Specification Testsfor the Multinomial Logit M odel
Jerry Hausman; Daniel McFadden

Econometrica, Vol. 52, No. 5. (Sep., 1984), pp. 1219-1240.

Stable URL:
http://links.jstor.org/sici ?sici=0012-9682%28198409%2952%3A 5%3C1219%3ASTFTM L %3E2.0.CO%3B2-V

Econometrica is currently published by The Econometric Society.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journal s'econosoc.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Mar 21 07:25:14 2007


http://links.jstor.org/sici?sici=0012-9682%28198409%2952%3A5%3C1219%3ASTFTML%3E2.0.CO%3B2-V
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/econosoc.html

Economerrica, Vol. 52, No. 5 (September, 1984)

SPECIFICATION TESTS FOR THE MULTINOMIAL
LOGIT MODEL'

By JErrY HausMaN AND DaNIEL McFADDEN

Discrete choice models are now used in a variety of situations in applied econometrics.
By far the model specification which is used most often is the multinomial logit model. Yet
it is widely knawn that a potentially important drawback of the multinamial logit madel is
the independence from irrelevant alternatives property. While most analysts recognize the
implications of the independence of irrelevant alternatives property, it has remained
basically a maintained assumption in applicatians.

[n the paper we provide two sets of computationally convenient specification tests for
the multinomial logit model. The first test is an application of the Hausman [10]
specification test procedure. The basic idea for the test here is to test the reverse
implication of the independence from itrelevant alternatives property. The test statistic is
easy to compulte since it only requires computation of a quadratic farm. which involves the
difference of the parameter estimates and the differences of the estimated covariance
matrices.

The second set of specification tests that we propose is based on maore classical test
pracedures. We consider a generalization of the multinemial logit model which is called the
nested logit model. Since the multinormial logit model is a special case of the maore general
model when a given parameter equals one, classical test procedures such as the Wald,
likelihood ratio, and Lagrange muoltiplier tests can be used.

The twa sets of specification test procedures are then compared for an example where
exact and approximate comparisons are possible.

DISCRETE CHOICE MODELS are now used in a4 wide variety of situations in applied
econometrics.” By far the model specification which is used most often is the
multinomial logit model (McFadden [18]). The multinomial logit model provides
a convenient closed form for the underlying choice probabilities without any
requirement of multivariate integration. Therefore, choice situations character-
ized by many alternatives can be treated in a computationally convenient
manner. Furthermore, the likelihood function for the multinomial logit specifica-
tion is globally concave which also eases the computational burden. The ease of
computation and the existence of a number of computer programs has led to the
many applications of the logit model. Yet it is widely known. that a potentially
important drawback of the multinomial logit model s the independence from
irrelevant alternatives property. This property states that the ratio of the proba-
bilities of choosing any two alternatives is independent of the attributes of any
other alternative in the choice set.> Debreu [6] was among the first economists to
discuss the implausibility of the independence from irrelevant alternatives as-

'T. Dubin, W. Newey, and I. Rust provided research assistance. The NSF and DOE provided
research support. G. Chamberlain, T. Rothenberg, A. Zellner, the referees, and an editor made
helgful commertts.

McFadden [20] provides references to many of their uses.

IA “universal” logit model avoids the independence from irrelevant alternatives property while
maintaining the multinomial logit form by making each ratio of probabilities a function of atiributes
af afl alternatives (McFadden [20]). Tt is diffieult however to give an economic interpretation of this
model other than as a flexible approximation to a general functional farm.

1219



1220 I HAUSMAN AND D. McFADDEN

sumption. Basically, no provision is made for different degrees of substitutability
or complementarity among the choices. While most analysts recognize the
implications of the independence of irrelevant alternatives property, it has
remained basically a maintained assumption in applications.

The multinomial probit model does provide an alternative specification for
discrete choice models without any need for the independence of irrelevant
alternatives assumption (Hausman and Wise [14]). Furthermore, a test of the
‘covariance’ probit specification versus the ‘independent’ probit specification
which is very similar to the logit specification does provide a test for the
independence from irrelevant alternatives assumption. But use of the multino-
mial probit model has been limited due to the requirement that multivariate
normal integrals must be evaluated to estimate the unknown parameters. Thus,
the multinornial probit model does not provide a convenient specification test for
the multinomial logit model because of its complexity.

In this paper we provide two sets of computationally convenient specification
tests for the multinomial logit model. The first test i1s an application of the
Hausman [10] specification test procedure. The basic idea for the test here is to
test the reverse implication of the independence from irrelevant alternatives
property. The usual implication is to note that if two choices exist, say car and
bus in a transportation choice application, then addition of a third choice,
subway, will not change the ratio of probabilities of the initial two choices. Qur
test here is based on eliminating one or more alternatives from the choice set to
see if underlying choice behavior from the restricted choice set obeys the
independence from irrelevant alternatives property. We estimate the unknown
parameters from both the unrestricted and restricted choice sets. If the parameter
estimates are here approximately the same, then we do not reject the multinomial
logit specification. The test statistic is easy to compute since it only requires
computation of a quadratic form which involves the difference of the parameter
estimates and the differences of the estimated covariance matrices. Thus, existing
logit computer programs provide all the necessary input to the test.

The second set of specification tests that we propose is based on more classical
test procedures. We consider a generalization of the multinomial logit model
which is called the nested logit model (McFadden [20]). Since the multinomial
logit madel is a special case of the more general model when a given parameter
equals one, classical test procedures such as the Wald, likelihood ratio, and
Lagrange multiplier tests can be used. Of course, we have added the requirement
of the specification of an alternative maodel to test the original model specifica-
tion. Maximum likelihood estimation of the nested logit model is considerably
more difficult than for the multinomial logit model. However, a Wald type test
can be constructed on the basis of a parameter estimated from a consistent, but
inefficient, sequential logit estimation which uses standard computer packages.
Alternatively, a Lagrange multiplier test can be computed from the multinomial
logit estimates.

We then proceed to compare the two sets of specification test procedures for
an example. We find rather unexpected results. First despite a sample size of
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1000, the asymptotically equivalent classical tests differ markedly in their operat-
ing characteristics. The power of the Wald test is significantly greater than the
other two classical tests, the LR test and the LM test. Perhaps, more surprising,
we find the power of one Hausman test to be comparable to that of the Wald
test, Thus the often quoted asymptotic power results for local departures from
the null hypothesis do not provide a reliable guide o the exact performance of
our specification tests in the example, despite the relatively large sample size and
small departures from the multinomial logit model and despite the fact that all
the tests are identical to first order, i.e. they have identical noncentrality
parameters for the asymptotic noncentral x? distribution. We then do a further
comparison of the tests when the degrees of freedom differ for a smaller sample.
We again find a marked difference in the actual performance of the tests,

The plan of the paper is as follows. In the following section we derive the
Hausman-type specification test for the multinomial logit model. The distribu-
tion theory as well as computational considerations are discussed. In the follow-
ing section we derive the classical tests from the nested logit model. In Section 3
we calculate the exact size and power for the two sets of specification tests for an
example. We also compare the exact power with the usual asymptotic approxi-
mation to the power function. Lastly, in the conclusion we discuss some further
considerations for the test procedures.

L. A HAUSMAN-TYPE TEST OF THE 11A FROPERTY

A widely used functional form for discrete probabilities is the multinomial
logit (MNL) model,

(L) P(i|5C fy=eb ) T o8

JEC

where C={1,...,/} is a finite choice set; i, j are alternatives in C; z i a
K-vector of explanatory variables describing the attributes of alternatives ;
and /or the characteristics of the decision maker which affect the desirability of
alternative j; z=1(z,, ..., z,) represents the atiributes of C; f is a K-vector of
taste parameters; P(i|z, C, ) is the probability that a randomly selected deci-
sion maker, when faced with cheice set C with attributes z, will choose i.

The MNL model has a necessary and sufficient characterization, termed
independence for irrelevant alternatives {I1A), that the ratio of the probabilities
of choosing any two zlternatives is independent of the attributes or the availabil-
ity of a third alternative, or

(1.2) Pli|z,C, B)y= P(:‘[z,A, BYP(Alz,C, 8
wherei€ A C Cand

P(A|z,C, BYy= > P(jlzC, B).

jE4
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This property greatly facilitates estimation and forecasting because it implies the
medel can be estimated from data on binomial choices, or by restricting
attention to choice within a limited subset of the full choice set. On the other
hand, this property severely restricts the flexibility of the functional form, forcing
equal cross-elasticities of the probabilities of choosing various alternatives with
respect to an attribute of one alternative. Further discussion of the IIA property
and conditions under which it is likely to be true or false is given in Domencich
and McFadden [7], McFadden, Tye, and Train [19], and Hausman-Wise [14].
The McFadden, Tye, and Train paper suggests that the MNL specification be
tested by comparing parameter estimates obtained from choice data from the full
choice set with estimates obtained from conditional choice data from a restricted
choice set. Here we develop an asymptotic test statistic for this comparison, using
the approach to specification tests introduced by Hausman [10].

Consider a random sample with observations n=1,..., N. Let z" be the
attributes of C for case », and define S, =1 if case n chooses i and §,, =0
otherwise. The normalized log likelihood of the sample is

(1.4) LC(B)-— 2 2 S nP(i|z",C, B).

ﬂ_lt

We first review the agympiotic properties of maximum likelihoed estimates of
B from (1.4). We make the following regularity assumptions:

AsSSUMPTION A: The vector of attributes z has a distribution g in the popula-
tion which has a bounded support.

AssumpTioN B: The MNL specification (1.1} with a parameter vector 8* is the
true model.

AssuMPTiON C: The parameter vector 8* is asymptotically identified, i.e., (f
B # B*, there exists a set Z of z values and an alternative { such that

fzpmz,c, B*)du(z) ?’:LP(HZ,C, B)du(z).

Under these assumptions, E£S,, = P(i|z", C, B*), the normalized log likelihood
converges uniformly in 8 to

(15 plimZ.(B) =f S P(i|2,C, BN P(i|2,C, B)du(2),
N—roo iel

and (1.5) has a unique maximum at 8 = 8*. Then the maximum likelihood esti-

mator 8. is consistent, and YN ( 8. — B*) converges in distribution to a normal

random vector with zero mean and covariance matrix plim,_,(—3?L-{ A8*)/

38387~ Discussion and proofs of these properties can be found in Manski and
McFadden [16]. See also McFadden [18].
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Let A =1{1,..., M} be a subset of the choice set C. Consider the conditional
normalized log likelihood of the subsample who make choices from A. If the
MNL specification (1.1) is true, then the IIA property states that the probability
of choosing [ from C, given that choice is contained in A4, equals the probability
of choosing / from A. The conditional normalized log likelihood is then

N

{1.6) LA(,G)=% > DS, An(P(ij2",C, BY/ P(A |27, C, 8))

n=1lied

§=: g: A P(i|z" A, B).

Some components of 8*, such as the coefficients of alternative-specific variables
for excluded alternatives, are not identified by choice from 4. Let z" = (", x")
be a partition of the explanatory variables into a vector y* which only varies
outside 4 and a vector x” which varies within A, and let 8= {y,8) be a
commensurate partition of the parameter vector. The conditional choice proba-
bility is then

(L7)  P(i|x",4,8)= ex'ﬂ&/ > ex?

jEA
and p = p for i, j € 4. We add to the regularity assumptions the asymptotic
identification condition.

AssumpTion D: If § + 8*, there exists a set Z of z values and an alternative
i € A such that

sz(s[x,A,e*)d#(z) #IZP(Hx,A,(J)d#(z).

Then, as in the unconditional case, the conditional normalized log likelihood
converges uniformly in & to

(18)  plim L,(9) =f St P(i|2,C, B P(i| x, 4, B)du(z)

iEA
= [P(A12,C, B%) 3 P(i|%.A.0%In P(i[ x,4.8) d(2)
ieA

with a unique maximum at # = #*. The maximum likelihood estimator 8, is
consistent and W(&A — 8*) is asymptotically normal with mean zero and covari-
ance matrix plim,,_, .(—3°L,,(#*)/3838")~".

The specification test statistic is based on the parameter difference § = 8, —
8., where B = (y,,8,). When the regularity assumptions hold and the MNL
model is true, plim,,_, 8 = 0. Conversely, when the MNL specification (l.1) is
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false, then the ITA property fails, and (1.8) becomes

_ P(i|z,C, B*
(L9) pln’m‘_’,,((ﬂ)=fip("{|z!C1 B*).gA[%Tﬁ*))]

XIn P(ifx,4,8)du(z)

with P{i|z,C, B*)/P(A|2,C, B*)# P(i| x,4,8%). In general, equation (1.8) is
not maximized at & = #*, implying plim,_, 8 # 0. Thus, a test of § =0 is a test
of the MNL specification. Rejection of 8 = 0 indicates a failure of the restrictive
structure of the MNL form embodied in the IIA property, or a misspecification
of the explantory variables z in (1.1), or both. Acceptance of § = 0 implies that
for the given specification of explanatory variables and distribution of these
variables, the ITA property holds. Thus the test is consistent against this family of
alternatives. However it is not necessarily consistent against ail members of the
family of alternatives defined by a given specification of explanatory variables
and any distribution of these variables. To derive an asymptotic test statistic for
& =0, note that under the regularity assumptions, W(ﬁc - f*8,—6*%) is
agymptotically normal with mean zero and covariance matrix ¥ calculated
below; the argument is a standard application of a central limit theorem, as used
in Manski and McFadden [17].

To calculate the covariance matrix for the asymptotic test statistic §, the
gradient vectors and Hessian matrices are computed for the normalized uncondi-
tional log likelihood funcuon of equation (1.4} and the normalized conditional
log likelihood function of equation (1.6). Details of the derivation are given in
Hausman-McFadden [12]. We define ¥, = plimH ;' where H, is the minus
Hessian matrix for the normalized conditional log likelihood function:

il
(L10)  Ho=L S0 S pafz",C, 4P| x" A, 8)(x" — xJ)(x" — xI)

N n=1ieA
with
(L) xi= 3P| x"A4.8)x".
is A
Likewise define ¥, = plim H. !
normalized unconditional log LF,

where H, is minus the Hessian matrix for the

N
L1 He= 4 3 3 PG B)E - 2 - 20,

n=lied

where z7 is defined analogously to x /. Partition V. so that

V., V,
(1.13) Vo=plmH "= 7 ~*

MN—on

H

VC By VC&‘&
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where the partition is commensurate with (v, #). Then

VC‘;? VCvﬂ VC}'Q
(1.14) V= VC‘GV Vees Vces .
VCG}' Vess Vy

Hausman-McFadden [12] demonstrate that the asymptotic covariance matrix of
N8, —80) is

(1.15) Q=V,— Ve

the difference of the asymptotic covariance matrices of 4, and #.. Thus the test
statistic

(116  T=N(8,—6.YQ'(B—b.),

where Q' is a generalized inverse of 0, is asymptotically distributed chi-square
with degrees of freedom equal to the rank of @ under the null hypothesis. This
statistic then coincides with the general specification test statistic developed by
Hausman [10] and generalized to use of singular covariance matrices by Haus-
man-Taylor [13} when an efficient estimator is available under the null hypothe-
sis.

The estimated asymptotic covariance matrices for the maximum likelihood
estimators #,- and 8, satisfy

(1.17)  cov(d.) =

n=liel

N -1
> 2 Pyl ﬂc)(zf“—zé)(z,-"—zg)*} :

(1.18)  plim Ncov(f.) = Vepy

Nroo

N —1
(1.19) cov(f?,d)={ >8> P(ifx" A,8, )(x,.”—x,;’)(x‘-"—xj)’} .
iEA

=1

(1.20y  plim Neov(d,}=V,.

N

Therefore, an asymptotically equivalent computational formula for T is
(121)  T=(8, — 8. Y[cov(8,) — cav(8-)]'(6, — 6.,

which should be quite easy to calculate using existing logit programs.

The regularity assumptions do not exclude the possibility that  is less than
full rank. However, deficiencies will occur only for exceptional configurations of
the x” variables. In particular, a sufficient condition for ¢ to be nonsingular is



1226 L. HAUSMAN AND D. McEADDEN

that
(1.22)  HEy— HY

N
=% 3 I PN C B = xp)(x — XY

n=1igD
] N
+ v 2 P(A | 2", C, B*)P(DIZ",C, ﬁ*)(x; - xé)(xj‘ -xzY
n=1

have a nonsingular limit, where D = C|A4 and xj is defined analogously to
(L.11). This is generally the case if the x variables either vary within D, or take on
values within D different from their average within A.

The estimated matrix [cov(f,) — cov(f.)} may fail to be definite in finite
samples even when @ is nonsingular. This does not impede calculation of the
statistic (1.21} or carrying out the asymptotic test. However, one can form an
asymptotically equivalent estimate of cov(#,) such that {cov(f,) — cov(f,/)] is
always positive semidefinite by evaluating P(i|x",4,8) in {1.19) at 8, and
replacing S, by P(4 | 2" C, B-).°

Ruud [25] has provided an interesting interpretation of the test as well as an
alternative computation scheme. Ruud’s interpretation is based on the notion of
an “out of estimation” prediction test of the ability of the parameter estimates 8,
to predict choices on the complete choice set C.° Ruud’s computational scheme is
based on a factorization of the normalized LF into two terms, one of which
represents the choice between the restricted choice set and its complement while
the second term represents the choice within A. Ruud then generates a class of
asymptotically equivalent tests to the test statistic of equation {1.6}). However,
Ruud’s test setup requires a separate computer program since it cannot be based
on the ML estimates 8, and 4,.

2. AN ALTERNATIVE NESTED LOGIT SPECIFICATION AND CLASSICAL TESTS

The use of the previous specification test requires no specific alternative
model.® In this section we consider a specific alternative madel, the nested logit

“We have occasionally found the test statistic of equation (1.21) to be negative due to lack of
positive semudefiniteness in finite sample applications. Replacement by the alternative covariance
matrix always leads to a small positive number. However, in no case have we found this alternative
statistic to be so large as to come close to any reasonable eritical value for a xz test. Howewver, Small
and Hsiao [27] do report computational difficulties when an estimate of the covariance matrix Q is
near singular. They propose an alternative test of the multinomial logit specification.

SThis interpretation is not quite so neat in the presence of parameters e which are not identified
in the restricted choice set. However, one cap cansider the use of y,. and 4, to make predictions.

%It is interesting to note that the previous test is nos equivalent to an ANCOVA-like procedure in
which 8 would be allowed to vary across each alternative or some subset of alternatives after a
normalization. The specification test here would involve a test of equality of the A's. But it is
straightforward to check that the [TA property still holds under this specificatian so that the maost
likely failing of the MNL maodel would not be tested.
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model, on which to base test procedures. Given a parametric alternative hypothe-
sis, we can apply classical test procedures such as the Wald test, [ikelihood ratio
(LR} test, and Lagrange multiplier (LM) test. It is well known that for local
deviations from the null hypothesis, these tests have certain optimal large sample
power properties; c.f. Silvey [26] and Cox and Hinckley [8]. Of course, the
optimum properties of these classical tests depend on three factors which may
not be satisfied in a given application: (i) the alternative specification on which
these tests are based 1s correct, (ii) the sample is large enough so that the
asymptotic theory provides a good approximation, iii} deviations from the null
hypothesis model are of order 1/ VN . We investigate questions of sufficiently
large sampies and local deviations in the next section. The nested logit mode! for
the three choice case has the simple hierarchical nature shown in Figure 2.1.
Alternatives [ and 2 are assumed to have more common characteristics than
either alternative has with alternative 3. The idea behind the choice process is
that the indivaidual forms a weighted average of the attributes of alternatives 1
and 2, sometimes called the inclusive value, which is closely related to his
consumer’s surplus from these two choices considered above. The inclusive value
is defined as

Q1) y=log(en P+ P/

where X is a scalar parameter of the model. The choice probabilities of the model

1 p) 3

FiGure 2.1.
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are

ezlr@/-"e}\}’
e)*(ezlﬁ + e*y) ,

(2.22)  P(1fz,C, B,X) = p,

ezlﬁ/‘\eky

ef(e™f + V)

(22b)  P2{z,C BNy =p,

H

o218
(2A2C) P(SIZ, C., ﬁ,;\) == m .
For kA = 1, the nested logit model reduces to a MNL model. For 0 <A < 1 the
model fails to satisfy the I[A property but it does satisfy the properties required
for a randaom utility model. This proposition is proven together with a discussion
of other features of the general model specification in McFadden [20]. For A
outside the unit interval the probabilities are still well defined. However, the
interpretation of the model as a choice model is not clearcut. One property of the
model which deserves mention is that on any subbranch of the tree, the ITA
assumption is satisfied. However, in the three choice case, since only a binary
compariscn involving alternatives 1 and 2 is required, the ITA property does not
lead to a testable restriction.

Given the alternative model specification the classical test procedures may be
applied by basing tests on the normalized log likelihoed function

N
Q4 LuBN=75 3 3 S.ogP(il2.C B,
n=1:ieC

The assumptions for the MNL logit model following equation (1.4) are sufficient
to prove consistency and asymptotic normality of the estimates { 8,A) = § where
we replace £ by § in the assumptions. The parameter A need not be constrained
to the unit interval for these properties to hold. The covariance matrix of the
asymptotic normal distribution equals plim,,_, ,,(— 3*Ly(8*)/3838")~". The clas-
sical tests proceed so that each test leads to a test of A = 1, so that under the null
hypothesis the test statistic is asymptotically a central x? random variable with 1
degree of freedom.” While we have derived the alternative model and classical
tests for a three alternative case, the procedure can be applied in a straightfor-
ward way for a general number of choices. McFadden [21] gives the formula for
the LM test in the general case.

We have now specified an alternative model to the MNL specification which
leads to classical tests of the MNL model. We have applied the first specification
test and the three classical tests to empirical examples, some of which have led to

"Here we take the alternative hypothesis to he A == 1. One might consider the more restricted
alternative that A < | given the random. utility model requirements. Since only 1 parameter is under
test, the critical values for the test could be easily adjusted.
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strong rejections of the MNL specification.® We now turn to a comparison of the
various tests in a situation where we can compare the exact performance of the
tests.

3. EXACT AND APPROXIMATE COMPARISONS
OF THE SPECIFICATION TESTS

We consider a three choice example where the specification tests have closed
form solutions. Exact comparisons of the size and power of the tests can then be
made. To make the comparisons, we choose a nested logit model as the correct
meadel under the alternative hypothesis. Therefore, the Wald, LR, and LM tests
are based on the correct alternative specification. Of course, in actual applied
work it is important to remember that a particular nested logit model may not
provide the correct specification. The first specification test is, of course, not
based on a specific alternative model. For our first example we choose the
sample size equal to 1000 so that asymptotic theory should provide a reasonable
guide. Yet we find two rather unexpected results: (i) The three tests which
comprise the so-called holy trinity of asymptotic tests differ markedly in both of
their aperating characteristics even when their nominal size is the same. (ii) The
Wald test and Hausman type test have approximately equal power. Next comes
the LR test and the LM test. Both results may well arise because we are
considering a nonlocal alternative hypothesis.® That is, the expansions required
for the optimal power theorems hold for parameter vectors 4, = 8, + § where §
must be sufficiently small, eg., § = a‘/\/ﬁ where d is 4 constant vector. But,
examples have been given such as Peers [24] where significant differences can
arise. No generally accepted theory exists for the nonlocal case. Or, the samples
may not be large enough for the reliable application of asymptotic theory. We
see our results as a particular example and as a caution against relying too
heavily on the local asymptotic theory.

For our example we consider a three choice MNL specification of equation
(1.1) with only a single explanatory variable. Furthermore, we assume only a
single data configuration occurs, z, =1, z, =0, 2, =0. We assume N = 1000
repetitions of the choice and cell counts n,n,,n;. We assume that the true
parameter 8 =log2 generates the observations under the null hypothesis. For
these data the MNL choice probabilities take the form:

(B p=ef/2+ef),  p=pi=1/2+eP),

which for 8 =log2 are p, =.5 and p, = p; = .25. The log likelihood function for

BSee the earlier version of this paper (Hausman-McFadden [12]) for an applicatian of the test af
Section. | and the tests of this section to an example of appliance chaice.

9A discussion of lacal and nenlocal alternatives far an application of the Hausman type test is
given in Hausman [10].
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the unrestricted choice set is
(3.2 Le(B) = nlog p + mylog py + mylog ps = n B — Nlog(2 + &%),

Maximization of the likelihood function yields the estimates

2n
(3.3) Bc=log( - ) Vo= N/n(n,+ ny),

where V is the large sample estimator of the variance of 8 given in equation
(1.13).

For the restricted choice set we eliminate choice 3. Maximization of the
restricted log likelihood function L, ( 8) of equation (1.6) yields estimates

(3.4) B = log( ;% ), V= (n + m)(n +2n)/nn,

where ¥, is calculated from equation (1.10). The first specification test based on
the deletion of alternative 3 where  of equation (1.16} is evaluated at 8, is

21, A\
{3.5) Hy=(Bc—B.)/0= (log( anj )) (ny + ny).

By symmetry the statistic based on the deletion of alternative 2 is

2n 2
(3.6 H,= (Iog( - )) (1 + 13).

Note that the last possible test H, is not defined under our data configuration
since B is not identified when alternative 1 is deleted.

As the model specification for the alternative hypothesis we use the nested
logit model. For our uses it can be most conveniently written as

(3‘]") p= Hlpi Pa= HZP! Pi= I — p= eﬁza/(eﬁza + (eﬂz|/?\+ eﬂzz/}\)‘\}
where TI, = e/ /(eP%/* + ¢f2/*) for i = 1,2. The log likelihood has the form
(3.8) L{a,\) =nma—(n + n)(1 —A)log(e” + 1) — Nlog(i + (e” + 1)*)

where we use the parameterization a = /A, The maximum likelihood estimates
are

- _ Hy v Hy
69) G-l A-log( ) / Iog(

H+ Ry

)
n o+ ny

Benote the partitioned large sample estimate of the information matrix as

L A
(3.10)  — lim £ Fow Lo | _ ) Ase Aur |
Moo | Loy Ly Axe Ana
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Then the Wald statistic for the hypothesis Hy:A =1 1s
@1y wW=a-1v-!

where V™''= A,, — A% /A, = (mons(n, + n)th) /(Nnyt? + 3y for ¢ =
log(n, /(n, + 1)) and £, = log(n,/(n, + 7,)).'® Next the LR statistic is calculated
from the unrestricted log likelihood function of equation (3.2) for the MNL
model which sets A = [ and the nested log likelihood of equation (3.8):

3.02) LR =2(L(a,\)— L =2n) G SN WA 2n3
(‘ ) B ( (a’) C(B))_ H20g(m) n:jog(ﬂ2+f13 .

Finally we derive the LM statistic. Under the null hypothesis with A = 1, we use
the MNL estimate # = log(2n,/(n, + n;)) so that in equation (3.7) I, = (», +
ny) /(N +n)and p = (N + »n)/2N. We then evaluate the gradient of the likeli-
hood function (3.8) at this point to find

(13 L= (257 Yloglny + m) /(N + )

together with its large sample variance

(14 V'= —(ELy — (EL,Y/EL,)
+
= n24Nn3 (log(ny + n3) /(N + nl))z.

Therefore we calculate the LM statistics as'!

(n3 — my)?

L F2iO-
(315 LM=L}/V o

Asymptotically, each of the test statistics H3, H2, W, LR, LM is under the null
hypothesis distributed x?. Note that (#,,#,, n,) has the trinomial distribution,

' H " H
(3.16)  Pr(n,ny,ny) = m PUt P p3ts

where p, p,, p; are given by equation (3.1) with A = | under the null hypothesis,
and @& < A < | under alternatives. For the example, we calculate numerically the
exact distribution of the statistics for A = | and for alternative values A = (.95,
.9,.85,.8,.75,.7). The procedure for calculation of the exact distribution is
straightforward, albeit time intensive on a computer. For f=log2, z, =1,

U Details of these derivations will be provided by the authors upon request. W. Newey helped
discover and correct an error in an earlier version of the paper (Hausman—McFadden [12]).

'T. Rothenberg has pointed out that this test is the best unbiased test far the trinamial case with
null hypothesis p, = p. See Lehmann [16, p. 147]. Of course, this result holds only for our particular
example.
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2, = 24, =0, and for the chosen value of A we consider all possible realizations of
#y, "y, and n, such that », + #y, + »n, = 1000, We then calculate the values of the
test statistics with the formulae of equations (3.5) to (3.15) for the given
(n, ny, 1), Since equation (3.16) gives the probability for each realization of
(ny, 1y, 1) it is straightforward to calculate the exact distribution of the test
statistics under the null and alternative hypothesis. Note that no Monte Carlo
sampling is performed nor is numerical integration used so that our distribution
funetions are exact, That is, we have evaluated the size and power of the tests via
compiete enumeration of the discrete sample space so that our results are exact
to within the (double precision) accuracy of the computer. These calculations
permit determination of the exact sizes of each test for various nominal sizes, and
of the power functions.

Table III.1 gives the exact distribution of the five alternative test statistics
under the null hypothesis: H3 1s the statistic from equation (3.5) based on
deletion of alternative 3, H2 the corresponding statistic for deletion of alternative
2, and WALD, LM, and LR are the Wald, Lagrange multiplier, and likelihood
ratio statistics, respectively.

Table TII.1 shows that the exact distributions of the test statistics are close to
their asymptotic limit. All the statistics have relatively lower tails than the chi

TABLE III.1
Exact CUMULATIVE DISTRIBUTION FUNCTIONS OF THE TEST STATISTICS, A = |

CHI
ARGUMENT SQUARE Hi H2 WALD LM LR

0009766 0250000 0.0178390 0.0178390 0.01783%0 0.0178390 0.0178390
0039119 0500000 0.0534814 0.0534814 0.0534814 00534814 0.0534814
0157204 1000000 00890171 0.08%0171 00890172 0.0890171 0.0890171
0356288 1500000 0.159455%  0.1594559 0.1394559 0.1594646  0.1594646
0639752 2000000 0.1942877 01942877 0.1942892 (0.1942862 (.1942862
1012512 2500000 02569941 02569941 02562594 0.2572682 0.2572682
481302 3000000 0.2962718 02962718 02963227 02961984 (.2961984
20551101 3500000 0.3531899 03531899 (13526435 (.3545815 0.3544R15
2745780 4000000 0.3961915 03961915 03973523 0.3946570 03946576
568926 4500000 0.4512623 04512023 04508477 0.452460% 0.4524609
4545310 5000000 0.4997899 04997800 0.4990429 0.5002996 (.5002995
5702946 5500000 0.5499002 0.3499002 0.5505190 05487446 0.5487446
7080494 6000000 0.6008482 0.6008402 0.6011120 05983838 0.5983838
8732966 6300000 0.6303276 0.6503276 06504698 0.6498035 0.6487021
16741902 7060000 06991320 0.69%1320 0.64996405 0.7004598 0.7004598
1.3233021 7300000 (.7497382 0.7497382 07501819 07496198 0.7496150
1.6428286 8000000 0.§000640 0.8000640 08003115 07998943 0.7998868
2.0730254 8500000 0.8500422 0(.8500422 0.8501742 08502551 0.8496568
27067207 9000000 0.8997094 08997094 0.8598380 0.9000008 0.8999949
3.8431482 9500000 09494465 09494465 09496468 0.9501477 0.9498332
50258684 9750000 09743730 09743730 09743900 0.9730777 09749321
6.6369923 9900000 0.9893903 (.9393903 09893313 0.9900406 0.9900223
10.8291046 9990000 09987133 09987133 0.9986340 09990174 09989938
15.1371548 9999000 09998161 09998161 09997878 0.9999030 09998992
19.5106637 9999500 09999701 (.9999701 0.9999630 09999905 0.999389%
239262119 9999990 09999947 (.9999947 (.9999930 0.9999991  (L9999930
283710278 9999999 0.9999990  0.9999990  0.9999986 0.9999999  0.9999999




SPECIFICATION TESTS [233

square. However, the upper tails are quite close to the central chi square
distribution. Therefore, the nominal and exact test sizes agree rather well. As the
calculations indicate in column 1 of Table III.1 for A = 1.0 even at the | per cent
test level the largest deviation between nominal and exact test size is .00067 for
the Wald test which is only 6.7 per cent off. For the 5 per cent test level the
maximum percentage deviation between nominal and exact test is | per cent
while for the 10 per cent level the maximum percentage deviation is 3 per cent.
Therefore, the overall agreement between the nominal and the exact test sizes is
excellent.

Table II1.2 gives the power of each of the tests against the nested logit model
with values of A less than one far a sample size of ¥ = 1000, The exact powers of
the asymptotic tests, uncorrected for size, are ranked

WALD > H3 »>LR > LM > H2

over most values of A. The differences in power are of sufficient size and
uniformity to suggest that the WALD and H2 tests are preferable to the other
tests. The LR and LM tests have about [0 per cent less power at values of A

TABLE I[1.2
ExacT PowER oF THE TESTS, N = 1000

Notmnal §ize A=10 A =.93 =290 A= 80 A=.70

1. H3: 10 10029 17861 38142 86438 99631
05 05055 10931 27564 79054 99152
01 014059 03568 12406 59877 96630
2. HX: .10 15318 15318 33613 83543 99466
05 05033 .08363 22158 73703 98646
a1 01059 01869 07302 47905 93583
3. WALD: .10 10014 18087 38523 86643 99640
05 05035 ALL59 28013 79416 S9177
kil 01067 03733 12839 60677 96772
4. LM: 10 10000 16574 35912 85076 99557
05 04985 095717 JJ3829 Ta534 98933
.01 00996 02619 09710 54204 95376
5. LR: 10 10001 18577 35913 R5080 99558
05 105017 9622 .24902 16530 98934
A4l 00998 02622 09717 54211 95377

6. Asymptotic .10 1000 1632 3404 7914 9793

Approximation 05 0500 .0941 2328 L6901 9577

01 0100 0256 Q889 4523 86682
7. Approximate H3 ] 0040 00174 D015 02216
Slopes H2 a 00038 00155 00639 01500
WALD a 00041 00175 00832 02217
LM ] 00039 00164 00718 01794
LR (] 00039 00164 00719 (1806
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TABLE IIL3
Exact POWER oF THE TesTs, M = 100

Norminal Size L=10 =95 =90 A=40 =170
1. H3: 19 10268 12389 15753 27235 45470
05 05402 07130 09829 19294 35525
01 01594 102496 03918 109332 20497
2. H2: 10 10268 09854 10598 16899 30819
A3 05462 0475¢ (34895 38385 17908
A1 01074 01074 00821 ALL76 03388
3. WALD: .10 10330 12163 15692 27454 45623
05 05424 07328 10268 20131 36553
.0 01683 02674 04204 (09895 21375
4. LM: 10 09876 10528 12595 21629 37950
05 04943 05385 06804 13361 26628
0l 00959 01010 01566 04033 17901
5 LR: 10 1080 10854 12966 22170 38730
05 5010 05454 06882 13478 26806
01 100999 00143 016322 04141 10629

6. Asymptotic 10 1000 10632 12541 2003 3181

Approximation 05 0500 05428 06739 1214 2142

a1 0100 a4t 01586 0364 0792

equal to .95 and .90 where power differences are most critical. However, overall
power differences are not extremely large.

In Table II1.3 we again do exact power calculations for a sample size of
N = 100. Here substantial differences arise with respect to the operating charac-
teristics of the tests. The size of the tests (A = 1.0} is not as accurate as before
with the H2 and H3 tests and Wald test too large by about § per cent, e.g., the
size of the Wald test is .03426. The percentage difference is even larger at the [
per cent level although the absolute difference is not large. The overall power
ranking for the tests i1s identical to the previous case. For A close to one, none of
the tests do well. For A =.8 the H2 and Wald tests are extremely close and are
about 40 percent more powerful at the § per cent level than the LR and LM tests
and 90 per cent more powerful than the H3 test. Comparable results occur for
the A =.70 case. Thus the Wald and H2 tests demonstrate substantially more
power than the LR or LM test although their size is somewhat too large.

The difference in the test results offers a caution for relying too much on first
order asymptotic expansions. The Wald test and H2 tests always do better than
the other tests, sometimes substantially better. This result is surprising because all
the tests have the same noncentrality parameter under local deviations. That is,
the LR, LM, and Wald tests are asympiotically equivalent while the Hausman
type tests and LR tests are also asymptotically equivalent for our particular
example given the results of Holly [15]. We now calculate the noncentrality
parameter for all of the tests.
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The noncentrality parameter is perhaps most easily calculated from the Wald
test. For a sequence of local alternatives it is » = 82/ V(A) where V(A) is the
asymptotic variance of the ML estimator from equation (3.11). From the inverse
of the information matrix it is calculated to be ¥(A) = 2(e® + 2) /log(e® + 1))
Therefore the noncentrality parameter is

G17) v =8%log(e? + 1)) /(2" + 4).

Asymptotically, all the test statistics are distributed as noncentral ¥* with one
degree of freedom and noncentrality parameter » for local deviations.

To assess the accuracy of the asymptotic approximation and to determine how
local the deviation must be for asymptotic theory to provide a reliable guide, in
the bottom rows of Table ITL.2 and IT1.3 we calculate the asymptotic approxima-
tion to the power of the test with a noncentral x* distribution and » from
equation (3.17) where §% = N(1 — A)*."? For the ¥ = 1000 case the LM and LR
tests are reasonably close for A =.95 and A =.90. The Wald and H3J tests have
higher exact power than the asymptotic approximation predicts. For A less than
.9 all the tests have greater exact power than the prediction of the asymptotic
approximation. Similar results are found for the case M = 100 although the
underprediction of the exact power by the asymptotic approximation becomes
more serious as A departs from unity. For departures of size § =.2 or § =.3 the
deviations between exact power and the asymptotic prediction are substantial
although 2 sample size as small as N = 100 may not be large enough for the
approximation to be accurate. Our conclusion here is that, for our example,
deviations must be quite local for the first order asymptotic approximation to
provide accurate guidance for power considerations. Presumably, higher order
Edgeworth type expansions would lead to improved accuracy, althaough the tests
are no longer equivalent to higher orders of approximation.

An alternative asymptotic approximation criterion is given by the approximate
slope of the test statistics (Bahadur [2, 3] and Geweke [9]). An interpretation of
the approximate slope statistic can be given either as the rate that the size of a
test approaches zero for fixed power or that the ratio of the approximate slopes
gives the inverse ratio of sample sizes needed to attain equal power as the size of
the nonrejection region increases. The approximate slopes of our test statistics are
easily calculated by inserting the theoretical probabilities for the number of
realizations. This calculation is equivalent to division by the sample size followed
by taking the limit as the sample size goes to infinity. The approximate slopes are
given at the bottom of Table IIL.2. Tt is interesting to note that the ranking of the
approximate slopes is identical to the ranking of the exact power of the test
statistics. Furthermore, the approximate slopes of the WALD and H3 statistics
are very close as are the approximate slopes for the LM and LR tests which
corresponds to our results. Therefore, in our example, the approximate slopes

24 formula for the infinite series representation of the noncentral x? is given in Abramowitz and
Stegun (1, formula (26.4.25)].
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provide a valuable tool to predict the relative performance of the various tests
although they do not provide a guide to the absolute power characteristics.

Now a special feature of our example was that all the tests had the same
degrees of freedom. In more general situations the classical tests would remain
one degree of freedom tests of the hypothesis A = 1. The Hausman-type tests
would have the degrees of freedom grow with the number of parameters in the
restricted model. Holly [15] has discussed situations where Hausman type tests
and classical tests differ in their degrees of freedom. While for the general case
no ranking can be made because the noncentrality parameters will not be equal,
here we consider a two parameter case to see if important differences emerge. We
again have a three alternative case, but now we have two right-hand-side
variables. We set x, =l foran=1,... , N, and x,=0forn=N,+1,.. ., N
where N, + N, = N. Then we set x,, = [ — x|,. We therefore have 2 slope
parameters & and B and the parameter for the nested logit model A. The
probabilities take the form

(32[) Pla = [—[lapa! Pia = H2apa! and Pf'm =1 P = 1/(1 + ([ T ea/)\)'\)

where I, = e*/* /(1 + */*) and II,, = | — I1,,. Similar formulas apply for the
P, probabilities with 8 replacing «. Let a = a/\, b= /A, and let n? be the
number choosing alternative i in the first N, observations and n? be the number
choosing alternative i in the last N, observations. The likelthood function is

(3.22)  L(a, 5,A) = nilog P\, + nilog P,, + nilog Py,
+ nllog P, + nllog Py, + nilog P, .

A closed form solution for the MLE no longer exists.

We compare the LM tests and H2 and H3 tests. Both tests are based on the
MNL estimates which allow us to compute the exact power characteristics of the
tests. Presumably, these tests would be most often used as model specification
given the difficulty of estimation of the nested logit model.” The LM test is
calculated to be

[logIT,, (5 — n7) + log IL,y( 75 — n3) ]2

(3.23) LM= " -
(nf + ni)(logIl,,)" + (n, + n;)(IOg IT,,)

where [1,, = (n§ + n)/(N, + 1) and likewise for I1,,. The H3 test is computed
to be

(324) H3 =l ( A P N 2 b4 pb

. =|log{ ———— n n og| ——— n b
ng + nj (2 5) . ns + nd (2 3)

while the H2 test is computed similarly with ny or nf in the numerator.

A Wald type test cauld be based on the consistent, but asymptotically inefficient estimate of A
from the sequential model. The correct asymptotic standard error for this estimate would need to be
computed.
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TABLE I11.4

ExacT PowER OF THE ParaMETER TESTS, ¥V = 100
WNaminal Size = 1.4 h=.9% A=290 h=80
1. H2: 10 11914 14460 .[7998 35798
(2 df) 05 07314 09437 .12351 27730
A0l 01933 04112 08801 15931
2. H3: 10 L1914 10200 11638 22938
(2 dfy 03 07314 05800 05787 13876
0 01933 02095 101483 03866
3. LM: 10 10003 10636 .12629 28223
(1 df) 05 04947 05370 06723 18277
01 01112 02693 03549 06306

In Table III.4 we give exact results for the case of N = 100 where N, = N,
= 50. We choose a = log2.5, 8 =logl.5, and consider values of A of (1.0,.95,
90,.75). Note that the H2 and H3 tests are now 2 degrees of freedom y” tests
while the LM test is based on a one degree of freedom x* distribution. The
results demonstrate that the H2 test again has more power than does the LM test
which is better than the H3 test. In fact, the power results are very similar to
Table IT1.3 where we considered a sample size of N = 100, but with only one
degree of freedom situation. However, here the actual size of the H2 and H3 test
is too large by a greater magnitude than in Table II1.3 Therefore, judgements on
the relative merits of the tests must not only consider the power characteristics
but also the size where the H2 and H3 tests are not as good as the LM test. Qur
results from this 2 parameter case demonstrate that the power of the H2 and H3
tests do not decline in relation to the classical tests even here where the
alternative model of the classical tests corresponds to the true model. In actual
testing situations, where the true model is often unlikely to be a nested logit
model, the performance of the Hausman type test has appeared to be compara-
ble to the classical tests.'

For comparison purposes, we recalculated the exact classical tests based on a
misspecified nested logit model. That 1s, in Equation (3.7) we interchanged p,
and p, so that choices 1 and 3 now lie on the same branch. However, we
continue to cenduct the test procedures based on the original model specifica-
tion. The H2 now has more power than either the H3 or the Wald test while the
power of the LM and LR tests remain the same. The LM and LR tests have
greater power than the Wald test here. Thus, it seems useful to investigate
different tree structures when using the classical tests because of their sensitivity
to maodel specifications. In the last line of Table IIL5 we also present the
maximum likelihood estimates of A which all exceed the theoretical maximum of

14See Hausman-McFadden [12] for an example of the performance af the tests in an applied
situatiarn.
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TABLE ITL5

ExacT TEST RESULTS FOR THE MISSPECIFTED MODEL AT TEST S12€ .05
EOR N = 1000 aNnD N = 100

N o= 1000 N=100

h =85 h=39 =75 h=295 A= 148 A=5
Narminal size 0,05
H2 10931 27564 9424 07067 09797 26494
H3 08343 22158 91877 04607 046635 J1518
WALD 08042 21460 91541 04359 04096 09534
LM 09577 23829 93153 05385 06804 19024
LR 09622 24902 93166 03454 06882 19168
MLE estimate of A 1.051 1.0107 1.301

1.0 for a random utility model which again indicates misspecification.'” Likewise,
it seems useful to base the Hausman type specification test on different restricted
choice sets since its power also depends on the model specification. In an actual
applied situation where the correct specification is unknown both different
restricted choice sets and different tree structures should be investigated for the
respective tests since our examples indicate the sensitivity of the operating
characteristics of the tests to the choice of alternative specifications.

4. CONCLUSIONS

In terms of applying the Hausman type tests or the trinity of tests, the
non-uniqueness of application can arise. For instance in the 3 choice case any of
the 3 alternatives can be dropped or 3 different tree structures can be defined. As
the number of choices grows, the different possible combinations grow factori-
ally. If more than cne test is performed, the problem of controlling for the size
arises hecause the tests will not be independent. In the case of the H2 and H3
tests the different estimates could be combined to form a test after their joint
asymptotic covariance matrix is calculated which would not be difficult.'s
Alternatively, the distribution of the maximum of say ; test statistics under the
null hypothesis of the MNL model might be possible to derive. Another ap-
proach 1s to use the ITA property of the null hypothesis. The restricted choice set
A could be successively decreased when mare than 3 choices exist and the size
controlled for as we do when independent F tests in linear models are used.
Close substitutes should be eliminated from the choice set C when tests of the
I1A property are conducted. However, a general theory of the optimal procedure
to design the restricted choice set A is a topic for further research.

We conclude that the Hausman type test and Wald test are the best choices to

We emphasize that a ML estimate of A which exceeds unity is a ‘regular’ outcome of the
specification of the nested logit model from a statistical viewpaint. However, the choice model cannot
he interpreted as a random utility madel if the true A is greater than one.

150 cFadden [21] considers the combination of tests when different restricted choice sets are used
to estimate test statistics.
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test the TIA assumption in MNL models. The Wald test does require maximum
likelihood, or at least asymptotically efficient estimates, of the nested logit model
and correct specification of the tree structure in the nested logit model. The Wald
test has higher power in all our examples than the LR or LM test and the H2 or
H3 test for the correct specification. However, for an incorrect specification the
LR and LM tests are superior to the Wald test. But the Wald test has signifi-
cantly greater computational requirements than does the first type test. An
alternative test based on a consistent estimate of A from the sequential logit
estimator is possible by the use of Neyman's [23] C, procedure. However, our
experience with sequential logit estimator is that it gave unreliable estimates of
A.\7 Since the Hausman type test gave results in general close to that of the Wald
test across the range of our examples, we recommend it as a general purpose
specification test for the MNL model. The Wald test should also be considered
when the analyst feels that the nested logit model provides the correct specifica-
tion for the choice prablem under consideration. The Wald test requires more
sophisticated computer software; presumably, computer software will become
available which permits its convenient estimation. But certainly some test of the
[IA property should be made when the MNL model 15 used. Qur experience is
that the Hausman type test and classical tests have rejected the MNL specifica-
tien in a number of applications.

Massachusetts Institute of Technology

Manuscript received October, 1981, final revision received November, 1943.

7 An indication of the unreliability is that in the applied example of the Hausman-McFadden [12]
versian, one Newtan type step beginning at the sequential logit estimates led to a decrease in the
value of the likelihoad functian in the majority of the cases cansidered (far step size equal to one).
Since the C, test is based on the one step methodology, we decided against its use. Furthermare, in
the misspecified model case, we were often unable to find an increase in the likelihood function even
when up to three Newton steps were made.
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