AULAS 24 E 25 Análise de Regressão Múltipla: Inferência

Ernesto F. L. Amaral

23 e 25 de novembro de 2010 Metodologia de Pesquisa (DCP 854B)

Fonte:

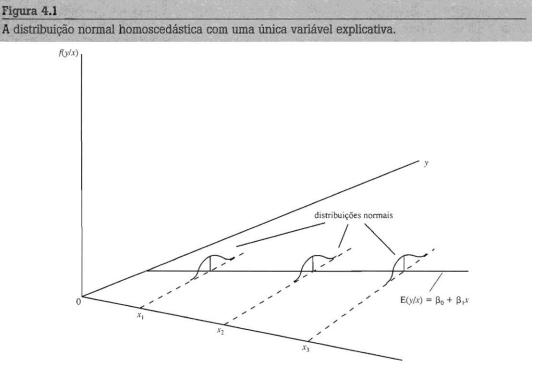
Wooldridge, Jeffrey M. "Introdução à econometria: uma abordagem moderna". São Paulo: Cengage Learning, 2008. Capítulo 4 (pp.110-157).

TRANSFORMAÇÃO É QUESTÃO EMPÍRICA

- Os objetivos de realizar transformações de variáveis independentes e dependente são:
 - Alcançar distribuição normal da variável dependente.
 - Estabelecer correta relação entre variável dependente e independentes.
- Fazer uma transformação de salário, especialmente tomando o log, produz uma distribuição que está mais próxima da normal.
- Sempre que y assume apenas alguns valores, não podemos ter uma distribuição próxima de uma distribuição normal.
- "Essa é uma questão empírica." (Wooldridge, 2008: 112)

MODELO LINEAR CLÁSSICO

- As hipóteses BLUE, adicionadas à hipótese da normalidade (erro não-observado é normalmente distribuído na população), são conhecidas como hipóteses do modelo linear clássico (MLC).
- Distribuição normal homoscedástica com uma única variável explicativa:



Fonte: Wooldridge, 2008: 111.

TESTES DE HIPÓTESE

- Podemos fazer testes de hipóteses sobre um único parâmetro da função de regressão populacional.
- Os β_i são características desconhecidas da população.
- Na maioria das aplicações, nosso principal interesse é testar a hipótese nula (H_0 : $\beta_i = 0$).
- Como β_j mede o efeito parcial de x_j sobre o valor esperado de y, após controlar todas as outras variáveis independentes, a hipótese nula significa que, uma vez que $x_1, x_2, ..., x_k$ foram considerados, x_j não tem nenhum efeito sobre o valor esperado de y.
- O teste de hipótese na regressão múltipla é semelhante ao teste de hipótese para a média de uma população normal.
- É difícil obter os coeficientes, erros-padrão e valores críticos, mas os programas econométricos (nosso amigo Stata) calculam estas estimativas automaticamente.

TESTE t

- A estatística t é a razão entre o coeficiente estimado (β_j) e seu erro padrão: ep(β_i).
- O erro padrão é sempre positivo, então a razão t sempre terá o mesmo sinal que o coeficiente estimado.
- Valor estimado de beta distante de zero é evidência contra a hipótese nula, mas devemos ponderar pelo erro amostral.
- Como o erro-padrão de β_j é uma estimativa do desviopadrão de β_j , o teste t mede quantos desvios-padrão estimados β_i está afastado de zero.
- Isso é o mesmo que testar se a média de uma população é zero usando a estatística t padrão.
- A regra de rejeição depende da hipótese alternativa e do nível de significância escolhido do teste.
- Sempre testamos hipótese sobre parâmetros populacionais, e não sobre estimativas de uma amostra particular.

p-VALORES DOS TESTES t

- Dado o valor observado da estatística t, qual é o menor nível de significância ao qual a hipótese nula seria rejeitada?
- Não há nível de significância "correto".
- O p-valor é a probabilidade da hipótese nula ser verdadeira:
 - p-valores pequenos são evidências contra hipótese nula.
 - -p-valores grandes fornecem pouca evidência contra H_0 .
- Se α é o nível de significância do teste, então H_0 é rejeitada se p-valor < α.
- $-H_0$ não é rejeitada ao nível de 100* α %.

TESTE: HIPÓTESES ALTERNATIVAS UNILATERAIS

 $H_1: \beta_j > 0$ OU $H_1: \beta_j < 0$

- Devemos decidir sobre um nível de significância (geralmente de 5%).
- Estamos dispostos a rejeitar erroneamente H₀, quando ela é verdadeira 5% das vezes.
- Um valor suficientemente grande de t, com um nível de significância de 5%, é o 95º percentil de uma distribuição t com n-k-1 graus de liberdade (ponto c).
- **Regra de rejeição** é que H_0 é rejeitada em favor de H_1 , se t>c (H_1 : β_i >0) ou t<-c (H_1 : β_i <0), em um nível específico.
- Quando os graus de liberdade da distribuição t ficam maiores, a distribuição t aproxima-se da distribuição normal padronizada.
- Para graus de liberdade maiores que 120, pode-se usar os valores críticos da distribuição normal padronizada...

EXEMPLO DO "WORLD VALUES SURVEY"

Variável dependente:

*Índice tradicional/secular (tradrat5)

Variável independente

- * Homem (x001): indicador de sexo masculino.
- * Escolaridade (x025r): (1) baixa; (2) média; (3) alta.
- * Estado civil (x007): (1) casado; (2) separado; (3) solteiro.
- * Religião é muito importante (a006): (0) não; (1) sim.
- * Acredita no céu (f054): (0) não; (1) sim.
- * Objetivo é de fazer pais orgulhosos (d054): (1) concorda muito; (2) concorda; (3) discorda; (4) discorda muito.
- * Acredita no inferno (f053): (0) não; (1) sim.
- * Tempo com pessoas da igreja (a060): (1) semanalmente; (2) 1 ou 2 vezes por semana; (3) algumas vezes por ano; (4) nunca.

GRAUS DE LIBERDADE (n-k-1) MAIORES QUE 120 gl = n-k-1 = 17.245-14-1 = 17230

Source	SS	df	MS
Model Residual	2919.01365 12914.5224	14 17230	208.500975 .749536992
Total	15833.536	17244	.918205522

Number of obs	=	17245
F(14, 1/230)	=	2/8.1/
Prob > F	=	0.0000
R-squared	=	0.1844
Adj R-squared	=	0.1837
Root MSE	=	.86576

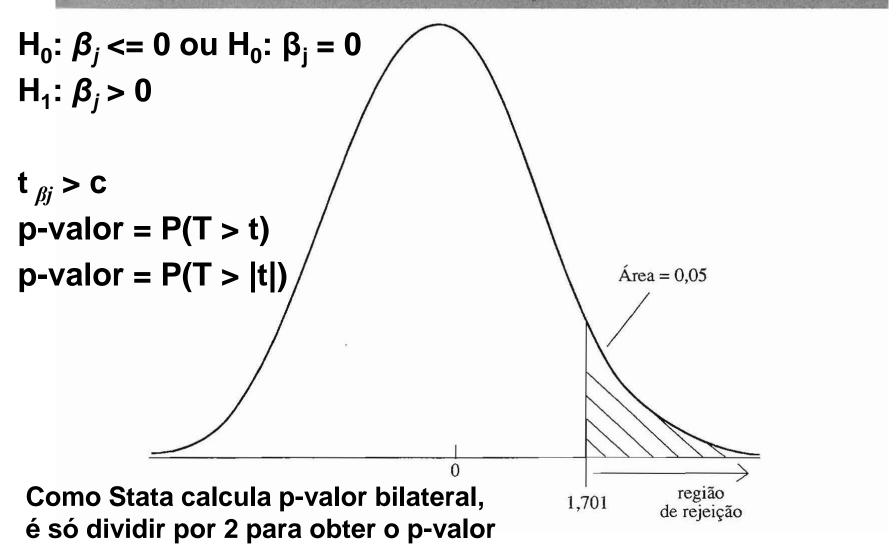
tradrat5	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
homem _Ieduc_2 _Ieduc_3 _Iestciv_2 _Iestciv_3 _religiao _ceu	0915848 .1611334 .4183285 .0823282 .033135 2900597 .1481911	.0134579 .0160693 .0182525 .0244348 .0150337 .0163472 .0246461	-6.81 10.03 22.92 3.37 2.20 -17.74 6.01	0.000 0.000 0.000 0.001 0.028 0.000 0.000	1179637 .1296359 .3825517 .0344336 .0036675 322102 .0998822	0652059 .1926309 .4541053 .1302229 .0626025 2580175 .1965
_Ipais_2 _Ipais_3 _Ipais_4 inferno _Iigreja_2 _Iigreja_3 _Iigreja_4 _cons	.1559776 .4766756 .807771 4142113 .034723 012683 .1743971 .255215	.0144202 .024395 .0485836 .0221687 .0200903 .0211482 .0189101 .0276124	10.82 19.54 16.63 -18.68 1.73 -0.60 9.22 9.24	0.000 0.000 0.000 0.084 0.549 0.000	.1277126 .428859 .7125423 4576642 0046561 0541357 .1373314 .2010918	.1842426 .5244922 .9029998 3707584 .0741021 .0287697 .2114628 .3093382

REGRA DE REJEIÇÃO DE H₀ (UNILATERAL)

Figura 4.2

unilateral.

Regra de rejeição a 5% para a hipótese alternativa $H_1:\beta_i>0$ com 28 gl.

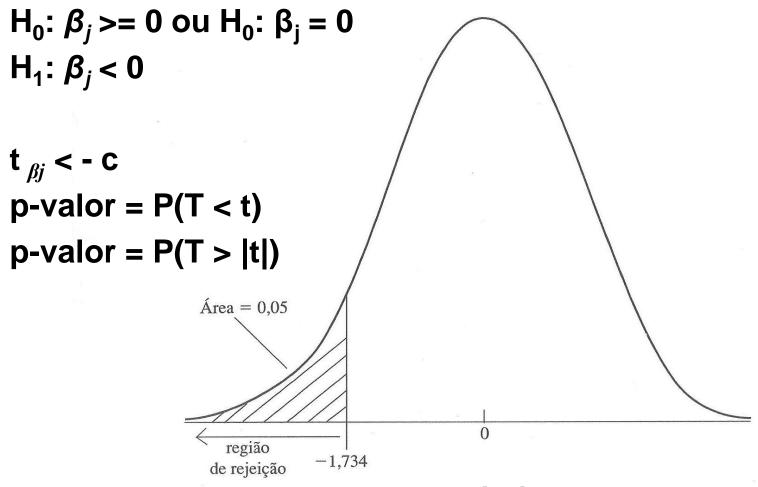


Fonte: Wooldridge, 2008: 117.

REGRA DE REJEIÇÃO DE H₀ (UNILATERAL)

Figura 4.3

Regra de rejeição a 5% para a hipótese alternativa H_1 : $(\beta_i) < 0$, com 18 gl.



Como Stata calcula p-valor bilateral, é só dividir por 2 para obter o p-valor unilateral.

Fonte: Wooldridge, 2008: 119.

TESTE: HIPÓTESES ALTERNATIVAS BILATERAIS

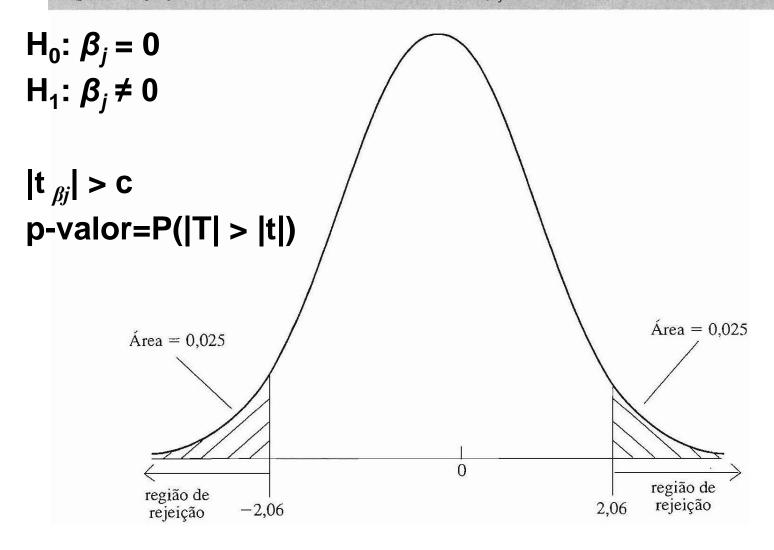
 H_1 : $\beta_j \neq 0$

- Essa hipótese é relevante quando o sinal de β_j não é bem determinado pela teoria.
- Usar as estimativas da regressão para nos ajudar a formular as hipóteses nula e alternativa não é permitido, porque a inferência estatística clássica pressupõe que formulamos as hipóteses nula e alternativa sobre a população antes de olhar os dados.
- Quando a alternativa é bilateral, estamos interessados no valor absoluto da estatística t: |t|>c.
- Para um nível de significância de 5% e em um teste bicaudal, c é escolhido de forma que a área em cada cauda da distribuição t seja igual a 2,5%.
- Se H₀ é rejeitada, x_j é estatisticamente significante (ou estatisticamente diferente de zero) ao nível de 5%.

REGRA DE REJEIÇÃO DE H₀ (BILATERAL)

Figura 4.4

Regra de rejeição a 5% para a hipótese alternativa H_1 : $\beta_i \neq 0$ com 25 gl.

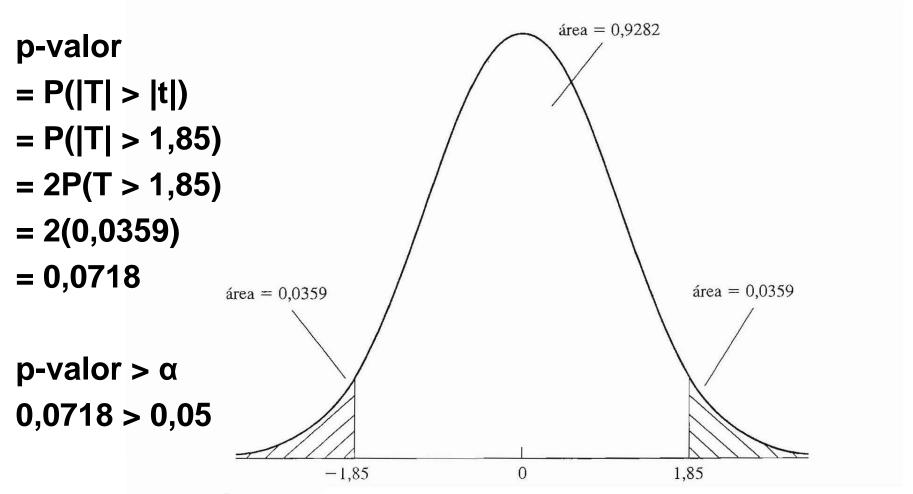


Fonte: Wooldridge, 2008: 122.

EXEMPLO DE NÃO-REJEIÇÃO DE H₀ (BILATERAL)

Figura 4.6

Obtendo o p-valor contra uma alternativa bilateral, quando t = 1.85 e gl = 40.



H₀ : β_j=0 não é rejeitada

Fonte: Wooldridge, 2008: 127.

TESTES DE OUTRAS HIPÓTESES SOBRE β_j

- Poderíamos supor que uma variável dependente (log do número de crimes) necessariamente será relacionada positivamente com uma variável independente (log do número de estudantes matriculados na universidade).
- A hipótese alternativa testará se o aumento de 1% nas matrículas aumentará o crime em mais de 1%:

$$H_0$$
: $\beta_i = 1$

$$H_1: \beta_i > 1$$

- t = (estimativa valor hipotético) / (erro-padrão)
- Neste exemplo, $t = (\beta_j 1) / ep(\beta_j)$
- Observe que adicionar 1 na hipótese nula, significa subtrair 1 no teste t.
- Rejeitamos H_0 se t > c, em que c é o valor crítico unilateral.

SIGNIFICÂNCIA ECONÔMICA X ESTATÍSTICA

- É importante levar em consideração a magnitude das estimativas dos coeficientes, além do tamanho das estatísticas t.
- A significância estatística de uma variável x_j é determinada completamente pelo tamanho do teste t.
- A significância econômica (ou significância prática) da variável está relacionada ao tamanho e sinal do coeficiente beta estimado.
- Colocar muita ênfase sobre a significância estatística pode levar à conclusão falsa de que uma variável é importante para explicar y embora seu efeito estimado seja moderado.
- Com amostras grandes, os erros-padrão são pequenos, o que resulta em significância estatística.
- Erros-padrão grandes podem ocorrer por alta correlação entre variáveis independentes (multicolinearidade).

DISCUTINDO AS SIGNIFICÂNCIAS

- Verifique a significância econômica, lembrando que as unidades das variáveis independentes e dependente mudam a interpretação dos coeficientes beta.
- Verifique a significância estatística, a partir do teste t de cada variável.
- Se: (1) sinal esperado e (2) teste t grande, a variável é significante economicamente e estatisticamente.
- Se: (1) sinal esperado e (2) teste t pequeno, podemos aceitar p-valor maior, quando amostra é pequena (mas é arriscado, pois pode ser problema no desenho amostral).
- Se: (1) sinal não esperado e (2) teste t pequeno, variável não significante economicamente e estatisticamente.
- Se: (1) sinal não esperado e (2) teste t grande, é problema sério em variáveis importantes (falta incluir variáveis ou há problema nos dados).

INTERVALOS DE CONFIANÇA

- Os intervalos de confiança (IC), ou estimativas de intervalo, permitem avaliar uma extensão dos valores prováveis do parâmetro populacional, e não somente estimativa pontual:
 - Valor inferior: β_j c*ep(β_j)
 - Valor superior: β_i + c*ep(β_i)
- A constante c é o 97,5° percentil de uma distribuição t_{n-k-1} .
- Quando n-k-1>120, podemos usar a distribuição normal para construir um IC de 95% (c=1,96).
- Se amostras aleatórias fossem repetidas, então valor populacional estaria dentro do IC em 95% das amostras.
- Esperamos ter uma amostra que seja uma das 95% de todas amostras em que estimativa de intervalo contém beta.
- Se a hipótese nula for H_0 : $β_j$ = a_j , H_0 é rejeitada contra H_1 : $β_j$ ≠ a_j , ao nível de significância de 5%, se a_i não está no IC.

TESTE F: TESTE DE RESTRIÇÕES DE EXCLUSÃO

- Testar se um grupo de variáveis não tem efeito sobre a variável dependente.
- A hipótese nula é que um conjunto de variáveis não tem efeito sobre y ($β_3$, $β_4$ e $β_5$, por exemplo), já que outro conjunto de variáveis foi controlado ($β_1$ e $β_2$, por exemplo).
- Esse é um exemplo de restrições múltiplas.
- $H_0: \beta_3=0, \beta_4=0, \beta_5=0.$
- − H₁: H₀ não é verdadeira.
- Quando pelo menos um dos betas for diferente de zero, rejeitamos a hipótese nula.

ESTATÍSTICA F (OU RAZÃO F)

- Precisamos saber o quanto SQR aumenta, quando retiramos as variáveis que estamos testando.
- Modelo restrito terá β_0 , β_1 e β_2 .
- Modelo irrestrito terá β_0 , β_1 , β_2 , β_3 , β_4 e β_5 .
- A estatística F é definida como:

$$F \equiv \frac{(SQR_r - SQR_{ir})/q}{SQR_{ir}/(n-k-1)}$$

- SQRr é a soma dos resíduos quadrados do modelo restrito.
- SQRir é a soma dos resíduos quadrados do modelo irrestrito.
- -q é o número de variáveis independentes retiradas (neste caso temos três: β_3 , β_4 e β_5), ou seja, $q=gl_r-gl_{ir}$.

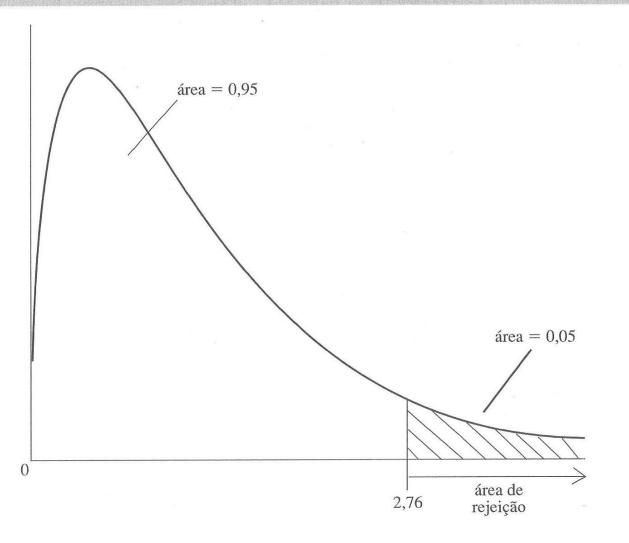
REGRAS DE REJEIÇÃO DE F

- O valor crítico (c) depende de:
 - Nível de significância (10%, 5% ou 1%, por exemplo).
 - Graus de liberdade do numerador (q=gl_r-gl_{ir}).
 - Graus de liberdade do denominador (n-k-1).
 - Quando os gl do denominador chegam a 120, a
 distribuição F não é mais sensível a eles (usar gl=∞).
- Uma vez obtido c, rejeitamos H_0 , em favor de H_1 , ao nível de significância escolhido se: F > c.
- Se H_0 (β_3 =0, β_4 =0, β_5 =0) é rejeitada, β_3 , β_4 e β_5 são estatisticamente significantes conjuntamente.
- Se H_0 (β_3 =0, β_4 =0, β_5 =0) não é rejeitada, β_3 , β_4 e β_5 são conjuntamente não significantes.

CURVA DA DISTRIBUIÇÃO F

Figura 4.7

O valor crítico de 5% e a região de rejeição em uma distribuição $F_{3,60}$.



Fonte: Wooldridge, 2008: 142.

RELAÇÃO ENTRE ESTATÍSTICAS F E t

 A estatística F para testar a exclusão de uma única variável é igual ao quadrado da estatística t correspondente.

 As duas abordagens levam ao mesmo resultado, desde que a hipótese alternativa seja bilateral.

 A estatística t é mais flexível para testar uma única hipótese, porque pode ser usada para testar alternativas unilaterais.

 As estatísticas t são mais fáceis de serem obtidas do que o teste F.

FORMA R-QUADRADO DA ESTATÍSTICA F

- O teste F pode ser calculado usando os R-quadrados dos modelos resitrito e irrestrito.
- É mais fácil utilizar números entre zero e um (R²) do que números que podem ser muito grandes (SQR).
- Como $SQR_r=SQT(1 R_r^2)$, $SQR_{ir}=SQT(1 R_{ir}^2)$ e:

$$F \equiv \frac{(SQR_r - SQR_{ir})/q}{SQR_{ir}/(n-k-1)}$$

— ... os termos SQT são cancelados:

$$F \equiv \frac{(R_{ir}^2 - R_r^2)/q}{(1 - R_{ir}^2)/(n - k - 1)}$$

CÁLCULO DOS p-VALORES PARA TESTES F

$$p$$
-valor = P($\mathscr{F} > F$)

- O p-valor é a probabilidade de observarmos um valor de F pelo menos tão grande (\mathscr{F}) quanto aquele valor real que encontramos (F), dado que a hipótese nula é verdadeira.
- Um p-valor pequeno é evidência para rejeitar H₀, porque a probabilidade de observarmos um valor de F tão grande quanto aquele para o qual a hipótese nula é verdadeira é muito baixa.
- Um p-valor alto é evidência para NÃO rejeitar H₀, porque a probabilidade de observarmos um valor de F tão grande quanto aquele para o qual a hipótese nula é verdadeira é muito alta.

TESTE F PARA SIGNIFICÂNCIA GERAL DA REGRESSÃO

- No modelo com k variáveis independentes, podemos escrever a hipótese nula como:
 - H₀: x₁, x₂, ..., x_k não ajudam a explicar y.
 - H_0 : $\beta_1 = \beta_2 = ... = \beta_k = 0$.
- Modelo restrito: $y = \beta_0 + u$.
- Modelo irrestrito: $y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + u$.
- Número de variáveis independentes retiradas (q = graus de liberdade do numerador) é igual ao próprio número de variáveis independentes (k):

$$F \equiv \frac{R^2/k}{(1-R^2)/(n-k-1)}$$

 Mesmo com R² pequeno, podemos ter teste F significante para o conjunto, por isso não podemos olhar somente o R².

DESCRIÇÃO DOS RESULTADOS DA REGRESSÃO

- Informar os coeficientes estimados de MQO (betas).
- Interpretar significância econômica (prática) dos coeficientes da variáveis fundamentais, levando em consideração as unidades de medida.
- Interpretar significância estatística, ao incluir erros-padrão entre parênteses abaixo dos coeficientes (ou estatísticas t, ou p-valores, ou asteriscos).
 - Erro padrão é preferível, pois podemos: (1) testar
 hipótese nula quando parâmetro populacional não é zero;
 (2) calcular intervalos de confiança.
- Informar o R-quadrado: (1) grau de ajuste; (2) cálculo de F.
- Número de observações usado na estimação (n).
- Apresentar resultados em equações ou tabelas (indicar variável dependente, além de independentes na 1ª coluna).
- Mostrar **SQR** e **erro-padrão** (Root MRE), mas não é crucial.

PESO POPULACIONAL ≠ PESO AMOSTRAL

INDIVÍDUO	NÚMERO DE OBSERVAÇÕES	PESO POPULACIONAL	PESO AMOSTRAL
João	1	4	0,8
Maria	1	6	1,2
TOTAL	2	10	2

EXEMPLO:

Peso amostral do João =

Peso populacional do João * Peso amostral total / Peso populacional total

PESO POPULACIONAL NO STATA

– FWEIGHT:

- Expande os resultados da amostra para o tamanho populacional.
- Utilizado em tabelas para gerar frequências.
- O uso desse peso é importante na amostra do Censo Demográfico e na Pesquisa Nacional por Amostra de Domicílios (PNAD) do Instituto Brasileiro de Geografia e Estatística (IBGE) para expandir a amostra para o tamanho da população do país, por exemplo.

tab x [fweight = peso]

PESO AMOSTRAL PARA PROGRAMADORES NO STATA

- IWEIGHT:

- Não tem uma explicação estatística formal.
- Esse peso é utilizado por programadores que precisam implementar técnicas analíticas próprias.

regress y x1 x2 [iweight = peso]

PESO AMOSTRAL ANALÍTICO NO STATA

- AWEIGHT:

- Inversamente proporcional à variância da observação.
- Número de observações na regressão é escalonado para permanecer o mesmo que o número no banco.
- Utilizado para estimar uma regressão linear quando os dados são médias observadas, tais como:

group	x	y	n
1	3.5	26.0	2
2	5.0	20.0	3

– Ao invés de:

group	x	У
1	3	22
1	4	30
2	8	25
2	2	19
2	5	16

UM POUCO MAIS SOBRE O AWEIGHT

- De uma forma geral, não é correto utilizar o AWEIGHT como um peso amostral, porque as fórmulas utilizadas por esse comando assumem que pesos maiores se referem a observações medidas de forma mais acurada.
- Uma observação em uma amostra não é medida de forma mais cuidadosa que nenhuma outra observação, já que todas fazem parte do mesmo plano amostral.
- Usar o AWEIGHT para especificar pesos amostrais fará com que o Stata estime valores incorretos de variância e de erros padrões para os coeficientes, assim como valores incorretos de "p" para os testes de hipótese.

regress y x1 x2 [aweight = peso]

PESO AMOSTRAL NAS REGRESSÕES DO STATA

– PWEIGHT:

- Ideal para ser usado nas regressões do Stata.
- Usa o peso amostral como o número de observações na população que cada observação representa.
- São estimadas proporções, médias e parâmetros da regressão corretamente.
- Há o uso de uma técnica de estimação robusta da variância que automaticamente ajusta para as características do plano amostral, de tal forma que variâncias, erros padrões e intervalos de confiança são calculados de forma mais precisa.
- É o inverso da probabilidade da observação ser incluída no banco, devido ao desenho amostral.

regress y x1 x2 [pweight = peso]