(y ,  ID = 1). While many impact distributions 
are consistent with the data, they all indicate that variability in programme impacts is an 
essential feature of it. 

(6) Results fiom classical probability inequalities 

The problem of bounding an unknown joint distribution from known marginal distribu- 
tions is a classical problem in mathematical statistics. Hoeffding (1940) and FrCchet (1951) 
demonstrate that the joint distribution is bounded by two functions of the marginal 
distributions.I4 Their inequalities state that 

max [ F I ( ~ I I  D = ~ ) + F o ( ~ o I D = ~ ) - ~ , ~ I ~ F ( Y I , Y o I D = ~ )  

Smin [FI (yl I D =  I ) ,  D = 111. 

14. These inequalities were first applied in the context of the programme evaluation problem in our (1993) 
paper presented in May of that year. One of us presented the idea of using these bounds in informal discussions 
at a 1990 conference sponsored by the Institute for Research on Poverty, affiliated with the University of 
Wisconsin. 



REVIEW O F  ECONOMIC STUDIES 


TABLE l B 


Percentiles of parameters of the impact distributions implied by a random sample of 100,OOOpercentile permutations 
(National JTPA Study 18 month impact sample; adult females) 

Distn of Distn of Distn of Distn of Distn of Distn of 
percent impact outcome Kendall's Speannan's Blomquist's 

Statistic positive std dev correlation r P Q 
Mean 	 12767.97 0~0003 0.0001 0.0001 0.000 1 

(766.15) (0.0003) (0.0002) (0.0003) (0.0003) 

Minimum 8972.34 -0,3456 -0.3362 -0,5018 -0.4400 
(404.28) (0.0205) (0.0200) (0.0291) (0.0251) 

5th Percentile 11638.99 -0.1539 -0.1119 -0.1657 -0.1600 
(690.87) (0.0034) (0.0004) (0.0006) (0~0000) 

25th Percentile 12381.83 -0.0695 -0.0457 -0.0677 -0.0800 
(753.44) (0.0004) (0.0003) (0.0004) (0~0000) 

50th Percentile 12821.49 -0,0056 0.0004 0.0004 -0~0000 
(777.61) (0.0016) (0.0002) (0.0003) (0~0000) 

75th Percentile 13218.09 0.0630 0.0461 0.0683 0~0800 
(793.33) (0.0019) (0.0003) (0.0004) (0~0000) 

95th Percentile 13724.41 0~ 1734 0.1119 0.1660 0.1600 
(805.03) (0.0019) (0.0004) (0.0005) (0~0000) 

Maximum 14810.39 0.5135 0.305 1 0.4415 0.4400 
(839.73) (0.0409) (0.0 199) (0.0268) (0.0266) 

1. The values in this table are calculated using the percentiles of the two distributions. 	Each of the 100,000 
impact distributions is constructed by matching the percentiles of the Yl distribution to a random permutation 
of the percentiles of the Yo distribution. The difference between each percentile of the Y, distribution and the 
percentile of the Yo distribution associated with it by the random permutation is the impact for that percentile. 
Taken together, the percentile impacts form the distribution of impacts. The impact standard deviation and 
the percent positive are calculated using the percentile impacts. The impact standard deviation is the standard 
deviation of the percentile differences. The percent positive is the percent of the percentile impacts greater 
than or equal to zero. The outcome correlation, Kendall's r ,  Spearman's p and Blomquist's Q are calculated 
using the matched percentiles of the YI and Yo distributions. 

2. Bootstrap standard errors appear in parentheses. 

Ruschendorf (1981) establishes that these bounds are tight. Mardia (1970) establishes 
that both the lower bound and the upper bound are proper probability distributions. At 
the upper bound, Yl is a non-decreasing function of YO (almost everywhere). At the lower 
bound, Yo is a non-increasing function of Y, (almost everywhere). These inequalities are 
not helpful in bounding the distribution of A= Yl - YO, although they bound certain 
features of it. 

By a theorem of Cambanis et al. (1976), if k(Yl, Yo) is superadditive (or subadditive) 
then extreme values of E(k(Y1, YO) I D = 1) are obtained from the upper- and lower-bound- 
ing distribution^.'^ Since k( Yl ,YO)=(Yl -E( Y, ))( YO-E( Yo)) is superadditive, the maxi- 
mum attainable product-moment correlation ryoy,is obtained from the upper bound 
distribution while the minimum attainable product-moment correlation is obtained at the 
lower-bound distribution. Thus it is possible to bound VAR(A) = (VAR( Yl )+VAR( YO) -
2r,,,, [VAR(Yl )VAR(Y~)]"~) with the minimum obtained from the FrCchet-Hoeffding 
upper bound.I6 Checking whether the lower bound of VAR(A) is statistically significantly 

15. k is assumed to be Borel-measurable and right-continuous. k is strictly superadditive if YI> Y ;  and 
F,>Y; imply that k( Yl , Yo) +k( Y;, Y;) >k( YI , Y;,) +k( Y; , Yo). k is strictly subadditive if the final inequality 
is reversed. 

16. Note that the maximum value of r,,,, is obtained at the upper bound and that all other components 
of the variance of A are obtained from the marginal distributions. Thus the minimum variance of A is obtained 
from the Frechet-Hoeffding upper bound distribution. 
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TABLE 2 

Estimated parameters of the impact distribution ;perfect positive 
depencience and perfect negative dependence cases 

(National JTPA Study 18 month impact sample; adult females) 

Perfect positive Perfect negative 
Statistic dependence dependence 

5th Percentile 0.00 -22350.00 
(47.50) (547.17) 

25th Percentile 572.00 -1 1755.00 
(232.90) (41 1.83) 

50th Percentile 864.00 580.00 
(269.26) (389.5 1) 

75th Percentile 966.00 12791.00 
(305.74) (253.18) 

95th Percentile 2003.00 23351.00 
(543.03) (341.41) 

Percent positive 100.00 52.00 
(1.60) (0.81) 

Impact standard deviation 1857.75 16432.43 
(480.17) (265.88) 

Outcome correlation 0.9903 -0.6592 
(0.0048) (0.01 84) 

1. The values in this table are calculated using percentiles of 
the two distributions. The perfect positive dependence case 
matches the top percentile in the Y I  distribution with the 
top percentile in the Yo distribution, the second percentile 
of the Y1distribution with the second of the Yodistribution 
and so on. The perfect negative dependence case matches 
the percentiles in reverse order, so that the lowest percentile 
of the Y,]distribution is matched with the highest percentile 
of the Y , distribution and so on. 

2. 	The perfect positive and perfect negative dependence cases 
are based on the single permutation having this characteristic 
in the sample. 

3. For each case, the difference between each percentile of the 
Y ,  distribution and the associated percentile of the Yodistri-
bution is the impact for that percentile. Taken together, the 
percentile impacts form the distribution of impacts. It is the 
percentiles of these impact distributions that are reported in 
the upper portion of the table. The impact standard devia- 
tion, outcome correlation, and the percent positive are calcu- 
lated using the percentile impacts. The impact standard 
deviation is the standard deviation of the percentile differ- 
ences. The outcome correlation is the correlation of the 
matched percentiles from the two distributions. The percent 
positive is the percent of the percentile impacts greater than 
or equal to zero. 

4. Bootstrap standard errors in parentheses. 

different from zero provides a test of whether or not the data are consistent with the 
common effect model. If Y,- Yo=a is a constant, VAR(A) =0. Tchen (1 980) establishes 
that Kendall's z and Spearman's p also attain their extreme values at the bounding 
distributions. The bounding distributions produce the cases of perfect negative dependence 
and perfect positive dependence discussed in the preceding subsection. In general, useful 
bounds on the quantiles of the A =( Y ,- Yo) distribution cannot be obtained from the 
FrCchet-Hoeffding bounds. Table 3 presents the range of values of ry ly,,, Spearman's p 
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and [vAR(A)]"~ for the JTPA data. The ranges are rather wide, but it is interesting to 
observe that the bounds rule out the common effect model, as VAR(A) is bounded away 
from zero.'' 

The standard errors for the statistics derived from the bounding distributions are 
obtained from the bootstrap. If the statistics are asymptotically normal, the bootstrap 
standard errors are reliable guides to sampling uncertainty. Under these assumptions, 
the lower bound for VAR(A) can be used to test the hypothesis of no heterogeneity- 
Ho: VAR(A) =0, and the evidence in Table 3 rejects that hypothesis. 

TABLE 3 

Characteristics of the distribution of impacts on-earnings in the 
18 months after random assignment at the Frechet-~Hoeffding 

bounds 
(National JTPA Study 18 month impact sample; adult females) 

From From 
lower bound upper bound 

Statistic distribution distribution 

Impact standard deviation 14968.76 674.50 
(21 1.08) (137.53) 

Outcome correlation -0.760 0.998 
(0.013) (0.001) 

Spearman's p -0.9776 0.9867 
(0.0016) (0.00 13) 

1. These estimates differ slightly from those reported in Table 
2 because they were obtained using the empirical c.d.f.s cal- 
culated at 100 dollar earnings intervals rather than using the 
percentiles of the two c.d.f.s. 

2. Bootstrap standard errors in parentheses. 

Unfortunately, the statistics are not generally asymptotically normal. The censoring 
in the lower limit and minimization in the upper limit indicate that the distributions of 
the test statistics are unlikely to be normal. In Appendix E, we use Monte Carlo methods 
to investigate the distribution of the statistic and find that it is not normal. Bootstrap 
confidence intervals centred around the point estimate of A have low coverage probabilities 
even in large samples. We construct Monte Carlo cutoff values for rejecting the null that 
the true impact standard deviation is zero. Using these values, we reject the null that the 
true impact standard deviation is zero at the P= 0.0001 level. 

An alternative test examines whether the quantiles of Yo and Y1, q(Yo) and q(Yl ) 
respectively, differ by a common constant : Ho:q( YI ) -q( Yo) =a for all 0 5q 5 100. Figure 
1 presents the difference in quantiles from the two marginal distributions, along with 
standard error bands.I8 Over a broad range, the hypothesis of constancy of the impact is 
consistent with the data but at both extremes it is clearly rejected. Another test is based 
on the observation that a substantial proportion of persons has zero earnings in both 
distributions, but the proportions are different and both distributions have substantial 
mass at zero.I9 

17. The discrepancy in the statistics between the perfect positive and negative dependence cases reported 
in Table 2 and in Table 3 is due to the approximation arising from using permutations of percentiles in Table 2. 

18. The same qualitative features are found when we condition on education levels. 
19. The null hypothesis that q(Y, ) -q( Yo) =a for all q is rejected with ap-value of 0.0467 using percentiles. 

Thep-value for the null hypothesis of equality of the proportion of zero earners is 0.0165. If a =0. the proportions 
should be equal. If a #0, one distribution should have no mass at zero if the other has mass at zero. 
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FIGURE1 
Treatment-control differences at percentiles of the 18 month earnings distribution 

In an Appendix available on request, we explore the sensitivity of these estimates to 
measurement error in earnings. Our basic inferences are not altered, including our major 
inference bounding the variability in programme impacts away from zero. 

( c )  The discrete case 

The Frkchet-Hoeffding bounds apply to all bivariate outconle distrib~tions.'~ Variables 
may be discrete, continuous or both discrete and continuous. In this section, we use 
the bounding distributions to establish the variability in the distribution of impacts on 
employment status. The latent distribution underlying this situation is m~ltinomial.~' Let 
(E, E) denote the event "employed with treatment" and "enlployed without treatment" 
and let (E,  N )  be the event "employed with treatment, not employed without treatment." 
Similarly, ( N ,  E )  and ( N , N )  refer respectively to cases where a person would not be 
employed if treated but would be employed if not treated, and where a person would not 
be employed in either state. The probabilities associated with these events are P E E ,  PEW^ 
P N E  and P N N ,  respectively. This model can be written in the form of a contingency table. 
The columns refer to employment and non-employment in the untreated state. The rows 
refer to employment and non-employment in the treated state. 

20. Formulae for multivariate bounds are given in Tchen (19801 and Riischendorf (1982). 
21. The following formulation owes a lot to the missing cell literature in contingency table analysis. See, 

e.g. Bishop, Fienberg and Holland (1975). 
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FIGURE2 

2 x 2 Table representation 


If we observed the same person in both the treated and untreated states, we could 
fill in the table and estimate the full distribution. Instead, with experimental data we can 
estimate combinations of the table parameters 

PE.=PEE+PEN, (employment proportion among the treated), (2a) 

P., =PEE+PNE, (employment proportion among the untreated). (2b) 

The treatment effect is usually defined as 

the proportion of people who would switch from nonemployed to employed as a result 
of treatment minus the proportion of persons who would switch from being employed to 
not being employed as a result of treatment. Using (2a) and (2b), 

so that T can be estimated without bias by subtracting the proportion empkoyed in the 
control group (P.E) from the proportion employed in the treatment group (PE.). 

If we wish to decompose T into its two components, PENand PNE, the experimental 
data do not give an exact answer except in special cases. In terms of the contingency table 
presented in Figure 2, we know the row and column marginals but not the individual 
elements in the table. In the 2 x 2 table, the case corresponding to the common effect 
model for continuous outcomes restricts the effect of the programme on employment to 
be always positive or always negative, so that either PENor PNE=O, respectively. In this 
case, the model is fully identified. This is analogous to the continuous case in which the 
common effect assumption, or more generally, an assumption of perfect positive depend- 
ence, identifies the joint distribution. 

More generally, the FrCchet-Hoeffding bounds restrict the range of admissible values 
for the cell probabilities. Their application in this case produces: 

max [PE.+P.~-  1, O]5PEE5min [PE., P.E] 

max [PE.-P.,, O]SPENImin [PE., 1 -P.E] 

Table 4 presents the Frechet-Hoeffding bounds for P N E  and PEN.The outcome vari- 
able is whether or not a person is employed in the 16th, 17th or 18th month after random 
assignment. The bounds are very wide. Even without taking into account sampling error, 
the experimental evidence for adult females is consistent with PNEranging from 0.00 to 
0.36. The range for PENis equally large. Thus as many as 39%)and as few as 3%)of adult 
females may have had their employment status improved by participating in the training 
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TABLE 4 


Fraction employed i!z the 16th, 17th or 18th months after random 

assignment and Frechet-Hoefding bounds on the probabilities 


P N Eand PEN 

(National JTPA study 18 month impact sample; adult females) 


Parameter Estimate 

Fraction employed in the treatment group 0.64 
(0.01) 

Fraction employed in the control group 0.61 
(0.01) 

Bounds on PEN r0.03, 0.391 
(0.01), (0.01) 

Bounds on P N E  r0.00, 0.361 
(0.00), (0.01) 

1. Employment percentages are based on self-reported employ- 
ment in months 16, 17 and 18 after random assignment. A 
person is coded as employed if the sum of their self-reported 
earnings over these three months is positive. 

2. 	P,  is the probability of having employment status i in the 
treated state and employment status j in the untreated state, 
where i and j take on !he values E for employed and N for 
not employed. The Frechet--Hoeffding bounds are given in 
the text. 

3. Asymptotic 	 standard errors appear in parentheses. See 
Appendix E for an analysis of the performance of the boots- 
trap in this context. 

programme. As many as 36% and as few as 0% may have had their employment status 
harmed by participating in the programme. From (3), we know that the net difference 
(PEN- PNE) = T, SO that high values of P E N  are associated with high values of PNE.As 
few as 25% [(0.64-0.39) x 1001 and as many as 61% of the women would have worked 
whether or not they entered the programme (PEEE[O'~~,  0.611). 

Uncritical application of bootstrapping to obtain the standard errors for the bounds 
is no more justified in the discrete case than it is in the continuous data case. Although 
the sample proportions are asymptotically normally distributed, the upper bounds are the 
minima of two normal random variables and the lower bounds are censored normal 
random variables. 

Appendix E investigates this problem. We present the asymptotic distributions for 
the upper and lower bounds. If the non-negativity constraint in the lower bound is not 
close to binding, then the assumption of asymptotic normality is innocuous, and coverage 
probabilities are accurate. The distribution is decidedly non-normal if the constraint binds. 
The bootstrap coverage probabilities are too high in this case but only by a few percentage 
points. As the terms in the upper limit approach equality, the distributions become highly 
non-normal and the coverage probabilities are too low, but again, in samples of our size, 
and with parameters of our values, the bias is slight. The farther apart are the elements 
in the upper bound, the more normal the distribution and the more accurate are the 
coverage probabilities. Overall, the analysis presented in Appendix E supports the use of 
the bootstrap to compute coverage probabilities for all bounds. 

From the evidence presented in Table 4, we cannot distinguish two different stories. 
The first story is that the JTPA programme benefits many people by facilitating their 
employment but also harms many people who would have worked if they had not partici- 
pated in the programme. The second story is that the programme benefits and harms few 
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people. Conditioning on other background variables (in results available upon request) 
does not go far in resolving the intrinsic uncertainty in the data. Thus in both the discrete 
and continuous cases, the experimental data are consistent with a wide variety of impact 
distributions. 

4. HOW FAR CAN WE DEPART FROM PERFECT DEPENDENCE 

AND STILL PRODUCE PLAUSIBLE ESTIMATES 


OF  PROGRAMME IMPACTS? 


The evidence presented in Section 3 suggests that the range of joint outcome and impact 
distributions consistent with the marginals determined by the JTPA experiment is very 
wide. In this section, we continue these explorations to see how far from perfect positive 
dependence we can venture and still produce plausible impact distributions consistent with 
the marginals. We first generalize the common effect dummy endogenous variable model 
by preserving perfect positive dependence but allowing the impact of treatment to vary as 
a function of Yo. We then consider perturbations away from the case of perfect positive 
dependence in the ranks of Yo and Yl . The analysis presented in Section 5 demonstrates 
that positive dependence in outcomes among participants is produced by many plausible 
models of participant self-selection into programmes. 

The dummy endogenous variable model assumes a constant treatment effect for all 
persons, so that Yl and Yo differ by a constant at all quantiles of the Yo distribution. A 
generalization of this model assumes that the best in one distribution is the best in the 
other distribution. Our generalization preserves perfect dependence in the ranks between 
the two distributions but does not require the impact to be the same at all quantiles of 
the base state distribution. We obtain the deterministic impact function, A(yo)= 
y l  (yo) -yo, by equating quantiles across the two distributions, forming the pairs 

For the case of absolutely continuous distributions with positive density at yo, the impact 
function can be written as A( yo) =F;'(Fo (yo / D = 1))-yo. We can use experimental data 
to test non-parametrically for the classical common effect model which implies that A( yo)  
is a constant for all yo. Figure 1 plots the estimated impact function assuming perfect 
positive dependence in the sense of quantile rankings across the two outcome distributions. 
Standard errors for the quantiles are obtained from formulae in Csorgo (1983). The 
estimates are revealing. Over a broad interval the impact is constant, although it turns up 
at the highest earnings levels and is zero in the lowest levels. 

We can form other pairings across quantiles by mapping quantiles from the Yodistri-
bution into quantiles from the Yl distribution using the map ll,where ll: qo+q, . Experi-
mental data are consistent with all admissible transformations including go= 1-ql,where 
the best in one distribution is mapped into the worst in the other. 

More generally, we could distribute the mass at one quantile in a distribution to the 
quantiles of the other distribution more continuously. Let Me (y ,  ,yo) and M i  (yo, yl  ) be 
bounded continuous Markov operators. If the data are continuously distributed, they are, 
respectively,f l  (y l I Yo= yo, D = 1) and fo(yoI Yl =yl  ,D = I), the conditional densities of 
YI and Yo.If the data are discrete, Mg and M$ are Markov transition matrices that satisfy 
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and 

In the continuous data case with absolutely continuous random variables, consistency of 
the marginals and conditionals requires 

where the integrals are assumed to exist. For the discrete data case, we seek all pairs of 
Markov transition matrices Me, M: that satisfy the pair of equations: 

The corresponding equations in the continuous case are 

where the integrals are assumed to exist. 
We do not pursue this more general approach in this paper and consider only the 

extreme points of the set of all admissible joint distributions. These distributions transfer 
all the mass at one quantile of the Yo distribution to a single quantile of the YI distribution. 
In the discrete case, Me and Mg are permutation matrices with Me*=6'Mk. These= 

extreme distributions define the convex hull of all admissible joint distributions with given 
marginal^.^^ 

We now generalize from the case of perfect positive dependence to allow some slippage 
in the quantile ranks between the two distributions. We consider a measure of disarray 
from perfect dependence in the ranks that characterizes all possible bivariate data distribu- 
tions. We assume that the data are from absolutely continuous distributions and that there 
are no ties in the sample distribution. The generalization needed to handle the case of 
data with mass points is presented in Appendix D. 

For a given quantile scale, consider any permutation of the quantiles of the distribu- 
tion of Yo associated with the quantiles of the distribution of Yl via a permutation which 
maps qo into q l  . Y1 and Yo are perfectly arrayed if l7 =I for a fixed definition of the 
quantile width (e.g. percentiles, deciles, etc.). For other permutations, there is some level 
of disarray.23 

22. Strassen (1965) presents conditions for the existence at  least one joint distribution consistent with the 
marginals. 

23. An inversion relative to the quantiles for the distribution of Y,, is said to occur each time. in binary 
comparisons, an element of the quantiles of the n-induced Y ,  is bigger than a succeeding element, going down 
the full Y , array from the first element to the last. Thus for a four-element array 2, 3, 1,4, taken from { 1.2, 3.4). 
there are two inversions, 2 before I and 3 before 1. 
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For a permutation of the YI associated with the Yo that is induced by some ll, we 
can define the total number of inversions in the array as 

1 if Y/" > Y;";
V=xjxi , j  h,, h . . =  

0 otherwise, 

where Y{" is the value of Y, associated with the i-th quantile of Yo. The value of V may 
range from 0 to (1/2)I(I- l), where I is the pre-assigned number of quantiles. V= 0 arises 
in the case of perfect positive dependence in the quantile ranks and V= (1/2)I(I- 1) arises 
when there is perfect inverse ordering in the quantile ranks. 

Kendall's rank correlation measure z may be written as 

where z lies in the interval [ -1 , '11 .~~ All possible bivariate distributions for the chosen 
quantile spacing that are induced by different possible choices of ll for the given marginals 
are produced by letting z vary over the entire interval. 

Since hijis a superadditive function (fixing the Yo ranking), and since sums of super- 
additive functions are superadditive, we know from the analysis of Cambanis et al. (1976) 
that z attains its maximum value at the FrCchet-Hoeffding upper bound and its minimum 
value at the FrCchet-Hoeffding lower bound. Thus we can characterize the bounding 
distributions as producing minimal and maximal disarray between YI and Yo for a given 
choice of quantile spacing. By specifying z, we pick a level of dependence between the 
two outcomes and hence a level of permutational disarray. Thus z is a measure of slippage 
in the ranks of the quantiles across the two distributions with z =  1 corresponding to 
perfect positive dependence and z = -1 corresponding to perfect negative dependence. 
Varying z between -1 and 1 traces out all possible permutations of the quantiles across 
the distribution^.^^ 

Using the sample distributions, we pair each quantile of Yo with each possible quantile 
of YI and generate all possible rearrangements of the quantile ranks for a given choice of 
quantile spacing. The generated distributions can be used to produce sample gain distribu- 
tions for different assumed levels of disarray z. Tables 5A and 5B present estimates of 
quantiles of the impact distribution and other parameters of interest for various values of 
z. Plausible impact distributions require high measures of positive dependence. Values of 
z much less than 1.0 produce implausible distributions of impacts. Note the implausibly 
large gains and losses obtained when z is 0.5 or less. However, the conclusion that a 
majority of the adult female participants benefitted from the programme is robust to the 
choice of z.26 

5. THE INDUCED STRUCTURE OF DEPENDENCE AMONG OUTCOMES 
FROM AGENT DECISION RULES 

Many different distributions of impacts are consistent with the data produced from a 
social experiment. Information about the programme participation decision can sometimes 

24. See, e.g. Kendall (1970) and Daniels (1944, 1948). 
25. Viverberg (1993) conducts a related sensitivity analysis in an unidentified Roy Model using a normal 

distribution. 
26. In an earlier version of this paper, we emulated robust-Bayesian methods by placing priors over r (and 

a to be introduced in Section 6) to perform a non-Bayesian sensitivity analysis that examined the consequences 
of using different weighted averages of r.  These sensitivity results are available on request from the authors. 
The results for values of r below 0.8 are unreasonable to us because they imply negative earnings impacts that 
are too large to be plausible. 
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TABLE 5A 

Percentiles of parameters of the impact distribution as r varies based on random samples of 50 permutations with 
each value of r 

(National JTPA Study 18 month impact sample; adult females) 

r Minimum 5th Pctl 25th Pctl 50th Pctl 75th Pctl 95th Pctl Maximum 

1.00 0.00 0.00 572.00 864.00 966.00 2003.00 18550~00 
(703.64) (47.50) (232.90) (269.26) (305.74) (543.03) (5280.67) 

0.95 	 -14504.00 0.00 125.50 616.00 867.00 1415.50 48543.50 

(I  150.01) (360.18) (124.60) (280.19) (272.60) (391.51) (8836.49) 


0.90 	 -18817.00 -1 168.00 0.00 487.00 876.50 2319.50 49262.00 

(1454.74) (577.84) (29.00) (265.71) (282.77) (410.27) (6227.38) 


0.70 	 -25255.00 -8089.50 -136.00 236.50 982.50 12158.50 55169.50 

(1279.50) (818.25) (260.00) (227.38) (255.78) (614.45) (5819.28) 


0.50 	 -28641.50 -12037.00 -1635.50 0.00 1362.50 16530.00 58472.00 

(1149.22) (650.31) (314.39) (83.16) (249.29) (329.44) (553814) 


0.30 	 -32621.00 -14855.50 -3172.50 0.00 4215.50 16889.00 54381.00 

(1843.48) (548.48) (304.62) (379.96) (244.67) (423.05) (5592.86) 


0.00 	 -44175.00 -18098.50 -6043.00 0.00 7388.50 19413.25 60599.00 
(2372.05) (630.73) (300.47) (163.17) (263.25) (423.63) (5401.02) 

-0.30 -48606.00 -20566.00 -8918.50 779.50 9735.50 21093.25 65675.00 
(1281.80) (545.99) (286.92) (268.02) (300.59) (462.13) (5381.91) 

-0.50 -48606.00 -21 348.00 -9757.50 859.00 10550~50 22268.00 67156.00 
(1059.06) (632.55) (351.55) (315.37) (255.28) (435.78) (5309.90) 

-0.70 -48606.00 -22350.00 -10625~00 581.50 11804.50 23351.00 67156.00 
(1059.06) (550.00) (371.38) (309.84) (246.58) (520.93) (5309.90) 

-0.90 -48606.00 -22350.00 -1 1381.00 580.00 12545.00 23351.00 67156.00 
(1059.06) (547.17) (403.30) (346.12) (251.07) (341.41) (5309.90) 

-0.95 -48606.00 -22350.00 -1 1559.00 580.00 12682.00 23351.00 671 56.00 
(1059.06) (547.17) (404.67) (366.37) (255.97) (341.41) (5309.90) 

-1.00 	 -48606.00 -22350.00 -1 1755.00 580.00 12791.00 23351.00 67156.00 
(1059.06) (547.17) (411.83) (389.51) (253.18) (341.41) (5309.90) 

1. The values in this table are constructed from the percentiles of the two distributions. In the cases of 	r = l 
and r = -I, they are based on the single permutation with the indicated value of r. In the remaining cases, 
they are the mean of the indicated parameter of the impact distribution over a random sample of 50 permuta- 
tions having the indicated value of r. The difference between each percentile of the Y ,  distribution and the 
percentile of the Yodistribution associated with it by the permutation is the impact for that percentile. Taken 
together, the percentile impacts form the distribution of impacts. It is the minimum, maximum and percentiles 
of these impact distributions that are reported in the table. 

2. Bootstrap standard errors appear in parentheses. 

be used to recover the joint distribution of outcomes from experimental or non-experi- 
mental data. Such information is also informative about whether personal choices are 
compatible with stated social objectives. Viewed ex post, do the persons subject to treat- 
ment perceive themselves as having benefitted from the programme? 

Suppose that Yo and YI are the net potential outcomes from non-participation and 
participation, respectively. If agents are uncertain about both their potential Yoand Y I  
values, but they know the distributions of these variables, then rational individuals con- 
cerned only about their own outcomes who have strictly monotonically increasing utility 
functions U ( y )pick the option with the greatest expected utility. Thus, 

(0  otherwise, 
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TABLE 5B 

Percentiles of parameters o f the  impact distribution as r varies based on random samples 
of 50 permutations with each value of r 

(National JTPA Study 18 month impact sample; adult females) 

Percent Impact Outcome Spearman's Blomquist's 
r positive std dev correlation P Q 

1. The values in this table are constructed from the percentiles of the two distributions. 
In the cases of r = l and r = -1, they are based on the single permutation with the 
indicated value of r. In the remaining cases, they are the mean of the indicated 
parameter of the impact distribution over a random sample of 50 permutations having 
the indicated value of r .  The difference between each percentile of the Yl distribution 
and the percentile of the Yo distribution associated with it by the permutation is the 
impact for that percentile. Taken together, the percentile impacts form the distribu- 
tion of impacts. The percent positive, the impact standard deviation, the outcome 
correlation, Spearman's p and Blomquist's Q are calculated using the matched per- 
centiles of the YI and Yo distributions. 

2. Bootstrap standard errors appear in parentheses. 

where we suppress the dependence of U, Fo(yo)and FI ( y l) on conditioning variables X 
to simplify the expressions. If U is concave, a sufficient condition for D = 1 is that YI 
second-order stochastically dominates Y o ,  so that slnjF, ( y I  )dyl 5Sf, Fo(yo)dyo for all 
a.This is a rational self-selection requirement for persons to participate in a social pro- 
gramme. Information from programme participants and nonparticipants does not provide 
the requisite data to conduct this test of rationality. Even ideal social experiments provide 
only the conditional distributions Fo(yo I D = 1) and Fl(y l I D = 1). Data from regimes with 
univeral programme participation generate only one of the two marginal distributions 
required to perform this test. 
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The distributions produced from a social experiment can be used to check if expecta- 
tions are ex ante rational. If this is true, it follows that for each person in the programme 

(6) 

where U(y) is assumed to be common across persons. A necessary and sufficient condition 
for (6) to be satisfied for all U is that realized Yl second-order stochastically dominates 
realized Yo given D = 1, so that EmFl(yl I D = 1)dyl <KmFO(yo 1 D = 1 ) d y o  for all a." This 
test assumes a strong form of the rational expectations hypothesis-that persons base 
their decisions on the observed ex post outcome distributions. 

Using three different tests of the null hypothesis that YI I D = 1 stochastically domi- 
nates Yo / D = 1, we do not reject the null. As shown in Figure 3, for all values of y1 =yo, 

Adult Females 

Earnings in the 18 months after random assignment 

FIGURE3 

C.d.f.s of Y I  and Yo 

FI(y I D = 1) <Fo(yo( D = 1). Since first-order stochastic dominance implies second-order 
dominance, it is not surprising that the test statistics for hypothesis (6) do not reject that 
hypothesis. Appendix F describes the tests and reports the results from applying them to 
our data. There is strong evidence of rational behaviour in the sense of inequality (6). 
Personal objectives and programme objectives are aligned for adult women. There is ex 
post regret among randomized-out nonparticipants whatever the shape of their common 
concave utility function. 

Participation condition (5) uses no information about the joint distribution of out- 
comes and sheds no light on it. Rationality condition (6) may shed light on the joint 
distribution F (y l ,yo) or F (y l ,yoID = 1). Suppose that in advance of participating in a 
programme, persons know their own (Yo, YI) values but that observing analysts do not. 
In choosing to participate, Yl 1Yo is a requirement for rationality. In the participant 

27. The inequality is reversed for a risk-loving agent. 
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population, the requirement becomes Pr (YI2 YOI YO=yo,D = 1) = 1. This is a strong form 
of stochastic dominance. All of the mass of the Y1distribution conditional on YOis to the 
right of yo. No matter what the population dependence among (Yo, YI ), there is a strong 
positive dependence in potential outcomes among participants. 

More generally, persons may not know (YO, Y, ) but may base their participation 
decisions on unbiased guesses (Yo*, YT) about them. Then we may write Yo*= Yo+ EO 

and Y T  = YI+ EI  where E(Eo,EI  ) = and where "II"(0, O), ( so ,  EI  ) l l(Yo, YI ) and ~ ~ l l ~ ~ ,  
denotes independence. 

In this case, if D = ~ ( Y T> Yo*), conditioning on realized values produces positive 
regression dependence between Yl and Yo for participants, which means that 
Pr ( Y15y l  I YO=yo,D = 1) is non-increasing in yo for all y l  . This in turn implies that YI 
is right-tail increasing in yo.That is, Pr (YI>y l  I Yo>yo,D = 1) is non-decreasing in yo for 
all y l .  Intuitively, the higher the value of yo, the more the mass in the conditional YI 
distribution is shifted to the right so that "high values of YOgo with high values of Yl ." 
That is, YI being right-tail increasing given yo implies that Yl and Yo (given D = 1) are 
positive quadrant dependent, so that Pr (YI5y l  I Yo5yo, D = 1)2 Pr ( YI5y l  I D = 1) and 
Pr ( YO5yo I YI5y l  ,D= 1)2Pr (YO5yo I D = 1).

28 Common measures of dependence like 
the product-moment correlation, Kendall's z and Spearman's p are all positive when there 
is positive quadrant dependence. 

Rationality under these programme participation rules thus imposes a restriction on 
the nature of the dependence between YOand Yl given D = 1. With enough structure, one 
can recover the full distribution of outcomes and extrapolate out of sample, as we show 
in Section 8. Evidence against such dependence in populations of persons for whom D = 

1 is evidence against the income-maximizing Roy model. Even if Yo and Yl are negatively 
dependent in the population, they are positively dependent given D =  1 in this model if 
agents are outcome maximizers. We demonstrate below that imposing rationality in this 
sense helps eliminate some of the uncertainty that is intrinsic in both experimental and 
non-experimental estimates of programme impacts, and in some cases eliminates it entirely. 

6. USING PRIOR INFORMATION TO REDUCE THE INTRINSIC 

UNCERTAINTY IN DATA FROM SOCIAL PROGRAMMES : 


THE CASE OF THE 2 x 2 TABLE 


In considering outcomes like employment and earnings, many plausible models of pro- 
gramme participation suggest that outcomes in the treatment state are "positively related" 
to outcomes in the non-treatment state for persons who self-select into training. There is 
a widely-held belief that good persons are good at whatever they do. This section applies 
this notion to the analysis of 2 x 2 tables. 

In order to make this notion operational it is necessary to be more precise about 
what is meant by dependence among binary outcomes. Notions of dependence in 2 x 2 
tables are presented in Bishop, Feinberg and Holland (1975). In terms of the table in 
Figure 1, the most commonly used measure of association between the two outcomes is 
the cross product ratio 

When q =  1, the treatment and non-treatment outcomes are independent. This 

28. These inequalities are strict except in the case where Y,, and Y ,  are binary random variables. Tong 
(1980) shows that these notions of dependence are all equivalent in the case of binary random variables. 
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measure: (i) is invariant under the interchange of rows and columns; (ii) is invariant to 
the proportion of persons participating in the programme; (iii) is interpretable and is the 
ratio of the odds of being employed in the non-participation state conditional on being 
employed in the participation state (PEE/PEN) and the odds of employment in the non- 
participation state conditional on not being employed in the participation state (PNE/ 
PNN). 

By property (iii), the higher is 17, the more likely it is for a person employed in the 
participation state to be employed in the non-participation state. As the conditional (on 
employment in the participation state) odds ratio of employment in the non-participation 
state (PEE/PEN) becomes large and the conditional (on no employment in the participation 
state) odds ratio of employment in the non-participation state becomes small, 17 becomes 
large. In this case, workers in one state are very likely to be workers in the other state, 
and nonworkers in one state are likely to be nonworkers in the other state. In the case of 
reverse association, 17 -+ 0. 

In the 2 x 2 table many apparently diverse notions of positive dependence are equiva- 
lent. Positive covariance, association, positive regression dependence, right tail increasing 
dependence and positive quadrant dependence all describe the same positive "association" 
of E and N. Thus there is no loss in generality in using 17 or a monotonic transformation 
of it. 

Given 17, the row and column marginals PE.and P.E, and the requirement that the 
probabilities sum to one, we can uniquely determine all of the elements of the 2 x 2 table. 

Adult Females 

P 
FIGURE4 

Cell employment probabilities as functions of Q 

For the employment data analyzed in Section 3(c), Figure 4 presents the relationship 
between these elements and the measure of association Q, 
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where QE[- 1, 11 and Q =0 when 77 = 1 (and the rows and columns are independent). 
Higher values of Q are associated with higher values of 77 and thus with greater dependence 
in outcomes between the two states. As we specify higher values of Q both PENand PNE 
decline in absolute value. The difference P E N - PNEis the mean treatment effect T and is 
constant for all Q. Intuitions that outcomes are strongly positively related across the two 
states translate into statements that Q is positive and close to one. 

In Appendix D, we present a more general approazh that combines the methods of 
this section and Section 4 to allow for mass points at zero in the YI and Yo distributions. 
This case is empirically relevant as there is a significant mass point at zero in both cases 
in the JTPA data. 

7. DECONVOLUTION WHEN GAINS ARE NOT ANTICIPATED AT THE 

TIME PROGRAMME PARTICIPATION DECISIONS ARE MADE: 


A NONPARAMETRIC RANDOM COEFFICIENTS MODEL 


Another approach to obtaining the joint distribution of outcomes postulates that the gain, 
A, is independent of the base state outcome Yo for participants, or 

If true, Yl = Yo+RA, RAII Yo, where R = 1 if a person is randomized into the programme 
and R =0 otherwise, and where the conditioning on D = 1 is left implicit. 

Condition (C-1) would be satisfied if the gain cannot be forecast at the time decisions 
are made about programme participation. This case is discussed in Heckman and Robb 
(1985, p. 181), Heckman (19976) and Heckman and Smith (1997) and produces a model 
that is intermediate between the common-effect model and the variable-impact model 
where the impact is anticipated by agents. 

Under (C-1), we may write the density of Yl as a convolution of Yo and A 

where "*" denotes convolution. Within this context, we may consider "densities" with 
mass points, such as occurs at zero earnings in our data from the JTPA experiment. 
Exploiting the independence of Yo and A, the characteristic function of Yl may be written 
as 

Solving for E(eifA I D = l), we obtain 

Then using the inversion theorem29 

[eifAq(-t) -e-ilAq(t)] 
F(AI D = l ) = - + -  dt. 

it 


29. The ratio of two characteristic functions need not be a characteristic function. By Bochner's theorem 
(see, e.g. Gnedenko (1976)), for q(t) to be a characteristic function. it must satisfy cp(O)= I, cp(t) must be 
continuous for all t and q(t) must be positive definite. This hypothesis could be tested using the methods 
presented in Heckman, Robb and Walker (1990). The test would consist of checking if the ratio of the two 
sample characteristic functions is "within sampling variation" of being positive definite. 



HECKMAN E T  AL. ACCOUNTING FOR HETEROGENEITY 513 

(See, e.g. Kendall and Stuart (1977), p. 98). We can thus recover the distribution of A 
from the distributions of Y, and Yo produced by the experiment. Heckman and Smith 
(1997) extend this procedure to the analysis of nonexperimental data under conditional 
independence assumptions specified in their paper. 

(a) A random coeflcient approach 

Setting Yo=XP + U, we obtain a conventional random coefficient model, 

Using a standard variance components model, we may write E(A) =A, E =A -3 to obtain 

where we assume that Uand E are independent of X(U, ~ l l X ) .  The assumed independence 
between A and Yo translates into independence between E and U. Tlie increase in the 
variance in the residuals of outcomes for participants can be used to estimate VAR(E). 
From participant residuals, we can identify VAR(E + U) =VAR(E)+VAR (U). From 
nonparticipant residuals, we can identify VAR(U). Thus we can test an implication of 
the assumption that All UI D = 1 by using the empirical analogs of VAR(r+ U) and 
VAR(U) for participants and non-participants, respectively. A finding that 
VAR(E+ U) <VAR(U) indicates the failure of independence between E and U and there- 
fore a failure of the assumption that All UI D = 1. 

TABLE 6 

Randotn coefficient and deconvolution estimates of the impact on ear- 

nings in the 18 months after rrzndom assigntnent 


(National JTPA Study 18 month impact sample; adult females) 


Analysis 

Estimated 
mean 

impact 

Estimated 
impact 
std dev 

Estimated 
percent 
positive 

Random coefficient model 601.74 
(201.63) 

2271.00 
(1812.90) 

60.45 

Deconvolution 61 4.00 1675.00 56.35 

1. Estimated standard errors appear in parentheses where available. 
2. Random coefficient model includes race/ethnicity, schooling and site indica- 

tors. Only the treatment coefficient is treated as random. 
3. The estimated impact variance for the random coefficient model is obtained 

from a regression of the squared residuals from the corresponding fixed 
coefficient model on the treatment indicator. 

4. 	The estimated percent positive for the random coefficient model assumes that 
A is normally distributed. 

5. Mean impact, impact standard deviation and the fraction of positive impacts 
for the deconvolution case are obtained from the smoothed density. Values 
for the unsmoothed density differ only slightly from those reported here. 

The first row of Table 6 presents estimates based on this approach. There is mild 
evidence in support of the hypothesis that VAR(A) >0, suggesting that a more elaborate 
deconvolution approach to estimating the distribution of A is likely to be fruitful. 

(b) Empirical deconvolution 

A more general and robust approach exploits (7) and the empirical characteristic functions 
for Y ,  and Yo to estimate the distribution of A. The details needed to implement the 
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Adult Females 
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Impact in $1000 

FIGURE5 

Smoothed estimated impact density 


deconvolution procedure are given in Appendix C. The bottom row of Table 6 presents 
parameters calculated from this distribution. The evidence suggests that under assumption 
(C-1), 43% of adult women were harmed by participating in the programme. The density 
of A is presented in Figure 5. It is clearly non-normal. The estimated variance of the non- 
parametric gain distribution matches the variance for the gain distribution obtained from 
the random coefficient model within the range of the sampling error produced from the 
random coefficient regression model. The fact that we obtain a positive density indicates 
that (C-1) is not inconsistent with the data. However, in contrast to the results obtained 
from assuming perfect positive dependence, the average gains are the same at all levels of 
Yo since Yo1A 1 D= 1 implies that E(A / Yo, D = 1) is the same for all Yo. This is at odds 
with the evidence in Figure 2. 

Normality is often assumed in implementing the random coefficient model to produce 
estimated distributions. However inspection of the nonparametric estimate of the density 
presented in Figure 5 reveals that A is not normally distributed. Comparison of the cumu- 
lative distribution function estimated by deconvolution, shown in Figure 6, with the CDF 
for a normal variable having the same variance indicates that the two assumptions are 
inconsistent. The deconvolution estimate of the distribution of A clearly has more mass 
in the right tail than the estimate based on the normal distribution with the same variance. 
An appendix available on request documents that these findings are robust to plausible 
assumptions about measurement error.30 

8. 	DECISION PROCESSES AND THE NONPARAMETRIC IDENTIFICATION 
OF PROGRAMME TREATMENT EFFECTS FROM EXPERIMENTAL 

AND NON-EXPERIMENTAL DATA 

Under other assumptions about the structure of decision processes, and about the variation 
available in the data, it is possible to use either non-experimental data-the distributions 

30. After normal measurement error is removed, the density and distribution of impacts look much more 
normal, although there is still a spike at  zero. 
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Smoothed estimated c.d.f. of impacts and normal c.d.f. 


in (la) and (1b)-or experimental data to recover the joint distribution of outcomes and 
hence to obtain the distribution of programme impacts. One benefit of such a strategy is 
that information about self-selection decisions made by participants also provides their 
revealed preference evaluations of programmes. 

Let outcomes Yl and Yo be written as functions of observed variables X and unob- 
served variables U1 and Uo so that 

where XI  (a kl-dimensional vector) and Xo (a ko-dimensional vector) are variables unique 
to g l  and go, respectively, and X, (a kc-dimensional vector) includes variables common to 
the two functions. For notational simplicity, define X= (XO, X I ,  X,.). The variables Uo and 
U1 are unobserved from the point of view of the econometrician. 

Let the decision rule for programme participation be given by 

where XIN consists of observed variables affecting participation, some (or all) of which 
may appear in XI  and Xo and where UIN is unobserved by the econometrician. In this 
setting, IN is a latent index or net utility. The joint distribution of (Uo, UI , UIN) is denoted 
by F(uo, ul ,uIN) These variables are assumed to be statistically independent of X and XIN. 

The Roy model is a special case of this framework in which selection into the pro- 
gramme depends only on the gain from the programme. In this case 

and 
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The joint distribution of ( U I ,  Uo) is F(ul ,  uo). The following theorem can be proved for 
the Roy model. 

Theorem 1. Let Yl =gl  (XI,  X,) + U1 and Yo =go (Xo, X,) + Uo. Assume: 

( 0  (U1, ~ o ) ~ ( x l , x o , x ~ ) ;  
(ii) D = l ( Y l z  Yo); 

(iii) (U1, Uo) is absolutely continuous with Support (UI, Uo) =RI x RI ; 
(iv) go (Xo, X,) : Rko+R1 and g l  (XI,  X,) : Rk, +R1 for each $xed X, and 

Support (Xo I XI,Xc) =Support (Xo) for all X I ,  XO , 

Support (XI I Xo,Xc) =Support (XI ) for all Xo, Xc ; 

(v) The marginal distributions of UI and Uo have zero medians. 

Then g l  ,go and F(ul ,uo) are nonparametrically identiJied from data on programme 
choices and the outcome distributions, i.e. from (la),  (1b) and Pr (D = 1 I X).  

Proof. See Heckman and Honore (1990) or I-Ieckman and Smith (1997). 

The content of this theorem is that if there is sufficient variation in X I ,  Xo and X,,, 
and if we know that programme participation is based solely on outcome maximization, 
no arbitrary parametric structure on the outcome equations or on the distribution of the 
unobservables generating outcomes needs to be imposed to recover the full joint distribu- 
tion of outcomes using ordinary micro data. There is no need to conduct social experiments 
to answer the distributional questions posed in Section 2. From the information in ( la )  
and (lb), we can construct the counterfactuals produced from social experiments without 
running the risk of disruption and randomization bias associated with such experiments 
that is discussed in Heckman (1992) and Heckman and Smith (1995). Assuming no general 
equilibrium effects, we can also generalize from a partial coverage distribution to a full 
coverage distribution. 

Social experiments are not required to answer these questions because Fo(yo1 D = 
1, X )  is redundant information. Similarly, under the assumptions of a common effect 
model where YI = Yo+ a (conditional on X )  and Uo= UI , it is possible to recover the 
entire joint distribution of outcomes without invoking the explicit income-maximizing 
assumption in the Roy model. 

The assumptions made in Theorem 1 about the supports of X I ,  Xo, g l  ,go, UI , Uo are 
made for convenience, in an effort to focus on the main ideas. A version of Theorem 1 
can be proved under the following alternative conditions : 

(a) The support of (Uo, UI ) is ( g o ,  0") x (Ul, Dl ), where li,, I%., i=  0, 1 are, respec- 
tively, the finite lower and upper bounds for Uo and UI ; 

(b) The support of (go, gl is (go, go) x (gl ,  g~1. 
Under these conditions, and assuming that all of the other conditions hold, Heckman and 
Smith (1997) show that it is possible to modify the argument of Theorem 1 and produce 
a different version of the same basic theorem over a subset of the support. 

The Roy model has an unusual structure because the participation rule and the 
outcome equations are tightly linked. As a consequence, we can recover the full joint 
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distribution, F(y0, y l  I X),  and the decision rule knowing only the conditional distributions 
( la)  and ( lb)  and the participation equation routinely available from cross-section data. 

For more general decision rules such as (9c), which break the tight link between 
outcomes and participation decisions, it is not possible to use ( la)  and ( lb)  to address 
questions that can only be answered from the full joint distribution of (Yo, YI). Even 
access to the data obtained from social experiments-distribution (1c)---does not suffice 
to solve the fundamental evaluation problem that both Yo and YI are never observed 
for the same person. However, a theorem analogous to Theorem 1 can be proved that 
demonstrates that with sufficient variation in the X variables, it is possible to recover 
Fo(yoI D = 1, X )  from non-experimental data. Thus, it is not necessary to conduct a social 
experiment to obtain it (see Heckman (1990a) and Heckman and Smith (1997)). 

Social experiments balance supports 

The advantage of social experiments over conventional micro data in the context of 
Theorem 1 is that they expand the range of the support of the g functions (see Heckman 
(1 996) and the references cited there). Suppose that Support (XI D = 1) #Support (XI D= 

0). If there are domains of X where there is no common support, Theorem 1 does not 
apply and the modified version of it presented in Heckman and Smith (1997) must be 
applied. Randomization guarantees that Support (XI D = 1, R = 1)=Support (XI D = 

1, R =0), where R = 1 denotes randomization into the treatment group and R =0 indicates 
randomization into the control group, because persons who would have participated in 
the programme are now denied access to it. Thus, randomization ensures that the support 
conditions of Theorem 1 are satisfied for the population of participants. However, it may 
still happen that the support of X for the population for which D = 1 is not the same as 
the support of X for the whole population. Then the models are only identified over the 
available support. For both experimental and non-experimental data, it may be necessary 
to sample more widely on X coordinates. Experiments have the advantage that they allow 
identification of impacts even for persons with values of X such that Pr (D=1 I X )  = 1, 
which is not possible using non-experimental methods. 

9. THE OPTION VALUE O F  TRAINING 

This section presents estimates from the JTPA data of the option values of training defined 
in Section 2. Let Fo(yo) be the distribution of no-training offers in the nonparticipation 
state. We assume that participants can choose between offers from FZ and Fo. If partici- 
pants can inspect their offers from each distribution before choosing between them, YI = 

max (Yo, Z). Four different definitions of the option value under different decision 
horizons and information structures are given in Section 2. 

From the definition of the maximum 

where Fo,,is the joint distribution of Yo and 2.We observe Y, for persons randomized 
into the programme, and so we know FI(y ,  I D = 1). We observe Yo for persons randomized 
out, so we know Fo(yoI D = 1). We make two different assumptions about the dependence 
between Yo and 2. One case assumes that Yo and Z are independent given D = 1. The 
other case assumes that Z= Yo+A, and A is independent of Yo given D= 1. 



REVIEW OF ECONOMIC STUDIES 

If Yo and Z are independent given D =  1, we can obtain Fzfrom the formula 

for all values of Z such that FO(ZI D = 1)#O.  

In the case of Z =  Yo+A where (YollA)lD= 1, it is convenient to work with the densities, 
which are assumed to exist. For this case, differentiate (10) to obtain 

Yl 

h ( y l ) = / o ( y l ) ~ A ( ~ ) + j  - Y O ) ~ Y O/ ~ ( Y o ) / A ( Y ~  
0 

m 

= j i ( y l ) ~ A ( ~ ) + j oj i ( ~ l - t ) f ~ ( t ) d t .  

This is an integral equation for fA, which can be easily solved using recursive methods. 
Note that the second case differs from the apparently similar case analyzed in Section 7 
because in this section we assume that A is observed before the agent chooses between Z 
or Yo. In Section 7, it is assumed that A is not observed before programme participation 
decisions are made. 

Table 7 presents estimates of measures of option value expressed in terms of earnings 
over the 18 months after random assignment. Our data consist of adult women recom- 
mended for subsidized jobs at private firms as part of the JTPA programme. The wage 
subsidy programme gives prospective participants wage offers (2 )  that they are free to 
accept or reject. The final row of Table 7 presents an estimate of the proportion of people 
who choose to exercise the training option. Standard errors for the estimates in Table 7 
are obtained by bootstrapping. 

First consider the case where Yo and Z are statistically independent. The estimate of 
option value (OP-1) of $794 is the impact estimated from the social experiment. The 

TABLE 7 


Estimated option values from JTPA on-the-job training 

(National JTPA Study 18 month impact sample; on-the-job training treatment stream adult females) 


Z =  Yo+A and 
Yo independent A independent 

Parameter of Z given D = 1 of Yo given D = 1 

(OP-I) E(max (Yo,Z)ID=l) -E(YoI  D = l )  	 794 794 
(338) (338) 

(OP-2) r - ' [ ~ ( m a x ( y , ,  Z ) / D = l ) - E ( Y o I  D = l ) ]  7940 7940 
(3380) (3380) 

(OP-3) max(E(YoI D = I ) ,  E(ZI D = l ) ) - E ( Y o / D = l )  0 N.A. 

794 N.A. 
(OP-4) E(max (Yo, Z ) / D =  1)-max (E(YoI D =  I), E ( Z /  D =  1)) (338) 
Pr ( Y o g Z l  D =  I) 0.93 0.93 

(0.04) (0.10) 

1. Bootstrap standard errors appear in parentheses. 
2. 	The "on-the-job training treatment stream" includes persons who were recommended to receive on-the-job 

training by JTPA case workers prior to random assignment. This group comprises roughly one-third of the 
adult women in the experiment. 

3. "N.A." 	indicates that the indicated value cannot be calculated because the distribution of Z is not nonpara- 
metrically identified. 

4. The estimates of (OP-2) are calculated assuming that the interest rate r =0.10. 
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second row presents the compositional effect of a rise in the outcome measure among 
non-participants due to low Yo persons accepting the offered 2 .  The final row reveals that 
for 93% of the women, unsubsidized jobs give higher earnings than subsidized jobs. How- 
ever, a small group of women get exceptionally large wage offers from the subsidized job 
distribution. Option values (OP-1) and (OP-4) are the same because E(ZI D =  
1) <E(YoI D =  1). The estimate of option value (OP-3) in row four is zero for the same 
reason. Option value (OP-2) is just the discounted value of (OP-1). 

For the second assumption about the joint dependence between Yo and 2 ,  (OP-1) is 
the same as before because it is just the experimental mean. Now, however, the composi- 
tional effect reported in the second row is zero because A is independent of Yo given D =  
1 soE(Yo( YZZ, D=l)=E(YoIA<O, D=l )=E(Yo)  D = l ) .  In addition, it isnot possible 
to nonparametrically identify FAfor A <0. This makes it impossible to nonparametrically 
estimate the option values in the fourth and fifth rows. We place much less confidence in 

Adult Females--0JT Treatment Stream 

Y,,independent of Z 
7 -..--

7 


n
I --..I-

1.1 ' - J  - .. '.-- - 1 
..- u -----

& 

-

Densities of Z/Z>O under option value assumptions 

the estimates produced under the second case. As shown in Figure 7, the estimated density 
of A is negative over much of its support, giving little credibility to the identifying 
assumptions that justify this model. The identifying restriction can be tested and is rejected 
in our data.3' 

10. SUMMARY AND CONCLUSION 

This paper considers the evaluation of a social programme when the responses to the 
programme differ among otherwise observationally equivalent people. The answers to a 
variety of important evaluation questions require knowledge of the distribution of pro- 
gramme impacts. Questions of political economy or "social justice" require for their answer 

31. Recall the testable restrictions implied by the deconvolution model. Heckman, Smith and Taber (1998) 
demonstrate that certain estimators used to correct for programme dropouts in social experiments sometimes 
produce negative outcome densities, which can therefore be used to check the identifying assumptions that 
support the estimators. 
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knowledge of the distribution of programme costs and benefits. The conventional focus 
in the evaluation literature on mean impacts either assumes that distributional issues are 
irrelevant, or assumes that they are automatically resolved using a social welfare function 
or a family equivalent. Neither assumption is attractive. 

Abstracting from distributional issues, it is also of great interest to examine the impact 
of social programmes in conferring options on participants, even if all participants do not 
exercise them. Social programmes may enhance the options of participants. An option 
may be valued in its own right even if it is an option of limited duration. 

Using data from a social experiment, we estimate the distribution of programme 
impacts. By using experimental data, we can abstract from selection problems that plague 
nonexperimental data and so can focus on the main issues of this paper. However, even 
with such data, we cannot escape the fundamental evaluation problem that persons cannot 
simultaneously participate and not participate in a programme. This precludes direct 
estimation of impact distributions and requires an indirect procedure using information 
on the distributions of outcomes for participants and randomized-out nonparticipants. 
Many distributions of programme impacts are consistent with the available data. Widely 
used classical probability inequalities are not very informative about the distribution of 
programme impacts, but they reveal that heterogeneity is an essential feature of impact 
distributions in our data. 

We supplement the information supplied by classical probability theory in two ways. 
One method makes assumptions about the dependence between potential outcomes in the 
treatment and non-treatment states. The second method builds models of programme 
participation that produce, as a by-product, implications about dependence among poten- 
tial outcomes, supplying the missing information required to identify the impact distribu- 
tions or to narrow down the uncertainty about them. The second approach also enables 
us to investigate the question of whether participant perceptions of programme impact 
are in agreement with other objective measures of programme gains. (This approach 
is pursued extensively in Heckman and Smith (1997).) Knowledge of the programme 
participation decision rule is also essential in generalizing the findings from one evaluation 
to other economic environments. 

By analyzing the distribution of programme impacts, we present a more informative 
evaluation of a programme compared to what is obtained by confining attention solely to 
mean impacts. We present strong evidence that heterogeneity is an important feature of 
impact distributions. We define and estimate several distinct measures of the option values 
produced by a social programme and find some of them to be sizeable while others are 
negligible. Programmes enhance the choice sets of participants even if the participants do 
not always choose to exercise the options they provide. 

Programme impacts are not uniform across outcomes in the non-participation state. 
Most women benefit from the programme. Our results on stochastic rationality provide addi- 
tional corroborating evidence that the programme is beneficial. Randomized-out women 
have ex post regret. Our more comprehensive consideration of programme impacts produces 
a more nuanced interpretation of the prototypical training programme we evaluate. 

Table 8 summarizes our evidence on the distribution of programme impacts for parti- 
cipants under different identifying assumptions. In all cases, the proportion of adult female 
participants who benefit is greater than half. Departures from high levels of dependence 
across potential outcomes produce implausible estimated impacts at the top and bottom 
quantiles and implausibly large estimated variability. The estimated median impact is 
also sensitive to alternative identifying assumptions. Our analysis rejects the widely-used 
common effect model but suggests that substantial departures from our generalization 
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of it-perfect positive dependence across potential outcome distributions-produces 
estimates of impact distributions that are not credible.32 

APPENDIX 
A .  Data 

The data analyzed in this paper were collected as part of an experimental evaluation of the training programmes 
financed under Title IIA of the Job Training Partnership Act (JTPA). The experiment was conducted at a sample 
of sixteen JTPA training centres around the United States. Data were gathered on JTPA applicants randomly 
assigned to either a treatment group allowed access to JTPA training services or to a control group denied access 
to JTPA services for 18 months. Random assignment covered some or all of the period from November 1987 
to September 1989 at each centre. A total of 20,601 persons were randomly assigned. In this paper we only 
present results for women age 22 or more at the time of random assignment. 

Follow-up interviews were conducted with each person in the experimental sample during the period 
from 12-24 months after random assignment. This interview gathered information on employment, earnings, 
participation in government transfer programmes, schooling, and training during the period after random assign- 
ment. The response rate for this survey was around 84%. The sample used here includes only those adult women 
who ( I )  had a follow-up interview scheduled at least 18 months after random assignment, (2) responded to the 
survey, and (3) had useable earnings information for the 18 months after random assignment. The subsample 
includes 5725 adult women. 

The sample was chosen to match that used in the 18-month experimental impact study by Bloom et al. 
(1993). As in that report, the earnings measure is the sum of self-reported earnings during the 18 months after 
random assignment. This earnings sum is constructed from survey questions about the length, hours per week, 
and rate of pay on each job held during this period. Outlying values for the earnings sum are replaced by 
imputed values as in the impact report. However, imputed earnings values used in the report for adult female 
non-respondents are not used here as they were not available at the time this paper was written. The employment 
measure used in this paper is based on the 16th, 17th and 18th months after random assignment. A person is 
defined to be employed if she had any self-reported earnings in these months. 

B. Description of algorithms used for permutations 

This appendix describes the algorithms used to produce Tables IA, 1 B, 5A and 5B: These tables involve samples 
of impact distributions obtained by permuting the percentiles of the control and treatment outcome distributions. 

Tables 1A and 1B 

The total number of possible impact distributions obtained by percentile permutation consistent with the observed 
control and treatment group outcome distributions is 100. As it is computationally infeasible to construct all of 
these permutations, in Tables 1A and 1B we instead report results from a random sample of 100,000 of these 
permutations. Each permutation is obtained by taking a set of uniform random deviates, indexing them, sorting 
them, and then using the order of the sorted indices to permute the percentiles of the control group outcome 
distribution. The permuted control group percentiles are then subtracted from the treatment group percentiles 
to produce the impact distribution corresponding to the given permutation. 

The percentiles of each impact distribution generated in this manner are then retained until the full sample 
of 100,000 has been generated. The mean and percentiles of the generated percentiles and other parameters of 
the impact distributions corresponding to the sample of permutations are reported in Tables 1A and 1B. The 
bootstrap standard errors are generated by repeating this process 50 times with 50 different random samples of 
100,000 permutations and 50 bootstrap samples of earnings observations and then calculating the empirical 
standard deviations of the generated parameters. 

Tables 5A and 5B 

For Tables 5A and 5B, the algorithm of Hibbard (1963), cited in Knuth (1973), was used to draw random 
samples of permutations conditional on a particular value of r (number of inversions). Fifty permutations were 
generated for each value of r shown in the tables, except for r =  1.0 and r=-1.0, where only the single 

32. Heckman and Robb (1985, 1986), Heckman (19976) and Heckman and Smith (1997) consider the 
implications of heterogeneity of programme impacts on conventional nonexperimental econometric evaluation 
methods. 
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permutation with the indicated value of r was used. The tables report the median parameter value among these 
50 permutations. Bootstrap standard errors were obtained by repeating the process 50 times, each time with a 
new sample of permutations and a bootstrap sample of earnings values. 

C. Construction of impact distribution through deconvolution 

This appendix describes how to implement condition (C-1) and equation (7) to estimate the distribution of 
impacts through deconvolution. Deconvolution is discussed in Kendall and Stuart (1977), Stefanski and Carroll 
(1990) and Carroll and Hall (1988). In a useful paper, Horowitz and Markatou (1996) extend Stefanski and 
Carroll (1990) by accounting for estimation of P and 5 and present an economic application. Heckman (1990b) 
discusses the use of deconvolution in evaluating social programmes. 

We deconvolve the sum of self-reported earnings in the 18 months after random assignment. The Y values 
are divided by 1000 in order to reduce the loss of precision during exponentiation. The empirical characteristic 
functions for E and 5,  where 5 =A +E,  wer_e obtained from the control and treatment group earning~~values, 
respectively. The standard formulae are +,(A) = (N, )-' 1,exp (iAY,) for the control group and +& (A)= 

(PI,)-' 1,exp (iAY,) for the treatment group, where N, is the number of observations in the treatment group, 
N, is the number of observations in the control group, and where estimates of the value of the characteristic 
function were obtained at  10001 equally spaced frequencies A between -5.00 and 5.00. These limits on the 
frequencies were determined by examining a number of possible choices involving both wider and narrower 
ranges, and trading off the numerical problems induced by including higher frequencies against the loss of 
accuracy due to narrowing the range of included frequencies. 

Estimates of the value of the characteristic function of A, +,(A), were then_ obtai?ed at the same 10001 
values of A by taking the ratio of the characteristic functions for 5 and E :  +A(A)=+( (A)/+,(A). These estimates 
were used to obtain estimates of F(A), the c.d.f. of the impact distribution, using the relation 

F(A) = 0 . 5 + ( ~ ) - '  So1 [Re (+A(A)) cos (An) - Im ($,(A)) COS (AA)]dA, 

where Re ( ) denotes the real portion of a complex argument, Im ( ) denotes the imaginary portion of a complex 
argument, and where the numerical integration is carried out over the 10001 values of A using the trapezoidal 
rule. Estimates of F(A) were obtained for 2001 evenly spaced values of A between -50 and 50. The estimated 
p.d.f. obtained from this procedure appears in Figure 5 and the corresponding c.d.f. appears in Figure 6. The 
p.d.f. shown in the figure has been smoothed using standard kernel smoothing techniques. We employ the 
empirical characteristic functions and the c.d.f. rather than estimating the characteristic functions over smoothed 
data distributions and obtaining the estimated impact density directly because the earnings data contain an 
important point mass at zero. 

Our experience with this procedure is that marginal increases or decreases in the number of frequencies, 
A, used to approximate the characteristic functions have little effect on the substance or stability of the estimates. 
Using half as many points in each case produces about the same estimate. We test the sensitivity of our estimates 
to the weighting of the frequencies, A, used in the estimation by implementing the smoothing function proposed 
in Horowitz and Markatou (1 996). In our implementation of their smoother, the empirical characteristic function 
corresponding to the impact density is estimated using the method previously presented. We then select a 
smoothing function, +g, in this case the characteristic function of a standard normal random variable. This 
function is a bounded, real characteristic function with support [-I, I]. We estimate the c.d.f. of the impacts 
using a modified version of the formula given earlier 

-,A 

F(A) =0.5 + (=)-I lo[Re (+~(h)$,(h,.A)) cos (AA) -Im ($~(A)+g(hvA )) cos (A*)lriA. 

where h, is a sequence of positive constants satisfying h,, -,0 as n -,m where n =min (N, ,  N, ). Table C-I shows 
the estimates of the impact mean and standard deviation obtained for various values of h,, when F(A) was 
evaluated at 5001 evenly spaced values of A between -50 and 50. While the estimated mean is quite stable 
across values of h,, the estimated impact standard deviation is somewhat sensitive to the value of the smoothing 
parameter, with the estimates differing by almost a factor of three between the cases where /I,,=1.00 and /I, ,= 
3.50. 

Finally, we find that applying our original procedure to the empirical characteristic function of one of the 
data distributions, rather than to the ratio of the two empirical characteristic functions, produces estimates that 
are both reliable and stable. Problems in the form of negative estimated densities and/or substantial instability 
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TABLE C-l 


Estimated impact mean and standard deviation 

empirical deconvolution with weighted frequencies 


,for various values of h, 

(National JTPA Study 18 month impact sample; 


adult females) 


Estimated Estimated 
mean impact 

Value of h, impact std dev 

h,= 1.00 

h,= 1.25 

h,, = 1.50 

h,= 1.75 

h,=2.00 

h, =2.25 

h, =2.50 

h,=2.75 

h, =3.00 

h,=3.50 


1. 	The characteristic function of a standard normal 
random variable was used as the weighting func- 
tion in generating these estimates. 

to choice of the range of A. only arise when using the ratio of the characteristic functions from the two data 
distributions to estimate the characteristic function of the impact distribution. These problems may result either 
from the failure of the independence assumption to hold, in which case the negative density estimates may be 
correct, or from numerical factors associated with taking nonlinear functions of the ratio of two relatively small 
numbers. Numerical problems of the latter type are commonly reported in the literature on deconvolution (see, 
e.g. Jansson (1984)). 

D. Allowing for mass points at zero in the population 

In many cases, it is plausible that there are mass points at zero for YI and Yo. This is the case with the JTPA 
earnings data used in this study. (Obviously the mass points may be at some place other than zero, may be 
different for YI than for Yo, and there may be multiple mass points. We consider only the simplest case in this 
appendix). Our analysis of this case combines the analyses in Sections 4 and 6. However, a new result is required 
because it is necessary to match the zeros for one outcome measure with the continuous outcome components 
for the other.33 

Define the following notation: Let Pr (YI =0, D =  1) = Po.>O and Pr (Yo =0, D =  1) =P.o>O. The density 
of Yl for Y, >0 is 

f (YII Y I > ~ ,D =  1) 

while the density of Yo for Yo>O is 

In constructing bounds for the joint distribution of ( YO, Y, ) we must allow for Yo =0 to be paired with continuous 
Yl, for Y, =0 to be paired with continuous Yo, and for Y, and Yo to be either both discrete or both continuous. 
The following three step method generalizes the procedures used in Sections 4 and 6 in the text: 

Step 1. Using the methods of Section 6, bound the joint distribution of the indicators of positive earnings. 
Let Eo = 1 if earnings Yo >0 ;Eo=0 otherwise. Let El = 1 if YI >0; El =0 otherwise. Then define: 

P l I = P r ( Y I > O ,  Yo>OI D = l ) = P r ( E l = l  and Eo=l ) ,  

P lo=Pr(YI>O,  Yo=OI D = l ) = P r ( E l = l  and Eo=O), 

33. To do this, we use well-known ideas in the probability literature. See Rachev (1985). 
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We know the left-hand sides of the following equations but the available population information does not 
afford a further resolution into the components on the right-hand side: PI.= P IO +P I1 =Pr (YI >0 I D = I), PO.= 
1-PI., P . l = P o l + P I l = P r ( Y o > O /D = l )  and P.o=l-P. l .  

Following the procedure outlined in Section 6 , we can represent all of the possible 2 x 2 tables with fixed 
marginals by varying Q over the interval [-I, I]. Each value of Q produces unique values for P,, i ,j=O, 1. 

Step 2. Next derive bounds on 

f (y11  YI>O, Yo=O, D = l )  and f(y01 YI=O, Yo>O, D = l ) .  

We know the left-hand sides of the following equations: 

and 

where the weights on the densities are given by specifying Q in Step 1 .  
Wecanconstructf(yll Yl>O, Yo=O, D=1)  by weighting f ( y l /  Yl>O,D=I):  

f ( y l /  Yl>O, Yo=0, D = l ) = f ( y ~ /  Y I > ~ ,  D = ~ ) W I ( Y I /Y I > ~ ) ,  

where wl (y,  I Y1>0) 0 and 

must be satisfied. Similarly we can construct 

with the requirements that wo (yo1 Yo>0) 20 and 

To ensure consistency with (D-I) and (D-2), it is required that the weights satisfy: 

It is easy to verify that the left-hand sides integrate to one over the full supports of YI and Yo, respectively. For 
them to be proper densities, it is required for (D-3) that for Plo>O 

for all yl  in the support of Yl and for (D-4) that for Pol >O 

for all yo in the support of Yo. When PI,= Pol =0, (D-3) and (D-4) simplify in an obvious way. These conditions 
bound the amount of the mass that can be transferred to one part of the distribution from the other parts. 
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Moreover, the pairs of weights (wl , 1-wlPlo/(P1~ - /(PI{ +Pol  )) bear a reciprocal +PI,)) and (wO, I wOPOl 
relationship within each pair. For example, weighting f (yl  1 Yl >O) by placing more mass at the low values of 
yl  to obtain f (yl  I Yl >O, Yo=O), so that zero values of Yo are associated with low values of Yl, necessitates 
placing more mass at the high values of yl  to obtain f (yl 1 Yl >O, Yo>O, D =  1). Independence is captured by 
selecting wo= 1 and wl =1. 

Two weighting schemes can be ordered in terms of their positive dependence by the amount of mass they 
transfer near the origin. Thus for all values of yl  ~ ( 0 ,  E),  W: induces more positive dependence in the interval 
than w:* if w: w:*. This ordering can be defined more generally by noting that w: induces more positive 
dependence than wf* if 

If this relationship is true for all support (Yl), then w: is a uniformly more positively dependent weighting 
scheme than w:*. In that case the random variable induced by w: is stochastically smaller than the random 
variable induced by wr*. 

Step 3. Use (D-3) and (D-4) as the marginals for the permutation procedure presented in Section 4.34 
Proceeding in this fashion, we can vary Q, (w,, wo), and the inversion classes of r for Yl >O, Yo>O to 

produce ranges of values on the joint distribution of (Yl,  Yo). Table D-1 (available on request) presents the 
joint distribution of (E l ,  Eo) for adult women for selected values of Q. This table gives results for the first step 
of the three step procedure. As Q increases, the probability of a favourable outcome from the programme 
increases. For all values of Q, the programme produces net earnings gains in the sense that P( Yl >0, Yo = 
O)>P(Y,=O, Yo>O). 

Table D-2 (available on request) presents the empirical results from Steps 2 and 3. We parameterize the 
weighting function for stage two in the following different ways: 

w- : point mass placed at opposite extremes (i.e. for Yo= 0, place as much mass as possible at the extreme 
upper values of Yl ;for Yl =0, place as much mass as possible at extreme upper values of YO). 

w, : independence, with wo =wl = I .  
w,: wo, wloca+bq with a =  1, b=3. (Denoted w,, in the table.) 
w+ : point mass placed at the same extremes (i.e. for Yo=O, place as much mass as possible near YI= 

0 ; for Yl =0 place as much mass as possible near Yo=0). 

A summary of Table D-2 is as follows. As the weights range from w- to w,, more of the mass of the Yo 
given Yl =0 and YI given Yo =0 distributions is concentrated near zero. The mean values of Yl and Yo conditional 
on (Yl >0, Yo> 0) must rise as a consequence of (D-3) and (D-4). As wl (y l  ( Yl >0) decreases for higher values 
of y l ,  the mass off  (yl  ( Yl >0, Yo>O) necessarily increases in the upper tail. Similar remarks apply to the 
behaviour o f f  (yo( Yo>O) as higher values are downweighted. For virtually the entire range of dependence 
parameters, the median impact is positive. At the same time, the median impact is never greater than $1 100 for 
the full eighteen month period. Second, unless a very high positive value is specified for the continuous outcome 
measure of dependence across potential outcomes-the r parameter-the interquartile range on the impact 
distribution is very large and not credible. This finding supports the conclusions for the more restrictive analysis 
reported in the text. Third, for most configurations of the dependence parameters, more persons benefit from 
participation than nonparticipation. 

Summary statistics of the overall impact distribution are presented in Table D-3 (available on request). 
This distribution is formed by combining the three types of conditional distributions. For no combination of 
values of the dependence parameters are a majority of women harmed by participating in the programme. Yet 
for some isolated values, a majority do not gain. For some configurations of the dependence parameters, as 
many as 20% of the women do not change their status by participating in the programme. The interquartile 
range is plausible only for high values of Q and r and for weighting functions w, and w+. The median gain 
ranges from -455 to 714. For virtually all configurations with positive dependence parameters, the median 
programme impact is positive. 

E. Distributions of the bounds, statistics derived from the bounding distributions, and the behaviour of rlte bootstrup 

This appendix considers two topics: (i) The derivation of the asymptotic distribution of the bounds for the 2 x 2 
table analyzed in Section 3(c) and a Monte Carlo study of coverage probabilities for the Frkhet--Hoeffding 

34. A more general scheme, which we do not use in this paper, employs all Markov operators that satisfy 
the conditions stated in the text rather than using the permutation matrix. 
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bounds based on bootstrapped standard errors; and (ii) a Monte Carlo analysis of the distribution of VAR(A) 
as estimated from the bounds in the continuous case, and the coverage performance of bootstrapped standard 
errors. We consider each topic in turn. 

(i) 2 x 2 Table 

Upper Bound for P., 

Under very general conditions, the sample counterparts to P.E and P,. are asymptotically normal. Using the 

experimental data, the two estimates are independently distributed because they corn: from in_dependent samples. 

Let NI and No be the sample sizes in the treatment and control distributions and Pp and P.E be, respectively, 

the proportions employed in the treatment and control samples. Let XI = P,., Xo= P.E, p I  = PE.. and p o =  P.E. 

In large samples, XI - p I  -N(0,o:) and Xo-po- N(O, og), where cry= (P,.)(l -P,.)/Nl = p ,  (1 - p l  )/NI and 

&=(P .E) (~  -P.~)/No=po(l -po)/No. 


Let Z=min (XI.  Xo). Then because XI and Xo are independent, the distribution of Z is the distribution 
of the minimum of two independent normal random variables. The distribution of Z is the distribution for the 
upper bound. Routine calculations reveal that 

where cp is the density of a standard normal and @ is its c.d.f. 
As p I - + l ,  the distribution of Z converges to the distribution of Xo. As N I ,  No-+ co,cro and 01both 

converge to zero, and if p l  > p o ,  P-1, E(Z)-+po and VAR(Z) -+ o i .  Since a parallel analysis can be conducted 
for p ,  <po ,  a normal approximation to the distribution of Z becomes better as N becomes larger unless p I  = 

Po. 


Lower bound for PE. 

We seek the distribution of max (FE.+F.;.E- 1,O). Using the previous notation, define 


In large samples J- N(0, oi+ 0:). Let cr: = oi + o: and let T=max (J, 0). Then T has the density 

Observe that as po and j~ I become large, or as No, Nl + co when p o  + p > 1, the density closely approximates 
a normal density. 

We now present a Monte Carlo analysis of the validity of bootstrap standard errors as a guide to summariz- 
ing the sampling variability of the FrCchet-Hoeffding bounds for the 2 x 2 table. We conduct an analysis for 
two sets of population parameter values. In the first set, the population cell probabilities are PEE=P,N= PNB= 
PNN=0'25. In the second set, the population cell probabilities are PEE=PNN=0'25, PEN=0'45, PNE=0.05. In 
the first case, the population values of T would be zero even without imposing the non-negativity condition T= 
max (J, 0). An analysis of this case explores how the coverage probabilities and distribution of the bootstrap 
standard errors are affected by imposition of the constraint even though it does not bind. In the second case 
the non-negativity constraint is binding. The constraint at zero is binding for the lower bound of PNE, while 
the population value of the lower bound for the PEN cell is 0.40. 

For both cases, 1000 samples were drawn. Each sample consists of a treatment sample and a control 
sample, with the probabilities of employment in each sample given by the population probabilities from the 
2 x 2 table. Each sample has 1500 control group members and 3000 treatment group members. These samples 
are roughly the same size as those used in the empirical work described in the text. 

For each of the 1000 samples, 250 bootstrap samples are drawn. The bootstrap samples are the same size 
as the original sample of data but are created using the employment proportions from the sample as estimates 
of the probability of employment, rather than the population employment probabilities. In addition, 250 Monte 
Carlo samples are drawn from each data sample. The Monte Carlo samples are the same size as each of the 
data samples and are based on the population employment probabilities. Bootstrap and Monte Carlo standard 
errors are calculated for each of the 1000 data samples. Mimicking the practice that is rigorously justified when 
asymptotic normality is justified, bootstrap and Monte Carlo coverage indicators for each sample are calculated 
by constructing an interval centred at the sample estimate of each bound and extending 1.96 times the estimated 
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standard error on each side. For each interval, an indicator variable is set to one if it contains the true parameter 
value and zero if it does not. 

Table E-l displays the results of the Monte Carlo analysis. The upper panel displays results for the first 
set of population cell probabilities and the lower panel displays the results for the second set. The first column 
lists the parameter being bounded and the second column gives the population bound. The third column gives 
the mean and, in parentheses, the standard deviation of the Monte Carlo standard errors over the 1000 data 
samples. The fourth column gives the mean and, in parentheses, the standard deviation of the bootstrap standard 
errors. The fifth column gives standard errors calculated using the mean Monte Carlo standard errors from 1000 
"large" samples containing 5000 control and 10,000 treatment observations, but adjusting the variance upward 
by the square root of the ratio of the sample sizes. These adjustments assume that the large sample standard 
errors are correct, and that when scaled up they provide a reliable guide to the smaller sample standard errors. 
The evidence presented in the tables suggests that this assumption is valid. The sixth column presents standard 
errors under the assumption that the bound is normally distributed, thus ignoring the nonnegativity requirement 
for the lower bound and the presence of a second proportion in the upper bound. The final column gives the 
asymptotic standard errors derived earlier in this appendix. 

The main lessons from Tables E-l are as follows. First, in general, the mean of the Monte Carlo standard 
errors is very close to the mean of the bootstrap standard errors. In addition, for the lower bounds, where the 
asymptotic distribution is normal away from the constraint and censored normal close to the constraint, both 
the bootstrap and Monte Carlo standard errors are very close to the asymptotic standard errors. In both cases, 
they are also very close to the standard errors calculated using the "large" sample standard errors as asymptotic 
standard errors. Thus, on average, the bootstrap performs quite well. 

Second, the standard deviations for both the bootstrap and Monte Carlo standard errors depend on 
whether or not the true parameter value is near the constraint in the case of the lower bound and on whether 
or not the two arguments in the bound formulae are the same or different in the case of the upper bound. 
Consider each case in turn. In situations where the population lower bound is zero, as in the upper panel of 
Table E-1 and for the lower bounds on P ,  and PNw in the lower panel, the standard deviations of the bootstrap 
standard errors are six or seven times as large as the standard deviations of the Monte Carlo standard errors. 
In situations where the constraint is strongly binding, as with the lower bound on PyE in the lower panel, both 
sets of standard errors have a point mass at zero, as the constraint also binds in every bootstrap and Monte 
Carlo sample. In the case where the population value of the bound is distant from the constraint, as in the lower 
bound on PENin the lower panel of Table E-1, the bootstrap standard errors are no more variable than the 
Monte Carlo ones. With regard to the upper bound estimates, the relative variability depends on whether or 
not the two arguments in the bound formula are the same. When they are, the bootstrap standard errors are 
relatively larger, while the variabilities are equal when P . E = p o # P E . = p , .  This can be seen by comparing the 
upper bounds on PENand P,", in the lower panel of Table E-1, where PE.= P.,, to the upper bounds on PEE 
and PNN,where they are different. Finally, in results not shown here, increasing the sample size does not change 
the relative performance of the bootstrap and Monte Carlo standard errors. 

Evidence on the coverage probabilities of the bootstrap is presented in Table E-2 for the case when the 
1.960 rule is used to approximate a 95% confidence interval. For the lower bounds, the performance of both 
the bootstrap and Monte Carlo confidence intervals depends on where the population value of the parameter 
lies relative to the constraint. When the population value of the bound lies on the constraint, as in the upper 
panel of Table E-2 and for PEEand PNNin the lower panel, the bootstrap coverage probabilities are about 2% 
too high and the Monte Carlo coverage probabilities are about 2% too low. When the constraint is strongly 
binding, as for P,, in the lower panel of Table E-2, both coverage probabilities are one, again because the 
constraint binds on every bootstrap and Monte Carlo sample. When the population parameter value is distant 
from the constraint, as for PEN in the lower panel of Table E-2, both coverage probabilities are very close to 
the value of 0.95 that is assumed in standard applications of the bootstrap. 

As is true for the variability in the standard errors, the coverage probabilities for the upper bound param- 
eters depend on the distance between P,. and P.,. When they are the same, as in the upper panel of Table E- 
2 and for P,, and P,, in the lower panel, both the bootstrap and Monte Carlo coverage probabilities are too 
low: the former by 1 to 3% and the latter by 5 or 6%). In contrast, when the two arguments in the bound 
formula differ, both coverage probabilities are very close to 0.95. 

It is also of interest to consider the shapes of the distributions of the bootstrap and Monte Carlo standard 
errors. In all cases, the distribution of the Monte Carlo standard errors is approximately normal in shape. This 
is true regardless of where the population parameter lies relative to the constraint for the lower bounds and 
regardless of whether the two arguments in the upper bound formula are the same or different. In contrast, the 
shape of the distribution of bootstrap standard errors depends strongly on these two factors. There are three 
cases. When the population parameter value lies on the constraint, as for all four lower bounds in the case of 
equal population cell probabilities, the distribution is what might be described as uniform with rounded corners. 
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TABLE E-l 

Monte Carlo analysis of standard errors for Frechet-Hoeffding bounds 
(Estimates based on 1000 data samples; 250 Monte Carlo and 250 bootstrap samples per data sample; sample 

size of 1500 controls and 3000 treatments) 

Population Mean Mean Uncorrected Correct 
value of Monte Carlo bootstrap Large N normal asymptotic 

Bound bound std. err.2 std. err.3 std. err.4 std. err.5 std. err.6 

Population cell probabilities are PEE= PEN= PNC= P N N = O ' ~ ~  

Lower bound on PEE -- 0.0 0.0092 0.0088 0.0092 0.0158 0,0092 
(0.0006) (0.0043) 

Lower bound on PEN 0.0 0,0092 0,0088 0.0092 0.0158 0.0092 
(0.0006) (0,0042) 

Lower bound on PNE 0.0 0.0092 0,0090 0,0092 0.0158 0.0092 
(0.0006) (0.0042) 

Lower bound on PNN 0.0 0,0092 0.0091 0,0092 0,0158 0,0092 
(0.0006) (0,0042) 

Upper bound on PEE 0.5 0,0092 0.0097 0.0092 0.0092 0.0092 
(0.0004) (0.0014) 

Upper bound on PEN 0.5 0.0092 0.0098 0,0092 0.0092 0,0092 
(0,0004) (0.001 3) 

Upper bound on P, 0.5 0.0092 0.0098 0.0092 0,0092 0.0092 
(0.0004) (0.0014) 

Upper bound on PNN 0.5 0,0092 0.0098 0,0092 0.0092 0,0092 
(0.0004) (0,0013) 

Population cell probabilities are P E E = P N N = O . ~ ~ ,  P ~ ~ = 0 . 0 5P ~ ~ = 0 . 4 5 ,  

Lower bound on PEE 0.0 0.0083 0,0085 0,0084 0.0145 0,0085 
(0,0006) (0.0038) 

Lower bound on PEN 0.4 0.0144 0,0144 0,0144 0.0145 0,0145 
(0,0006) (0.0006) 

Lower bound on PNE 0.0' 0.0000 0.0000 0.0000 0.0145 0.0000 
(0~0000) (0~0000) 

Lower bound on PNN 0.0 0,0084 0~0081 0.0084 0,0145 0.0085 
(0.0006) (0,0038) 

Upper bound on PEE 0.3 0.01 18 0.01 18 0.0118 0.01 18 0.01 18 
(0.0005) (0.0005) 

Upper bound on PEN 0.7 0.0085 0.0090 0.0085 0.0084 0,0085 
(0.0004) (0,0013) 

Upper bound on PNE 0.3 0.0084 0,0088 0,0084 0.0084 0,0085 
(0.0004) (0,0012) 

Upper bound on PNN 0.3 0.0083 0,0083 0.0084 0.0084 0.0084 
(0~0004) (0.0004) 

1. The non-negativity constraint on the lower bound is binding in this case. 
2. Monte Carlo standard errors are calculated for each data sample by drawing 250 additional samples using the 

population cell probabilities and calculating the standard deviation of each parameter across these samples. The 
table reports the mean and, in parentheses below the mean, the standard deviation of these Monte Carlo standard 
errors. 

3. Bootstrap standard errors are calculated for each data sample by drawing 250 bootstrap samples using the estimated 
row and column probabilities. PE. and P.E, from the data sample and calculating the standard deviation of each 
parameter across these bootstrap samples. The table reports the mean and, in parentheses below the mean, the 
standard deviation of these bootstrap standard errors. 

4. The "Large 	N" standard error is based on the mean Monte Carlo standard errors from samples containing 5000 
control and 10,000 treatment group members. This mean is treated as correct and adjusted upward by the square 
root of the ratio of the two sample sizes. 

5. The "Normal" standard errors assume that the distribution of the estimated bound is normal. Thus, they ignore the 
non-negativity constraint for the lower bounds and the fact that the upper bound is the maximum of two random 
variables. These standard errors are calculated using the population values of the cell probabilities. 

6. The "Correct Asymptotic" standard errors are based on the distributions of the estimated bounds given in equations 
(F-I) and (F-2). For the lower bound, they take account of the non-negativity constraint, while for the upper bound 
they take account of the fact that the bound is the maximum of two asymptotically normal random variablcs. These 
bounds are calculated using the popillation values of the cell probabilities. 
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TABLE E-2 

Monte Carlo analysis of standard errors for Frecl~et-Hoeffding bounds; coverage 
probabilities 

(Estimates based on 1000 data samples; 250 Monte Carlo and 250 bootstrap 
samples per data sample; sample size of 1500 controls and 3000 treatments) 

Population Bootstrap CI Monte Carlo CI 
value of coverage coverage 

Bound bound probability2 probability3 

Population cell probabilities are PEE= PEN= PNE= PNN =0.25 

Lower bound of PEE 

Lower bound of PEN 

Lower bound of PN, 

Lower bound of PNN 


Upper bound of P E E  


Upper bound of P,, 

Upper bound of P NE 


Upper bound of PNN 


Population cell probabilities are PE,=PNN=0.25, P ~ ~ = 0 . 4 5 ,  PNE=O.O~ 

Lower bound of P,, 0.0 0.9710 0.8690 
Lower bound of PEN 0.4 0.9530 0.9510 
Lower bound of PN, 0.0' 1 ~0000 1 .OOOO 
Lower bound of PNN 0.0 0.9710 0.8700 

Upper bound of PEE 0.3 0.9500 0,9530 
Upper bound of PEN 0.7 0.9360 0.9010 
Upper bound of P N ~  0.3 0.9260 0.8860 
Upper bound of PNN 0.3 0.9460 0.9440 

1 .  	The non-negativity constraint is binding in this case as the population value 
of the bound is zero. Because the expected value of the other term in the 
bound formula is -0.4, the estimated bound is also zero in all of the Monte 
Carlo and bootstrap samples, with the result that all of the confidence intervals 
equal [0, 01. Since the population value is zero, the coverage probability equals 
1.0 in this case. 

2. Bootstrap confidence intervals are obtained for each data sample by adding 
and subtracting 1.96 times the bootstrap standard error to the estimated 
bounds for the data sample. Coverage probabilities are the fraction of data 
samples for which the bootstrap confidence interval constructed in this way 
contains the population value of the bound. 

3. Monte Carlo confidence intervals are obtained for each data sample by adding 
and subtracting 1.96 times the Monte Carlo standard error to the estimated 
bounds for the data sample. Coverage probabilities are the fraction of data 
samples for which the Monte Carlo confidence interval constructed in this 
way contains the population value of the bound. 

The distributions in these cases are asymmetric as well, being somewhat skewed left. In the case of upper bounds 
where the population values of the two arguments in the bound formula are equal, the bootstrap standard errors 
have a highly skewed distribution with a thick right tail. In both cases, increasing the sample size does not 
decrease the non-normality. In the remaining cases, the distributions of the bootstrap standard errors closely 
resemble those of the Monte Carlo standard errors. 

We draw two main conclusions from this analysis. First, for the practical purpose of establishing statistical 
significance and sampling variability, the bootstrap standard errors perform well. Our analysis supports the use 
of the bootstrap standard errors. Second, as our theoretical analysis reveals, the quality of the bootstrap standard 
errors, as indicated by their variability, the coverage probabilities of confidence intervals generated from them, 
and the normality of their distribution, is strongly affected by the proximity of the population parameter value 
to the boundary of the parameter space (as represented by the constraints in the bounds formulae) and, in the 
case of the upper bounds, by whether or not the two arguments in the bounds formula have the same population 
values. 
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(ii) Monte Carlo Analysis of Bootstrap Standard Errors for the Impact Standard Deviation for the Case of Continu- 
ous Data 

This portion of the appendix summarizes a Monte Carlo analysis of the performance of the bootstrap standard 
errors used to account for the variability in the estimated impact standard deviation, [VAR (A)]'j2. We find 
that the bootstrap standard errors are inaccurate when the population impact standard deviation is zero. Boots- 
trap confidence intervals centred around the point estimate of the impact standard deviation have very low 
coverage probabilities even for samples substantially larger than those used in the empirical analysis in this 
paper. In view of this evidence, we construct Monte Carlo cutoff values for rejection of the null hypothesis that 
the population impact standard deviation is zero. Using these cutoff values, we find that we can reject the null 
hypothesis that the population impact standard deviation is zero at the P=0.0001 level. 

The upper and lower FrCchet bounds are, respectively, the minimum of two empirical processes and the 
maximum of an empirical process above zero. Informative analytical expressions for the distribution of VAR(A) 
are difficult to obtain, so we use Monte Carlo methods. Our Monte Carlo analysis of the performance of the 
bootstrap standard errors proceeds in the following way. For each of the four cases we consider, we generate 
250 samples of data by drawing observations at random from the distribution of earnings in the 18 months after 
random assignment for adult female controls in the National JTPA Study. For each sample, we first draw a 
control group sample of the size indicated in the first row of Table E-3. We then draw a "synthetic treatment 
group" sample of twice the size, in agreement with the 2: 1 random assignment ratio used in the experimental 
data analyzed in the text. The Monte Carlo treatment group samples are also drawn from the control earnings 
distribution. For columns where the true impact standard deviation is set to zero, $500 is added to each treatment 
group observation. In columns where the true impact standard deviation is set to $500, the treatment observations 
are sorted and $1000 is added to every other observation. In results not shown here, the same qualitative results 
are obtained from adding $1000 to the upper half of the treatment group earnings distribution in each synthetic 
treatment group sample. 

The percentiles of the control and synthetic treatment group earnings distributions for each sample are 
then obtained. Differencing across percentiles of the two distributions (i.e. subtracting the first percentile of the 
control distribution from the first percentile of the treatment group distribution and so on) yields the distribution 
of impacts for each data sample. The standard deviation of these differences is the estimated impact standard 
deviation for a given sample. 

We draw 250 bootstrap samples for each sample of controls and synthetic treatments by random sampling 
from the control and treatment group earnings distribution of the sample. Each bootstrap sample is equal in 
size to the original sample. The standard deviation of impacts is constructed for each bootstrap sample in the 
manner just described. The standard deviation of the estimated impact standard deviations in the bootstrap 
samples is the bootstrap standard error for the corresponding data sample. 

Table E-3 presents various statistics from the four cases we consider. The first three columns all have the 
population impact standard deviation set at zero, but vary the sample sizes from 1500 controls and 3000 
treatments up to 5000 controls and 10,000 treatments. The final column returns to a sample size of 1500 controls 
and 3000 treatments, but sets the population impact standard deviation at $500. The third row of Table E-3 
reports the mean of the estimates of the impact standard deviation over the samples. The key comparison here 
is between the first and fourth columns, which reveal that the mean of the estimated impact standard deviations 
is $431 in the case where the population value is $0 and $500 in the case where the population value is $500. 
Thus, the estimates are, on average, right on target for the case where the population value is away from zero, 
but strongly biased when the population value is actually zero. 

The second and third columns reveal that this bias declines with sample size, but even for samples of 5000 
controls and 10,000 treatments the average estimate in the data samples is still over $200 when the population 
standard deviation is zero. The source of this bias is clear. Any random variation that results in the differences 
in the percentiles of the control and treatment earnings distributions being other than the common impact of 
$500 shows up as upward bias in the estimated impact standard deviation since the random variation is squared 
in the calculation of the impact variance. Since the percentiles are more precisely estimated as the sample sizes 
increases, the random variation decreases and so does the mean bias. The fourth row of Table E-3 shows that 
the variance of the estimated impact standard deviations is not affected very much by the population value of 
the parameter-compare again the first and fourth columns-and declines strongly with the sample size, as 
expected. In terms of shape, the distributions of the estimated impact standard deviations from the data samples 
in the cases corresponding to both the first and fourth columns are skewed right, but more strongly so in the 
case where the population impact standard deviation is zero. 

The fifth row of Table E-3 presents the mean of the bootstrap standard errors in each case. In general, 
the mean is about 15% larger than the variation in the data sample estimates. For example, in the second column 
the variation in the data sample estimates is $1 10 while the mean of the bootstrap standard errors is $130. This 
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TABLE E-3 


Performance of bootstrap standard errors for the estimated standard deviation of impacts 

(Perfect positive dependence case; 250 data samples and 250 bootstrap samples per data sample; samples drawn 


from the National JTPA Study 18 month impact sample; adult females) 


Parameter Sample 1 Sample 2 Sample 3 Sample 4 

1500 control 3000 control 5000 control 1500 control 
Sample size 3000 treatment 6000 treatment 10,000 treatment 3000 treatment 

Population impact standard deviation 0.0 0.0 0.0 500.0 
Mean of data sample estimates 43 1 290 220 500 
Std. dev. of data sample estimates 166 110 77 145 
Mean of bootstrap standard errors 189 130 98 178 
Std. dev. of bootstrap standard errors 39 29 23 38 
Bootstrap CI coverage probability 0.352 0.412 0,3480 0.984 

1. Estimates are based on 250 data samples of the indicated size. Data samples are drawn from the control 
group data on earnings in the 18 months after random assignment for adult females. Treatment group data 
are drawn from the control group distribution, with the known impact distribution then added to the treatment 
group observations. For the case of zero impact variance, 500 is added to each treatment observation in the 
data samples. For the case of an impact standard deviation of 500, impacts of 0 and 1000 are added to 
alternating treatment observations. Concentrating the non-zero impacts on one end of the distribution (results 
not shown here) does not affect the performance of the bootstrap. 

2. The third row of the table reports the mean of the estimated impact standard deviations across the 250 data 
samples in each case. The fourth row reports the standard deviation of these estimates. 

3. A total of 250 bootstrap samples are drawn from each data sample. For each data sample, a bootstrap 
standard error for the estimated standard deviation of impacts is obtained by taking the square root of the 
variance of the impact standard deviation estimates in the bootstrap samples. The fifth row of the table 
reports the mean of these bootstrap standard errors over the 250 data samples, while the sixth row reports 
their standard deviation. 

4. The final row of the table reports the coverage probability that results from constructing a bootstrap confidence 
interval centred on the estimated impact standard deviation for each data sample and extending to 1.96 times 
the bootstrap standard error on either side. The coverage probability is the fraction of the data samples for 
which the interval so constructed contains the population value of the impact standard deviation. 

additional variation arises from the fact that the bootstrap standard error is based on sampling from the data 
sample rather than frorn the population. 

The variability in the bootstrap standard errors shown in the sixth row of Table E-3 is modest by compari- 
son with the variability in the estimates of the impact standard deviation across data samples. In the cases 
corresponding to both the first and fourth columns, the distributions of bootstrap standard errors are modestly 
skewed right, but concentrated almost entirely within the range from $100 to $300. The shapes of the two 
distributions are roughly similar, suggesting that the shape is not affected by the population value of the impact 
standard deviation. 

The final row of Table E-3 presents coverage probabilities for bootstrap confidence intervals. These confi- 
dence intervals are centred on the data sample estimate of the impact standard deviation for each sample, 
extending 1.96 times the bootstrap standard error on either side. The coverage probabilities give the fraction of 
the 250 data samples in each column for which the bootstrap confidence interval contained the population value 
of the impact standard deviation. The coveraee probabilities are very low in the columns where the population 
impact standard deviation is zero. In contrast, the coverage probability is within 0.03 of 0.95 for the case where 
the population impact standard deviation is $500. The poor performance in the case where VAR(A) =O results 
frorn the upward bias in the data sample estimates that centre the confidence intervals. This poor performance 
suggests that reliance on the bootstrap standard errors produces misleading statistical inferences regarding the 
null hypothesis that the population impact standard deviation is zero. 

An alternative to relying on the bootstrap standard errors to test the null hypothesis of a zero impact 
standard deviation is to construct the distribution of estimates under the null using Monte Carlo methods. The 
quantiles of the simulated distribution of estimates under the null provide cutoff values that may be used to 
assign a p-value for a test of the null. Such cutoff values appear in Table E-4. These cutoff values are based on 
100,000 Monte Carlo samples of the indicated size. For example, the cutoff corresponding to a p-value of 0.60 
is the 60th percentile of the simulated distribution of estimates under the null. The sample size used in the paper 
is a bit larger than that in the first column, yet the estimate of the impact standard deviation in Table 2 is $1858. 
Thus, the first column of Table E-4 indicates that we can reject the null of a zero impact standard deviation at 
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TABLE E-4 

Monte Carlo cutoff values for probabilities of type I error under the 

null hypothesis that the population impact 


standard deviation is zero 

(Perfect positive dependence case; cutoff values based on 100,000 
Monte Carlo samples; samples drawn from the National JTPA 

Study 18 month impact sample; adult females) 

Cutoff value for Cutoff value for 
1500 controls and 5000 controls and 

P-value 3000 treatments 10,000 treatments 

I. Estimates are based on 100,000 random samples of the indicated 
size drawn from the real control sample for adult females. Treat- 
ment group samples are created from the control group samples 
by drawing at random and then adding 500 to all treatment 
group observations. 

2. 	The impact standard deviation is calculated for each Monte 
Carlo sample by collapsing the control and treatment group 
distributions into percentiles, taking differences across percen- 
tiles (thereby imposing perfect positive dependence) and then 
calculating the standard deviation of the percentile differences. 

the.0.0001 level. Indeed, our estimate exceeds the estimates for all 100,000 of the Monte Carlo samples, providing 
very strong evidence in support of our conclusion in the text that the experimental data bound the population 
impact standard deviation away from zero for adult women. 

F. 	Tests of$rst and second order stochastic dominance 

This appendix describes the tests of stochastic dominance discussed in Section 5 of the text. We implement three 
different tests of stochastic dominance. The tests compare the c.d.f.s, or integrated c.d.f.s, of the distributions 
of earnings in the 18 months after random assignment for adult women in the treatment and control groups in 
the JTPA experiment. The sample and earnings measure are the same as used in the other empirical analyses 
we present, and the two c.d.f.s are shown in Figure 3. When applied to the JTPA data for adult women, all of 
the tests are consistent with the hypothesis that the treatment group earnings distribution first-order (and 
therefore also second-order) stochastically dominates the control earnings distribution. 

(1) We implement tests due to Anderson (1996). Using multiple comparisons of the c.d.f.s and integrated 
c.d.f.s of the treatment and control distributions at a finite set of points, we reject the null that the 
two distributions are equal in favour of the alternatives that the treatment distribution first- and 
second-order stochastically dominates the cp t ro l  d!stribution at the 1% significant-e level. 

(2) We also use the test statistics D+=max, {Fl (x) -F,,(x)j and D--=min, {FI (x) -F,, (x)), where " ^ "  

denotes an estimated c.d.f. The null that the treatment distribution first-order stochastically dominates 
the control distribution is rejected for large values of D+, while the null that the control distribution 
first-order stochastically dominates the treatment distribution is rejected for large values of D .Apply-
ing this test to the JTPA data and using the approximate asymptotic standard errors provided by 
Stata, we reject the null that the control distribution first-order stochastically dominates the treatment 
group distribution at the 1% significance level, and fail to reject the null that the treatment distribution 
first-order stochastically dominates the control distribution. 
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(3) We also utilize a test due to Klecan, McFadden and McFadden (1997). They implement the two tests 
just described but use Monte Carlo methods to obtain the standard errors. In practice, their standard 
errors are larger, which leads to weaker inferences. They also consider the statistic D*=min {lDtl ,  
ID-I). They use this statistic to test the null that one of the distributions first-order dominates the 
other. We fail to reject this null with a p-value of 0.81. 

All three sets of test statistics are thus consistent with the hypothesis that the treatment group distribution first- 
order and second-order stochastically dominates the control group distribution. 
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