AULA 19 Análise de variância

Ernesto F. L. Amaral

17 de outubro de 2013 Metodologia de Pesquisa (DCP 854B)

Fonte:

ESTRUTURA DA AULA

- ANOVA de um fator.

ANOVA de dois fatores.

VISÃO GERAL

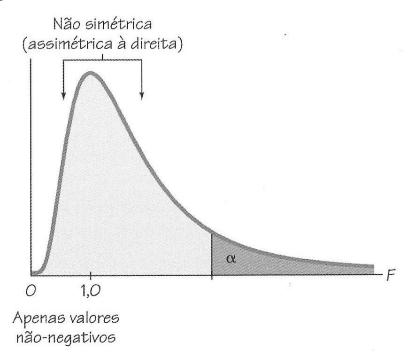
- Vimos procedimentos para o teste de hipótese de duas médias populacionais serem iguais (capítulo 9).
- Porém, tais testes não se aplicam quando há três ou mais médias envolvidas.
- A análise de variância (ANOVA) é um método para se testar a igualdade de três ou mais médias populacionais através da análise das variâncias amostrais.
- Em vez de considerarmos apenas médias amostrais,
 consideramos quantidades de variação, tamanhos amostrais
 e natureza da distribuição das médias amostrais.

POR QUE NOVO MÉTODO?

- Por que não podemos testar duas médias amostrais de cada vez?
- Por que precisamos de novo procedimento, quando podemos testar igualdade de duas médias (capítulo 9)?
- À medida que aumentamos o número de testes de significância individuais, aumentamos o risco de encontrar diferenças por puro acaso (nível de confiança baixo), em vez de diferença real nas médias.
- Risco de erro tipo I (encontrar diferença em um dos pares quando tal diferença não existe) é muito alto.
- A análise de variância evita rejeitar hipótese nula verdadeira, com uso de teste de igualdade de várias médias.

DISTRIBUIÇÃO F

- Os métodos de ANOVA requerem a distribuição F:
 - Assimétrica à direita.
 - Valores de F podem ser 0 ou positivos, mas não podem ser negativos.
 - Há uma distribuição F diferente para cada par de graus de liberdade para numerador e denominador.



COMPARAÇÃO DE VARIÂNCIAS

- A análise de variância se baseia na comparação de duas estimativas diferentes da variância comum de duas populações diferentes:
 - Variância entre amostras.
 - Variância dentro das amostras.
- O termo de um fator é usado porque os dados amostrais são separados em grupos por uma característica (fator).
- A análise de variância de dois fatores permite comparar populações separadas em categorias usando duas características (fatores).
- Se o valor P for pequeno (menor que 0,05), rejeite igualdade das médias. Caso contrário, deixe de rejeitar a igualdade das médias.

ANOVA DE UM FATOR

ANOVA DE UM FATOR

- O método da análise de variância de um fator é usado para testes de hipóteses de que três ou mais médias populacionais são iguais (H_0 : $\mu_1 = \mu_2 = \mu_3 = ... = \mu_k$).
- Estratégia de estudo:
 - Pequeno valor P (≤0,05) leva à rejeição da hipótese nula de médias iguais. Grande valor P deixa de rejeitar H₀.
 - Entenda a natureza dos valores SQ (soma dos quadrados) e dos MQ (média quadrática), além de seus papéis no cálculo de teste F.
- A análise de variância de fator único usa uma propriedade para categorizar as populações.
- Essa propriedade (característica, tratamento, fator) permite distinguir diferentes populações umas das outras.

REQUISITOS

- Populações têm distribuições que são aproximadamente normais (método funciona bem se população não tem distribuição muito afastada da normal).
- Populações têm a **mesma variância** σ^2 ou desvio padrão σ (método é eficiente se variâncias não diferirem por grandes quantidades).
- Amostras aleatórias simples.
- Amostras independentes umas das outras (não são emparelhadas).
- Diferentes amostras são de populações que são categorizadas de apenas uma maneira (um fator).

PROCEDIMENTOS

- Procedimentos para teste de H_0 : $\mu_1 = \mu_2 = \mu_3 = ...$
 - Use programa estatístico para obter resultados.
 - Identifique o valor P.
 - Forme conclusão com base nestes critérios:
 - Se valor $P \le \alpha$, rejeite hipótese nula de médias iguais e conclua que pelo menos uma das médias populacionais é diferente das demais.
 - Se valor $P > \alpha$, deixe de rejeitar hipótese nula de médias iguais.
- Ao concluirmos que há evidência para rejeitar afirmativa de médias populacionais iguais, não dizemos que qualquer média particular seja diferente das demais.

EXEMPLO

 Testar hipótese nula de que médias populacionais do índice tradicionalsecular (tradrat5) são iguais para todas categorias de educação (x025r).

education level (recoded)	Summary of traditional /secular rational values Mean
lower middle upper	.05828157 .23798683 .49092825
Total	.23695413

oneway tradrat5 x025r

Analysis of Variance						
Source	SS	df	MS	F	Prob > F	
Between groups Within groups	1892.90935 58511.7713	2 75454	946.454674 .775462816	1220.50	0.0000	
Total	60404.6807	75456	.800528529			

Bartlett's test for equal variances: chi2(2) = 912.3005 Prob>chi2 = 0.000

 Valor P<0,05: há evidência suficiente para apoiar afirmativa de que as três médias populacionais não são todas iguais.

FUNDAMENTOS

- Com a suposição de que as populações tenham a mesma variância, a estatística de teste F é a razão de duas estimativas de σ^2 :
 - Variação entre amostras (com base na variação entre médias amostrais).
 - Variação dentro das amostras (com base nas variâncias amostrais).
- Estatística de teste F significativamente grande é evidência contra médias populacionais iguais.

RELAÇÃO ENTRE ESTATÍSTICA FE VALOR P



ESTATÍSTICA DE TESTE PARA ANOVA DE UM FATOR

$$F = \frac{\text{variância entre amostras}}{\text{variância dentro das amostras}}$$

- Numerador da estatística de teste F mede variação entre médias amostrais.
- Estimativa da variância no denominador depende apenas das variâncias amostrais e não é afetada pelas diferenças entre as médias amostrais.
- Médias próximas (variância pequena no numerador) causam teste F pequeno (não rejeitamos H_0).
- Se valor de F for grande, rejeitamos H_0 de médias iguais.

TAMANHOS AMOSTRAIS IGUAIS A n

- Primeiro:

- Calcule a variância **entre** amostras: $ns_{\bar{x}}^2$
- Variância das médias amostrais: $S_{\bar{\chi}}^2$
- Tamanho de cada uma das amostras: n
- Ou seja, as médias amostrais são consideradas como um conjunto de valores para calcular sua variância.

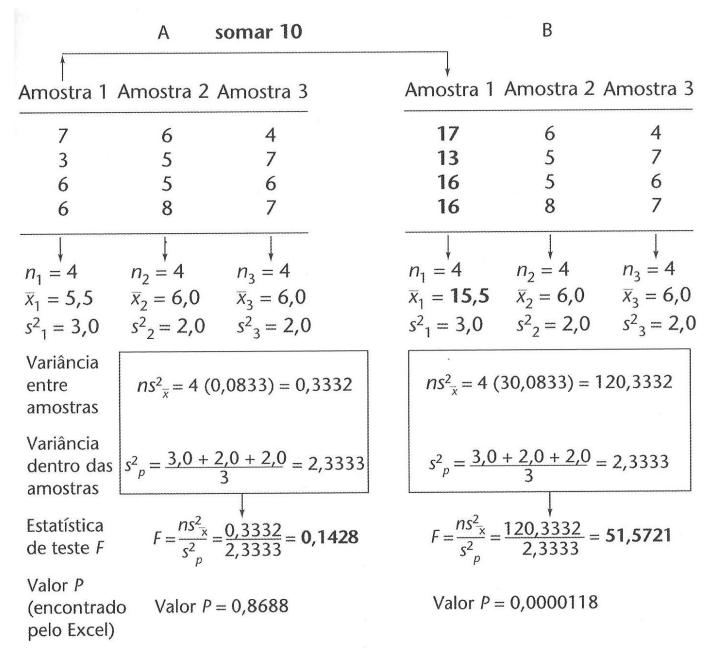
- Segundo:

– Calcule a variância **dentro** das amostras k (variância combinada obtida pelo cálculo da média das variâncias amostrais): $s_p^2 = (s_1^2 + s_2^2 + s_k^2)/k$

- Terceiro:

- Calcule estatística de teste *F*: $ns_{\bar{x}}^2/s_v^2$
- − Graus de liberdade do numerador: k − 1
- Graus de liberdade do denominador: k(n-1)
- Sendo k (nº de amostras) e n (tamanho amostral)

EFEITO DE UMA MÉDIA SOBRE A ESTATÍSTICA F



TAMANHOS AMOSTRAIS DIFERENTES

- Os cálculos se tornam complicados quando os tamanhos amostrais não são os mesmos.
- Também é calculada a estatística F que é a razão de duas estimativas diferentes da variância populacional comum (σ^2) e envolvem medidas ponderadas pelos tamanhos amostrais:

$$F = \frac{vari\hat{\mathbf{a}}ncia\ entre\ amostras}{vari\hat{\mathbf{a}}ncia\ dentro\ das\ amostras} = \frac{\left[\frac{\sum n_i(\bar{x}_i - \bar{\bar{x}})^2}{k-1}\right]}{\left[\frac{\sum (n_i - 1)s_i^2}{\sum (n_i - 1)}\right]}$$

k = número de médias populacionais sendo comparadas n_i = número de valores na i-ésima amostra s_i^2 = variância dos valores na i-ésima amostra $\overline{\bar{x}}$ = média de todos valores amostrais combinados $\overline{\bar{x}}_i$ = média dos valores na i-ésima amostra

COMPONENTES DO MÉTODO DE ANOVA

– SQ(total), ou soma dos quadrados total, é uma medida da variação total em todos dados amostrais combinados:

$$SQ(total) = \sum (x - \bar{x})^2$$

– SQ(tratamento), ou SQ(fator) ou SQ(entre grupos) ou SQ(entre amostras), é uma medida da variância entre médias amostrais:

$$SQ(tratamento) = \sum n_i(\bar{x}_i - \bar{\bar{x}})^2$$

– SQ(erro), ou SQ(dentro dos grupos) ou SQ(dentro das amostras), é uma soma de quadrados que representa a variação que se supõe comum a todas populações:

$$SQ(erro) = \sum_{i} (n_i - 1)s_i^2$$

COMPONENTES NO MÉTODO DE ANOVA (cont.)

SQ(total) = SQ(tratamento) + SQ(erro)

- Sendo N, o número total de valores em todas amostras combinadas, temos:
- MQ(tratamento) é uma média quadrática para tratamento:

$$MQ(tratamento) = \frac{SQ(tratamento)}{k-1}$$

– MQ(erro) é uma média quadrática para o erro:

$$MQ(erro) = \frac{SQ(erro)}{N-k}$$

– MQ(total) é uma média quadrática para a variação total:

$$MQ(total) = \frac{SQ(total)}{N-1}$$

ESTATÍSTICA DE TESTE

– Considerando a hipótese nula como:

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

 A estatística de teste para ANOVA com tamanhos amostrais desiguais é dada por:

$$F = \frac{MQ(tratamento)}{MQ(erro)}$$

- Possui distribuição F, com graus de liberdade dados por:
 - Graus de liberdade do numerador = k-1
 - Graus de liberdade do denominador = N k
- Numerador é afetado pelas diferenças entre médias amostrais.
- Denominador depende das variâncias amostrais que medem variação dentro dos tratamentos.

IDENTIFICANDO MÉDIAS QUE SÃO DIFERENTES

- Testamos se médias populacionais são diferentes, mas não sabemos se uma média particular é diferente das demais.
- Há procedimentos informais para identificar as médias específicas que são diferentes:
 - Construir diagramas de caixa com mesma escala.
 - Estimar intervalos de confiança e compará-los.
- Procedimentos formais:
 - Testes de amplitude: identificar subconjuntos de médias que não são diferentes umas das outras.
 - Testes de comparações múltiplas: usam pares de médias, mas ajustam o problema de ter nível de confiança que diminui à medida que aumenta número de testes individuais.

TESTE DE COMPARAÇÃO MÚLTIPLA DE BONFERRONI

- Não há consenso sobre qual teste é o melhor.
- O Teste de Bonferroni mostra que as médias do índice tradicional-secular são todas diferentes entre si.
- . oneway tradrat5 x025r, bonferroni

Source	Analysi SS	s of Vai	riance MS	F	Prob > F
Between groups Within groups	1892.90935 58511.7713	2 75454	946.454674 .775462816	1220.50	0.0000
Total	60404.6807	75456	.800528529		

Bartlett's test for equal variances: chi2(2) = 912.3005 Prob>chi2 = 0.000

Comparison of traditional/secular rational values by education level (recoded)
(Bonferroni)

Row Mean- Col Mean	lower	middle
middle	.179705 0.000	
upper	.432647 0.000	.252941 0.000

ANOVA DE DOIS FATORES

ANOVA DE DOIS FATORES

- O método da análise da variância de dois fatores é usado com dados divididos em categorias de acordo com dois fatores.
- Primeiro, testamos em relação a uma interação entre os dois fatores.
- Depois, testamos para determinar: (1) se o fator linha tem algum efeito; e (2) se o fator coluna tem algum efeito.
- O ponto central é que há uma interação entre dois fatores se o efeito de um dos fatores muda para diferentes categorias do outro fator.

REQUISITOS

- Para cada célula, os valores amostrais provêm de uma população com distribuição que é aproximadamente normal.
- Populações têm mesma variância σ^2 (ou desvio padrão σ).
- Amostras aleatórias simples.
- Amostras são independentes umas das outras.
- Valores amostrais são categorizados de duas maneiras.
- Todas células têm mesmo número de valores amostrais (planejamento balanceado).

PROCEDIMENTOS

 Efeito da interação: comece testando a hipótese nula de que não há qualquer interação entre os dois fatores:

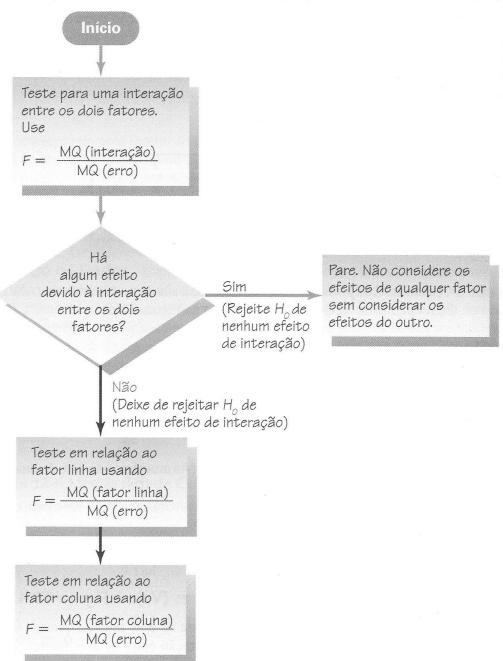
$$F = MQ(interação) / MQ(erro)$$

 Se P>0,05, não há evidência de que média da variável de interesse seja afetada por interação entre os dois fatores.

– Efeitos de linha/coluna:

- Se rejeitamos hipótese nula de nenhuma interação entre fatores, não devemos prosseguir com os testes adicionais.
- Se deixamos de rejeitar a hipótese nula de nenhuma interação, devemos testar:
 - $-H_0$: não há qualquer efeito do fator linha.
 - $-H_0$: não há qualquer efeito do fator coluna.

DIAGRAMA DE PROCEDIMENTOS



EXEMPLO

- A tabela abaixo mostra as médias do índice tradicionalsecular por categorias de educação e sexo:
 - . tab x001 x025r, sum(tradrat5) mean

Means of traditional/secular rational values

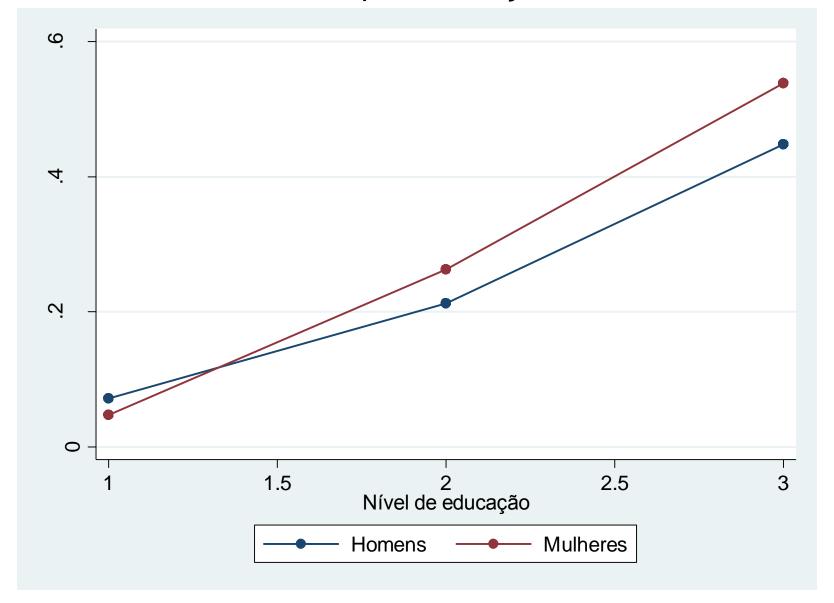
		on level (re	•	
sex	lower	middle ————	upper	Total
male female	.0715126	.21245551 .26288998	.44831954 .53839587	.22501274 .24906808
Total	.05870758	.23789516	.49090413	.23709384

- Dados não são balanceados:
 - . tab x001 x025r

sex	education lower	n level (re middle	coded) upper	Total
male female	11,799 12,772	16,688 16,985	9,049 8,114	37,536 37,871
Total	24,571	33,673	17,163	75,407

GRÁFICO DO EXEMPLO

– Índice tradicional-secular por educação e sexo:



INTERPRETANDO ANOVA DE DOIS FATORES

- Resultado sugere que o efeito interação é significativo
 (probabilidade de não rejeitar hipótese nula é pequena).
- As médias do índice tradicional-secular são afetadas por uma interação entre nível educacional e sexo.

Number of ohe -

anova tradrat5 x025r x001 x025r*x001

75107

D-causrod

	Root MSE	os = = .8		dj R-squared	
Source	Partial SS	df	MS	F	Prob > F
Model	1947.39018	5	389.478036	502.65	0.0000
x025r x001 x025r*x001	1900.15933 26.0420484 36.7932638	2 1 2	950.079666 26.0420484 18.3966319	1226.16 33.61 23.74	0.0000 0.0000 0.0000
Residual	58424.004	75401	.774843888		
Total	60371.3942	75406	.800617911		