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Abstract

Mixed logit (MXL) is a general discrete choice model thus far unexamined in the study of
multinomial political science problems. Mixed logit assumes the unobserved portions of utility
are a mixture of an IID extreme value term and another multivariate distribution selected by the
researcher. This general specification allows MXL to avoid imposing the independence of irrelevant
alternatives (IIA) property on the choice probabilities. Further, MXL is a flexible tool for examining
heterogeneity in behavior through random-coefficients specifications. Mixed logit is a more general
discrete choice model than multinomial probit (MNP) in several respects, and can be applied to
a wider variety of questions than MNP. Empirical examples examining voter substitution between
parties in the 1987 British general election, heterogeneity in the influence of union membership on
vote choice in the 1992 US presidential election, and heterogeneity in the career decisions of US
Representatives over time demonstrate the utility of mixed logit in political science applications.
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1 Introduction

In this paper I describe the mixed logit (MXL), a flexible discrete choice model based on random
utility maximization, and discuss its applicability to the study of multiparty elections.1 Mixed
logit models have seen application in marketing and transportation research (Algers, Bergström,
Dahlberg, and Dillén 1999; Bhat 1998a, 1998b; Brownstone and Train 1999; Jain, Vilcassim, and
Chintagunta 1994; Revelt and Train 1998; Train 1998), but have seen only limited application in
political science (Glasgow 2001).

Mixed logit is a discrete choice model that estimates the structure of the error term. In this
respect MXL is identical to multinomial probit (MNP), a discrete choice model that is more fa-
miliar to political scientists. In the study of multicandidate and multiparty elections MNP is an
increasingly popular choice (Alvarez and Nagler 1995, 1998a, 1998b; Lacy and Burden 1999, 2000;
Lawrence 1997; Quinn, Martin, and Whitford 1999; Schofield, Martin, Quinn, and Whitford 1998).
The primary motivation for using MNP in the study of multiparty elections is a desire to avoid
the independence of irrelevant alternatives (IIA) property. Models which assume IIA, such as
multinomial logit (MNL), assume that the ratio of the probability of voting for party A over the
probability of voting for party B remains unchanged when party C enters or leaves the election.
MNP relaxes this assumption, and allows researchers to estimate how voters view parties as similar
or different. This is an important point when estimating substitution patterns (how voters will
react to a candidate or party entering or leaving an election).

Mixed logit also relaxes the IIA assumption, and like MNP can estimate substitution patterns
that account for the unobserved similarities and differences of candidates and parties. Both mod-
els accomplish this by assuming a particular structure for the unobserved portions of utility and
estimating components of this structure. In most political science applications the unobserved
characteristics of candidates or parties are assumed to induce correlations across alternatives —
however, this is only one of a wide variety of structures that can be placed on the unobserved
portions of utility. Both MNP and MXL allow for many different specifications of the unobserved
portions of utility, with MXL allowing a greater range of specifications than MNP. Thus, MXL is
a more general discrete choice model than MNP in several respects.

Both MNP and MXL are based on a theory of random utility maximization. These models are
based on the assumption that a voter’s preferences among alternatives in the choice set can be de-
scribed by a utility function. This utility function depends on the attributes of the alternatives and
the characteristics of the individual. When chosing an alternative, individuals select the alternative
that yields the highest utility.

The utility function is represented as the sum of two components — a systematic component
that depends on the observed attributes of the alternatives and the characteristics of the individuals,
and a stochastic component that represents the influence of unobserved factors on an individual’s
choice. The utility yielded by party j to individual i can be represented by:

1Mixed logit models are also known as “random parameters logit”, “mixed multinomial logit”, “random coefficients
logit”, and “error components logit”.
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Uij = Vij + eij (1)

where Vij represents the systematic (observed) portion of utility, and εij represents the stochas-
tic (unobserved) portion of utility. The probability that individual i selects alternative j is the
probability that the utility for alternative j exceeds the utility of all other alternatives:

Pij = Pr(Uij > Uik) ∀K = Pr(Vij + eij > Vik + eik) ∀K (2)

Since utility depends in part on some unobserved factors, it is not possible to say with certainty
which alternative an individual will choose. Instead, random utility models make assumptions
about the distribution of the stochastic portion of utility and calculate the probability that an
individual will select each alternative by estimating a discrete choice model. The type of discrete
choice model estimated depends on the assumptions made about the distribution of εij .

Multinomial logit assumes that the unobserved portions of utility εij are identically and inde-
pendently distributed (IID) in accordance with the extreme value distribution.2 It is well known
that the choice probabilities of MNL have the IIA property. For each individual, the ratio of the
choice probabilities of any two alternatives is independent of the utility of any other alternatives.
This property is not unique to MNL — IIA will hold in any discrete choice model that assumes the
unobserved portions of utility are IID. IIA can lead to unrealistic estimates of individual behavior
when alternatives are added to or deleted from the choice set (unrealistic substitution patterns).
Most advances in the empirical modeling of multiparty and multicandidate elections in recent years
have focused on relaxing the restrictiveness of the IIA property and estimating more natural sub-
stitution patterns. However, it is important to note that when IIA is an inappropriate assumption
the model assumption that has actually been violated is that the stochastic portion of utility is
IID.

There are reasons to account for IID violations in discrete choice models beyond estimating
more realistic substitution patterns. The sources of the IID violations themselves are often of
great substantive interest. In a sense, the ultimate goal in empirical modeling is to completely
specify the relationship between the dependent and independent variables, and reduce the remaining
error term to random noise. Thus, a preferable approach to models that account for violations of
the IID assumption would be to explicitly model the sources of these violations, and reduce the
remaining error to something that is irrelevant, and offers no information on substitution patterns
or preferences for alternatives (Horowitz 1991). For example, observing and modeling what leads
voters to view two candidates as similar is preferable to accounting for these similarities through
the specification of the unobserved portion of utility. However, in many cases the relevant variables
will be unknown or unobservable, and our only recourse will be to account for these variables as
IID violations in the unobserved portion of utility.

2I use the term “multinomial logit” generically, intending it to refer to both multinomial logit (with variables
specific to the individual) and conditional logit (with variables specific to the alternatives, and possibly the individual
as well). The general form of both models is identical, with the differences between the two models arising through
the choice of variables included (Maddala 1983). Referring to this class of models as “multinomial logit” brings
this terminology into line with the accepted terminology for the equivalent probit model, which is referred to as
“multinomial probit” regardless of what kind of variables are included.
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Three possible violations of the IID assumption will be considered here. One is when alternatives
share unobserved attributes that influence choice. These unobserved attributes cause correlation in
the unobserved portion of utility across alternatives, leading individuals to violate the IID assump-
tion. This violation is known as common unobserved attributes. Most MNPs in political science are
specified to account for common unobserved attributes — for example, the common unobserved
attributes that might lead a third candidate entering a US presidential election to be seen as a
substitute for one of the two original candidates. The other violation of IID considered here occurs
when unobserved characteristics of the individual influence how observed characteristics of the indi-
vidual and attributes of the alternatives affect choice. For example, voters with the same observed
characteristics may place different weights on the issue positions of candidates or parties. For some
individuals, candidate or party positions on a particular issue may have a great influence on their
vote choice, while for others this influence may be minimal or non-existent. Each individual places
their own particular weight on these issue positions, which leads to correlation across the utility
of alternatives for each individual and again leads individuals to violate the IID assumption. This
violation is known as random taste variation, since “tastes” for the either the attributes of alter-
natives or for the relationship between individual characteristics and alternatives vary randomly
across individuals. Finally, the IID assumption is also violated when two or more observed choices
depend on common unobserved characteristics of individuals, causing correlation in the utility for
alternatives over different choice sets. This violation is known as unobserved heterogeneity. This
is primarily a problem in panel data. For example, an individual might have a predisposition to
favor certain kinds of candidates for an unobserved reason. In a single-choice situation this would
just be a part of the error term, but in a repeated choice situation this would lead to correlation
between the choices made by this individual over time.

Both multinomial probit and mixed logit relax the assumption that the unobserved portions
of utility are IID, and both can therefore address violations of IID that arise due to common
unobserved attributes and random taste variation. Multinomial probit relaxes the IID assumption
by specifying the distribution of the unobserved portions of utility as multivariate normal with a
general covariance matrix. This allows MNP to estimate the heteroskedasdicity and correlation
of the unobserved portions of utility through the covariance matrix of this multivariate normal
distribution. MXL relaxes the IID assumption by specifying the unobserved portions of utility as a
combination of the IID extreme value term of the multinomial logit and another distribution g that
can take any form. Models of this form are called “mixed logit” because the choice probability for an
individual is a mixture of multinomial logit models, with g as the mixing distribution. MXL is able
to estimate the heteroskedasdicity and correlation of the unobserved portions of utility through
the parameters that describe this general distribution. This specification is more general in its
treatment of the unobserved portions of utility than MNP, which requires the unobserved portions
of utility be distributed multivariate normal and estimates the covariance matrix of the unobserved
portions of utility. Thus, MXL has advantages over MNP in many applications, whether the IID
violations are due to unobserved attributes or random taste variation.

In section 2 I describe how multinomial probit and mixed logit can both be derived from a
common utility framework. When presented in this way it is apparent that MNP and MXL (and
most other discrete choice models familiar to political scientists) are in fact identical in basic
structure, with the only differences arising through different assumptions about the distribution
of the unobserved portions of utility. MXL is revealed to be a more general model than MNP in
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several respects, since it places fewer restrictions on the assumptions that can be made about the
unobserved portions of utility. Section 3 presents three empirical examples. The first example is an
estimate of substitution patterns between parties competing in the 1987 British general election.
There it is shown that MXL can be specified in much the same way as MNP, and used to determine if
certain alternatives are viewed as similar by individuals. The second example studies heterogeneity
in the impact of union membership on presidential vote in the 1992 US presidential election. The
third example studies Congressional career decisions, specifying correlations over time. Section 4
concludes, discussing the utility of mixed logit in political science research.

2 Specification of the Mixed Logit and Multinomial Probit Models

Assume an individual faces a choice set consisting of J alternatives. Let the utility that individual i
receives from alternative j be denoted by Uij , which is the sum of a linear-in-parameters systematic
component Vij and a stochastic component eij . Rewrite the systematic component of utility as
Vij = xijβj , where xij is a vector of characteristics unique to alternative j relative to individual
i, unique to individual i, or both. βj is a vector of parameters to be estimated which are either
fixed over individuals and alternatives, or vary over alternatives for those elements in xij unique
to individual i. Rewrite the stochastic component of utility as eij = zijηi + εij , where zij is a
vector of characteristics that can vary over individuals, alternatives, or both (zij and xij can have
some or all elements in common). εij is a random term with mean 0 that is IID over individuals
and alternatives, and is normalized to set the scale of utility. ηi is a vector of random terms with
mean 0 that varies over individuals according to the distribution g(η|Ω), where Ω are the fixed
parameters of the distribution g. We then write the utility that individual i gets from alternative
j as Uij = xijβj + (zijηi + εij). Stacking the utilities yields:3

U = Xβ + (Zη + ε) (3)

If IIA holds, η = 0 for all i, so U depends only on the systematic portion of utility and an IID
stochastic portion of utility. Discrete choice models that assume IIA do not estimate Zη, implicitly
assuming η = 0. However, by considering the impact of the term Zη on utility, discrete choice
models can be specified that are able to consider the effects of unobserved attributes and random
taste variation, and thus avoid the IIA assumption. These models will estimate Ω (the parameters
of the distribution of η) as well as β.

If the elements of Z are also contained in X this is a random-coefficients model. In this instance
the appropriate elements in the vector β give the mean values for the random coefficients (the
coefficients on those variables contained in both Z and X), while Ω gives the other parameters of
the distribution of the random coefficients (such as the variance). Random-coefficients models are
usually specified to examine random taste variation, allowing for the study of heterogeneity in the
impact of the independent variables on the dependent variable. This is an underexplored area of
research in voting behavior — many studies have established the mean relationships of numerous
variables to vote choice, but little is known about the heterogeneity of those relationships. One

3I will generally drop subscripts from the notation from here on unless they are necessary to avoid confusion.
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exception is a study by Rivers (1988), who examined heterogeneity in voter behavior by estimating
separate coefficients for each individual in the dataset. In a sense the random-coefficients models
described here, which estimate the parameters of the distribution of each random coefficient, are a
compromise between the approach of Rivers and the approach of most other models, which assume
all coefficients in the model are identical for all individuals.

If the elements of Z are not contained in X this is an error-components model. The elements
of Z are assumed to be error components that introduce heteroskedasdicity and correlation across
alternatives in the unobserved portion of utility. Error-components models are usually specified to
estimate more realistic substitution patterns, and can do this through considering either random
taste variation or unobserved attributes. In many cases these error components are simply random
coefficients which are assumed to have a mean 0, thus examining the effect of random taste variation
on substitution patterns. If the elements of Z are set as constants across individuals, but vary across
alternatives, then an error-components model can estimate the effect of unobserved attributes. Of
course, combinations of the error-components and random-coefficients specifications are possible;
elements of X that do not enter Z are variables whose coefficients do not vary in the population,
elements of Z that do not enter X are variables whose coefficients vary in the population with mean
0, and elements that enter both X and Z are variables whose coefficients vary in the population
with means represented by the appropriate elements in β. The elements contained in Z determine
if the model specifies IID violations as unobserved alternatives or random taste variation.

A wide variety of discrete choice models can be derived by specifying different distributions for
the stochastic components of utility η and ε and by including different information in the vector Z.
Below I demonstrate how both multinomial probit and mixed logit models can be derived from this
utility framework, and discuss the relative merits of each in the study of multicandidate elections.

2.1 Multinomial Probit

To derive a multinomial probit model from Eq. 3 assume η and ε have multivariate normal dis-
tributions. The random term η is normally distributed with mean 0 and a general covariance
matrix, while the random term ε is distributed IID standard normal. Note that if η = 0 this is an
independent probit model, which has the IIA property.

The unobserved portion of utility in this model is ξ = Zη + ε. Since the sum of two normal
distributions is also normally distributed, ξ is distributed as a multivariate normal with mean 0 and
a general covariance matrix Σ. Estimation of the multinomial probit generally involves estimating
β and Σ.

Most applications of MNP in political science have been motivated by the desire to relax the
IIA assumption and allow for more flexible substitution patterns between alternatives. Contrary
to the popular belief in political science, MNP does impose a priori constraints on how individuals
view alternatives (as do all other discrete choice models). For example, most MNPs in political
science assume that the IID violations are due to common unobserved attributes, so Z is defined
as an identity matrix of the same dimension as the number of alternatives. This is an error-
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components specification with normally distributed alternative-specific dummy variables as the
error components. Although this specification is very general, it is inaccurate to say no a priori
constraints are imposed. This particular specification of MNP is dominant in political science
(Alvarez and Nagler 1995, 1998a, 1998b; Alvarez, Nagler, and Bowler 2000; Lacy and Burden 1999,
2000; Lawrence 1997; Quinn, Martin, and Whitford 1999; Schofield, Martin, Quinn, and Whitford
1998). Alternative specifications are of course possible through different specifications of Z. For
instance, the original specification of MNP by Hausman and Wise (1978) specified Z = X, and
estimated a random-coefficients MNP with the elements of the covariance matrix of the unobserved
portions of utility depending upon the values of the variables included in Z. Such specifications
have yet to be examined in political science.

The probability that individual i selects alternative j is estimated by integrating over the
multivariate normal distribution of the unobserved portions of utility. Since only differences in
utility are relevant for the choice probabilities, the dimension of integration is reduced from J to
J − 1 by subtracting the utility for one alternative from all other utilities and integrating over the
resulting utility differences. Thus, estimating a MNP model generally requires the evaluation of a
(J−1)-dimensional integral. If the dimension of integration is greater than two numerical techniques
cannot compute the integrals with sufficient speed and precision for maximum likelihood estimation.
In this case simulation techniques must be applied to estimate the MNP — for example, the GHK
probability simulator or MCMC simulation. Advances in computational power and simulation
techniques have reduced the costs of estimating MNPs to the point where they are becoming a
popular choice for examining multicandidate and multiparty elections.

Multinomial probit allows for a more realistic formulation of models of political behavior than
discrete choice models that assume the unobserved portions of utility are distributed IID, such as
MNL. However, MNP has two properties that limit the range of models available for study with
this method. The first limitation is in the number of random terms that may be estimated with
a MNP. As only the differences in utility matter, and because one element in Σ must be fixed to
set the scale of utility, only J×(J−1)

2 − 1 elements in Σ are identified. This means that MNP can
estimate at most J×(J−1)

2 − 1 random coefficients or error components. This is true regardless of
the number of elements in Z. There may be circumstances, particularly in a random-coefficients
setting, where it is desirable to examine random taste variation in a greater number of coefficients.
However, adding additional elements to Z in a MNP will not allow for the study of random taste
variation in more coefficients — this will simply make the identified terms in Σ linear combinations
of the variance and covariance of the various elements in Z. Alternatively, in some situations the
substitution patterns between alternatives can be captured with fewer error components than there
are alternatives. However, reducing the number of elements in Z will not reduce the dimension of
integration, as Σ is still J × J , requiring the evaluation of a (J − 1)-dimensional integral to solve
for the choice probabilities.

The second limitation of MNP, and perhaps the more restrictive in the study of multiparty
elections, is the requirement that all of the terms in η be distributed normally. There are many
instances in which non-normal distributions on error components or random coefficients are appro-
priate. For instance, the spatial model of voting maintains that individuals dislike candidates who
are “far” from their ideal issue positions, so a negative sign on a coefficient that measures the im-
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pact of “issue distance” on vote choice is expected. If the goal is to examine random taste variation
in issue distance with a MNP the coefficient on “issue distance” could be specified as a random
coefficient with a normal distribution. Unfortunately, some individuals in the dataset would have
coefficients of the “wrong” sign, since the normal distribution has infinite tails. A better specifi-
cation for this random coefficient would be a distribution constrained to take the “correct” sign,
such as the negative of a log-normal or beta distribution. Multinomial probit does not allow for
non-normal distributions on error components or random coefficients, and would thus be restricted
to estimating a random-coefficients model with unsatisfactory empirical implications.

2.2 Mixed Logit

To derive a mixed logit model from Eq. 3 assume ε is IID extreme value, while η follows a general
distribution g(η|Ω). If η = 0 this is MNL, which has the IIA property. Estimation of the mixed
logit generally involves estimating the vectors β and Ω.

For each individual, the choice probabilities will depend on β and η. Conditional on η, the
probability that individual i selects alternative j is simply MNL:

P (j|η) =
eXβ+Zη

∑
k∈J eXβ+Zη

(4)

If the value of η was known for each individual, the solution to Eq. 4 would be straightforward.
However, η is unobserved, although it is drawn from a known joint density function g. Thus, in
order to obtain the unconditional choice probability for each individual the logit probability must
be integrated over all values of η weighted by the density of η.

P (j) =
∫

η

[
eXβ+Zη

∑
k eXβ+Zη

]
g(η|Ω)∂η (5)

Examination of Eq. 5 reveals the choice probability is a mixture of MNL probabilities, with
the weight of each particular MNL probability determined by the mixing distribution g (thus the
term “mixed logit”). The IIA property does not hold for MXL, even if the covariance matrix of g
is diagonal. This is because η is constant across alternatives, introducing correlation in the utility
across alternatives at the individual level (note this is also true of the MNP specification in the
previous subsection).

The likelihhod function in a repeated choice setting is similar to the single choice likelihood
function in Eqs. 4 and 5. The probability of each individual’s sequence of observed choices over T
time periods is:

P (j|η) =
∏

t

eXtβ+Ztη

∑
k∈J eXtβ+Ztη

(6)

7



with an unconditional choice probability given by:

P (j) =
∫

η

[∏
t

eXtβ+Ztη

∑
k eXtβ+Ztη

]
g(η|Ω)∂η (7)

Like the single choice specification, IIA does not hold for a MXL over a series of choices. Further,
since η is constant across time, this introduces correlation for individuals over time.

The unconditional probability that individual i selects alternative j in either case is estimated
by integrating over η. This integral cannot be evaluated analytically since it does not have a closed-
form solution. If the dimension of integration is greater than two quadrature techniques cannot
compute the integrals with sufficient speed and precision for maximum likelihood estimation. Thus
simulation techniques are usually applied to estimate mixed logit models.

The integrals in the choice probabilities are approximated using a Monte Carlo technique, and
then the resulting simulated log-likelihood function is maximized. For a given Ω a vector of values
for η is drawn from g(η|Ω) for each individual. The draws of η can be taken randomly or by
using Halton sequences (a quasi-random method of drawing that ensures more even coverage of the
interval over which the integration is to be performed). The values of this draw can then be used to
calculate P̂ (j|η), the conditional choice probability given in Eqs. 4 or 6. This process is repeated
R times, and the integration over g(η|Ω) is approximated by averaging over the R draws. The
resulting simulated choice probability P̂ (j|β, Ω) is then inserted into the simulated log-likelihood
function, which is maximized with conventional gradient-based optimization methods. See the
Appendix for details on the estimation of mixed logit models.

Mixed logit is a more general discrete choice model than MNP in two respects. First, any
number of elements may be included in the random term η. Unlike MNP, which reflects the effects
of unobserved attributes and random taste variation in the covariance matrix of the unobserved
portions of utility, MXL includes the elements of η as additional coefficients in the utility function.
This means that the number of elements in η are not subject to the identification restrictions of the
covariance matrix of the unobserved portions of utility, and thus MXL can estimate any number of
random coefficients or error components. Further, the integration required to solve for the choice
probabilities in MXL is over the elements in η, while in MNP it is over the differences in the
unobserved portions of utility. If there are Q elements in η, solving for the choice probabilities in
MXL will require the evaluation of a Q-dimensional integral. If substitution patterns or random
taste variation can be captured with fewer error components such that Q is less than J − 1,
estimating MXL will be easier than estimating an equivalent MNP, which requires solving an
integral of dimension J − 1. This also means that MXL can estimate random coefficients in a
model that has only two alternatives — MNP cannot do this, since there are no free elements
in the covariance matrix when J = 2. Second, in mixed logit the elements of η can follow any
distribution. MNP requires that g(η|Ω) be multivariate normal, which can be undesirable in many
situations. Elements in η which have restricted signs or a finite support are easily handled in MXL.

These advantages make mixed logit a more general discrete choice model than multinomial
probit. A mixed logit model can be specified that will estimate the same substitution patterns or
random coefficients as any MNP — McFadden and Train (2000) demonstrate that MXL can be
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specified to approximate any discrete choice model derived from random utility maximization (to
an arbitrary degree of closeness) with the appropriate choices of g and Z.4 Conversely, MNP is
unable to estimate models that approximate MXL under many specifications. Thus, mixed logit
can be specified to answer many questions about multicandidate and multiparty elections that
multinomial probit cannot, and therefore have not previously been addressed.

3 Empirical Applications

The best way to demonstrate the various uses of mixed logit models is through empirical examples.
Below are three empirical examples, each intended to demonstrate a different use for mixed logit.
The first example is an estimate of substitution patterns between parties competing in the 1987
British general election. There it is shown that MXL can be specified in much the same way
as MNP, and used to determine if certain alternatives are viewed as similar by individuals. The
second example studies heterogeneity in the impact of union membership on presidential vote in the
1992 US presidential election. The third example studies Congressional career decisions, specifying
correlations over time.

3.1 Substitution Patterns in the 1987 British General Election

In this first example I use data from the 1987 British general election survey (Heath, Jowell, and
Curtice 1989). This same dataset has also been examined by Alvarez and Nagler (1998) and
Alvarez, Nagler, and Bowler (2000), with a multinomial probit model. In those papers they use an
error-components MNP to account for common unobserved attributes and relax the IIA property.
Below I will estimate an error-components MXL designed to account for unobserved attributes in
the same way as the MNPs commonly estimated in political science. This reveals that like MNP,
MXL relaxes the IIA property, and can even uncover the same substitution patterns as MNP.

The error-components MXL presented below is designed to account for the same violations of
the IID assumption that lead to the MNP specification most common in political science. In order to
facilitate this comparison I use the same variable coding as described in Alvarez, Nagler, and Bowler
(2000) (see the web appendicies for this paper at http://www.polsci.ucsb.edu/faculty/glasgow).
The impact of issue distance is assumed to be constant across all three parties included in the
model (Conservative, Labour, Alliance), while the individual-specific variables are normalized such
that the coefficients for voting Alliance are zero.

In order to specify a mixed logit that will treat IID violations in the same way as the MNP
models that are popular in political science, first note that the unobserved portion of utility in

4Note that this result is stronger than the “universal logit” theorem (McFadden 1984), which states that any
discrete choice model can be approximated by a model that takes the form of a standard logit. However, this requires
that the attributes of each alternative be allowed to enter into the utility functions of other alternatives, meaning
that logit models of this form are no longer consistent with random utility maximization. In contrast, MXL can
approximate any discrete choice model while remaining consistent with theories of individual behavior.
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a mixed logit can be decomposed into two parts, with u a general distribution that carries the
correlation and heteroskedasdicity across alternatives, and ε an IID extreme value term:

U1 = X1β1 + e1 = X1β1 + u1 + ε1

U2 = X2β2 + e2 = X2β2 + u2 + ε2

U3 = X3β3 + e3 = X3β3 + u3 + ε3

Since I am interested in replicating the substitution patterns estimated by a MNP, I specify the
us as multivariate normal. In order to identify the model u3 is subtracted from all utilities to yield:

U1 = X1β1 + (u1 − u3) + ε1

U2 = X2β2 + (u2 − u3) + ε2

U3 = X3β3 + 0 + ε3

This model is estimated by specifying three dummy variables — one that enters the first utility
function, one that enters the second utility function, and one that enters both the first and second
utility function. These dummy variables are estimated as normally distributed error components,
with the first two measuring the standard deviations of U1−U3 and U2−U3, and the third measuring
the covariance between these differences in utility. In order to set the scale of utility the standard
deviation of one of the random coefficients must be set to a constant. Note that this setup will
estimate the (J−1)× (J−1) covariance matrix of the differences in utility, while most applications
of MNP in political science have estimated the elements of the J×J covariance matrix of the utility
functions themselves (but see Lawrence 1997). This does not make any substantive difference in
the interpretation of the model, although it is important to note that the unobserved portion of
utility will be scaled differently in the MXL when compared to the MNP (due to the addition of
the IID extreme value term to the utility functions). In the model presented below the standard
deviation of the error component for voting Conservative relative to the Alliance was constrained
to

√
π2/3 + 2 (the sum of the assumed variance of the difference between the IID extreme value

terms and the variance of the difference between the normal error components usually assumed by
political scientists).

The results of estimating this error-components MXL are presented in Table 1. The coefficient
estimates on issue distance (which do not vary over parties) are presented in the first seven rows.
The coefficients for the individual-specific variables are presented below the issue distance coef-
ficients, with the coefficients for voting Conservative relative to the Alliance in the first column,
and the coefficients for voting Labour relative to the Alliance in the second column. The error
components are presented below the individual-specific coefficients.5

Table 1 here.
5This model and all other models in this paper were estimated using 125 Halton draws in the simulation of the

integrals in the choice probabilities. See the appendix for details.
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Examination of Table 1 reveals that the mean effects of the variables in the model are similar
to those estimated in Alvarez, Nagler, and Bowler (2000). Short-term political effects, the relative
issue positions of the parties and perceptions of the state of the national economy, and several
demographic variables emerge as important factors in the 1987 British general election.

The major motivation for using MNP in political science has been to avoid the unrealistic
substitution patterns that are estimated when IIA is assumed but does not hold. The substitution
patterns estimated by the mixed logit model in Table 1 are similar to those estimated by the
MNP specification common in political science. The vote shares reported here are the mean of the
probabilities calculated using 1000 draws from the multivariate normal distribution of the estimated
parameters. This was done to obtain standard errors on the predictions, which are reported in
parentheses. In a three-party race this MXL predicted 44.56% (0.88%) would vote Conservative,
29.75% (0.79%) Labour, and 25.68% (1.08%) Alliance. The equivalent MNP predictions were
44.93% (0.81%) Conservative, 29.74% (0.71%) Labour, and 25.32% (0.89%) Alliance, while a MNL
model estimated on the same data predicted 44.92% (0.78%) Conservative, 29.89% (0.77%) Labour,
and 25.19% (0.87%) Alliance (this model is the equivalent of the MXL model without the error
components). The predicted vote shares with the Alliance removed from the choice set are 57.60%
(0.90%) Conservative and 42.40% (0.90%) Labour for MXL, 57.73% (1.09%) Conservative and
42.27% (1.09%) Labour for MNP, and 58.68% (0.79%) Conservative and 41.32% (0.79%) Labour
for MNL.

The estimated vote shares of all three models in the three-party race are close to one another.
However, when the Alliance is removed from the choice set the different substitution patterns
estimated by the three models result in three different predicted vote shares in the two-party race.
MNL, which assumes the stochastic portion of utility is IID, generates a higher prediction for the
Conservative share of the vote in a two-party race than either MNP or MXL, which do not assume
the stochastic portion of utility is IID.

The MNP and MXL results suggest that for many voters Labour was seen as a better substitute
for the Alliance than the Conservatives, and this is reflected in the estimated substitution pattern
when the Alliance is removed from the choice set. The predicted substitution pattern for the MXL
model is quite close to that predicted by MNP, and falls between that predicted by MNL and that
predicted by MNP. Note this does not suggest that MNP is generating the “correct” substitution
pattern, as the underlying assumptions (our particular choice of g and Z) may be wrong. Different
numbers and types of error components might result in a model that more accurately reflects the
true substitution patterns than the models considered here. Since MXL imposes fewer restrictions
on the number and distribution of the error components it is better able to explore alternative (and
possibly more accurate) error-components specifications than MNP.

3.2 Heterogeneity and Union Voting Behavior in the 1992 US Presidential Elec-
tion

Both multinomial probit and mixed logit can be specified as random-coefficients models as well.
However, just as in an error-components specification, MXL imposes fewer restrictions than MNP
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on the number and distribution of the random coefficients in a random-coefficients specification.
Thus MXL allows more flexibility than MNP in the specification of random-coefficients models.
The choice between an error-components or a random-coefficients specification, and the choice of
what information to include in Z (constants to pick up unobserved attributes, or other variables
to examine random taste variation) will generally be decided by determining if the primary focus
of the model is on exploring substitution patterns or random taste variation. Below I present a
random-coefficients MXL designed to study heterogeneity in voting behavior among union members
in the 1992 US presidential election. The dataset I used was the 1992 American National Election
Study (Miller, Kinder, and Rosenstone 1993). For variable coding see the web appendix for this
paper.

I examined random taste variation among union members in this dataset. Union member is
coded as a one if someone in the respondent’s household is a member of a labour union and not an
employee of the government, and zero otherwise. Government employees were screened out in the
belief that this group would be less sensitive to foreign competition than non-government union
members. A significant amount of random taste variation in the impact of union membership on
the vote between Clinton and Perot would tend to confirm taste variation among union members.
To test for random taste variation in the impact of union membership on the vote I estimated a
random-coefficients MXL. I specified two independent random coefficients on the dummy variables
that indicate if a voter was a member of a labour union, both for voting Bush relative to Perot,
and for voting Clinton relative to Perot. As the hypothesis I am testing maintains that some
union members weighed union endorsements more heavily, while others were attracted to Perot’s
anti-NAFTA, pro-labor stance, random coefficients are required that allow individuals to be either
above or below a mean. A normal distribution is one possibility. However, normal distributions have
infinite tails, which would require that some individuals have implausible (near-infinite) coefficient
values. Thus I utilized triangular distributions for the random coefficients. Triangular distributions
have a density function that is zero before some endpoint m−a, rises linearly to a mean m, descends
linearly to the other endpoint m + a, and is zero beyond m + a. The parameters that describe this
distribution are the mean (m) and the distance between the mean and the endpoints (a). Triangular
distributions are similar to normals in that the density function is symmetric and has more mass
in the middle than in the tails, but avoid the substantive implications of a random coefficient with
an infinite support.

The results of estimating this random-coefficients MXL are presented in Table 2. The first
column lists the independent variables in the model, while the next 3 columns list the coefficient
estimate, the standard error, and the t-statistic. The fifth and sixth columns list diagnostics for
assessing how the missing data that was imputed contribute to uncertainty about the coefficient
estimates. R is a measure of the relative increase in variance in each coefficient due to missing
data, while λ is an estimate of the fraction of missing information about each coefficient (Rubin
1987, Schafer 1997).

Table 2 here.

The substantive findings among the fixed coefficients in Table 3 are similar to those reported
in other studies. Ideological distance had a strongly negative impact on vote choice. Assesments
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of both personal finances and the state of the national economy had an impact on voting for Bush
relative to Perot, with individuals who had more positive assesments more likely to vote for Bush.
These variables did not have a statistically significant impact on the vote choice between Clinton
and Perot. Assesments of the ability of the U.S. to compete in the global economy did not have a
statistically significant impact on vote choice. Individuals who felt Japan was competing unfairly
were more likely to favor Perot over Clinton. This indicates that individuals who harbored more
protectionist feelings were more likely to vote for Perot. Younger people were more likely to vote for
Perot. This is likely due to weaker partisanship among younger voters who have not yet established
a voting history with one of the major parties. Minorities heavily favored Clinton and shunned
Perot, as did women. Partisanship had the expected impact on vote behavior, with individuals who
stated they identified with one of the major parties more likely to vote for that party’s candidate.

Examination of the coefficient for the mean impact of union membership reveals that, on av-
erage, union membership did not influence vote choice. However, the estimated distance between
the mean and the endpoint of the triangularly distributed coefficient for the impact of union mem-
bership on the vote choice between Clinton and Perot reveals there was a statistically significant
amount of random taste variation in this coefficient. Although union membership did not affect the
vote choice between Clinton and Perot on average, there was a significant degree of heterogeneity
in this impact. For some individuals, union membership was a factor in the vote choice between
Clinton and Perot. Examining the mean impact of union membership on this vote choice without
considering variation in this impact would lead to the mistaken conclusion that union membership
had no impact on voting in the 1992 presidential election.

These estimates of random taste variation reveal a great deal about union voting behavior in the
1992 presidential election. To demonstrate this I created a hypothetical voter, with characteristics
set to the mean or modal values of the individuals in the dataset. I then computed the probability
of voting for each candidate for this hypothetical voter both if he was a union member and if he
was not a union member, using the MXL presented in Table 2. With this random-coefficients MXL
the impact of union membership on vote choice depends on where the hypothetical voter falls in
the distributions on the coefficients on union membership. Below I present 3 different predictions
from the MXL model in Table 2 for the hypothetical voter; with the impact of union membership
on the vote at the mean value for the Clinton versus Perot vote, and with the Clinton versus Perot
union membership coefficient at the 1st and 3rd quartiles. The mean and standard deviation of the
predicted probabilities were calculated using 1000 draws from the multivariate normal distribution
of the estimated parameters, and are presented in Table 3.

Table 3 here.

The predictions for the hypothetical voter vary widely with this mixed logit model, depending
on the impact of union membership on the vote for this particular individual. At the mean of the
distribution on the Clinton versus Perot union membership coefficient the predicted vote probabili-
ties shift slightly towards Perot when the hypothetical voter is moved into a union, with both Bush
and Clinton losing slightly. However, if the coefficient value for this voter is at the 1st quartile in
the triangular distribution instead of the mean, this voter is far more likely to support Perot and
less likely to support Clinton if he is a union member. Switching this voter out of a union leads
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to a large drop in support for Perot and a smaller drop in support for Bush, with Clinton gaining
that support. If this coefficient is at the 3rd quartile in the distribution, if the hypothetical voter
is in a union he is more likely to support Clinton, and switching this voter out of a union leads to
a large gain for Perot at the expense of Clinton, with Bush also gaining some support.

These different predictions generated by this mixed logit for the effect of union membership on
the vote are all for the same hypothetical voter. All individuals who match this profile would appear
to be identical in the dataset, and most models currently used in political science would predict
that these individuals would behave in exactly the same way. However, this random-coefficients
specification of MXL reveals that there was a great deal of random taste variation in the impact of
union membership on the vote choice between Clinton and Perot in 1992. Some individuals in labor
unions followed the endorsements of their leadership, while others voted against these endorsements
and supported Perot. This led to a great deal of individual-level variation in the impact of union
membership on the vote choice between these two candidates. This heterogeneity in the behavior
of union members is not apparent in models that assume there is no random taste variation.

Another way to demonstrate the effect of random taste variation in the impact of union mem-
bership on the vote is to examine the impact of this variable on vote probabilities over the entire
range of the random coefficient. In Figure 1 I graph the means and standard deviations of the vote
probabilities for the hypothetical voter if he is a union member. The means and standard devia-
tions of the predicted probabilities were calculated as in Table 3 across the values of the random
coefficient. The three heavy curves represent the mean probabilities of voting for each of the three
candidates as the coefficient value on the impact of union membership changes, while the lighter
curves represent a two standard deviation confidence interval around the mean values. Note the
graphs are not smooth because each point was calculated individually using 1000 draws from the
multivariate normal distribution of the estimated parameters.

Figure 1 here.

It is obvious from Figure 1 that the vote probabilities for the hypothetical voter vary widely,
depending on where in the coefficient distribution he is. The impact of union membership on the
vote is very different across individuals — even those individuals who are indistinguishable in the
dataset in terms of the demographic, social, and political variables included in most models of vote
choice.

3.3 Congressional Career Decisions and Individual Correlation over Time

The last empirical example studies Congressional career decisions over time. The dataset I used
was the Congressional career decision data compiled by Kiewiet and Zeng in their study of factors
that influence Members of Congress in the decision to retire, run for reelection, or seek higher office
(Kiewiet and Zeng 1993). For variable coding see the web appendix for this paper.

Kiewiet and Zeng hypothesize that age, holding a leadership position, minority party status,
ideological location in the party caucus, and the institution of House reforms would all affect the
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utility that a member of Congress receives from serving in the House. The previous vote share
in the last general election, scandals, and harmful redistrictings (that cause the member to face
another incumbent for reelection) would all affect the likelihood of winning reelection. Thus, these
variables should have an impact on the decision between running for relection and the other options
(retire or seek higher office).

Four variables are also expected to affect the expected utility of running for higher office (here
regarded as a Senate seat or the Governorship). These variables are the overlap between a member’s
district and the entire state, whether or not there is a Senate election in that year in the member’s
state that is either an open seat or has an incumbent of another party, , whether the Senate seat
is open, and whether the Governorship is open. These variables are expected to affect the choice
between running for reelection or seeking higher office, but not the choice between running for
reelection or retiring.

The model employed by Kiewiet and Zeng was a “mother logit” model, designed to relax the
IIA assumption while still maintaing a logit form for the probabilities. The mother logit allows
any choice probability to be expressed in logit form (McFadden 1975, 1984). Kiewiet and Zeng
estimated their mother logit by entering factors expected to influence the utility of seeking higher
office into the utility functions for retirement and running for reelection — thus, the four variables
expected to influence the choice between seeking higher office or running for reelection were also
entered into the estimation of the choice between retiring or running for reelection. This model
was estimated by pooling the data for all Members of Congress (those Members of Congress who
did not have an opportunity to seek higher office were omitted from this model, and examined in
a separate binary logit).

I reestimated the model described by Kiewiet and Zeng using a mixed logit. Mixed logit
represents an improvement over a mother logit in this application in at least two respects. First,
as Kiewiet and Zeng point out (p. 939), estimating a mother logit on the pooled data makes
the assumption that individual choices are not correlated over time. Mixed logit relaxes this
assumption, and allows for the choices made by an individual to be correlated over time. This
happens because η is constant across time as well as across alternatives, so not only does this allow
for correlations across alternatives (relaxing the IIA property), but it also allows for correlation
across time. Second, although mother logit models can approximate the choice probabilities of any
discrete choice model with a logit form, they are not consistent with random utility maximization
(Brownstone and Train 1999; McFadden and Train 2000). This is because that attributes of
each alternative are allowed to enter the utility functions of other alternatives. In this example,
components of the utility function for seeking higher office are entering into the choice between
retirement and running for reelection, even though that choice should only depend on the utility
of retirement and the utility of running for reelection. Thus, while a mother logit does not have
the IIA property, it is also not consistent with random utility maximization. Mixed logit does not
have the IIA property, and it is also consistent with our theories of individual behavior.

I specified a mixed logit model similar to the one estimated in Table 1, by specifying three
dummy variables — one that enters the utility function for retirement, one that enters the utility
function for seeking higher office, and one that enters both utility functions. The model is nor-
malized with respect to running for reelection. Unlike the model in Table 1, this model was not
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set to the same scale as an equivalent MNP. Factors thought by Kiewiet and Zeng to affect the
utility of House membership enter into both comparisons (retire vs. reelection and higher office
versus reelection), while the scandal variable only enters into the retirement decision, and the four
variables that affect the expected utility of seeking higher office enter into the seek higher office
decision. Note that this data was censored, since not all members of Congress had an opportunity
to seek higher office. The results of estimating this MXL are presented in Table 4.

Table 4 here.

Examination of Table 4 reveals that the substantive effects of the variables in the model are
similar to those estimated in Kiewiet and Zeng (1993). Further, none of the error components
reaches standard levels of statistical significance, so I cannot reject the hypothesis that there is no
individual level variation in how members of Congress view their career options. Although MXL
allows decisions to be correlated over time, there is little evidence of any such correlation here.
Kiewiet and Zeng hypothesized that such correlation might be mitigated by the much larger cross-
sectional size of the dataset as compared to its length (there are 1796 individuals in this dataset,
who served an average of five terms each). Alternatively, the error structure I specified here might
be incorrect. Regardless, this MXL represents an improvement over the mother logit model since
it is consistent with random utility maximization.

4 Discussion

A wide variety of structures can be placed on the unobserved portions of utility in order to answer
different questions about voting behavior in multicandidate and multiparty elections. While the
multinomial probit models currently in favor in political science focus on estimating accurate sub-
stitution patterns through a single type of error-components specification, there are many other
ways to specify the unobserved portions of utility in a discrete choice model that can improve our
substantive knowledge of voter behavior. Both multinomial probit and mixed logit can be specified
to explore many of these questions, although mixed logit is the more general model of the two.

Mixed logit holds two advantages over multinomial probit that are of consequence. First, since
the random components (error components or random coefficients) in MNP are captured in the
covariance matrix of the unobserved portions of utility, their number is limited by the number of
alternatives in the model and the identification restrictions on the covariance matrix. In contrast,
the number of random components that can be specified in a mixed logit is unlimited. Second, all
of the random elements in MNP must be normally distributed. Conversely, the random elements
in MXL can follow any distribution. These advantages of mixed logit mean that a wider variety of
specifications are possible, and MXL can thus be applied to a wider set of questions than MNP.

It is primarily concern with accurate substitution patterns that has led to the increasing popu-
larity of MNP in political science. Many interesting substantive questions can only be addressed if
researchers know if voters view certain parties or candidates as substitutes. Both MNP and MXL
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relax the IIA property by considering the unobserved portion of utility in calculating substitution
patterns, and are thus suitable for answering these types of questions. However, mixed logit is more
general in its specification of the unobserved portion of utility — any number of error components
may be specified, and they can follow any distribution. Thus mixed logit is more flexible in the
study of substitution patterns across alternatives than multinomial probit.

The advantages of mixed logit in the study of random taste variation are even more clear. Al-
though models of voting behavior have existed for decades, little is understood about heterogeneity
in the impact of issue positions, demographic variables, and other factors on vote choice. More
generally, individual-level variation in many settings is substantively interesting and merits further
exploration. Both MNP and MXL can be specified to explore random taste variation and thus
problems of this type. However, multinomial probit is limited in the number of random coefficients
that can be estimated, and these random coefficients must be normally distributed. Mixed logit can
include any number of random coefficients, and these random coefficients can follow any distribu-
tion. Random coefficients that theory tells us are non-normal (such as the impact of issue positions
on the vote in a spatial model) are easily handled in MXL, while the equivalent random coefficients
in a MNP would necessarily contradict our theory. Thus mixed logit is an unambiguously superior
tool for exploring heterogeneity.

Thus far political scientists have primarily been interested in the impact of non-IID unobserved
utility on substitution patterns, and have treated the unobserved utility itself as a nuisance. How-
ever, the structure of unobserved utility is also of substantive interest. Understanding if a variable
has a homogeneous or heterogeneous impact on a decision is useful information when trying to
explain individual behavior. Of course, a model that is able to incorporate this information into
the systematic portion of utility would be preferred — however, our data and theories are often
lacking. Until better theories are developed, or better data is obtained, models that are able to
uncover some of the structure of the unobserved portions of utility offer the best chance to improve
our knowledge in this area. Both multinomial probit and mixed logit are useful in this line of
research. However, mixed logit is more general in its specification of the unobserved portions of
utility, and thus allows us to explore individual behavior more broadly.
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Appendix: Estimation of Mixed Logit Models

The parameters to be estimated in a mixed logit model are β, the vector of fixed coefficients, and
Ω, the parameters that describe the distribution of η. The mixed logit log-likelihood function for
given values of the parameters β and Ω is:

L(β, Ω) =
∑

I

∑

J

yij log
[∫

η

{
eXβ+Zη

∑
k eXβ+Zη

}
g(η|Ω)∂η

]
(8)

where I is the set of all individuals, J is the set of all alternatives, and

yij =
{

1 if i chooses j
0 otherwise

The dimension of η is 1×Q, where Q is the number of variables in Z. Thus, the log-likelihood
function in Eq. 8 involves the estimation of a Q-dimensional integral.6 This integral cannot be
evaluated analytically since it does not have a closed-form solution. If Q = 1 or Q = 2 the log-
likelihood can be evaluated with numerical methods such as quadrature. However, if Q is greater
than two quadrature techniques cannot compute the integrals with sufficient speed and precision
for maximum likelihood estimation (Hajivassiliou and Ruud 1994, Revelt and Train 1998). In this
case simulation techniques must be applied to estimate the log-likelihood function.

The integrals in the choice probabilities are approximated using a Monte Carlo technique, and
then the resulting simulated log-likelihood function is maximized. For a given Ω a vector of values
for η is drawn from g(η|Ω) for each individual. The values of this draw can then be used to calculate
P̂ (j|η), the conditional choice probability given in Eq. 4. This process is repeated R times, and
the integration over g(η|Ω) is approximated by averaging over the R draws. Let P̂r(j|ηr) be the
realization of the choice probability for individual i for alternative j for the rth draw of η. The
choice probabilities given the parameter vectors β and Ω are approximated by averaging over the
values of P̂r(j|η):

P̂ (j|β,Ω) =
1
R

R∑

r=1

P̂r(j|ηr) (9)

P̂ (j|β, Ω) is the simulated choice probability of individual i choosing alternative j given β and
Ω. This simulated choice probability is an unbiased estimator of the actual probability P (j), with

6Note that this is why a “mixed probit” model (with g(η|Ω) following a general distribution and ε IID standard
normal) is generally regarded as impractical. Estimating this model would involve the evaluation of a (Q + 1)-
dimensional integral, since the choice probabilities conditional on η are not closed-form as they are in MXL, but
instead require the evaluation of a univariate normal density. Unless there is a strong theoretical reason to believe
that the IID disturbances are normal, MXL is superior to a “mixed probit” model due to the lower dimension of
integration required for estimation.
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a variance that decreases as R increases. It is also twice differentiable and strictly positive for
any realization of the finite R draws, which means that log-likelihood functions constructed with
P̂ (j|β,Ω) are always defined and can be maximized with conventional gradient-based optimization
methods. Under weak conditions this estimator is consistent, asymptotically efficient, and asymp-
totically normal (Hajivassiliou and Ruud 1994; Lee 1992). When R increases faster than the square
root of the number of observations, this estimator is asymptotically equivalent to the maximum
likelihood estimator. However, this estimator does display some bias at low values of R, which
decreases as R increases. The bias is very low when R = 250 (Brownstone and Train 1999); most
empirical work uses R equal to 500 or 1000.

The choice probabilities above depend on β and Ω, which need to be estimated. In order to esti-
mate Ω the distributions in η are re-expressed in terms of standardized, independent distributions.
That is, g(η|Ω) is re-expressed as µ + Ws, where µ = 0 ( the mean vector of η), W is the Choleski
factor of Ωη, and s consists of IID deviates drawn from standardized, independent distributions.
Under this specification, Zη becomes (sZ)Ω, where Ω = W and is to be estimated. A simulated
log-likelihood function can then be constructed:

SL(β, Ω) =
I∑

i=1

J∑

j=1

yij log
[
P̂ (j|β, Ω)

]
(10)

The estimated parameter vectors β̂ and Ω̂ are the vectors that maximize the simulated log-likelihood
function.

An alternative estimation procedure proposed by Bhat (1999a) and Train (1999a) dramatically
reduces estimation time for mixed logit models. This alternative simulation technique uses non-
random draws from the distributions to be integrated over, rather than random draws. By drawing
from a sequence designed to give fairly even coverage over the mixing distribution, many fewer
draws are needed to reduce simulation variance to an acceptable level. In both Bhat (1999a) and
Train (1999a), Halton sequences are used to create a series of draws that are distributed evenly
across the domain of the distribution to be integrated.

Halton sequences are created by selecting a number h that defines the sequence (where h is a
prime number) and dividing a unit interval into h equal parts.7 The dividing points on this unit
interval become the first h− 1 elements in the Halton sequence. Each of the h sub-portions of the
unit interval is divided as the entire unit interval was and these elements are added on to the end
of the sequence. This process is continued until the desired number of elements in the sequence is
reached. Halton sequences result in a far more even distribution of points across the unit interval
than random draws. Figure 2 presents 1000 random draws from a 2-dimensional uniform space,
and compares them to 1000 Halton draws from the same space. It is obvious that Halton draws
result in more even coverage of the space, with less “clumping”.

Figure 2 here.
7Prime numbers are used to define Halton sequences, since the Halton sequence for a non-prime number will divide

the unit interval in the same way as the Halton sequences based on the prime numbers that constitute the non-prime
number.
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Halton sequences can be used in place of random draws to estimate mixed logit models. For
each element of η a different prime number is selected, and a Halton sequence of length (R×I)+10
is created (where R is the number of Halton draws desired for each observation and I is the number
of individuals in the dataset). The first ten elements of the sequence are discarded because the
first elements tend to be correlated over Halton sequences defined by different prime numbers. The
first individual in the dataset is assigned the first R elements of each Halton sequence, the second
individual is assigned the next R elements, and so on. For each element of each Halton sequence
the inverse of the cumulative distribution for that element of η is calculated. The resulting values
become the IID deviates s in the simulated log-likelihood function. Estimation is otherwise identical
to that when using random draws to evaluate the integrals.

Both Bhat (1999a) and Train (1999a) found that in estimating mixed logits, the simulation
error in estimated parameters is lower with 100 Halton draws than with 1000 random draws. Thus,
using Halton sequences in place of random draws allows us to obtain more accurate estimates of
model parameters at a fraction of the estimation cost.

I am aware of two software packages currently available that allow for estimation of mixed logit
models. All mixed logit models in this paper were estimated using GAUSS. The GAUSS code used
to estimate the models in this paper is available at http://www.polsci.ucsb.edu/faculty/glasgow.
This code is a modified version of the GAUSS code made available by Kenneth Train on his
website at http://elsa.berkeley.edu/users/train. Mixed logits can also be estimated in Limdep,
although the options for estimation are more limited than those in the GAUSS code — only
normally or lognormally distributed random coefficients are permitted. In comparing both software
packages I found that in many applications Limdep produced results that agreed with the equivalent
specification in the GAUSS code. However, in some applications Limdep failed to converge while
the GAUSS code did. Overall, the GAUSS code seems more reliable than Limdep, and offers
more options for estimation (more distributions are available for the random components, error-
components specifications are possible, and Halton draws are available as an estimation option).

For further details on the estimation of mixed logit models see Appendix A to the paper “Mixed
Logit Models for Multicandidate Elections” on my homepage.
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Table 1: Mixed Logit Estimates (MNP Replication),
1987 British General Election

(Alliance Coefficients Normalized to Zero)
Independent Variables Conservatives/Alliance Labour/Alliance
Defense -0.30** (0.04)
Phillips Curve -0.19** (0.04)
Taxation -0.27** (0.04)
Nationalization -0.30** (0.03)
Redistribution -0.14** (0.03)
Crime -0.17* (0.08)
Welfare -0.23** (0.03)
South -0.21 (0.28) -0.64* (0.30)
Midlands -0.48 (0.28) -0.26 (0.30)
North -0.22 (0.29) 0.93** (0.29)
Wales -0.95 (0.55) 2.01** (0.48)
Scotland -0.86* (0.41) 1.03** (0.38)
Public Sector Employee 0.17 (0.24) 0.00 (0.23)
Female 0.45* (0.23) -0.06 (0.22)
Age 0.07 (0.08) -0.35** (0.08)
Home Ownership 0.75** (0.28) -0.78** (0.25)
Family Income 0.12* (0.05) -0.10* (0.05)
Education -1.28* (0.53) -0.98 (0.53)
Inflation 0.49** (0.16) -0.02 (0.16)
Taxes 0.04 (0.11) -0.15 (0.10)
Unemployment 0.48** (0.10) 0.01 (0.11)
Working Class 0.07 (0.25) 1.03** (0.25)
Union Member -0.91** (0.27) 0.56* (0.24)
Constant 0.74 (1.16) 3.92** (1.14)
Error Components (Mean) 0 — 0 —
Error Components (Std. Dev.) 2.30 — 1.72** (0.30)
Error Components (Sqrt Corr.) 0.43 (0.69)
Number of Observations 2131
Log-Likelihood -1474.70

Standard errors in parentheses. ∗∗ indicates statistical significance at the 99% level; ∗

indicates statistical significance at the 95% level.
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Table 2: Mixed Logit Estimates,
1992 US Presidential Election

(Perot Coefficients Normalized to Zero)
Independent Variables Coeff. Value Std. Error T Stat. R λ

Ideological Distance -0.13 0.03 -4.99 0.38 0.30
Bush/Perot Coeffs.
Constant 0.55 0.36 1.55 0.00 0.00
Personal Finances 0.23 0.11 2.01 0.00 0.00
National Economy 0.48 0.16 3.01 0.00 0.00
US in Global Economy 0.05 0.12 0.43 0.00 0.00
Democrat -0.14 0.32 -0.45 0.01 0.01
Republican 1.45 0.29 4.92 0.00 0.00
Income -0.01 0.02 -0.50 0.04 0.04
Age 18-29 -1.09 0.29 -3.77 0.01 0.01
Age 30-44 -0.64 0.26 -2.51 0.00 0.00
Age 45-59 -0.48 0.28 -1.73 0.00 0.00
Minority 0.98 0.47 2.07 0.00 0.00
Education 0.12 0.06 1.83 0.05 0.04
Female 0.60 0.18 3.32 0.00 0.00
Japan Unfair 0.07 0.10 0.68 0.17 0.15
Import Limits -0.10 0.11 -0.97 0.01 0.01
Abortion -0.35 0.09 -4.02 0.00 0.00
Union Member

Mean -0.11 0.26 -0.42 0.00 0.00
|Mean - Endpoint| 0.39 1.86 0.21 0.01 0.01

Clinton/Perot Coeffs.
Constant 0.38 0.35 1.07 0.02 0.02
Personal Finances 0.03 0.11 0.23 0.00 0.00
National Economy -0.23 0.18 -1.25 0.01 0.01
US in Global Economy -0.20 0.13 -1.55 0.01 0.01
Democrat 1.41 0.26 5.43 0.01 0.01
Republican -0.66 0.29 -2.26 0.00 0.00
Income -0.05 0.02 -2.75 0.07 0.07
Age 18-29 -1.10 0.28 -3.89 0.00 0.00
Age 30-44 -0.79 0.26 -3.01 0.01 0.01
Age 45-59 -0.23 0.28 -0.83 0.01 0.01
Minority 2.20 0.42 5.20 0.01 0.01
Education 0.05 0.06 0.78 0.01 0.01
Female 0.30 0.18 1.71 0.01 0.01
Japan Unfair 0.22 0.10 2.27 0.03 0.03
Import Limits -0.05 0.11 -0.44 0.01 0.01
Abortion 0.02 0.10 0.16 0.04 0.04
Union Member

Mean -0.03 0.27 -0.10 0.00 0.00
|Mean - Endpoint| 3.13 1.19 2.63 0.02 0.02

Number of Observations 1441

Random coefficients have triangular distributions.25



Table 3: Vote Probabilities for a Hypothetical Voter
Not a Union Member Union Member Difference

(C/P At Mean)
Bush 9.01 (2.81) 8.33 (3.10) 0.69 (4.15)
Clinton 43.64 (7.37) 43.53 (7.49) 0.11 (10.42)
Perot 47.35 (7.36) 48.14 (7.33) -0.79 (10.32)

(C/P at 1st Quartile)
Bush 9.01 (2.81) 11.35 (4.16) -2.33 (4.98)
Clinton 43.64 (7.37) 23.95 (5.60) 19.69 (9.36)
Perot 47.35 (7.36) 64.70 (6.65) -17.35 (9.93)

(C/P at 3rd Quartile)
Bush 9.01 (2.81) 5.12 (2.04) 3.89 (3.46)
Clinton 43.64 (7.37) 65.24 (7.09) -21.60 (10.07)
Perot 47.35 (7.36) 29.64 (6.60) 17.71 (9.73)

Standard errors in parentheses.
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Figure 1: Distribution of Vote Probabilities over Union Coefficient (Clinton/Perot)
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Table 4: Mixed Logit Estimates,
Congressional Career Decisions

(Reelection Coefficients Normalized to Zero)
Independent Variables Retire/Reelection Higher Office/Reelection
Age 0.07** (0.01) -0.04** (0.01)
Republican 0.93** (0.24) -0.29 (0.27)
Chair/Leader -0.20 (0.21) -0.99 (0.73)
Dem. Conservatism 1.42** (0.28) -1.06** (0.37)
Rep. Conservatism 0.22 (0.27) 0.06 (0.34)
Institutional Reform 0.30* (0.13) 0.44 (0.19)
Previous Margin -0.00 (0.00) 0.00 (0.00)
Scandal 1.94** (0.36) — —
Redistricting 0.87** (0.33) 1.79** (0.36)
District/State Ratio — — 0.94** (0.08)
Senate Election — — 1.59** (0.18)
Open Seat Senate — — 0.76** (0.16)
Open Governorship — — 0.52** (0.14)
Constant -7.73** (0.42) -0.23 (0.50)
Error Components (Mean) 0 — 0 —
Error Components (Std. Dev.) 0.01 (0.25) 0.19 (0.54)
Error Components (Sqrt Corr.) -0.00 (0.20)
Number of Observations 8370
Number of Individuals 1796
Log-Likelihood -2383.91

Standard errors in parentheses. ∗∗ indicates statistical significance at the 99% level; ∗

indicates statistical significance at the 95% level.
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Figure 2: Distribution of 1000 Random Draws Compared to 1000 Halton Draws
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