AULAS 24 E 25 (slides extras) Análise de regressão múltipla: MQO assimptótico

Ernesto F. L. Amaral

05 e 07 de novembro de 2013 Metodologia de Pesquisa (DCP 854B)

Fonte:

Wooldridge, Jeffrey M. "Introdução à econometria: uma abordagem moderna". São Paulo: Cengage Learning, 2008. Capítulo 5 (pp.158-173).

MQO ASSIMPTÓTICO

- Além das propriedades de amostra finita (que vimos nos capítulos 3 e 4), é importante conhecer as propriedades assimptóticas ou propriedades de amostras grandes dos estimadores e das estatísticas de testes.
- Essas propriedades são definidas quando o tamanho da amostra cresce sem limites.
- A inexistência de viés dos estimadores, embora importante, não pode ser conseguida sempre.

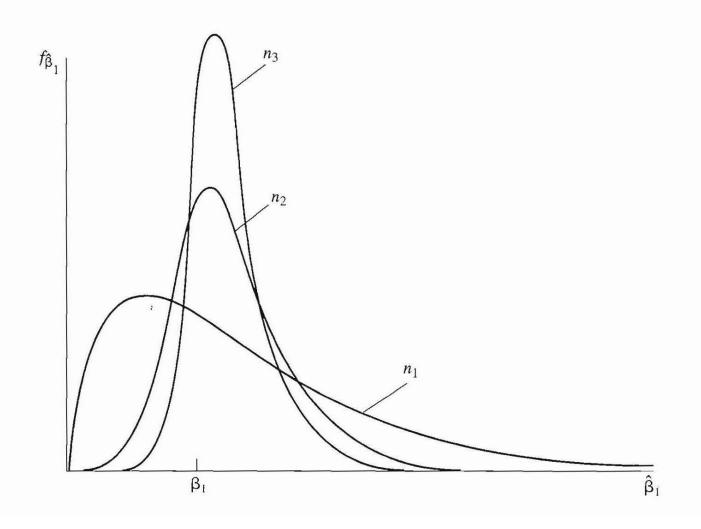
CONSISTÊNCIA

- Mesmo que os estimadores não sejam todos não-viesados, é importante que o estimador tenha consistência.
- Ou seja, em uma amostra infinita, o estimador do parâmetro populacional tem que ser consistente.
- Se o estimador for consistente, a distribuição do estimador se torna mais concentrada ao redor do parâmetro populacional, quanto maior é o tamanho da amostra.
- Quando o tamanho da amostra (n) tende ao infinito, a distribuição do estimador encontra-se no ponto do parâmetro populacional.

DISTRIBUIÇÕES AMOSTRAIS DO ESTIMADOR

Figura 5.1

Distribuições amostrais de $\hat{\beta}_1$ para amostras de tamanhos $n_1 < n_2 < n_3$.



DIFÍCIL DE ENTENDER "CONSISTÊNCIA"?

- Na prática, o tamanho da amostra é fixo, tornando difícil entender esse conceito de consistência.
- Consistência seria uma consideração que devemos fazer no caso do tamanho da amostra se tornar grande.
- Se amostras maiores não aproximarem o estimador do parâmetro populacional, o procedimento de estimação é insatisfatório.

INCONSISTÊNCIA NO MÉTODO MQO

- Se o erro não tem média zero e é correlacionado com qualquer uma das variáveis independentes, MQO é viesado e inconsistente.
- Isso representa que qualquer viés persiste mesmo quando o tamanho da amostra cresce.
- A inconsistência do estimador é positiva se x_1 e u são positivamente correlacionados.
- A inconsistência é negativa se x₁ e u são negativamente correlacionados.
- Se covariância entre x_1 e u é pequena, relativamente à variância em x_1 , a inconsistência pode ser desprezível. No entanto, não podemos estimar covariância, porque u não é observado.

EXEMPLOS DE INCONSISTÊNCIA

- Suponha que x_2 e u sejam não-correlacionados, mas x_1 e u sejam correlacionados, então os estimadores de MQO de x_1 e x_2 serão inconsistentes.
- A inconsistência no estimador de x_2 surge quando x_1 e x_2 são correlacionados.
- Se x_1 e x_2 forem não-correlacionados, então qualquer correlação entre x_1 e u não resulta em inconsistência do estimador de x_2 .
- Se x_1 for correlacionado com u, mas x_1 e u não forem correlacionados com as outras variáveis independentes, então somente o estimador de x_1 é inconsistente.

NORMALIDADE ASSIMPTÓTICA

- Saber que o estimador está se aproximando do valor populacional quando a amostra cresce (consistência) não permite testar hipóteses sobre parâmetros (inferência estatística).
- Se a distribuição do erro for diferente da normal, o beta estimado não será normalmente distribuído, o que significa que as estatísticas t não terão distribuições t e as estatísticas F não terão distribuições F, enviesando os p-valores.
- Como y é observado e u não é, é muito mais fácil pensar se é provável que a distribuição de y seja normal.

NORMALIDADE ASSIMPTÓTICA (cont.)

- Uma variável aleatória com distribuição normal:
 - É distribuída simetricamente ao redor de sua média.
 - Pode assumir qualquer valor positivo ou negativo.
 - Mais de 95% da área sob a distribuição está dentro de dois desvios-padrão.
- Os estimadores de MQO são normalmente distribuídos em amostras grandes (normalidade assimptótica).

TAMANHO DA AMOSTRA

- Se o tamanho da amostra não é grande, então a distribuição t pode ser uma aproximação insatisfatória da distribuição da estatística t quando u não é normalmente distribuído.
- Não há prescrições do tamanho mínimo da amostra. Alguns economistas pensam que n igual a 30 é satisfatório, mas esse valor pode não ser suficiente para todas as possíveis distribuições de u.
- Com mais variáveis independentes no modelo (gl=n-k-1), um tamanho de amostra maior é usualmente necessário para usar a aproximação t.
- Sendo c_j uma constante positiva que não depende do tamanho da amostra, os erros-padrão diminuem a uma taxa que é o inverso da raiz quadrada do tamanho da amostra:

$$ep(\hat{\beta}_i) \approx c_i/\sqrt{n}$$

ESTATÍSTICA MULTIPLICADOR DE LAGRANGE (LM)

- Essa estatística testa restrições de exclusão múltiplas, assim como o teste F.
- Considere um modelo de regressão múltipla com k variáveis

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

Testar se últimas q variáveis têm parâmetros iguais a zero:

$$H_0$$
: $\beta_{k-q+1} = 0, ..., \beta_k = 0$

- Procedimento:
 - Regrida y sobre o conjunto restrito de variáveis independentes e salve os resíduos (u).
 - Regrida u sobre todas variáveis independentes (regressão auxiliar) e obtenha R².
 - Calcule $LM = nR^2$ (tamanho amostral vezes R-quadrado).
 - Obtenha o p-valor referente a LM, em distribuição de quiquadrado, para testar se H₀ deve ser rejeitada ou não.