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The Workshop

JOHN ALDRICH
CHARLES F. CNUDDE
Michigan State University

Probing the Bounds of Conventional
Wisdom: A Comparison of Regression,
Probit, and Discriminant Analysis’

The level of measurement of the dependent variable (nominal, ordinal, interval)
crucially affects the selection of statistical techniques. Conventional wisdom further
restricts the choice of an appropriate technique. In this Workshop paper, we compare
three powerful statistical techniques appropriate for each of the levels of measurement
and sharing, insofar as possible, a similar set of assumptions. The three techniques are
ordinary least squares regression for intervally measured, probit for ordinally measured,
and discriminant analysis for nominally measured dependent variables. The assumptions
and uses of each technique are reviewed, and an example of the use of each in political
research is presented.

Discussions of the levels of measurement problem in political science
frequently lead to one of two conclusions. On the one hand, “radicals” argue
that the increased leverage obtained from using statistical procedures which
assume that the dependent variable is measured on an interval scale outweighs
the consequences of their application to nonintervally measured variables. On

*These statistical evaluation procedures were initially explored in order to solve
substantive problems that are only partly referred to in this paper. Further applications
will be developed in subsequent reports. Part of the research reported herein was
performed pursuant to a grant contract with the National Institute of Education, U.S.
Department of Health, Education, and Welfare. Contractors undertaking such projects
under Government sponsorship are encouraged to express freely their professional
judgment in the conduct of the project. Points of view or opinions stated do not,
therefore, necessarily represent official National Institute of Education position or
policy.
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the other hand, “purists” argue that the consequences of such a misuse are
too serious to ignore, and that nominal or even ordinal dependent variables
can only be analyzed through the use of the relatively less powerful tech-
niques, such as cross-tabulation or ordinal measures of association and corre-
lation. In this paper we discuss three techniques, all of which are useful for
testing multivariate and quite sophisticated hypotheses. These three alterna-
tive statistical procedures—linear regression, probit analysis, and discriminant
analysis—are suitable for the analysis of interval, ordinal and nominal
dependent variables, respectively. Underlying our presentation is our belief
that decisions concerning the choice of an appropriate statistical technique
must consider not only the nature of the measurement of the dependent
variable, but also the assumptions contained in the model underlying each
procedure. Further, we would argue that it is of equal importance to ensure
that these assumptions are compatible with the substantive assumptions of
the theory/hypotheses under investigation.

Linear Regression

To begin this explication, let us first consider the linear regression model
in a context of an application to political data.

One way to think of a linear function is to consider the identity between
the predictions of a “true” theoretical model and the actual observations that
the model addresses.! If the model were “true,” then when we plot its
predictions and the actual scores the intersections between these two sets of
points would all fall on the main diagonal; i.e., they would form a particular
type of a linear function. If there were some error in the predictions, then the
validity of the model would depend upon whether the scatter plot of
intersections fell about the main diagonal in a “random” way. This example is
a special case of the general linear model,

y=atbx+te,

which would apply whenever we can so account for actual observations with
values predicted from a theoretical model. In this model, a “true” identity
would mean that the data would all fall on the main diagonal, and the slope
would intersect at the origin. These considerations would mean a slope
coefficient (or b value) of 1.0, and an intercept of 0, respectively.

!The term ‘“‘theoretical model” here means some theory which leads to predictions
independent of the ‘“statistical theory” (i.e., linear regression) which can be used to test
the relationship between the theoretical predictions and reality.
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A linear model of this type may be developed to predict U.S. House of
Representatives seat gains and losses in “off-year” elections. The model’s
basic assumption is of stability in partisan preferences. Losses in the mid-term
elections, then, are simply due to fluctuations back to a normal or expected
level after a party gained more than that amount in the preceding presidential
election. Therefore we calculate how many seats were gained due to the swing
away from the expected partisan split in the presidential year by any party.
That gain is what it should lose in the following midterm election, assuming a
stable two party system and no systematic “short run forces,” such as
recessions or Watergate in the off year.

With this logic we obtain a set of predicted losses. If the model is correct,
the actual losses should line up with these predictions in a roughly linear way,
and in fact should approximate the special case of an identity.

The scatter plot of Democratic losses for the elections from 1938 to 1970
is shown in Figure 1. There are two major deviant cases, 1946 and 1958. In
both years, the assumption of no systematic “short run forces” probably is
invalid, and those cases are dropped.

To illustrate the theoretical model, we can briefly consider one particular
case. In the Roosevelt landslide of 1936 the Democrats made considerable
gains in House seats. Some portion of the total Democratic majority that year
undoubtedly came from districts Democrats would ‘“normally” win because
of the differential affiliation of the electorate to the major parties. This
normal or expected proportion of seats for a given party is assumed constant
in the model. Qur best evidence leads to the inference of relative stability in
this proportion since the Great Depression, and so as a means of making a
first approximation we may assume it to be a constant. However, refinements
could and should be attempted by relaxing this assumption.? If this propor-
tion is set as a constant, then the difference between such a value and the
percent of the seats the Democrats received in 1936 would be due to factors
other than that normal expectation due to party affiliation.> In general, we
can conceptualize this difference as due to the peculiarities of the particular

2The assumed constant expected number of seats for a party would change markedly
over time if the partisan split of the electorate markedly changed, or if apportionment
rules changed in ways greatly uncorrelated with the partisan division in affiliation, or if
electoral outcomes fell into extreme ranges where the “cube rule” curve is not well
approximated by a linear function.

®The value adopted for the analysis is 55% of the seats in the House of Representa-
tives to the Democratic Party. The value is approximately the same as the “normal vote”
for the Democrats in the electorate, as estimated for the period 1952 to 1960 from
survey data (Converse, 1966).
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Expected and Actual Seat Losses

election of 1936; i.e., all those factors that combined to make up the
Roosevelt landslide. Our calculations indicate that, given the number of seats
in the House at that time, the number due to the ‘“short run” effects of 1936
was about an 86-seat gain to the Democrats over and above what they would
have normally received in the current partisan era.

In the long run, a gain of this sort would be lost in another election where
the peculiar factors are apt to be different. As a second approximating
assumption, we could hold that it would be entirely coincidental for two
elections in a row to have short run factors that would operate to give the
same outcome. Considering the gains in a given election, we can make a
prediction about the losses in the next under this assumption: our best
prediction, knowing nothing else about the next election, is that the outcome
will return to the normal expectation. Thus in the long run the normal
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expectation is our best predictor of outcomes. The difference between the
normal expectation and the actual outcome in a given election is therefore
our best prediction of what would be lost or gained in the next election.

In 1936, if the Democrats gained 86 more seats than they should have,
given the normal expectation, and if the normal expectation is our best
prediction of the 1938 election, then they would tend to lose those 86 seats
in 1938. In fact they lost only 62 seats in 1938. However, to examine the
utility of this approach to predicting off-year elections, we would have to
compare the losses given by the model with the actual losses for a whole
series of elections. If we consider the actual losses as the values to be
predicted, and the values given by the model as the predictor variable, we can
use the linear regression model as a device for making this examination.

The linear regression model would link the actual losses (Y) to the losses
given by the model of election outcomes (X), some linear coefficients (o and
B), and an error term (e) which stands for all other influences on the actual
outcomes. Thus, we have a version of the standard linear equation:

Y=atpX+e o

If in the long run our normal expectation is the best predictor of actual
outcomes, then the sum of all other influences across a large number of
elections would equal zero. Formally,

Ze=0 )]

If in the long run the deviation from the normal expectation for a given
election would only coincidentally be related to that deviation in the next
election, then the covariation between e and X would sum to zero in a large
number of elections. Formally,

=Xe=0 €)]

Denoting estimated values by hats, writing the linear equation in terms of
estimates and rewriting it to set all values equal to the estimated residuals
gives

e=Y-a-BX 4)

Substituting (4) into the versions of (2) and (3) which correspond to esti-
mated values gives

nad+BTX=3Y Q)
aZX + B TX? = TXY ©6)
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Except for the estimated values of the regression coefficients, all values in the
equations can be calculated from the data obtained for the election years in
the scatter plot. Since we have two equations and two unknowns, solving for
the two unknowns gives the values of the two linear regression coefficients:

&=09
=08

These values come reasonably close to our theoretically derived values; a
value of 0.9 for & is reasonably close to 0.0 (given a range of —20.0 to +62.0
for actual seat losses), and a value of B of 0.8 is reasonably close to 1.0. We
can tentatively conclude that the linear regression model corresponds to the
model of off-year congressional seat losses.*

The success of a regression such as this example can be judged by
examining the error in fit. We expect some error, of course, in fitting
predicted dependent variable values to the actual observations. If we square
such error and sum the squared errors, we can examine this “residual variance”
as a proportion of the total original variance in Y. That is, we have divided
the original variance into “explained” variance and “unexplained” or error
variance. The proportion of variance explained is the familiar R?. This can be
used as a measure of “goodness of fit” of the theoretical model to the data.
In this case, the R? is a very high .830, giving us greater confidence in the
adequacy of the estimation.®

The procedure used to obtain estimates of the coefficients in regression
problems such as this is “ordinary least squares” (hereafter OLS). One crucial
assumption of OLS is that the “error terms” have properties that result in
zero outcomes under certain conditions. Without these conditions we cannot
make the substitution of equations to derive the coefficient values. Another
way of saying the same thing is that without this assumption we do not have
enough information to solve for the unknown coefficients.

What are the conditions necessary to specify that the sum of the left-out
factors and the covariation between the left-out factors and the measured
independent variable are both zero? In order to obtain proper OLS estimates,
the unknown causes must have values which are randomly selected from a

4For example, the estimated coefficients are well within the expected values of & = 0
and E =1 at any level of significance desired.

In this case, we have a small number of observations (7). Therefore, it is appropriate
to “correct” the R? for the relatively few degrees of freedom in the data set. This
“corrected R?” (also denoted as R?) is .796, thus not changing our basic conclusion. For
the derivation of R? see Johnston (1972, pp. 129-130).
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population of such errors which is normally distributed and has a constant
variance and a mean of zero.® Often in political science we do not have direct
observations at the interval level for the dependent variable. When we observe
some transformation of the interval level variable, we cannot insure that we
have a population of errors that are normally distributed and that meet the
other assumptions. In fact, we frequently measure dependent variables in
ways that lead us to suspect these assumptions.

If our measure of the dependent variable is such that it may take only a
limited range of values, we might question the possibility of normally distrib-
uted errors. For example, if our dependent variable is dichotomous, as when
the vote is measured as “Democratic/Republican” (or as when participation is
measured as “Vote/Didn’t Vote”), we have the extreme case in which the
range is limited to only two values. These dependent variables are linked, for
our sample, to an equation which adds the weighted independent variable
scores to a constant and the error term, to give these two values. Only under
very peculiar circumstances could we have the kind of continuous error term
values necessary for even an approximately normal distribution, and yet have
such a limited range of variation in the dependent variable. As we move to
trichotomous dependent variables, we can easily see that the problem is
almost as severe. In general, as our dependent variable takes on a greater range
in scores—approaches a continuous variable—OLS becomes more appropriate.

Put another way, a normally distributed error term implies an unrestricted
range of variation in the dependent variable. A severely restricted range of
variation in the dependent variable tends to undermine the assumption of
normally distributed error.

If the assumptions concerning the distribution of unmeasured influences
such as normality are called into question, then OLS is an inappropriate
estimation procedure. For dichotomous and other categorically measured
dependent variables, alternative procedures should be employed.

To illustrate the implication of limited variability in the dependent vari-
able for the other assumptions, we can examine Figure 2. In Figure 2 the

scores on the dependent variable are limited to 0.0 and 1.0. Therefore, when

6 The assumption that the error is normally distributed is important when dealing
with small samples such as our example. In large samples, many of the properties of OLS
regression estimates, statistical tests, and the like do not require the normality assump-
tion. This follows since in large samples, the sampling distributions of the estimates will
be approximately normal regardless of the form of the distribution of the error term.
There are many good sources which deal with the regression model and its assumptions
(e.g., Johnston, 1972).
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FIGURE 2
Comparison of OLS Estimate and “Typical” S-Shaped Relationship
with a Dichotomous Dependent Variable

an independent variable is plotted against a dichotomous dependent variable,
the underlying relationship would appear better approximated by an “S”
shape than a straight line. If we were to attempt to analyze these data with
OLS procedures, we would obtain an estimate of a straight line such as the
dotted liné in the figure. The estimated slope would appear much like that
drawn, because OLS will attempt to “average out” the vertical distances of
the actual scores from the estimate, resulting in as many observations below
the estimate as above.

Given this typical shape of the actual observations and the characteristic
departure from it by the OLS estimate, we can draw conclusions about two
assumptions:
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1) The residuals (the estimated error) obtained from the OLS estimate
will be correlated with the independent variable.

This conclusion can be easily seen from the illustration. The departures
from the OLS estimate (the gap between the S-shaped curve and the straight
line) are primarily above the line when the values of X are large. The
departures from the estimate are primarily below the line when the values of
X are small. Thus (assuming a positive X-Y relation) the residuals will be
positively correlated with X.

2) The variance of the residuals will vary systematically with the
independent variable.

The illustration shows that the variance of the residuals will tend to
decrease as we move away from moderate values of X and toward the
extreme values. The reason for this conclusion is that the positive and
negative residuals—as has been pointed out above—are correlated with X.

In general, dependent variables with restricted variability—such as we find
with ordinal and certainly categorical variables—will tend to produce “‘clumpi-
ness” in actual relationships with independent variables. As OLS attempts to
fit a straight line through these patterns, the result will be sets of residuals
which are inconsistent with the assumptions of uncorrelated error and con-
stant variance.

Probit Analysis

Thus, we have seen that the failure of the assumption that the dependent
variable is intervally measured leads to the violation of several of the OLS
assumptions about the error term. Consequently, nonintervally measured
dependent variables imply that the OLS regression estimating procedure
breaks down. The inapplicability of OLS in this situation is of serious
consequence for political science, since we are so often faced with variables
that are no more than ordinally measured. There is, however, an alternative
model and associated estimating technique that is designed for just this
situation, one that retains much of the power of OLS.

One interpretation of the probit model emphasizes the similarity of probit
and OLS regression. Suppose that we assume a theoretical—but unmeasured—
dependent variable which is related to a set of independent variables as in the
OLS model. Similarly, the theoretical dependent variable has associated with
it a stochastic term meeting the same assumptions as before. In this case, we
further assume that the observations of the dependent variable are measured
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on only an ordinal scale, a collapsing of the “true” interval scale. In the
extreme, only a dichotomy may be observed. Indeed, the most extreme
dichotomous case was that for which probit was originally developed (Fin-
ney, 1971). Probit has, however, been extended to the n-chotomous case by
Aitchison and Silvey (1957), and by McKelvey and Zavoina (1969). The
latter citation provides the first application of the technique in political
science, so far as we know.” They, therefore, discuss probit at some length,
exemplifying its uses for our purposes and in our terms, as well as providing
an important extension of the theory of probit with numerous useful refine-
ments.

Estimates for the probit model are developed by the method of maximum
likelihood. This method capitalizes on the assumed normality of the error
term. With this assumption it is possible to determine the probability (or
likelihood) of having observed the particular sample data for any given set of
values that the parameters might assume. The maximum likelihood criterion
is invoked by selecting, as estimates of the true parameters, those values
which have associated with them the highest probability of having obtained
the observed sample data. Even having imposed the normality assumption,
the equations that must be solved are very complex and can only be
approximated. However, the estimates thus obtained have a wide variety of
important and useful properties, not the least of which include unbiasedness
(in the limit or “consistency”), normal sampling distributions (again in the
limit), and in this class of estimates, minimum variance (“best” or most
“efficient™). A very similar set of properties hold for the OLS estimates if the
assumptions of regression hold.

Estimated parameters appear much like those obtained from OLS regres-
sion, since the models are very similar. However, the fact that only an ordinal
dependent variable is observed limits and weakens the straightforward inter-
pretation of the coefficients. For example, since the scale or “unit of
measurement” of the dependent variable is unknown, “slope” or “b” coeffi-
cients cannot be interpreted (as in OLS regression) as the amount of change
in the dependent variable for a one-unit change in an independent variable.
Or, since the concept of variance is undefined for an ordinally measured
variable such as our dependent variable, there is no analogue to the “standard-
ized beta” of OLS regression. In fact, since the dependent variable is only

7The basic presentation of n-chotomous probit can be found in McKelvey and
Zavoina (1969). Also see Cnudde (1971, p. 104). The initial extension of probit for the
case of a single independent variable is in Aitchison and Silvey (1957).
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ordinally measured, estimates are only unique up to positive linear transfor-
mations. (Technically, all of these comments can be summarized by noting
that the model is “underidentified.””) Nonetheless one obtains an estimate of
the best, weighted linear combination of the independent variables. In this
case, the predicted Y variable may also be taken as an estimate of the
unmeasured, theoretical Y that underlies the probit model.

The probit model has a second standard interpretation, in fact the initial
sort of situation for which probit was developed. Suppose, for example, that
the dependent variable is strictly dichotomous, say O or 1. In this case, one
obtains estimates of the “weights” to attach to independent variable dimen-
sions (plus an intercept term) which, by employing once again the assumed
normality properties, allow us to predict the probability of any given observa-
tion being a 0 or 1. Finney (1971), in his classic study of (dichotomous)
probit, used biological examples such as seed germination. A researcher might
be interested in estimating the probability of germination of seeds, condi-
tional upon such properties as rainfall, temperature, amount of fertilizer used,
and other such independent variables. However, he can only observe whether
or not the seeds actually germinated. The probit estimates and normality
assumption allow for the estimation of such probabilities, conditional upon
the values the case takes on the independent variables. Notice that the
(erroneous) use of OLS regression may result in predictions that might be
interpreted as “probabilities.” However, these “probabilities” may be nega-
tive or exceed one, since the linear model is not restricted to the range of
probability. (See, e.g., the OLS linear estimate of Figure 2.) Probit, on the
other hand, yields probability estimates that are true probabilities, and
therefore lie in the required ranges. The extension of probit to n-chotomous,
ordinal, dependent variables has associated with it a parallel extension of the
probabilistic predictions (e.g., a trichotomous dependent variable leads to the
prediction of probabilities of being a 1, 2, or 3, if that is the coding of the
variable, and of course one may obtain predictions of the probabilities of any
combination as well). It is this probabilistic nature of the predictions of
observed categories that led to the naming of the technique; probit is short
for a “probability unit.”®

8 The reader should note that the assumed transformation of the linear model to the
probabilistic one, viz. the cumulative normal, is only one possible “probability unit”
yard stick which could be employed. E.g., Finney (1971, Section 3.8) discusses several
alternatives including “logit,” the most well known alternative, as well as the highly
idiosyncratic assumptions that must be made about the error term to “legitimately”
apply OLS regression to probabilistic questions.
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To exemplify the use of probit and compare it to the estimates obtained
through the use of OLS, we have chosen voting in 1972. Consider the attempt
to predict the probability of a citizen voting for, say, McGovern, in that
election (coded a 1) versus the probability of either abstaining or voting for
Nixon (0). We might want to make the prediction of the citizen’s probability
of voting for McGovern, given the citizen’s positions on issues. Thus, we
obtain the following expression for the theoretical, linear, model underlying
probit:

Y*=a+b1X1+b2X2+...+ann (7)

where X, ..., X, are the positions (of a given citizen) on the n issues; a, by,

.., by are the parameters which are to be estimated; and Y* is the
“theoretical, underlying” linear dependent variable. In this case, Y* might be
interpreted as measuring the “propensity” of a citizen to vote for McGovern.
We observe Y (= 0 or 1), so we want to transform the linear “‘proness”
variable to a probabilistic prediction. In the dichotomous case, it can be
shown (see McKelvey and Zavoina, 1969) that the probability of voting for
McGovern [or Pr (Y = 1)] and the probability of not voting for McGovern
[Pr (Y = 0)], given the independent variables and estimated coefficients
(denoted 4, b;), are:

Pr(Y=1/a+b, X, +...+b,X,) =®(Y*) =®@E+b, X, +...+b,X,)(®8)
Pr(Y=0/a+b:i Xy +...+DyX,)=1-® (Y*)=1-D@E+b, X,
+o 4 D Xp) ©)

where “®” denotes the cumulative normal distribution function. In this
manner a unique probability of voting for McGovern can be determined for
each citizen, with his own particular configuration of positions on the issue
dimensions.

We have reported the results of such an estimation of the probability of
voting for McGovern in 1972 in Table 1, using data drawn from the 1972 CPS
election survey.® In particular, we employed the 7-point issue scales upon
which the respondent is asked to locate himself.!® The actual positions of the

?This study was sponsored by the National Science Foundation under Grant GS-
33956, and the results were made available through the Inter-University Consortium for
Political Research. The authors are grateful for the aid of the Foundation and the
Consortium, but neither, of course, bears any responsibility for the analysis reported
here.

19The formats of the 7-point issue scales are discussed at length in Page and Brody
(1972) and Aldrich (1975). The latter citation also includes this example, the basis for
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TABLE 1

Comparison of OLS and Probit Predictions:
Probability of Voting for McGovern, 1972

Probit (\?*) OLS Regression
7-Point Issue MLE SE MLE/SE [ SE  F,l,

Federal Jobs -375 .082 —4.55% —.087 .018 24.77*
Taxation -257 .066 —3.88%* —-.050 .014 11.60%*
Vietnam -593 .092 —6.46* -.145 .020 S50.71*
Marijuana -075 .058 -1.30 -.019 .014 1.98
Busing -205 .083 —2.47* -067 .019 12.76*
Women’s Rights -.038 .046 —0.83 -.010 .011 0.80
Rights of Accused —.046 .068 —0.68 -.011 .015 0.50
Aid to Minorities -136 .072 -1.90 -030 .017 3.13
Liberal/Conservative —-639 .113 -5.64* -.168 .025 43.93*
Constant -713 .303

Est. R? = .530 R? = .347

Est.R= .728 R= .589
—2xLLR = 441.64 F,%, =66.06
(chi square, 9 degrees of freedom)

N=1130

*Indicates significance at .05 level (critical values, Z = 1.96, F, 1, ~ 3.84)

citizens in this analysis were determined by the employment of a scaling
technique reported elsewhere.'! In Table 1 we report the probit estimates of
the linear Y* variable estimate, as well as the comparable OLS regression
estimates done on the same dichotomous dependent variable.

The relevant comparisons between the two techniques are best summa-
rized by looking at the OLS regression R? and the estimated R> of the probit
estimators. In the probit case, the R? is a full 18% higher, indicating that
approximately 53% of the variance is “explained.” In the regression version
of the estimates, only 35% of the variance is “‘explained” by the issue
positions of the citizens, a reduction in explanatory power of slightly more
than one-third. In this particular case, the two techniques do not differ in

the determination of this model, and how it corresponds with deductions from the
spatial model of electoral competition.
11 See McKelvey and Aldrich (1974), and Aldrich and McKelvey (1975).
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tests of significance. All variables that are significant at the .05 level in OLS
are so as well in the probit, and vice versa. However, in other reported
comparisons of probit and OLS, there were differences in statistical signifi-
cance (McKelvey and Zavoina, 1969).

The second major difference concerns individual predictions of the proba-
bility of voting for McGovern. In Figure 3, we have plotted the transformed
Y* variable, which is the linear predicted “propensity to vote for McGovern”
(summarized in Table 1), obtained by the transformation outlined above (i.e.,
solving Equation 8). The S-shape of the predicted probability of voting
variable is dramatically clear. In comparison with the OLS predictions, we
note that OLS predictions are strictly linear, and that they exceed both the
upper and lower bounds of probability at the extremes. Thus, if our interest
is in predicting the probability of voting for McGovern, we would be led to
some inexplicable predictions. For example, the smallest actual predicted
probability using the probit model is .00016. The regression prediction for
this individual is a “probability” of voting for McGovern of —.41587. Simi-
larly, the largest OLS “probability” is 1.62091, which has a corresponding
probit predicted probability of .99999 for that case. Thus for these two
individuals as well as others, the OLS prediction is nonsensical. We have
plotted the predicted OLS regression line on Figure 3 over the range of actual
observations. The differences in the two probabilistic predictions are quite
clear, and very similar to Figure 2. OLS regression, of course, yields a strictly
linear prediction, while probit leads to quite nonlinear predictions. At the
two bounds of probability, the probit model curves or “flattens” to approach
0 and 1 only in the limit, while OLS exceeds the limits by large amounts.
Further, within the nearly linear range of probit probabilities (e.g., between
about .25 and .75), the linear increase is steeper than the comparable
regression.

Our basic interest thus far has focused on “predicting” or “explaining” the
dependent variable. Researchers are often concerned with the independent
variables, e.g., in measuring their relative “importance” in the analysis. We
might consider the probit MLE coefficient and the slope or “b” of OLS as
one measure of “importance.” The rank order of the size of the coefficients
for the two techniques is quite similar. The only difference in the ordering is
that the MLE for taxation is larger than that associated with the busing issue
in the probit, while the order is reversed in the OLS estimation. However,
there are greater differences in the relative sizes of the coefficients. For
example, statistically significant but smaller coefficients are generally larger in
comparison with the strongest independent variable (the liberal/conservative
continuum) in probit than they are in the OLS case. As an illustration of this
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point, the liberal/conservative coefficient is 3.4 times the size of that of
taxation as estimated by OLS, while it is only 2.5 times as large in the probit
estimate. This sort of result is consistent with other work. In a Monte Carlo
study, Zechman (1974) has observed that OLS generally underestimates all
coefficients with a trichotomous dependent variable. However, he found that
the underestimation was more severe the smaller the true (and in Monte Carlo
studies, the known) b and/or standardized “beta weight” in comparison with
other included variables. This finding did not hold for probit estimates.
Rather, they appeared unbiased.?

In summary, we have seen that the probit model much more adequately
describes the data as seen in the much greater R?, and it avoids the prediction
of nonsensical results such as “probabilities” that exceed the true ranges of
probability. We expect the same sorts of results to hold as the number of
ordinal categories increases. We would also expect that the problems of
underestimation and the like through the erroneous use of OLS regression
would decrease as the number of categories of the observed dependent
variable increases. However, a new problem is raised as we move from
dichotomous to n-chotomous variables. In particular, if the dependent vari-
able is in fact ordinal, then the numerical assignment of values is arbitrary up
to the order constraint. Thus, if Y is, say trichotomous, we could assign the
numbers 1, 2, 3 to the three categories in order. However, equally appropriate
would be the assignment of —100000, 999, 1000. The use of n-chotomous
probit is insensitive to such shifts, but OLS regression assumes that the
interval properties are meaningful and could lead to dramatically different
estimates in the two cases.

Discriminant Analysis

To this point, we have considered OLS regression as an estimation tech-
nique when the dependent variable is measured intervally, and probit as an
estimating procedure when the dependent variable is observed only ordinally.
In both cases, the value of the dependent variable for any case is assumed to
be a function of a weighted linear combination of independent variables and a

12Zechman’s work is based upon a comparison of small sample properties of probit.
Recall that the properties associated with any maximum likelihood estimation method
are applicable only in ‘“‘large” samples. Generating small samples (N = 50) meeting the
conditions of the probit model with a trichotomous, ordinal dependent variable, he
observed not only that probit estimates appear to be unbiased, but that they outperform
OLS regression by a wide variety of measures. This sort of result provides some comfort
when the researcher is faced with small samples and an ordinal dependent variable.
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function of a stochastic term that is random and normally distributed.
Suppose, however, that the dependent variable is only categorical. That is, we
can assume that the values of the dependent variable differentiate observa-
tions by classes which are mutually exclusive but do not necessarily form any
order. For example, we can classify people into racial classes. This classifica-
tion scheme does not allow for the formation of ordinal, and surely not
interval scales of “race.” The methodological question in this case may be
put: “How do we predict the category of an observation as a function of its
values on independent variables?” Quite clearly, neither probit nor OLS
regression can serve as an estimating model.”® Suppose, for example, that the
dependent variable is trichotomous, with categories of x, y, z. If the variable
is categorically measured, then the estimating technique should yield equiva-
lent results if the arbitrary order is y, X, 2, or x, z, y, or any other
permutation. Neither OLS nor probit would meet this condition. The most
similar technique to those we have considered for the nominal level variable is
“discriminant analysis.”

We can view discriminant analysis as a problem in classification.!* How
can we “best” classify observations to the nominal categories of the depen-
dent variable on the basis of their values on a set of independent variables?
Further, for the purposes of exposition, at least, we can present the technique
in two distinct parts, the estimation of the parameters with respect to the
independent variables, and (as a somewhat more distinct second step than
previously) the treatment of the errors of classification.

Our first problem then concerns the relationship between the independent
variables, the X’s, and the dependent variable Y. Y is assumed to consist of,
say, m classes or categories, one of which can be written as Yi. Our prediction
of the category of Y depends upon the values the observation takes on
each independent variable. These values can be shown as a vector of observa-
tions X = (X;, X3, . . ., Xp) which is also equivalently shown as a point in a
geometrical space of n dimensions. The basic idea behind discriminant analy-

13The one exception is the case of a dichotomous dependent variable which can be
considered ordinal, and probit appropriately applied or categorical and discriminant
analysis used. We have estimated the discriminant function (to be explained below) for
the McGovern voting example. This function estimates a coefficient for each issue/
independent variable analogous to the probit and OLS regression estimates. Interestingly,
the issue coefficients estimated by discriminant analysis are nearly identical to those
obtained under the probit procedure. For example, the correlation between the two sets
is .989.

14More extensive treatments of discriminant analysis are found in Anderson (1958)
and Kort (1973).
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sis then consists of dividing this n-dimensional space into m mutually exclu-
sive and exhaustive regions, say R;, R,, .. ., Ry, such that if an observation
falls into region R; it would be predicted as being a Yi.

The treatment of the independent variables as defining an n-dimensional
space does not differ from those techniques already discussed. What needs to
be done is to consider the nature of the relationship between the “true”
population classes and the independent variables. We assume, as discussed,
that the space may be partitioned into separate and distinct regions—one for
each category of the dependent variable. Moreover, we assume that within
each population class observations are distributed normally across the inde-
pendent variables, and with equal variances and covariances for each class, but
allow for differing means. This normality assumption is stronger than that
made earlier. Moreover, it represents a differing emphasis. In probit, for
example, the normality of the stochastic term implies that, given a particular
set of independent variable values and coefficients, remaining variation in Y
(i.e., stochastic variance) will be normally distributed. In discriminant analy-
sis, we must assume that the independent variables are normally distributed,
given a particular value of Y. With this assumption it is possible to estimate
the probability of each observation being in any one of the classes of Y. That
is, we can define Pj(x) as the (normality based) probability that an observa-
tion (with its particular values on the X’s) would be a Y'. Thus we could
compare the probability that an observation is a Y versus a YJ. In particular
we would examine the P;(x) and Pj(x), say by taking the ratio: P'E ; In the
dichotomous case, for example, if the ratio is greater than some constant
(usually symbolized by K;;), we would classify the observation as a Yi; if it is
less than K;;, we would predict it as a Yi. For this dichotomous case, this rule
can be formalized as defining the regions of predicted Y classes as

Region R; = ‘( N Kjj (10)
.( X)
R Pi(x)
egion R; = if —<Kj (11)
P;(x)

We can define the “boundary” between region R; and region R; (*‘Bj;”) as the
set of points where the ratio exactly equals the constant Kj;. The probabili-
ties, the Pj(x)’s, can be solved since we have assumed that they are all
normally distributed and have the same variances and covariances. Then the
only differences are in the means of the various classes of Y on the indepen-
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dent variables and the actual values of any given observation on the X
variables. _

If we let the mean values of Yi on the X’s be symbolized by X; (i.e., the
means of the observations of category Yi on each independent variable), and
the (assumed constant) variances and covariances summarized by the
matrix S, the normality and other assumptions lead to the following rather
long equations for solving for the two regions:

Ri = X,S_l ()-(i - )-(j) - 1/2 ()-{i + ij)'S‘l (3-(1 - ij) > log Kij (l 2)

Rj = XIS-l (ii - )-(j) - 1/2 ()_(i + ij)'S" (ii - )—(j) < log Kij (13)
These equations are derived by substituting the definition of a normal
distribution for the Pj(x)’s, taking logarithms (a permissible transformation),
and algebraically manipulating the various terms. The first, leftmost, term in
each equation [ie., x'S™ (X; — X;)] is the only term involving the individual
observations, X. This term is called the discriminant function, and it is a
linear function of the observations of the dependent variable. The rest of that
term consists simply of differences in means of Y! and Y? weighted by the
variances, S. The middle term is also based on weighted combinations of
means. In effect, this can be considered as a measure derived from the
distance between means for categories of Y. That is, it measures the distance
or separation of the means of Y' and Y! on the independent variables. One
way of conceptualizing the purpose of discriminant analysis is to define
regions of classification which maximize the variation within the predicted
classes as a proportion of the total variance. This middle term provides an
indication of this “discriminability” of the independent variables as predic-
tors of Y, and statistical tests can be performed on it. The final term in these
equations is the constant Kj;, which depends on the criterion we employ with
respect to error, which we will discuss shortly.

Extending the dichotomous case to a more general n-chotomous situation
is straightforward. One simply has a set of ratios of probabilities to solve
simultaneously, one ratio for each pair of classes. Thus in the trichotomous
case (say YL Y and Yk) there would be three probability ratios and
inequalities to solve. To define region R;, we would have:

P(x Pi(x
i) > Log K;; and Log PiC) > Log Kix (14)

i~ LO
Rizlogp @ Pe)

Again, the set of points where these inequalities (and the remaining ratio) are
equal form the boundaries between regions B, Bix and Bj .
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The undiscussed constants, the Kj;’s, incorporate our criterion about errors
in classification and are closely related to the success of the discriminant
analysis. By changing the value(s) of the constant(s), the boundaries between
regions are changed, but are only changed by defining a new set of lines
parallel to the old.

An example may help to clarify many of the points we have been making.
If there are two independent variables, the space to be divided into regions is
a plane, and the boundary(ies) between regions will be lines through the
plane. Changing values of the constants would change the boundaries by
defining new lines that would be parallel to the original regional boundaries.
For example, in Figures 4A and 4B, we have drawn a plane and regional
boundary lines for a di- and trichotomous dependent variable, respectively. In
Figures SA and 5B we show the effects of changing the constant term(s);
the boundaries have changed, but they are parallel to the original.

As we have pointed out, any observation on x can be represented as a
point in the space. Given the definitions of the regions, an observation will be
classified into a population class. For example, in Figure 4B, the point w
would be predicted to be in Y!. A set of such predictions leads to a table of
predicted classes of the dependent variable versus the actual observations, the
table which indicates the correct and incorrect predictions.

The discriminant function for which we have developed estimates is the
“best” discriminant estimate, given the assumed normality and linearity

[ [ Ba,3
%

B2

aA a5 B

FIGURE 4
Examples of Discriminant Analysis of Di- and Trichotomous
Dependent Variables
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FIGURE 5
Two Examples of Discriminant Analysis with Varying Constants

constraints (i.e., the estimates of the population means and variances have a
variety of desirable statistical properties). We can greatly alter the actual
predictions of categories, however, by manipulating the constant terms. For
example, in Figure 5B, we have altered the constant, and hence boundary
lines between the regions, from those of Figure 4B. In this case, point w is
now in region 2, not the initially estimated region 1, so we would estimate w
as a Y2 not a Y'. Obviously, both the estimation of the Pj(x)’s and the K
constants will be crucial.

A number of criteria have been proposed for the determination of these
constant terms. The most obvious criterion is to let all K;; be one. That is, if

the ratio P—l(i) is greater than one, classify that observation in predicted class
i(x
Yi If it isJ less than one, predict it as a Yi. In other words, the criterion is
simply to define the regions such that the probability of an observation being
a Y' is higher than any other class in Region R;. Obviously, such a criterion
has much intuitive appeal. However, if one approaches the problem of
classification from a broader viewpoint, alternative criteria may be superior,
since it can be shown that the posited rule “assumes” that there are equal
probabilities of observing all categories. We are more often faced with the
situation where there are very unequal probabilities of observing the various
categories—race is an obvious example. Therefore we might want to incorpo-
rate additional information into the criterion. For example, we might
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“weight” the boundary-defining conditions by the actually observed propor-
tion of Y”s and Y”s (presumably our “best estimate” of the true propor-
tions). Thus our constant Kj;’s would s1mply be the ratios of observed sample
frequencies of Yi to Yi. If we let PYi and PYi be the proportions of all
observed Y’s which are Y¥’s and Y7’s, respectively, then we can define our two
criteria of determining the Kj; constants as:

Kijj=1foralli,j (i.e., E ;- 1 to define By) (15)
P;
PY Pi(x) PYi
Kjj=—forallij(ie., =—to define By) (16)
pYi 'Pi(x) PYi

As an example of the use of discriminant analysis, consider the choice
among voting for Nixon, Humphrey, or Wallace in 1968. As a dependent
variable, the 1968 vote is not measurable in terms of an ordinal or interval
scale. Attempts to use party identification based concepts (e.g., the normal
vote) which assume ordinality or more have floundered over the problem of
what to do about Wallace voters.!® One resolution is to employ discriminant
analysis. As in our probit example, we will use the 7-point scales as a base to
estimate the citizens’ positions on the two issues of Vietnam and urban
unrest.'®

The estimations of the discriminant functions are presented in Table 2,
these being the equations, as well, for the “boundary lines” to define the
regions of the issue plane. We computed the constant coefficients by both
assuming equal probability (i.e., PYi = PYJ), so that K =1 and log (K) =0 in
all pairs, and also using the proportionate vote division in the sample as an
estimate of the true probabilities (in the 942 included respondents, 41.1%
voted for Humphrey, 47.9% for Nixon, and 11.0% for Wallace). The two sets
of regions are drawn in Figures 6 and 7, while the table of actual versus
predicted vote categories is found in Table 3. Finally, we have reported a
comparison table resulting from assuming that the coefficients for the two
issues are equal. (The actually estimated ratios of the two coefficients for the
three discriminant functions are found at the bottom of Table 2.)

First, let us consider the estimated relationships between the independent

15See, for example, the dialogue between Boyd (1972a, 1972b) and Kessel (1972) on
this point.

16 While these two issues were very important in that election, so certainly were many
others. However, 7-point scale format data were collected for only these two in 1968. It
is also convenient to be able to visualize this two-dimensional example.
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FIGURE 6
Discriminant Analysis of 1968 Voting, Based on Constants Equal to One

variables and the dependent variable, and then the error in classification. The
Humphrey voters are estimated to be towards the liberal end of both issues,
Wallace’s region is to the right on both, and consequently Nixon voters are
classified as those in between the other two. Notice, too, that the urban
unrest issue is much more important than Vietnam in discriminating voters,
its coefficients (the analogues to the regression b’s and probit MLE coeffi-
cients) being 3.7 to 5.5 times as large as Vietnam’s. Thus each candidate’s
region tends to cover almost the entire range of hawk to dove. Moreover,
there is little difference between the discriminant functions defining the two
regions, so that the Humphrey and Wallace regions in the range of actual
observations do not touch. This sort of result is not typical of all applications
of discriminant analysis. Indeed, the three categories of voting in 1968 appear
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Discriminant Analysis of 1968 Voting, Based on Constants
Equal to Proportion of the Candidate Vote Actually Observed

to form an ordinal measure with respect to the citizens’ positions on these
two issues. Thus one possible use of discriminant analysis is to see if a
measured dependent variable is approximately ordinally related to the inde-
pendent variables of concern. This finding does not allow us to conclude that
there is an ordinal measure of voting for the three candidates in 1968. Rather,
we can only conclude on the basis of this evidence that the dependent
variable is approximately ordinal over the independent variables examined.
This has an equivalent interpretation: that the three discriminant functions
are approaching the extreme possibility of being equal to each other, differing
but by an additive constant.
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The effects of changing our assumptions about the constant terms, Kj;, are
quite clear. The Nixon region is much narrower when we assume that all K;;’s
are equal. Using the sample proportions as an estimate of the true probabili-
ties increases the size of his region, so that the proportion of voters found in
his region increases from 32.0% to 58.2%.

Let us turn to the question of error in classification. In the first case,
where log(K) = 0 for all comparisons, we obtain 55% correct classification,
with the greatest successes being in classifying Humphrey and Wallace voters
(about 67% and 71% correct, respectively), our greatest error being concen-
trated in predicting Nixon voters. When we incorporate the “prior proba-
bilities,” our correct classifications jump by more than 7% to 62% correct.
The effect of changing the boundaries is to move about 26% of Humphrey
and Wallace predicted voters to the region of predicted Nixon voting. Such
redefinition of boundaries greatly increases the success of classifying Nixon
voters (from 41% correct to over 72% correct). This was accomplished at
minimal cost in classification of Humphrey voters (an 8% reduction in correct
predictions), but at a greater loss in classification of Wallace voters (down to
28% correct). However, the Wallace voters are such a relatively small group
that error there can be absorbed with relatively little cost.

A comparison of these results to a comparable probit or OLS regression
analysis would be useful at this point. Unfortunately, just what would
constitute a comparable analysis is far from clear. First, one might run three

TABLE 2
Discriminating Voters on Issues, 1968
3¢)
Discriminant Functions LogK=0 LogK=Log g:—“)l
ZyN = —.3484 —.2233 Vietnam —1.2257 Urban Unrest (= 0) (=+ .152)
Zyw = +.1379 —.6724 Vietnam —2.8962 Urban Unrest (= 0) (=-1.318)
Znw = +.4863 —.4492 Vietnam —1.6705 Urban Unrest (= 0) =-1.471)
Relative Weightings Vietnam/Urban Unrest
Humphrey-Nixon 0.182
Humphrey-Wallace 0.232

Nixon-Wallace 0.269
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TABLE 3
Error in Classifying Voters, 1968

Qle
Predicted Vote Log (K) = Log ®Yi)

Humphrey Nixon Wallace

Humphrey 24.4% 16.5 0.3 41.1% (307)
Actual Vote Nixon 12.0 34.7 1.2 479 (358)
Wallace 0.8 7.1 3.1 11.0 (82) 62.16% Correct

37.2% 58.2 46 100% (747)
(278) 435) (34)

Predicted Vote Log (K) =0
Humphrey Nixon Wallace
Humphrey 27.7% 10.3 3.1 41.1%

Actual Vote Nixon 15.3 19.5 13.1 47.9
Wallace 1.1 2.1 7.8 11.0 55.02% Correct

44.0% 32.0 240 100% (747)
(329) 239) (179)

Yj
Euclidean Equidistant (UU = Viet) Log (K) = Log -
@Y}
Humphrey Nixon Wallace
Humphrey 27.0% 11.8 23 41.1%
Actual Vote Nixon 14.6 24.6 8.7 479
Wallace 0.5 3.5 7.0 11.0 58.64% Correct

42.2% 399 179 100% (747)
(315) (298) (134)

paired comparisons (i.e., Humphrey and Nixon, Humphrey and Wallace,
Nixon and Wallace), thus generating six equations instead of three. Next, we
must decide what to do about the dependent variable. Looking at the Hum-
phrey-Nixon pairing, for example, what are we to do with Wallace voters? Three
possibilities come to mind. We might code a “Nixon vote” variable as a one if
the respondent voted for Nixon and as a zero if he voted for Humphrey or for
Wallace (and perhaps for abstention as well). Alternatively, we might simply
remove Wallace voters from the analysis. Finally, we might attempt to infer
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what Wallace voters would have done in the absence of the Wallace candidacy
on the basis of some other data (e.g., the SRC’s 100-point “thermometer”
evaluation of candidates). Clearly, our choice among these three possibilities
(and any others that might come to mind) will greatly affect our results. The
instability in such estimations is convincingly demonstrated in Table 4, which
briefly summarizes probit results of these three approaches to estimating
Nixon support. The MLE estimates differ considerably, in some instances
being more than double those of others. As in the comparison between probit
and OLS, there are some similarities (e.g., the relatively larger size of the
coefficient for urban unrest), as well as some important differences (e.g., the

TABLE 4

Probit Predictions of Nixon Voting When Paired with Humphrey

MLE SE MLE/SE
Wallace Voters Removed

Urban Unrest 0.453  0.075 5.835
Vietnam 0.081  0.048 1.695
Constant -0.114
-2 X LLR 48.55

(chi square, 2 degrees of freedom) N =860

Wallace Voters Coded ““0” (Not Vote for Nixon)

Urban Unrest 0.235 0.070 3.367
Vietnam 0.031  0.045 0.689
Constant -0.273

-2 X LLR 15.14 N =942

Wallace Voters Vote *‘Preference” (Via 100° Thermometer)

Urban Unrest 0.377 0.070 5.381
Vietnam 0.064 0.045 1.431
Constant -0.159

—-2XLLR 41.296 N =942
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Vietnam coefficient is never statistically significant at the .05 level). However,
the instability of the estimates is the overriding consideration, especially
when it is recalled that the Wallace voters amount to less than 10% of the
sample. Similar comparisons of pairings involving Wallace are almost com-
pletely determined by our approach to the incorporation of the 40% or so of
the sample who voted for the candidate not in the pair. Thus, a categorical
dependent variable is wholly unsuited for OLS or probit estimation.

Conclusion

We hope we have been able to demonstrate the following points in this
paper. First we tried to show that there are a variety of powerful techniques,
all grounded on a solid base of statistical theory. Moreover, one or more of
these techniques is suitable for whatever level of measurement is used for the
dependent variable. All too often it appears that the alternatives are simply
OLS regression and contingency table analysis. This implies that if one’s data
are measured on less than an interval scale, one has only the choice of using
regression erroneously or using an appropriate but much weaker method of
analysis. Alternative techniques exist. The particular examples we chose were
selected for their similarities in terms of their purposes, their assumptions,
and the powerful analysis they allow, while at the same time being applicable
to each of the three basic measurement levels.

Second, we have argued that the “level of measurement” can be a crucial
consideration, but one based upon the theory underlying the statistical
procedure. As our example applications have demonstrated, employing a
procedure assuming a different level of measurement can seriously affect the
estimates and lead to incorrect inferences and hypothesis tests. Thus, our
comparison application of OLS to an ordinal variable seriously underesti-
mated the overall fit of the model to the data. Further, the individual
coefficient estimates are known to be biased in general, and we have seen that
the bias is not uniform, so that there were some changes in the order of size
of coefficients and more dramatic changes in their relative magnitudes as
compared to the probit estimates. There were great difficulties in attempting
to specify the nominal level dependent variable example to make a compari-
son with probit. If our procedures are acceptable, the resultant estimates
exemplify differences in hypothesis tests. The coefficient for the Vietnam
issue was significant in all cases in the discriminant analysis, while it was never
significantly different from zero (at the .05 level) in the probit estimates.

It is clear, then, that the levels of measurement problem is real. Yet it is
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but one important factor in choosing an appropriate statistical technique.
Other aspects must also be considered. For example, there are other differ-
ences in assumptions of the techniques. Probit necessarily assumes that the
stochastic term is normally distributed, an assumption which may not be
necessary in all instances in using OLS regression. The discriminant procedure
assumes that observations on the independent variables are normally distrib-
uted within each category of the dependent variable. This assumption is much
stronger than any comparable assumption made in probit or OLS. Therefore,
the plausibility of these and other assumptions must be weighed along with
the level of measurement. Further, the degree to which assumptions are
violated must be considered. Thus, the bias in OLS when applied to an
ordinal variable will be less serious the greater the number of ordinal cate-
gories (all else remaining equal). Finally, it must be recognized that tech-
niques have differing properties and differing degrees of development. Regres-
sion, in particular, has been extensively analyzed and formally developed.
Only it is suitable, at this time at least, for estimation of more complex
relationships and multiple equation models (e.g., simultaneous equations,
causal modeling, etc.). In short, the choice of an appropriate statistical
procedure is complex and contingent on many criteria. The level of measure-
ment is only one criterion; yet it is important and may well have direct
consequences for the analysis.

Third, we have argued that the political researcher must very carefully
examine the assumptions underlying the statistical technique, and consider
their correspondence to the theoretical assumptions one has made in deriving
one’s hypotheses. The failure to carefully trace out this correspondence can
lead to incorrect conclusions equally as well as the application of a technique
to an unsuitable level of measurement. A simple illustration of this point
concerns the prediction of the division of congressional seats in off-year
elections. We assumed that there was relative stability in partisan preference.
If this assumption were wrong (e.g., if we extended our series back through
elections during the era of Republican hegemony), the model would lead to
quite different estimates.

All too often, research is based on faulty priorities. We are all familiar with
examples of research which appears to be based on a new statistical technique
and where the substantive problem was chosen simply to show off methodo-
logical sophistication. The undue emphasis on technique must be eschewed.
Yet we cannot ignore this crucial element of research. The choice of a
statistical method inappropriate for the substantive and theoretical concern
leads just as surely to worthless research. Yet that choice can be grounded in
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the assumptions underlying the method and the decision about whether they
are appropriate to the substantive problem, rather than the conventional
“levels of measurement” debate.

Manuscript submitted February 5, 1975.
Final manuscript received March 7, 1975.

APPENDIX

The purpose of this Appendix is to present copies of actual computer
output of the three techniques and indicate how to interpret it. It has been
our experience that there can be some confusion in understanding such
output the first few times a program is actually used, regardless of the
comprehension of the basic statistical principles involved.

OLS regression programs are widespread, commonly used, and well docu-
mented. Most statistical packages (SPSS, OSIRIS, BMD, etc.) have an OLS
program, and as well it has been our experience that many university
computer facilities have their own regression packages. Therefore, they re-
quire little comment. Figure A-1 is a copy of the SPSS output which is
summarized in Table 1 (in which OLS regression and probit are compared).
Summary characteristics of the overall regression are printed first. Attention
is usually focused on the R? and its root, the multiple correlation coefficient
(or correlation between predicted and observed dependent variable values) as
indications of the ‘“goodness of fit.”” The standard error (of the estimate) and
F statistic are most relevant for statistical tests of significance of the whole
regression. The remaining summary statistics are useful for constructing
“Analysis of Variance” (explained or “regression,” unexplained or “residual,”
and total sum of squares and variances), such as the “ANOVA” tables found
in Johnston (1972, p. 143). Following these summary calculations are
statistics relevant to individual independent variables. The first column is the
regression “b’s” or slope coefficients (what we call “f”’s in Table 1). The
“Betas” of the second column are standardized betas, the standardization
being a multiplication of the regression coefficients by the ratio of the
standard deviation of the relevant independent variable to the standard
deviation of the dependent variable. This standardization, therefore, puts all
independent variables in comparable units (sometimes referred to as “dimen-
sionless™) to facilitate comparisons between independent variables (note that
no comparable standardization exists for probit, since the standard deviation
of Y is undefined). Next is the standard error of the estimated regression
coefficient and the F statistic for each variable to test for significance of each
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coefficient (in other programs, a t value may be produced which is simply the
square root of this F value). These F’s all have one degree of freedom in the
numerator and degrees of freedom equal to the difference between the
sample size and the number of parameters being estimated in the denomina-
tor (or 1130 —10 = 1120 in this case). Many other statistics can be obtained
from regression packages. Those available under SPSS are carefully explained
in the SPSS Manual (Nie, Bent, and Hull, 1970) and various updates.

Figure A-2 is a copy of the output of the probit example (also found in
Table 1). The program used is that developed by McKelvey and Zavoina (to
the best of our knowledge, probit is not included in any of the statistical
packages). The output is well documented and rather straightforward. The
“Maximum Likelihood Estimate” column is the MLE coefficient for each
independent variable and the constant, comparable to the regression b-coeffi-
cients or “B” (hence, the reference to them as “BETA(.)” on the leftmost
column of the output). The standard error column is self-explanatory. The
ratio of the two, in the third column of the output, is useful for tests of
significance much like the individual F statistics of regression. Recall that, as
in all maximum likelihood estimates, properties of the probit estimates are
“asymptotic” (i.e., are applicable with large sample sizes only). The ratio
MLE/SE is, in large samples, approximately a standardized normal random
variable, or “Z score.” Thus, this Z score can be used to test whether the
coefficient is significantly different from zero, as in the case of the individual
F values for OLS regression. The comparable statistic to the F of OLS
regression for testing “overall significance” is —2 times the log of the likeli-
hood ratio. This statistic is a comparison of the probability of observing this
sample if the MLE estimates are correct (i.e., the estimated log of the
likelihood function which is also printed) to the situation if all coefficients
were zero (i.e., the null model). As stated in the output, this statistic is, in
large samples, a chi-square statistic with degrees of freedom equal to the
number of independent variables. Other summary indicators are found after a
case-by-case residual analysis in the McKelvey-Zavoina program (and may not
be found in other probit programs). These calculations are also self-explana-
tory and for the most part have direct analogues in OLS regression. It should
be pointed out, however, that all statistics under the heading “Estimated
Analysis of Variance™ are just that—estimated. This is so since the Y variable
is not measured intervally. The estimates are derived by arbitrarily setting the
residual sum of squares so that there is an equivalent to one unit error for
each case (i.e., this figure will always be equal to the sample size). Given this
arbitrary setting, the other statistic estimates follow. Of course, of some
interest is the percent of the bases correctly predicted, which is not estimated
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in the same sense but is a straightforward computation. In the dichotomous
case, the predicted value is simply the category (0 or 1) which has a higher
probability for that case, given the estimated coefficients and probit transfor-
mations, and is found by solving equations such as (8) and (9) in the text or
their analogues in the more general, n-chotomous case.

A program for performing discriminant analysis has recently been added to
SPSS and may be found in other statistical packages (though not in OSIRIS,
at least not version 3). Figure A-3 is an example of the SPSS output for log K
= 0 as reported in Table 2. The core of the output is listed under the heading
“Discriminant Functions” and is that which is reproduced in Table 2 (note
that 1 = Humphrey voter, 2 = Nixon voter, 3 = Wallace voter, “RCSELF”’
indicates self-placement on the Vietnam scale and “UCSELF”’ on the urban
unrest scale—the two issue scales being modified by the scaling technique as
described in the body of this paper). Preceding the discriminant functions are
a variety of statistics relating to the history of the computation. The program
can operate analogously to “stepwise regression” (in which each significant
variable is entered in order), the basic test being whether or not it adds a
significant amount to the prediction as determined by F statistics. As can be
seen, both variables do add a “significant” amount. Options are also available
to generate the means and variance/covariance matrix, for solving equations
such as (12) and (13), as well as a correlation matrix of independent variables.
Even more recent updates indicate that it is now possible to generate the
regions either by using the “equiprobability” assumption (i.e., log K = 0) or
by weighting the probabilities in any specified manner [e.g., log K = log
®Y)

All of these programs produce a wide variety of other statistics and other
sorts of information. The portions of the output we have discussed are, we
believe, the most important and most commonly used results. Explanations
of other portions of the output can be found in the program write-ups.

], and to output tables and/or scatter plots of predictions.
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