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The Workshop 

JOHN ALDRICH 
CHARLES F. CNUDDE 

Michigan State University 

Probing the Bounds of Conventional 
Wisdom. A Comparison of Regression, 
Probit, and Discriminant Analysis* 

The level of measurement of the dependent variable (nominal, ordinal, interval) 
crucially affects the selection of statistical techniques. Conventional wisdom further 
restricts the choice of an appropriate technique. In this Workshop paper, we compare 
three powerful statistical techniques appropriate for each of the levels of measurement 
and sharing, insofar as possible, a similar set of assumptions. The three techniques are 
ordinary least squares regression for intervally measured, probit for ordinally measured, 
and discriminant analysis for nominally measured dependent variables. The assumptions 
and uses of each technique are reviewed, and an example of the use of each in political 
research is presented. 

Discussions of the levels of measurement problem in political science 
frequently lead to one of two conclusions. On the one hand, "radicals" argue 
that the increased leverage obtained from using statistical procedures which 
assume that the dependent variable is measured on an interval scale outweighs 
the consequences of their application to nonintervally measured variables. On 

*These statistical evaluation procedures were initially explored in order to solve 
substantive problems that are only partly referred to in this paper. Further applications 
will be developed in subsequent reports. Part of the research reported herein was 
performed pursuant to a grant contract with the National Institute of Education, U.S. 
Department of Health, Education, and Welfare. Contractors undertaking such projects 
under Government sponsorship are encouraged to express freely their professional 
judgment in the conduct of the project. Points of view or opinions stated do not, 
therefore, necessarily represent official National Institute of Education position or 
policy. 
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the other hand, "purists" argue that the consequences of such a misuse are 
too serious to ignore, and that nominal or even ordinal dependent variables 
can only be analyzed through the use of the relatively less powerful tech- 
niques, such as cross-tabulation or ordinal measures of association and corre- 
lation. In this paper we discuss three techniques, all of which are useful for 
testing multivariate and quite sophisticated hypotheses. These three alterna- 
tive statistical procedures-linear regression, probit analysis, and discriminant 
analysis-are suitable for the analysis of interval, ordinal and nominal 
dependent variables, respectively. Underlying our presentation is our belief 
that decisions concerning the choice of an appropriate statistical technique 
must consider not only the nature of the measurement of the dependent 
variable, but also the assumptions contained in the model underlying each 
procedure. Further, we would argue that it is of equal importance to ensure 
that these assumptions are compatible with the substantive assumptions of 
the theory/hypotheses under investigation. 

Linear Regression 

To begin this explication, let us first consider the linear regression model 
in a context of an application to political data. 

One way to think of a linear function is to consider the identity between 
the predictions of a "true" theoretical model and the actual observations that 
the model addresses.' If the model were "true," then when we plot its 
predictions and the actual scores the intersections between these two sets of 
points would all fall on the main diagonal; i.e., they would form a particular 
type of a linear function. If there were some error in the predictions, then the 
validity of the model would depend upon whether the scatter plot of 
intersections fell about the main diagonal in a "random" way. This example is 
a special case of the general linear model, 

y = a + bx + e, 

which would apply whenever we can so account for actual observations with 
values predicted from a theoretical model. In this model, a "true" identity 
would mean that the data would all fall on the main diagonal, and the slope 
would intersect at the origin. These considerations would mean a slope 
coefficient (or b value) of 1.0, and an intercept of 0, respectively. 

1 The term "theoretical model" here means some theory which leads to predictions 
independent of the "statistical theory" (i.e., linear regression) which can be used to test 
the relationship between the theoretical predictions and reality. 
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A linear model of this type may be developed to predict U.S. House of 
Representatives seat gains and losses in "off-year" elections. The model's 
basic assumption is of stability in partisan preferences. Losses in the mid-term 
elections, then, are simply due to fluctuations back to a normal or expected 
level after a party gained more than that amount in the preceding presidential 
election. Therefore we calculate how many seats were gained due to the swing 
away from the expected partisan split in the presidential year by any party. 
That gain is what it should lose in the following midterm election, assuming a 
stable two party system and no systematic "short run forces," such as 
recessions or Watergate in the off year. 

With this logic we obtain a set of predicted losses. If the model is correct, 
the actual losses should line up with these predictions in a roughly linear way, 
and in fact should approximate the special case of an identity. 

The scatter plot of Democratic losses for the elections from 1938 to 1970 
is shown in Figure 1. There are two major deviant cases, 1946 and 1958. In 
both years, the assumption of no systematic "short run forces" probably is 
invalid, and those cases are dropped. 

To illustrate the theoretical model, we can briefly consider one particular 
case. In the Roosevelt landslide of 1936 the Democrats made considerable 
gains in House seats. Some portion of the total Democratic majority that year 
undoubtedly came from districts Democrats would "normally" win because 
of the differential affiliation of the electorate to the major parties. This 
normal or expected proportion of seats for a given party is assumed constant 
in the model. Our best evidence leads to the inference of relative stability in 
this proportion since the Great Depression, and so as a means of making a 
first approximation we may assume it to be a constant. However, refinements 
could and should be attempted by relaxing this assumption.2 If this propor 
tion is set as a constant, then the difference between such a value and the 
percent of the seats the Democrats received in 1936 would be due to factors 
other than that normal expectation due to party affiliation.3 In general, we 
can conceptualize this difference as due to the peculiarities of the particular 

2 The assumed constant expected number of seats for a party would change markedly 
over time if the partisan split of the electorate markedly changed, or if apportionment 
rules changed in ways greatly uncorrelated with the partisan division in affiliation, or if 
electoral outcomes fell into extreme ranges where the "cube rule" curve is not well 
approximated by a linear function. 

3The value adopted for the analysis is 55% of the seats in the House of Representa- 
tives to the Democratic Party. The value is approximately the same as the "normal vote" 
for the Democrats in the electorate, as estimated for the period 1952 to 1960 from 
survey data (Converse, 1966). 
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FIGURE 1 
Expected and Actual Seat Losses 

election of 1936; i.e., all those factors that combined to make up the 
Roosevelt landslide. Our calculations indicate that, given the number of seats 
in the House at that time, the number due to the "short run" effects of 1936 
was about an 86-seat gain to the Democrats over and above what they would 
have normally received in the current partisan era. 

In the long run, a gain of this sort would be lost in another election where 
the peculiar factors are apt to be different. As a second approximating 
assumption, we could hold that it would be entirely coincidental for two 
elections in a row to have short run factors that would operate to give the 
same outcome. Considering the gains in a given election, we can make a 
prediction about the losses in the next under this assumption: our best 
prediction, knowing nothing else about the next election, is that the outcome 
will return to the normal expectation. Thus in the long run the normal 
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expectation is our best predictor of outcomes. The difference between the 
normal expectation and the actual outcome in a given election is therefore 
our best prediction of what would be lost or gained in the next election. 

In 1936, if the Democrats gained 86 more seats than they should have, 
given the normal expectation, and if the normal expectation is our best 
prediction of the 1938 election, then they would tend to lose those 86 seats 
in 1938. In fact they lost only 62 seats in 1938. However, to examine the 
utility of this approach to predicting off-year elections, we would have to 
compare the losses given by the model with the actual losses for a whole 
series of elections. If we consider the actual losses as the values to be 
predicted, and the values given by the model as the predictor variable, we can 
use the linear regression model as a device for making this examination. 

The linear regression model would link the actual losses (Y) to the losses 
given by the model of election outcomes (X), some linear coefficients (ax and 
(3), and an error term (e) which stands for all other influences on the actual 
outcomes. Thus, we have a version of the standard linear equation: 

Y=a,+ OX+e (1) 

If in the long run our normal expectation is the best predictor of actual 
outcomes, then the sum of all other influences across a large number of 
elections would equal zero. Formally, 

T,e = 0 (2) 

If in the long run the deviation from the normal expectation for a given 
election would only coincidentally be related to that deviation in the next 
election, then the covariation between e and X would sum to zero in a large 
number of elections. Formally, 

TXe = O (3) 

Denoting estimated values by hats, writing the linear equation in terms of 
estimates and rewriting it to set all values equal to the estimated residuals 
gives 

e = Y - 'a - X (4) 

Substituting (4) into the versions of (2) and (3) which correspond to esti- 
mated values gives 

na+ TAX =Y (5) 

aT'X + ,B XX2 = EXY (6) 
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Except for the estimated values of the regression coefficients, all values in the 
equations can be calculated from the data obtained for the election years in 
the scatter plot. Since we have two equations and two unknowns, solving for 
the two unknowns gives the values of the two linear regression coefficients: 

a3=O.9 

,= 0.8 

These values come reasonably close to our theoretically derived values; a 
value of 0.9 for a^ is reasonably close to 0.0 (given a range of -20.0 to +62.0 
for actual seat losses), and a value of 1B of 0.8 is reasonably close to 1.0. We 
can tentatively conclude that the linear regression model corresponds to the 
model of off-year congressional seat losses.4 

The success of a regression such as this example can be judged by 
examining the error in fit. We expect some error, of course, in fitting 
predicted dependent variable values to the actual observations. If we square 
such error and sum the squared errors, we can examine this "residual variance" 
as a proportion of the total original variance in Y. That is, we have divided 
the original variance into "explained" variance and "unexplained" or error 
variance. The proportion of variance explained is the familiar R2 . This can be 
used as a measure of "goodness of fit" of the theoretical model to the data. 
In this case, the R2 is a very high .830, giving us greater confidence in the 
adequacy of the estimation.5 

The procedure used to obtain estimates of the coefficients in regression 
problems such as this is "ordinary least squares" (hereafter OLS). One crucial 
assumption of OLS is that the "error terms" have properties that result in 
zero outcomes under certain conditions. Without these conditions we cannot 
make the substitution of equations to derive the coefficient values. Another 
way of saying the same thing is that without this assumption we do not have 
enough information to solve for the unknown coefficients. 

What are the conditions necessary to specify that the sum of the left-out 
factors and the covariation between the left-out factors and the measured 
independent variable are both zero? In order to obtain proper OLS estimates, 
the unknown causes must have values which are randomly selected from a 

4 For example, the estimated coefficients are well within the expected values of &e = 0 
and ,B = 1 at any level of significance desired. 

I In this case, we have a small number of observations (7). Therefore, it is appropriate 
to "correct" the R2 for the relatively few degrees of freedom in the data set. This 
"6corrected R2" (also denoted as R2) is .796, thus not changing our basic conclusion. For 
the derivation of R2 see Johnston (1972, pp. 129-130). 
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population of such errors which is normally distributed and has a constant 
variance and a mean of zero.6 Often in political science we do not have direct 
observations at the interval level for the dependent variable. When we observe 
some transformation of the interval level variable, we cannot insure that we 
have a population of errors that are normally distributed and that meet the 
other assumptions. In fact, we frequently measure dependent variables in 
ways that lead us to suspect these assumptions. 

If our measure of the dependent variable is such that it may take only a 
limited range of values, we might question the possibility of normally distrib- 
uted errors. For example, if our dependent variable is dichotomous, as when 
the vote is measured as "Democratic/Republican" (or as when participation is 
measured as "Vote/Didn't Vote"), we have the extreme case in which the 
range is limited to only two values. These dependent variables are linked, for 
our sample, to an equation which adds the weighted independent variable 
scores to a constant and the error term, to give these two values. Only under 
very peculiar circumstances could we have the kind of continuous error term 
values necessary for even an approximately normal distribution, and yet have 
such a limited range of variation in the dependent variable. As we move to 
trichotomous dependent variables, we can easily see that the problem is 
almost as severe. In general, as our dependent variable takes on a greater range 
in scores-approaches a continuous variable-OLS becomes more appropriate. 

Put another way, a normally distributed error term implies an unrestricted 
range of variation in the dependent variable. A severely restricted range of 
variation in the dependent variable tends to undermine the assumption of 
normally distributed error. 

If the assumptions concerning the distribution of unmeasured influences 
such as normality are called into question, then OLS is an inappropriate 
estimation procedure. For dichotomous and other categorically measured 
dependent variables, alternative procedures should be employed. 

To illustrate the implication of limited variability in the dependent vari- 
able for the other assumptions, we can examine Figure 2. In Figure 2 the 
scores on the dependent variable are limited to 0.0 and 1.0. Therefore, when 

6The assumption that the error is normally distributed is important when dealing 
with small samples such as our example. In large samples, many of the properties of OLS 
regression estimates, statistical tests, and the like do not require the normality assump- 
tion. This follows since in large samples, the sampling distributions of the estimates will 
be approximately normal regardless of the form of the distribution of the error term. 
There are many good sources which deal with the regression model and its assumptions 
(e.g., Johnston, 1972). 
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FIGURE 2 
Comparison of OLS Estimate and "Typical" S-Shaped Relationship 

with a Dichotomous Dependent Variable 

an independent variable is plotted against a dichotomous dependent variable, 
the underlying relationship would appear better approximated by an "S" 
shape than a straight line. If we were to attempt to analyze these data with 
OLS procedures, we would obtain an estimate of a straight line such as the 
dotted line, in the figure. The estimated slope would appear much like that 
drawn, because OLS will attempt to "average out" the vertical distances of 
the actual scores from the estimate, resulting in as many observations below 
the estimate as above. 

Given this typical shape of the actual observations and the characteristic 
departure from it by the OLS estimate, we can draw conclusions about two 
assumptions: 
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1) The residuals (the estimated error) obtained from the OLS estimate 
will be correlated with the independent variable. 

This conclusion can be easily seen from the illustration. The departures 
from the OLS estimate (the gap between the S-shaped curve and the straight 
line) are primarily above the line when the values of X are large. The 
departures from the estimate are primarily below the line when the values of 
X are small. Thus (assuming a positive X-Y relation) the residuals will be 
positively correlated with X. 

2) The variance of the residuals will vary systematically with the 
independent variable. 

The illustration shows that the variance of the residuals will tend to 
decrease as we move away from moderate values of X and toward the 
extreme values. The reason for this conclusion is that the positive and 
negative residuals-as has been pointed out above-are correlated with X. 

In general, dependent variables with restricted variability-such as we find 
with ordinal and certainly categorical variables-will tend to produce "clumpi- 
ness" in actual relationships with independent variables. As OLS attempts to 
fit a straight line through these patterns, the result will be sets of residuals 
which are inconsistent with the assumptions of uncorrelated error and con- 
stant variance. 

Probit Analysis 

Thus, we have seen that the failure of the assumption that the dependent 
variable is intervally measured leads to the violation of several of the OLS 
assumptions about the error term. Consequently, nonintervally measured 
dependent variables imply that the OLS regression estimating procedure 
breaks down. The inapplicability of OLS in this situation is of serious 
consequence for political science, since we are so often faced with variables 
that are no more than ordinally measured. There is, however, an alternative 
model and associated estimating technique that is designed for just this 
situation, one that retains much of the power of OLS. 

One interpretation of the probit model emphasizes the similarity of probit 
and OLS regression. Suppose that we assume a theoretical-but unmeasured- 
dependent variable which is related to a set of independent variables as in the 
OLS model. Similarly, the theoretical dependent variable has associated with 
it a stochastic term meeting the same assumptions as before. In this case, we 
further assume that the observations of the dependent variable are measured 
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on only an ordinal scale, a collapsing of the "true" interval scale. In the 
extreme, only a dichotomy may be observed. Indeed, the most extreme 
dichotomous case was that for which probit was originally developed (Fin- 
ney, 1971). Probit has, however, been extended to the n-chotomous case by 
Aitchison and Silvey (1957), and by McKelvey and Zavoina (1969). The 
latter citation provides the first application of the technique in political 
science, so far as we know.7 They, therefore, discuss probit at some length, 
exemplifying its uses for our purposes and in our terms, as well as providing 
an important extension of the theory of probit with numerous useful refine- 
ments. 

Estimates for the probit model are developed by the method of maximum 
likelihood. This method capitalizes on the assumed normality of the error 
term. With this assumption it is possible to determine the probability (or 
likelihood) of having observed the particular sample data for any given set of 
values that the parameters might assume. The maximum likelihood criterion 
is invoked by selecting, as estimates of the true parameters, those values 
which have associated with them the highest probability of having obtained 
the observed sample data. Even having imposed the normality assumption, 
the equations that must be solved are very complex and can only be 
approximated. However, the estimates thus obtained have a wide variety of 
important and useful properties, not the least of which include unbiasedness 
(in the limit or "consistency"), normal sampling distributions (again in the 
limit), and in this class of estimates, minimum variance ("best" or most 
"efficient"). A very similar set of properties hold for the OLS estimates if the 
assumptions of regression hold. 

Estimated parameters appear much like those obtained from OLS regres- 
sion, since the models are very similar. However, the fact that only an ordinal 
dependent variable is observed limits and weakens the straightforward inter- 
pretation of the coefficients. For example, since the scale or "unit of 
measurement" of the dependent variable is unknown, "slope" or "b" coeffi- 
cients cannot be interpreted (as in OLS regression) as the amount of change 
in the dependent variable for a one-unit change in an independent variable. 
Or, since the concept of variance is undefined for an ordinally measured 
variable such as our dependent variable, there is no analogue to the "standard- 
ized beta" of OLS regression. In fact, since the dependent variable is only 

'The basic presentation of n-chotomous probit can be found in McKelvey and 
Zavoina (1969). Also see Cnudde (1971, p. 104). The initial extension of probit for the 
case of a single independent variable is in Aitchison and Silvey (1957). 
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ordinally measured, estimates are only unique up to positive linear transfor- 
mations. (Technically, all of these comments can be summarized by noting 
that the model is "underidentified.") Nonetheless one obtains an estimate of 
the best, weighted linear combination of the independent variables. In this 
case, the predicted Y variable may also be taken as an estimate of the 
unmeasured, theoretical Y that underlies the probit model. 

The probit model has a second standard interpretation, in fact the initial 
sort of situation for which probit was developed. Suppose, for example, that 
the dependent variable is strictly dichotomous, say 0 or 1. In this case, one 
obtains estimates of the "weights" to attach to independent variable dimen- 
sions (plus an intercept term) which, by employing once again the assumed 
normality properties, allow us to predict the probability of any given observa- 
tion being a 0 or 1. Finney (1971), in his classic study of (dichotomous) 
probit, used biological examples such as seed germination. A researcher might 
be interested in estimating the probability of germination of seeds, condi- 
tional upon such properties as rainfall, temperature, amount of fertilizer used, 
and other such independent variables. However, he can only observe whether 
or not the seeds actually germinated. The probit estimates and normality 
assumption allow for the estimation of such probabilities, conditional upon 
the values the case takes on the independent variables. Notice that the 
(erroneous) use of OLS regression may result in predictions that might be 
interpreted as "probabilities." However, these "probabilities" may be nega- 
tive or exceed one, since the linear model is not restricted to the range of 
probability. (See, e.g., the OLS linear estimate of Figure 2.) Probit, on the 
other hand, yields probability estimates that are true probabilities, and 
therefore lie in the required ranges. The extension of probit to n-chotomous, 
ordinal, dependent variables has associated with it a parallel extension of the 
probabilistic predictions (e.g., a trichotomous dependent variable leads to the 
prediction of probabilities of being a 1, 2, or 3, if that is the coding of the 
variable, and of course one may obtain predictions of the probabilities of any 
combination as well). It is this probabilistic nature of the predictions of 
observed categories that led to the naming of the technique; probit is short 
for a "probability unit."8 

8 The reader should note that the assumed transformation of the linear model to the 
probabilistic one, viz. the cumulative normal, is only one possible "probability unit" 
yard stick which could be employed. E.g., Finney (1971, Section 3.8) discusses several 
alternatives including "logit," the most well known alternative, as well as the highly 
idiosyncratic assumptions that must be made about the error term to "legitimately" 
apply OLS regression to probabilistic questions. 
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To exemplify the use of probit and compare it to the estimates obtained 
through the use of OLS, we have chosen voting in 1972. Consider the attempt 
to predict the probability of a citizen voting for, say, McGovern, in that 
election (coded a 1) versus the probability of either abstaining or voting for 
Nixon (0). We might want to make the prediction of the citizen's probability 
of voting for McGovern, given the citizen's positions on issues. Thus, we 
obtain the following expression for the theoretical, linear, model underlying 
probit: 

Y*=a+b,Xl +b2X2 +** +bnXn (7) 

where Xi,. . ., Xn are the positions (of a given citizen) on the n issues; a, b1, 
..., bn are the parameters which are to be estimated; and Y* is the 
"theoretical, underlying" linear dependent variable. In this case, Y* might be 
interpreted as measuring the "propensity" of a citizen to vote for McGovern. 
We observe Y (= 0 or 1), so we want to transform the linear "proness" 
variable to a probabilistic prediction. In the dichotomous case, it can be 
shown (see McKelvey and Zavoina, 1969) that the probability of voting for 
McGovern [or Pr (Y = 1)] and the probability of not voting for McGovern 
[Pr (Y = 0)], given the independent variables and estimated coefficients 
(denoted a, 1i), are: 

Pr(Y = I/a + b X1 +... + bnXn) = F(Y*) =( + b1 X1 +* + bnXn)(8) 

Pr(Y = 0/a +b1 Xi +. . nXn) = I - (Y*) = I - D(a + bi Xi 
+ +Xn) (9) 

where "V" denotes the cumulative normal distribution function. In this 
manner a unique probability of voting for McGovern can be determined for 
each citizen, with his own particular configuration of positions on the issue 
dimensions. 

We have reported the results of such an estimation of the probability of 
voting for McGovern in 1972 in Table 1, using data drawn from the 1972 CPS 
election survey.9 In particular, we employed the 7-point issue scales upon 
which the respondent is asked to locate himself.10 The actual positions of the 

'This study was sponsored by the National Science Foundation under Grant GS- 
33956, and the results were made available through the Inter-University Consortium for 
Political Research. The authors are grateful for the aid of the Foundation and the 
Consortium, but neither, of course, bears any responsibility for the analysis reported 
here. 

"0The formats of the 7-point issue scales are discussed at length in Page and Brody 
(1972) and Aldrich (1975). The latter citation also includes this example, the basis for 
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TABLE 1 

Comparison of OLS and Probit Predictions: 
Probability of Voting for McGovern, 1972 

Probit (Y*) OLS Regression 

7-Point Issue MLE SE MLE/SE j3 SE F,120 

Federal Jobs -.375 .082 -4.55* -.087 .018 24.77* 
Taxation -.257 .066 -3.88* -.050 .014 11.60* 
Vietnam -.593 .092 -6.46* -.145 .020 50.71* 
Marijuana -.075 .058 -1.30 -.019 .014 1.98 
Busing -.205 .083 -2.47* -.067 .019 12.76* 
Women's Rights -.038 .046 -0.83 -.010 .011 0.80 
Rights of Accused -.046 .068 -0.68 -.011 .015 0.50 
Aid to Minorities -.136 .072 -1.90 -.030 .017 3.13 
Liberal/Conservative -.639 .113 -5.64* -.168 .025 43.93* 

Constant -.713 .303 
Est. R2 = .530 R2 = .347 
Est. R = .728 R = .589 

-2 x LLR= 441.64 F920 = 66.06 
(chi square, 9 degrees of freedom) 
N= 1130 

*Indicates significance at .05 level (critical values, Z = 1.96, F 1 o -~ 3.84) 

citizens in this analysis were determined by the employment of a scaling 
technique reported elsewhere.'1 In Table 1 we report the probit estimates of 
the linear Y* variable estimate, as well as the comparable OLS regression 
estimates done on the same dichotomous dependent variable. 

The relevant comparisons between the two techniques are best summa- 
rized by looking at the OLS regression R2 and the estimated R2 of the probit 
estimators. In the probit case, the R2 is a full 18% higher, indicating that 
approximately 53% of the variance is "explained." In the regression version 
of the estimates, only 35% of the variance is "explained" by the issue 
positions of the citizens, a reduction in explanatory power of slightly more 
than one-third. In this particular case, the two techniques do not differ in 

the determination of this model, and how it corresponds with deductions from the 
spatial model of electoral competition. 

11 See McKelvey and Aldrich (1974), and Aldrich and McKelvey (1975). 
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tests of significance. All variables that are significant at the .05 level in OLS 
are so as well in the probit, and vice versa. However, in other reported 
comparisons of probit and OLS, there were differences in statistical signifi- 
cance (McKelvey and Zavoina, 1969). 

The second major difference concerns individual predictions of the proba- 
bility of voting for McGovern. In Figure 3, we have plotted the transformed 
Y* variable, which is the linear predicted "propensity to vote for McGovern" 
(summarized in Table 1), obtained by the transformation outlined above (i.e., 
solving Equation 8). The S-shape of the predicted probability of voting 
variable is dramatically clear. In comparison with the OLS predictions, we 
note that OLS predictions are strictly linear, and that they exceed both the 
upper and lower bounds of probability at the extremes. Thus, if our interest 
is in predicting the probability of voting for McGovern, we would be led to 
some inexplicable predictions. For example, the smallest actual predicted 
probability using the probit model is .00016. The regression prediction for 
this individual is a "probability" of voting for McGovern of -.41587. Simi- 
larly, the largest OLS "probability" is 1.62091, which has a corresponding 
probit predicted probability of .99999 for that case. Thus for these two 
individuals as well as others, the OLS prediction is nonsensical. We have 
plotted the predicted OLS regression line on Figure 3 over the range of actual 
observations. The differences in the two probabilistic predictions are quite 
clear, and very similar to Figure 2. OLS regression, of course, yields a strictly 
linear prediction, while probit leads to quite nonlinear predictions. At the 
two bounds of probability, the probit model curves or "flattens" to approach 
0 and 1 only in the limit, while OLS exceeds the limits by large amounts. 
Further, within the nearly linear range of probit probabilities (e.g., between 
about .25 and .75), the linear increase is steeper than the comparable 
regression. 

Our basic interest thus far has focused on "predicting" or "explaining" the 
dependent variable. Researchers are often concerned with the independent 
variables, e.g., in measuring their relative "importance" in the analysis. We 
might consider the probit MLE coefficient and the slope or "b" of OLS as 
one measure of "importance." The rank order of the size of the coefficients 
for the two techniques is quite similar. The only difference in the ordering is 
that the MLE for taxation is larger than that associated with the busing issue 
in the probit, while the order is reversed in the OLS estimation. However, 
there are greater differences in the relative sizes of the coefficients. For 
example, statistically significant but smaller coefficients are generally larger in 
comparison with the strongest independent variable (the liberal/conservative 
continuum) in probit than they are in the OLS case. As an illustration of this 
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point, the liberal/conservative coefficient is 3.4 times the size of that of 
taxation as estimated by OLS, while it is only 2.5 times as large in the probit 
estimate. This sort of result is consistent with other work. In a Monte Carlo 
study, Zechman (1974) has observed that OLS generally underestimates all 
coefficients with a trichotomous dependent variable. However, he found that 
the underestimation was more severe the smaller the true (and in Monte Carlo 
studies, the known) b and/or standardized "beta weight" in comparison with 
other included variables. This finding did not hold for probit estimates. 
Rather, they appeared unbiased.12 

In summary, we have seen that the probit model much more adequately 
describes the data as seen in the much greater R2, and it avoids the prediction 
of nonsensical results such as "probabilities" that exceed the true ranges of 
probability. We expect the same sorts of results to hold as the number of 
ordinal categories increases. We would also expect that the problems of 
underestimation and the like through the erroneous use of OLS regression 
would decrease as the number of categories of the observed dependent 
variable increases. However, a new problem is raised as we move from 
dichotomous to n-chotomous variables. In particular, if the dependent vari- 
able is in fact ordinal, then the numerical assignment of values is arbitrary up 
to the order constraint. Thus, if Y is, say trichotomous, we could assign the 
numbers 1, 2, 3 to the three categories in order. However, equally appropriate 
would be the assignment of -100000, 999, 1000. The use of n-chotomous 
probit is insensitive to such shifts, but OLS regression assumes that the 
interval properties are meaningful and could lead to dramatically different 
estimates in the two cases. 

Discriminant Analysis 

To this point, we have considered OLS regression as an estimation tech- 
nique when the dependent variable is measured intervally, and probit as an 
estimating procedure when the dependent variable is observed only ordinally. 
In both cases, the value of the dependent variable for any case is assumed to 
be a function of a weighted linear combination of independent variables and a 

"2Zechman's work is based upon a comparison of small sample properties of probit. 
Recall that the properties associated with any maximum likelihood estimation method 
are applicable only in "large" samples. Generating small samples (N = 50) meeting the 
conditions of the probit model with a trichotomous, ordinal dependent variable, he 
observed not only that probit estimates appear to be unbiased, but that they outperform 
OLS regression by a wide variety of measures. This sort of result provides some comfort 
when the researcher is faced with small samples and an ordinal dependent variable. 
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function of a stochastic term that is random and normally distributed. 
Suppose, however, that the dependent variable is only categorical. That is, we 
can assume that the values of the dependent variable differentiate observa- 
tions by classes which are mutually exclusive but do not necessarily form any 
order. For example, we can classify people into racial classes. This classifica- 
tion scheme does not allow for the formation of ordinal, and surely not 
interval scales of "race." The methodological question in this case may be 
put: "How do we predict the category of an observation as a function of its 
values on independent variables?" Quite clearly, neither probit nor OLS 
regression can serve as an estimating model."3 Suppose, for example, that the 
dependent variable is trichotomous, with categories of x, y, z. If the variable 
is categorically measured, then the estimating tgchnique should yield equiva- 
lent results if the arbitrary order is y, x, z, or x, z, y, or any other 
permutation. Neither OLS nor probit would meet this condition. The most 
similar technique to those we have considered for the nominal level variable is 
"discriminant analysis." 

We can view discriminant analysis as a problem in classification.14 How 
can we "best" classify observations to the nominal categories of the depen- 
dent variable on the basis of their values on a set of independent variables? 
Further, for the purposes of exposition, at least, we can present the technique 
in two distinct parts, the estimation of the parameters with respect to the 
independent variables, and (as a somewhat more distinct second step than 
previously) the treatment of the errors of classification. 

Our first problem then concerns the relationship between the independent 
variables, the X's, and the dependent variable Y. Y is assumed to consist of, 
say, m classes or categories, one of which can be written as Yi. Our prediction 
of the category of Y depends upon the values the observation takes on 
each independent variable. These values can be shown as a vector of observa- 
tions X = (X1, X2, . . ., Xn) which is also equivalently shown as a point in a 
geometrical space of n dimensions. The basic idea behind discriminant analy- 

13The one exception is the case of a dichotomous dependent variable which can be 
considered ordinal, and probit appropriately applied or categorical and discriminant 
analysis used. We have estimated the discriminant function (to be explained below) for 
the McGovern voting example. This function estimates a coefficient for each issue/ 
independent variable analogous to the probit and OLS regression estimates. Interestingly, 
the issue coefficients estimated by discriminant analysis are nearly identical to those 
obtained under the probit procedure. For example, the correlation between the two sets 
is .989. 

14 More extensive treatments of discriminant analysis are found in Anderson (1958) 
and Kort (1973). 
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sis then consists of dividing this n-dimensional space into m mutually exclu- 
sive and exhaustive regions, say R1, R2, . . ., Rn, such that if an observation 
falls into region Ri it would be predicted as being a Yi. 

The treatment of the independent variables as defining an n-dimensional 
space does not differ from those techniques already discussed. What needs to 
be done is to consider the nature of the relationship between the "true" 
population classes and the independent variables. We assume, as discussed, 
that the space may be partitioned into separate and distinct regions-one for 
each category of the dependent variable. Moreover, we assume that within 
each population class observations are distributed normally across the inde- 
pendent variables, and with equal variances and covariances for each class, but 
allow for differing means. This normality assumption is stronger than that 
made earlier. Moreover, it represents a differing emphasis. In probit, for 
example, the normality of the stochastic term implies that, given a particular 
set of independent variable values and coefficients, remaining variation in Y 
(i.e., stochastic variance) will be normally distributed. In discriminant analy- 
sis, we must assume that the independent variables are normally distributed, 
given a particular value of Y. With this assumption it is possible to estimate 
the probability of each observation being in any one of the classes of Y. That 
is, we can define Pi(x) as the (normality based) probability that an observa- 
tion (with its particular values on the X's) would be a Y'. Thus we could 
compare the probability that an observation is a Yi versus a Yi. In particular 

we would examine the Pi(x) and Pj(x), say by taking the ratio: Pj(x). In the 

dichotomous case, for example, if the ratio is greater than some constant 
(usually symbolized by Kij), we would classify the observation as a Yi; if it is 
less than Kij, we would predict it as a Yi. For this dichotomous case, this rule 
can be formalized as defining the regions of predicted Y classes as 

P1(x) 
Region Ri = if p () > Ku (10) 

Region Rj = if pA() < Kij (1 

We can define the "boundary" between region Ri and region Rj ("Bij") as the 
set of points where the ratio exactly equals the constant Kij. The probabili- 
ties, the P#(x)'s, can be solved since we have assumed that they are all 
normally distributed and have the same variances and covariances. Then the 
only differences are in the means of the various classes of Y on the indepen- 
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dent variables and the actual values of any given observation on the X 
variables. 

If we let the mean values of Yi on the X's be symbolized by Xi (i.e., the 
means of the observations of category yi on each independent variable), and 
the (assumed constant) variances and covariances summarized by the 
matrix S, the normality and other assumptions lead to the following rather 
long equations for solving for the two regions: 

Ri = x'S' (xi - Xj) - 1/2 (xi + Rj)'S-1 (i - x;) > log Kij (12) 

Rj = x'S1 (xi - Rj) - 1/2 (xi + Rj)'S-1 (xi - x;) < log Kij (13) 

These equations are derived by substituting the definition of a normal 
distribution for the Pi(x)'s, taking logarithms (a permissible transformation), 
and algebraically manipulating the various terms. The first, leftmost, term in 
each equation [i.e., x'S-1 (xi - Xj)] is the only term involving the individual 
observations, X. This term is called the discriminant function, and it is a 
linear function of the observations of the dependent variable. The rest of that 
term consists simply of differences in means of Y' and YJ weighted by the 
variances, S. The middle term is also based on weighted combinations of 
means. In effect, this can be considered as a measure derived from the 
distance between means for categories of Y. That is, it measures the distance 
or separation of the means of Y' and YJ on the independent variables. One 
way of conceptualizing the purpose of discriminant analysis is to define 
regions of classification which maximize the variation within the predicted 
classes as a proportion of the total variance. This middle term provides an 
indication of this "discriminability" of the independent variables as predic- 
tors of Y, and statistical tests can be performed on it. The final term in these 
equations is the constant Kij, which depends on the criterion we employ with 
respect to error, which we will discuss shortly. 

Extending the dichotomous case to a more general n-chotomous situation 
is straightforward. One simply has a set of ratios of probabilities to solve 
simultaneously, one ratio for each pair of classes. Thus in the trichotomous 
case (say yi, yi and yk) there would be three probability ratios and 
inequalities to solve. To define region Ri, we would have: 

PA() PA() (4 Ri= Log > Log Kij and Log (()> Log Kik (14) 
PA() Pk(X) 

Again, the set of points where these inequalities (and the remaining ratio) are 
equal form the boundaries between regions Bij, Bik and Bik. 
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The undiscussed constants, the Kij's, incorporate our criterion about errors 
in classification and are closely related to the success of the discriminant 
analysis. By changing the value(s) of the constant(s), the boundaries between 
regions are changed, but are only changed by defining a new set of lines 
parallel to the old. 

An example may help to clarify many of the points we have been making. 
If there are two independent variables, the space to be divided into regions is 
a plane, and the boundary(ies) between regions will be lines through the 
plane. Changing values of the constants would change the boundaries by 
defining new lines that would be parallel to the original regional boundaries. 
For example, in Figures 4A and 4B, we have drawn a plane and regional 
boundary lines for a di- and trichotomous dependent variable, respectively. In 
Figures 5A and 5B we show the effects of changing the constant term(s); 
the boundaries have changed, but they are parallel to the original. 

As we have pointed out, any observation on x can be represented as a 
point in the space. Given the definitions of the regions, an observation will be 
classified into a population class. For example, in Figure 4B, the point w 
would be predicted to be in Y1. A set of such predictions leads to a table of 
predicted classes of the dependent variable versus the actual observations, the 
table which indicates the correct and incorrect predictions. 

The discriminant function for which we have developed estimates is the 
"best" discriminant estimate, given the assumed normality and linearity 

Bi\2 B,2 BX 
B2,3 

4A 4B BI 3 
FIGURE 4 

Examples of Discriminant Analysis of Di- and Trichotomous 
Dependent Variables 
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FIGURE 5 
Two Examples of Discriminant Analysis with Varying Constants 

constraints (i.e., the estimates of the population means and variances have a 
variety of desirable statistical properties). We can greatly alter the actual 
predictions of categories, however, by manipulating the constant terms. For 
example, in Figure 5B, we have altered the constant, and hence boundary 
lines between the regions, from those of Figure 4B. In this case, point w is 
now in region 2, not the initially estimated region 1, so we would estimate w 
as a Y2 not a Y'. Obviously, both the estimation of the Pi(x)'s and the K 
constants will be crucial. 

A number of criteria have been proposed for the determination of these 
constant terms. The most obvious criterion is to let all KU be one. That is, if 

PA() the ratio (( is greater than one, classify that observation in predicted class 

Yi. If it is less than one, predict it as a Yi. In other words, the criterion is 
simply to define the regions such that the probability of an observation being 
a Yi is higher than any other class in Region Ri. Obviously, such a criterion 
has much intuitive appeal. However, if one approaches the problem of 
classification from a broader viewpoint, alternative criteria may be superior, 
since it can be shown that the posited rule "assumes" that there are equal 
probabilities of observing all categories. We are more often faced with the 
situation where there are very unequal probabilities of observing the various 
categories-race is an obvious example. Therefore we might want to incorpo- 
rate additional information into the criterion. For example, we might 
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"weight" the boundary-defining conditions by the actually observed propor- 
tion of Y"s and YJ's (presumably our "best estimate" of the true propor- 
tions). Thus our constant Ko 's would simply be the ratios of observed sample 
frequencies of Yi to Yi. If we let PYi and PYi be the proportions of all 
observed Y's which are Yi's and YJ's, respectively, then we can define our two 
criteria of determining the Kij constants as: 

Kij= 1 for all i, j (i.e., i = to define Bij) (15) 
Pi(x) 

pYj PA(x) pYj 
Kij =- for all i,j (i.e., =- to define Bij) (16) 

pYi Pj (x) pY i 

As an example of the use of discriminant analysis, consider the choice 
among voting for Nixon, Humphrey, or Wallace in 1968. As a dependent 
variable, the 1968 vote is not measurable in terms of an ordinal or interval 
scale. Attempts to use party identification based concepts (e.g., the normal 
vote) which assume ordinality or more have floundered over the problem of 
what to do about Wallace voters.'5 One resolution is to employ discriminant 
analysis. As in our probit example, we will use the 7-point scales as a base to 
estimate the citizens' positions on the two issues of Vietnam and urban 
unrest.16 

The estimations of the discriminant functions are presented in Table 2, 
these being the equations, as well, for the "boundary lines" to define the 
regions of the issue plane. We computed the constant coefficients by both 
assuming equal probability (i.e., pYi = pYi), so that K = 1 and log (K) = 0 in 
all pairs, and also using the proportionate vote division in the sample as an 
estimate of the true probabilities (in the 942 included respondents, 41.1% 
voted for Humphrey, 47.9% for Nixon, and 11.0% for Wallace). The two sets 
of regions are drawn in Figures 6 and 7, while the table of actual versus 
predicted vote categories is found in Table 3. Finally, we have reported a 
comparison table resulting from assuming that the coefficients for the two 
issues are equal. (The actually estimated ratios of the two coefficients for the 
three discriminant functions are found at the bottom of Table 2.) 

First, let us consider the estimiated relationships between the independent 

"See, for example, the dialogue between Boyd (1972a, 1972b) and Kessel (1972) on 
this point. 

" While these two issues were very important in that election, so certainly were many 
others. However, 7-point scale format data were collected for only these two in 1968. It 
is also convenient to be able to visualize this two-dimensional example. 
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FIGURE 6 
Discriminant Analysis of 1968 Voting, Based on Constants Equal to One 

variables and the dependent variable, and then the error in classification. The 
Humphrey voters are estimated to be towards the liberal end of both issues, 
Wallace's region is to the right on both, and consequently Nixon voters are 
classified as those in between the other two. Notice, too, that the urban 
unrest issue is much more important than Vietnam in discriminating voters, 
its coefficients (the analogues to the regression b's and probit MLE coeffi- 
cients) being 3.7 to 5.5 times as large as Vietnam's. Thus each candidate's 
region tends to cover almost the entire range of hawk to dove. Moreover, 
there is little difference between the discriminant functions defining the two 
regions, so that the Humphrey and Wallace regions in the range of actual 
observations do not touch. This sort of result is not typical of all applications 
of discriminant analysis. Indeed, the three categories of voting in 1968 appear 
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FIGURE 7 
Discriminant Analysis of 1968 Voting, Based on Constants 

Equal to Proportion of the Candidate Vote Actually Observed 

to form an ordinal measure with respect to the citizens' positions on these 
two issues. Thus one possible use of discriminant analysis is to see if a 
measured dependent variable is approximately ordinally related to the inde- 
pendent variables of concern. This finding does not allow us to conclude that 
there is an ordinal measure of voting for the three candidates in 1968. Rather, 
we can only conclude on the basis of this evidence that the dependent 
variable is approximately ordinal over the independent variables examined. 
This has an equivalent interpretation: that the three discriminant functions 
are approaching the extreme possibility of being equal to each other, differing 
but by an additive constant. 
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The effects of changing our assumptions about the constant terms, Kij, are 
quite clear. The Nixon region is much narrower when we assume that all Kij's 
are equal. Using the sample proportions as an estimate of the true probabili- 
ties increases the size of his region, so that the proportion of voters found in 
his region increases from 32.0% to 58.2%. 

Let us turn to the question of error in classification. In the first case, 
where log(K) = 0 for all comparisons, we obtain 55% correct classification, 
with the greatest successes being in classifying Humphrey and Wallace voters 
(about 67% and 71% correct, respectively), our greatest error being concen- 
trated in predicting Nixon voters. When we incorporate the "prior proba- 
bilities," our correct classifications jump by more than 7% to 62% correct. 
The effect of changing the boundaries is to move about 26% of Humphrey 
and Wallace predicted voters to the region of predicted Nixon voting. Such 
redefinition of boundaries greatly increases the success of classifying Nixon 
voters (from 41% correct to over 72% correct). This was accomplished at 
minimal cost in classification of Humphrey voters (an 8% reduction in correct 
predictions), but at a greater loss in classification of Wallace voters (down to 
28% correct). However, the Wallace voters are such a relatively small group 
that error there can be absorbed with relatively little cost. 

A comparison of these results to a comparable probit or OLS regression 
analysis would be useful at this point. Unfortunately, just what would 
constitute a comparable analysis is far from clear. First, one might run three 

TABLE 2 
Discriminating Voters on Issues, 1968 

(pY] 
Discriminant Functions Log K = 0 Log K = Log (pYi) 

ZHN = -.3484 -.2233 Vietnam -1.2257 Urban Unrest (= 0) + .152) 

ZHw = +.1379 -.6724 Vietnam -2.8962 Urban Unrest ( 0) ( -1.318) 

ZNW = +.4863 -.4492 Vietnam -1.6705 Urban Unrest (= 0) (= -1.471) 

Relative Weightings Vietnam/Urban Unrest 

Humphrey-Nixon 0.182 
Humphrey-Wallace 0.232 
Nixon-Wallace 0.269 
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TABLE 3 

Error in Classifying Voters, 1968 

(Yi)t 
Predicted Vote Log (K) = Log (pYi) 
Humphrey Nixon Wallace 

Humphrey 24.4% 16.5 0.3 41.1% (307) 
Actual Vote Nixon 12.0 34.7 1.2 47.9 (358) 

Wallace 0.8 7.1 3.1 11.0 (82) 62.16% Correct 

37.2% 58.2 4.6 100% (747) 
(278) (435) (34) 

Predicted Vote Log (K) = 0 

Humphrey Nixon Wallace 

Humphrey 27.7% 10.3 3.1 41.1% 
Actual Vote Nixon 15.3 19.5 13.1 47.9 

Wallace 1.1 2.1 7.8 11.0 55.02% Correct 

44.0% 32.0 24;0 100% (747) 
(329) (239) (179) 

Euclidean Equidistant (UU = Viet) Log (K) = Log (pYi) 

Humphrey Nixon Wallace 

Humphrey 27.0% 11.8 2.3 41.1% 
Actual Vote Nixon 14.6 24.6 8.7 47.9 

Wallace 0.5 3.5 7.0 11.0 58.64% Correct 

42.2% 39.9 17.9 100% (747) 
(315) (298) (134) 

paired comparisons (i.e., Humphrey and Nixon, Humphrey and Wallace, 
Nixon and Wallace), thus generating six equations instead of three. Next, we 
must decide what to do about the dependent variable. Looking at the Hum- 
phrey-Nixon pairing, for example, what are we to do with Wallace voters? Three 
possibilities come to mind. We might code a "Nixon vote" variable as a one if 
the respondent voted for Nixon and as a zero if he voted for Humphrey or for 
Wallace (and perhaps for abstention as well). Alternatively, we might simply 
remove Wallace voters from the analysis. Finally, we might attempt to infer 
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what Wallace voters would have done in the absence of the Wallace candidacy 
on the basis of some other data (e.g., the SRC's 100-point "thermometer" 
evaluation of candidates). Clearly, our choice among these three possibilities 
(and any others that might come to mind) will greatly affect our results. The 
instability in such estimations is convincingly demonstrated in Table 4, which 
briefly summarizes probit results of these three approaches to estimating 
Nixon support. The MLE estimates differ considerably, in some instances 
being more than double those of others. As in the comparison between probit 
and OLS, there are some similarities (e.g., the relatively larger size of the 
coefficient for urban unrest), as well as some important differences (e.g., the 

TABLE 4 

Probit Predictions of Nixon Voting When Paired with Humphrey 

MLE SE MLE/SE 
Wallace Voters Removed 

Urban Unrest 0.453 0.075 5.835 
Vietnam 0.081 0.048 1.695 

Constant -0.114 

-2 X LLR 48.55 

(chi square, 2 degrees of freedom) N = 860 

Wallace Voters Coded "0" (Not Vote for Nixon) 

Urban Unrest 0.235 0.070 3.367 
Vietnam 0.031 0.045 0.689 

Constant -0.273 

-2 X LLR 15.14 N= 942 

Wallace Voters Vote "Preference" (Via 1000 Thermometer) 

Urban Unrest 0.377 0.070 5.381 
Vietnam 0.064 0.045 1.431 

Constant -0.159 

-2XLLR 41.296 N=942 
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Vietnam coefficient is never statistically significant at the .05 level). However, 
the instability of the estimates is the overriding consideration, especially 
when it is recalled that the Wallace voters amount to less than 10% of the 
sample. Similar comparisons of pairings involving Wallace are almost com- 
pletely determined by our approach to the incorporation of the 40% or so of 
the sample who voted for the candidate not in the pair. Thus, a categorical 
dependent variable is wholly unsuited for OLS or probit estimation. 

Conclusion 

We hope we have been able to demonstrate the following points in this 
paper. First we tried to show that there are a variety of powerful techniques, 
all grounded on a solid base of statistical theory. Moreover, one or more of 
these techniques is suitable for whatever level of measurement is used for the 
dependent variable. All too often it appears that the alternatives are simply 
OLS regression and contingency table analysis. This implies that if one's data 
are measured on less than an interval scale, one has only the choice of using 
regression erroneously or using an appropriate but much weaker method of 
analysis. Alternative techniques exist. The particular examples we chose were 
selected for their similarities in terms of their purposes, their assumptions, 
and the powerful analysis they allow, while at the same time being applicable 
to each of the three basic measurement levels. 

Second, we have argued that the "level of measurement" can be a crucial 
consideration, but one based upon the theory underlying the statistical 
procedure. As our example applications have demonstrated, employing a 
procedure assuming a different level of measurement can seriously affect the 
estimates and lead to incorrect inferences and hypothesis tests. Thus, our 
comparison application of OLS to an ordinal variable seriously underesti- 
mated the overall fit of the model to the data. Further, the individual 
coefficient estimates are known to be biased in general, and we have seen that 
the bias is not uniform, so that there were some changes in the order of size 
of coefficients and more dramatic changes in their relative magnitudes as 
compared to the probit estimates. There were great difficulties in attempting 
to specify the nominal level dependent variable example to make a compari- 
son with probit. If our procedures are acceptable, the resultant estimates 
exemplify differences in hypothesis tests. The coefficient for the Vietnam 
issue was significant in all cases in the discriminant analysis, while it was never 
significantly different from zero (at the .05 level) in the probit estimates. 

It is clear, then, that the levels of measurement problem is real. Yet it is 
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but one important factor in choosing an appropriate statistical technique. 
Other aspects must also be considered. For example, there are other differ- 
ences in assumptions of the techniques. Probit necessarily assumes that the 
stochastic term is normally distributed, an assumption which may not be 
necessary in all instances in using OLS regression. The discriminant procedure 
assumes that observations on the independent variables are normally distrib- 
uted within each category of the dependent variable. This assumption is much 
stronger than any comparable assumption made in probit or OLS. Therefore, 
the plausibility of these and other assumptions must be weighed along with 
the level of measurement. Further, the degree to which assumptions are 
violated must be considered. Thus, the bias in OLS when applied to an 
ordinal variable will be less serious the greater the number of ordinal cate- 
gories (all else remaining equal). Finally, it must be recognized that tech- 
niques have differing properties and differing degrees of development. Regres- 
sion, in particular, has been extensively analyzed and formally developed. 
Only it is suitable, at this time at least, for estimation of more complex 
relationships and multiple equation models (e.g., simultaneous equations, 
causal modeling, etc.). In short, the choice of an appropriate statistical 
procedure is complex and contingent on many criteria. The level of measure- 
ment is only one criterion; yet it is important and may well have direct 
consequences for the analysis. 

Third, we have argued that the political researcher must very carefully 
examine the assumptions underlying the statistical technique, and consider 
their correspondence to the theoretical assumptions one has made in deriving 
one's hypotheses. The failure to carefully trace out this correspondence can 
lead to incorrect conclusions equally as well as the application of a technique 
to an unsuitable level of measurement. A simple illustration of this point 
concerns the prediction of the division of congressional seats in off-year 
elections. We assumed that there was relative stability in partisan preference. 
If this assumption were wrong (e.g., if we extended our series back through 
elections during the era of Republican hegemony), the model would lead to 
quite different estimates. 

All too often, research is based on faulty priorities. We are all familiar with 
examples of research which appears to be based on a new statistical technique 
and where the substantive problem was chosen simply to show off methodo- 
logical sophistication. The undue emphasis on technique must be eschewed. 
Yet we cannot ignore this crucial element of research. The choice of a 
statistical method inappropriate for the substantive and theoretical concern 
leads just as surely to worthless research. Yet that choice can be grounded in 
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the assumptions underlying the method and the decision about whether they 
are appropriate to the substantive problem, rather than the conventional 
"levels of measurement" debate. 

Manuscript submitted February 5, 1975. 
Final manuscript received March 7, 1975. 

APPENDIX 

The purpose of this Appendix is to present copies of actual computer 
output of the three techniques and indicate how to interpret it. It has been 
our experience that there can be some confusion in understanding such 
output the first few times a program is actually used, regardless of the 
comprehension of the basic statistical principles involved. 

OLS regression programs are widespread, commonly used, and well docu- 
mented. Most statistical packages (SPSS, OSIRIS, BMD, etc.) have an OLS 
program, and as well it has been our experience that many university 
computer facilities have their own regression packages. Therefore, they re- 
quire little comment. Figure A-1 is a copy of the SPSS output which is 
summarized in Table 1 (in which OLS regression and probit are compared). 
Summary characteristics of the overall regression are printed first. Attention 
is usually focused on the R2 and its root, the multiple correlation coefficient 
(or correlation between predicted and observed dependent variable values) as 
indications of the "goodness of fit." The standard error (of the estimate) and 
F statistic are most relevant for statistical tests of significance of the whole 
regression. The remaining summary statistics are useful for constructing 
"Analysis of Variance" (explained or "regression," unexplained or "residual," 
and total sum of squares and variances), such as the "ANOVA" tables found 
in Johnston (1972, p. 143). Following these summary calculations are 
statistics relevant to individual independent variables. The first column is the 
regression "b's" or slope coefficients (what we call "'I" 's in Table 1). The 
"Betas" of the second column are standardized betas, the standardization 
being a multiplication of the regression coefficients by the ratio of the 
standard deviation of the relevant independent variable to the standard 
deviation of the dependent variable. This standardization, therefore, puts all 
independent variables in comparable units (sometimes referred to as "dimen- 
sionless") to facilitate comparisons between independent variables (note that 
no comparable standardization exists for probit, since the standard deviation 
of Y is undefined). Next is the standard error of the estimated regression 
coefficient and the F statistic for each variable to test for significance of each 



Probing the Bounds of Conventional Wisdom 601 

coefficient (in other programs, a t value may be produced which is simply the 
square root of this F value). These F's all have one degree of freedom in the 
numerator and degrees of freedom equal to the difference between the 
sample size and the number of parameters being estimated in the denomina- 
tor (or 1130 -10 = 1120 in this case). Many other statistics can be obtained 
from regression packages. Those available under SPSS are carefully explained 
in the SPSS Manual (Nie, Bent, and Hull, 1970) and various updates. 

Figure A-2 is a copy of the output of the probit example (also found in 
Table 1). The program used is that developed by McKelvey and Zavoina (to 
the best of our knowledge, probit is not included in any of the statistical 
packages). The output is well documented and rather straightforward. The 
"Maximum Likelihood Estimate" column is the MLE coefficient for each 
independent variable and the constant, comparable to the regression b-coeffi- 
cients or "'" (hence, the reference to them as "BETA(.)" on the leftmost 
column of the output). The standard error column is self-explanatory. The 
ratio of the two, in the third column of the output, is useful for tests of 
significance much like the individual F statistics of regression. Recall that, as 
in all maximum likelihood estimates, properties of the probit estimates are 
"asymptotic" (i.e., are applicable with large sample sizes only). The ratio 
MLE/SE is, in large samples, approximately a standardized normal random 
variable, or "Z score." Thus, this Z score can be used to test whether the 
coefficient is significantly different from zero, as in the case of the individual 
F values for OLS regression. The comparable statistic to the F of OLS 
regression for testing "overall significance" is -2 times the log of the likeli- 
hood ratio. This statistic is a comparison of the probability of observing this 
sample if the MLE estimates are correct (i.e., the estimated log of the 
likelihood function which is also printed) to the situation if all coefficients 
were zero (i.e., the null model). As stated in the output, this statistic is, in 
large samples, a chi-square statistic with degrees of freedom equal to the 
number of independent variables. Other summary indicators are found after a 
case-by-case residual analysis in the McKelvey-Zavoina program (and may not 
be found in other probit programs). These calculations are also self-explana- 
tory and for the most part have direct analogues in OLS regression. It should 
be pointed out, however, that all statistics under the heading "Estimated 
Analysis of Variance" are just that-estimated. This is so since the Y variable 
is not measured intervally. The estimates are derived by arbitrarily setting the 
residual sum of squares so that there is an equivalent to one unit error for 
each case (i.e., this figure will always be equal to the sample size). Given this 
arbitrary setting, the other statistic estimates follow. Of course, of some 
interest is the percent of the bases correctly predicted, which is not estimated 



FIGURE A-1 
01\ An OLS Output from SPSS 
0 

REGRFSSION VERSInNS nF SUPPnRT FUNCTTON MODFLS 1972 03/16/7a PA F 13 

FILE CSF72 (CREATTlnN DIAT- 04/?9/74) 

* * * * * * * * * * * * * * * * * * * * * * * q i JtL T I P I E R ! ( Q F S S T n * * * * * * v * A TARLF L IST I 
N Fr.PF SSIrN LISTI 

DEPENDENT VARIABLEF, VAROOl ACTUAL vnTi MCGOVERN 

VARIABILE(S) ENTERFD ON STFYP WiNU4ER 1.. vARnOA FEDFFRAI JnRS TOFA_ 
VAROQI TAYATTCN! II'EAL 
VAROO5 VIETNAM Ir'4AI 
vARI06 MARIJiuANA InFAI 
VAPO(7 LISINC, II)FAL 
VAR(OP8 WOMENR RIGHTS TrFAI 
VrARnO9 RIGHTS nlF A(CCUSFm TPtAL 
VARo A Dlr Itn ATNlrVITTFS I70FAI. 
VAR II LIHFRAL. CflfTSERVATIVF TILAI 

MULTIPLE R n,88956 ANAL YSIS nF VARIANCE nF SiM (1F A(RIA ' S Al' $frJ,AlF F 
R SQUARE 0,54675 RF,RFSSTOl Q 18.311it 8 7 1 / 66.05671j 
STANDARD ERROR 0.16295 RFSIIrIJAL 11 . 14/.5s915 n.1 31 7 



.. ------ ---- - VARIABLES IN THE !r0JATI-lN ----- V A R T A RLES T t t F(,IA T Ti - ------ 

VARIABLE H RIfTA STO FRRlrR R F V4QlAPl I RETA TN, PAPTITAL tri l F 

VAROn3 n.0 0727 0 .14241 0 . n 1 754 ?!1 .769 
VAROOR4 '0.0499t1 -0.09014 n.n!494 11.600 
VAROOS 0,t14549 -O.?0o06 0.02043 50.711 
VAROOb *0,O01897 -O,0)3929 n,n1346 .QP4 
VAR0O7 .0,06748 .0.10265 n.n0889 I?.75f 
VAROOB W0,0096) -O, ?259 0.01074 n.AoRT 

VAR009 0.0lo91s -0.0200o 0n,019u n0.9(14 
VAROlO '0,02955 -0.0s167 n,01611 3.127 
VAROIl P0,16819 -0.21013 n.o?537 43.026 
(CONSTANT) 0,30211 

ALL VARIABLES APF IN OHE FQU)ATOLN 

',l mMARY TARi.E 

VARIASLF 
MLILTIPI F 4 V SOJIIAPE RS( CHANGF SRT"PIF r E ETA 

VAR03 FEOERAL js EA- 0,3q247 0 
I 

, 1403 "1 5 -0.30247 08 7?7 7 * I 4 24 7 VAROO4 TAXATIDON InFAL 0.4302A 0 .1 95131 m 0. 03 1 10A -0,2q479 -0, OoOOIn . n 
-0 

01 ~\ VAROOS VIETNAM IDFAL 0,92PA? 0,270l-5 0,0945? -0,42993 -01454 0,06 
0 VARB06 MARIJUANA Ifl~AL 0,94204 0.20479 n 0 1 5 0 -Q,?qoS7 -0("I 907 -n,03929 t. VAR007 BUSING IDEAL 0,59A27 0.,31 166 0 01 0LI7 -0n. 3 7 A?7 - 0 06 7 -R -0 , 10265 VARooB wOmENS RIGHTS IOEAL 0.55950 0,313n4 0,00139 -0.16928 -0,00 9h, -0,02259 VAR009 RIGHTS OF ACCUSF0 InEAL 0.56271 0 .311664 0,00360w -0.3n693 - 0 0 1 0 0 -0,.0200 0 VAROIO AID TO mINORITIES IMEAL 0.56669 0,32113 0,00449 -0.39190 -o,o1oo9ss -0,05167 VAROII LIBERAL CONSERVATIVE IDEAL 0.58A86 0,94679 0.0096? -0,47S8? -...160 1 9 -0,21013 (CONSTANT) 

0.*30? 
71 



FIGURE A-2 
An Example Probit Output 

***************~************************U***** ************** ** ***** ************** ****** ****** ********* *U***** *U******* ** 

N-CHOTOMOUS PROBIT ANALYSIS: PROBIT MODFL FSTIMATIIJNS FOR EXTREMIST SUPPORT USING MCKELVEV PRCOIT 
MCGOVERN SUPPORT FUNCTION 1972 EXTREMIST SUIPPORT TEST 

*****************************U**************** ** *******U*********** ***U***************** ******* ***U ** ******** ************ 

ThE ITFRATIUN HAS CUNVERGED ON THE 4TH TTFRATION, MAXIMUM LIKE-LHonnD FS71MATFS FOLLOW 

MAXIMUM MAXIMIIM 
REPRESENTS LIKElIHU0D STANDARD LTKF LIWOtWD STANORAPI) 

CUEFFICIENT FFFECT nF ESTIMATE ERROR MLE/SE COEFFICIENT ESTIMATE ERR1l MLE/SE 

BETA( 0) CONSTANT -0.71277 0,06167 -11,558 MU( 1) 0.00000 
BETA( 1) VAR N 1 -0,31502 0.08251 -4.54lS 
BETAC 2) VAR U 2 -0,25658 0,06601 -3,884 

OC\ BETA( 3) VAR U 3 -0,59260 0,09178 -6,451 
O BETA( 4) VAR A 4 -0,07534 0,05805 -1,298 
4P, BEIA( 5) VAR A 5 -0,20547 0,08320 -2,470 

BETA( 6) VAR # 6 -0,03196 0,04549 -0,834 
BLETA 7) VAR # 7 -0,04552 0,06668 -0.683 
BETA, 8) VAR U 6 -0,13613 o.071h1 -1,901 
BETA( 9) VAR A 9 -0,63921 0,11329 -5,642 

LOG Of THE LIKFLIhnI)D FUNCTION: -445,0191 

.2,0 IIMES LOG LIKELIHOOD RATIn z 441,6399 
(THIb IS CHI SQUARED MITH 9 1iEGRLFS OF FREFDOM) 

ESTIMATED ANALYSIS (IF VARIAtNCE 

EXPLAINED SUM n0 SQUARES z 1273,54517 
RESIDUAL SUm oF SUARES - 11so,0oo0o 
TnTALSUM OF SQUARES = 240i.54577 
ESTIMATED R SQUARED _ 0.52966 

OTHER SUMMARY STATISTICS 

PERCENT PREDICTED CORRECTLY _ 0,82655 
RANK URDER CORRFLATION- PREDICTED VERSUS ACTUAL 0.53474 
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in the same sense but is a straightforward computation. In the dichotomous 
case, the predicted value is simply the category (0 or 1) which has a higher 
probability for that case, given the estimated coefficients and probit transfor- 
mations, and is found by solving equations such as (8) and (9) in the text or 
their analogues in the more general, n-chotomous case. 

A program for performing discriminant analysis has recently been added to 
SPSS and may be found in other statistical packages (though not in OSIRIS, 
at least not version 3). Figure A-3 is an example of the SPSS output for log K 
= 0 as reported in Table 2. The core of the output is listed under the heading 
"Discriminant Functions" and is that which is reproduced in Table 2 (note 
that 1 = Humphrey voter, 2 = Nixon voter, 3 = Wallace voter, "RCSELF" 
indicates self-placement on the Vietnam scale and "UCSELF" on the urban 
unrest scale-the two issue scales being modified by the scaling technique as 
described in the body of this paper). Preceding the discriminant functions are 
a variety of statistics relating to the history of the computation. The program 
can operate analogously to "stepwise regression" (in which each significant 
variable is entered in order), the basic test being whether or not it adds a 
significant amount to the prediction as determined by F statistics. As can be 
seen, both variables do add a "significant" amount. Options are also available 
to generate the means and variance/covariance matrix, for solving equations 
such as (12) and (13), as well as a correlation matrix of independent variables. 
Even more recent updates indicate that it is now possible to generate the 
regions either by using the "equiprobability" assumption (i.e., log K = 0) or 
by weighting the probabilities in any specified manner [e.g., log K = log 
(pYi) 
(]Yi)I, and to output tables and/or scatter plots of predictions. 

All of these programs produce a wide variety of other statistics and other 
sorts of information. The portions of the output we have discussed are, we 
believe, the most important and most commonly used results. Explanations 
of other portions of the output can be found in the program write-ups. 
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FIGURE A-3 
An Example Output of Discriminant Analysis 

VOTING BEHAVIOR AND PREFERENCE BY SPATIAL LOCATION 05/20/74 

RCSELF 10.2813 UC3ELF 802396 

rUsSTATISTIC a 75288 DEGREES OF FREEDOM 2 2 744 
APPROXIMATF F 56.64926 UEGREES OF FREEDOM 4 1486600 

F MATRIX v DEGREES OF FREEDOM 2 743 

GROUP VARIABLE VOTE 
1.00 2,00 

GROUP 

2.00 '16,339417 

3,00 109,614517 39t957336 

F LEVEL INS'JFFTCTENT FO FURTHEFR COMPUTATION 



DTSCRIMINANT FUNCTIONS 

GROUPS 1,00, 2,00. 
VARIABLE COEFFICIENTS (LAMBDAS) CHOSEN COEFFICIENT (LASODAIMZNe LAMBDA) 
CONSTANT w0,3484 
RCSELF m0,2233 w1,0000 
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GROUPS 1,00. 3,00, 
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