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This chapter discusses a topic—endogeneity—where the importation of econo-
metric methods substantially advanced the practice of empirical work in polit-
ical science, enabling important substantive findings. The first section examines
why econometrics, and particularly the treatment of endogeneity, proved so valu-
able for political scientists. The chapter discusses and applies the most prominent
methods used to deal with endogeneity. We also include a critique of the critical
conditions needed to support the use and interpretation of this method and dis-
cuss frequently used diagnostics developed to assess the severity of the problems.
The estimation method and diagnostics are illustrated with a running example
with data from a previous study of US congressional politics (Jackson and King
1989).
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1. Econometrics and Political Science
.............................................................................................................................................

The application and refinement of econometric techniques is one of the dominant
themes of political methodology for the past forty years. The early expansion of these
techniques is well documented by King (1991), Bartels and Brady (1993), and Jackson
(1996). The reasons for the rapid and extensive spread of these techniques is fairly
easy to understand, in retrospect. Econometric techniques shift attention from the
observed data to a model of the behavior being investigated and of the process that
likely generated the observed data, referred to as the data-generating process (DGP).
This attention is present in the linear model but takes center stage with the subsequent
interest in maximum likelihood estimation (MLE). (See King 1989 and econometrics
texts such as Greene 2003, ch. 17.) Other chapters discuss MLE and its many extensions
in detail and it occupies only a minor part of this chapter. This chapter focuses on one
particular but vitally important part of the data-generating model.

1.1 The Linear Model and Observational Data

The experimental paradigm remains the object of emulation based on its ability to
vary exogenously the magnitude of treatments among treatment and control groups
and to completely randomize the assignment of subjects among the treatment and
control groups. See Freedman, Pisani, and Purves (1998, chs. 1 and 2) for an excellent
discussion of the requirements and advantages of good experimental design and
the perils of observational studies. In many substantively important contexts, how-
ever, the experimentalists’ manipulations and randomization are impossible. Social
scientists are no more likely to be given the license to manipulate an economy to
ascertain its impacts on voting or to initiate conflicts to study their duration than
medical researchers are to force people to engage in risky behaviors. This leaves many
empirical researchers with only observational data where there may not even be any
well-defined and distinct treatment and control groups but only variations in the
variables of interest.

Enter the linear model, Yi = Xi‚ + Ui . The standard interpretation is that the
values of the Xi variables can be treated as fixed and exogenously given, analogously
to the treatments in an experimental study. Further, the values of Ui , representing
omitted factors, are drawn from distributions with a zero mean for all values of Xi ,
i.e. E (Ui ) = 0 for all i , analogously to randomization.1 When these conditions are
satisfied one has the equivalent of a well-designed experiment and the estimated
regression coefficients, denoted as b are unbiased, i.e. E (b) = ‚. Additional condi-
tions that further emulate the experimental setting, that the Ui ’s are iid, establish the
linear estimator as the best, meaning minimum variance, unbiased linear estimator.

1 The assumption of a zero mean can be relaxed to be a constant value for all i , which only alters the
constant term in the model.
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Finally, if the U ’s are normally distributed these estimates are normally distributed,
permitting classical inference tests. With normally distributed U ’s the coefficients are
the maximum likelihood estimates.

This chapter addresses a very specific and central aspect of the DGP assumed
in the linear model—the assumption (a fiction for some) that X is equivalent to
a fixed set of exogenously determined “treatments” that could be duplicated in an
arbitrary number of replications. If the X ’s are not fixed exogenous treatments the
condition that E (Ui ) = 0 is hard to justify, which means the linear estimator is biased,
E (b − ‚) =/ 0 and inconsistent, pl im(b − ‚) =/ 0 negating the justifications for and
desirability of the linear model.

1.2 Fixed Treatments and Endogeneity

There are classic situations that render the idea of exogenous and fixed X ’s question-
able if not perfectly ludicrous. One is where variations in the left-hand side variable,
the outcome variable, are likely causing changes in one of more of the right-hand
side (RHS) variables, a condition referred to as simultaneity. The canonical economic
example is the relationship between price and quantity. The demand equation pre-
dicts a negative relationship between p and q as larger quantities force lower prices
in order to clear the market. The supply equation, on the other hand, predicts a
positive association between p and q as higher prices induce more production. Given
that one only observes actual quantities sold and the associated prices without direct
manipulation of one but not the other it is impossible to estimate either relationship
with the linear model described above.

Political science examples are abundant but three examples illustrate the problems
well. Jacobson (1978) in a classic article explores how challenger and incumbent cam-
paign expenditures affect the challenger’s vote share in the election. He appropriately
points out that candidate fundraising, hence expenditures, are not exogenous “treat-
ments” but may be influenced by the expected vote shares. “OLS regression models
presuppose . . . that spending produces votes.” But, “The expectation [author’s empha-
sis] that a candidate will do well may bring campaign contributions” (Jacobson 1978,
470), Bartels (1991) offers an excellent critique of the methods chosen by Jacobson
and others to confront this endogeneity problem.

A second example is political economists’ interest in the effect of institutions on
economic outcomes. For example, does a PR form of parliamentary government
result in more social welfare spending? In examining this and similar propositions
Persson and Tabellini (2003, 114) say, “our inference becomes biased if the variation
in constitutional rules used to explain performance is related to the random (un-
explained) component of performance. Simultaneity problems can take the form of
reverse causation, different forms of selection bias, and measurement error [authors’
emphasis].” Their empirical strategy to overcome these biases includes but is not
limited to the methods surveyed in this chapter. Acemoglu (2005) has an excellent
review and assessment of their methods and models.
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The last example is the effort by international relations scholars to estimate models
of rivalry and reciprocity, such as arms races and tit-for-tat diplomacy, where the
actions of country Y are modeled as a function of the actions of a competitor country,
X. But there must be a tit for every tat, meaning the actions of X are not exogenous
to the actions of country Y. As Dixon (1986, 434) says, “Although the reciprocity
models . . . depict only the behavior of nation Y, each equation is implicitly paired
with a complementary specification for nation X. . . . The obvious mutual dependency
between endogenous variables yit and xit in this two-equation system signals a viola-
tion of the basic regression model.” Dixon and others then proceed with some of the
methods discussed below.

For the purposes of this chapter consider an example drawn from legislative
politics. A theory of representation is that representatives’ votes should be respon-
sive to the mean preferences within their constituency, V = · + ‚ P̄ (Achen 1978).
Elections are the enforcement mechanism in this argument as representatives who
deviate from the mean preference should lose votes and ultimately the election
itself. Let Marg be representatives’ electoral margins and Dev measure how much
their votes deviates from constituency preferences, Dev = |V − P̄ |. The punishment
model is

Margi = „1Devi + X1‚1 + Ui , (1)

with „1 < 0, meaning that increased deviations from constituency preferences lead to
smaller electoral margins. X1 represents other factors that may influence incumbents’
vote margins, such as the partisan composition of the district. The difficulty in
estimating equation (1) is that Dev is unlikely to be exogenously determined. Some
Congressional scholars (e.g. Kingdon 1973, ch. 2) propose that members with larger
electoral margins are freer to deviate from constituency preferences, and may do so.
This proposition implies that

Devi = „2Margi + X2‚2 + Vi , (2)

with „2 > 0. X2 describes pressures that lead members to vote differently from their
constituents’ preferences, such as pressure from party leaders. So, Marg and Dev in
any observational study are simultaneously related, thus violating the linear model’s
basic assumption. Even if X1 and X2 contain all the variables that systematically affect
representatives’ deviations from constituency preferences and their electoral margins
so that E (Ui ) = E (Vi ) = 0 the basic regression model gives biased and inconsistent
estimates for „1 and „2. The simple correlation between Marg and Dev or a regression
with either variable on the RHS and the other on the LHS will not reveal anything
about the propensity of elections to function as the reward/punishment mechanism
in Achen’s model of representation.

The likely endogeneity of an explanatory variable is not limited to cases of simul-
taneity. There are situations with observational data where it is difficult to believe that
one of the X ’s is fixed and would have the same values in subsequent replications of
the “experiment.” One must consider carefully the context of the quasi or natural ex-
periment and decide if every X is really determined outside the process being studied.
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This is a difficult requirement in many political science studies where some of the
right-hand side variables themselves are measures of political behavior or outcomes.

As we will illustrate with our legislative example, representatives’ partisanship may
be a right-hand side variable in the equation for deviations, as party leaders are
likely to be effective at getting members to vote with the party rather than with
their constituents. If party is a right-hand side variable in the deviation equation
it is likely endogenous. Each district’s representative’s party is the result of a series
of political factors that may not be fixed, as required by the experimental paradigm
being emulated by the linear model. Think about whether representatives’ party
affiliations are assigned randomly among districts! (See Jackson and King 1989.)
Any explanatory variable, such as member partisanship, that cannot be justified as
exogenous is implicitly the left-hand side variable in another equation. OLS estimates
of an equation with this endogenous variables on the RHS will be consistent only if
the stochastic term in this implicit equation is uncorrelated with the stochastic term
in the equation being estimated.2

The condition of fixed and exogenous X ’s also fails if any of the right-hand
side variables are measured with systematic or random error. The case of random
measurement errors is the, relatively, easier one to confront and is the focus of this
discussion.3 Random measurement error does not create endogeneity in the causal
way discussed above. It does, however, present identical problems and is approached
with the same estimation strategy. Basic texts show that if the correct variables are Xi ,
but instead one observes Zi = Xi + Âi and estimates the model Yi = Zi B + Ui , the
resulting coefficients are biased and inconsistent. Even if only one of K RHS variables
is measured with error all the coefficients, not just the one attached to the erroneous
variable, may be biased and inconsistent (Achen 1988).

These situations all lead to conditions that violate the basic assumptions of the
linear model.4 The explanatory, or treatment, variables are now correlated with the
stochastic term implicit in the DGP and thus in the measures for Y , which yields
biased and inconsistent estimates for the model’s coefficients. The textbook treat-
ment of this situation is as Greene (2003) describes, E [Âi |Xi ] =/ 0 which means that
E [Xi Âi ] = Á and plim (1/n)(X ′Â) = Á, which has the following implications for the
estimated coefficients,

E [b|X] = ‚ + (X ′ X)−1 X ′Á =/ ‚ and

plim b = ‚ + plim

(
X ′ X

n

)−1

plim

(
X ′Â
n

)
= ‚ + �−1

x Á =/ ‚.

This is clearly a failure of the classic paradigm and requires new estimation strategies.

2 These conditions, if met, would imply a hierarchical and recursive system in which case OLS
estimates are consistent.

3 Systematic measurement errors present much greater difficulties and require specialized estimators
(see Berinsky 1999; Brady 1988; Jackson 1993) and will not be discussed here.

4 Other situations may also lead to similar violations. These are often encountered in dynamic
models that include lagged values for Y on the right-hand side of the equation and an autocorrelated
stochastic term. This chapter does not address these situations, though they can be dealt with in ways
similar to the subsequent discussions here.
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1.3 OLS Estimates of the Margin and Deviation Relationship

We can illustrate this failure with estimates of the model of legislative margins and
deviations. Data for estimating the model come from Jackson and King (1989) and
Barone, Ujifusa, and Matthews (1979) and relate to the 1978 session of Congress.
Representatives’ voting behavior in 1978 is assessed using their ADA and ACA scores,
with V = .5∗(ADA − ACA + 100). The Jackson and King data contain an estimate of
mean constituency preference on income redistribution, P̄ . Members’ deviations are
the absolute diffence between their vote score and the proportion of the constituency
supporting income redistribution, Dev = |V − P̄ | . The assumption here is that the
mean constituency preference for redistribution assesses the liberalness of the con-
stituency. The absolute difference measures the extent to which the members’ votes
deviate from this constituency position. The variable Marg is incumbents’ vote share
in the 1978 election (the closer of the primary or general elections). The proposition
implicit in Achen’s and other representation models is that members who deviate
more will have smaller re-election margins.

The model and data are being used to illustrate the methodological problems and
estimation procedures associated with endogenous variables. This is not intended as
a subtantive study of Congressional elections or of representation. Obvious variables
are omitted from the analysis that would be required for the latter to be true—
such as candidate quality, campaign expenditures, the representatives’ characteristics,
etc. But, in most cases addition of these variables complicates rather than resolves
questions of specification and endogeniety.

The simple correlation between Marg and Dev is 0.13, a very slight positive as-
sociation. Do members who deviate more do slightly better in the next election,
contradicting theories of representation? Or do larger margins embolden members
of Congress, leading to increases in deviations from constituency preferences? Or
are Marg and Dev really uncorrelated? Table 17.1 shows the OLS regressions with
margin and deviation as the left-hand side variables. The regressions include addi-
tional variables hypothesized to relate to margin and deviation respectively. Partisan
advantage is defined as the 1976 Ford vote in the district for incumbent Republicans
and (1 − Ford) for Democrats, Partadv = Repub ∗ Ford + (1 − Repub) ∗ (1 − Ford).
A south region variable and the gap between the representative’s age and the mean
age of district voters are included in the vote margin equation along with partisan
advantage and deviations. Given a partisan advantage, seats may be safer in the
south, and the larger the age gap between representatives and their constituents
the more competitive the seat. The deviation equation includes the member’s party
and population change and income growth. The expectation is that the more a
district’s demographic composition changed between 1970 and 1978 the greater the
possibility that the member’s votes became out of synch with district preferences.
Party is included as Republicans exhibited higher unity scores than Democrats (CQ
1983), suggesting the Republican leadership may have been more successful at getting
members to deviate from constituency preferences. Representatives who did not run
for re-election are omitted.
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Table 17.1. Ordinary least squares estimates

Variable Equation

Margin Deviation

Coeff. St. err. Coeff. St. err.

Deviation 0.063 0.046
Margin 0.159 0.042
Part. adv. 0.697 0.077
Republican 0.152 0.014
South 0.102 0.016
Age gap −0.120 0.071
ƒPop 0.178 0.040
Inc78/Inc70 0.035 0.025
Constant 0.310 0.044 −0.194 0.068
R 2 0.268 0.327
N 376 376

Contrary to expectations, deviations from constituency opinion appear to have a
positive relationship with electoral margin, suggesting that the more representatives
deviate from constituents’ preferences the larger their vote margin. The deviation
equation suggests that larger electoral margins are associated with more deviation, as
expected. But, the hypothesized endogeneity between the two variables makes both
results, and the other coefficients, suspect. What to do?

2. Instrumental Variables : Theory
.............................................................................................................................................

Econometricians working with the linear model recognized the problem posed by
endogenous regressors fairly early, which created an extended and creative search
for alternative methods and assumptions. The traditional method for dealing with
endogenous explanatory variables, and the one of concern in this chapter, is called
instrumental variable, or IV, estimation. The method also goes by the name two-stage
least squares as that describes how the estimation was originally done. The statistics
are relatively simple in theory, but are quite difficult in practice.

2.1 The Instrumental Variables Estimator

The classic model with endogenous RHS variables is,

y = X‚ + Y„ + U = W‰ + U, (3)
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where y is the outcome variable; X is the matrix of observations on the K truly
exogenous variables; Y is the matrix of observations on the M variables suspected
to be endogenous for any of the reasons cited above; W = (X, Y ); and ‰

′
= (‚

′
, „

′
)

is the vector of coefficients of interest. The endogeneity problem arises because
plim 1

n (Y
′
U ) =/ 0.

The theory of IV estimation depends on the existence of a second set of variables,
which we denote by Z. Z must contain at least M variables with finite variances and
covariances, be correlated with Y , but be uncorrelated with U , i.e.,

plim
1

n
Z ′ Z = �zz, an L × L finite, positive definite matrix

plim
1

n
Z ′Y = �zy, an L × M matrix with rank M

plim
1

n
Z ′U = 0.

In the simplest case, L = K , meaning that there is one “instrument” or Z for each Y .
Let Z∗ = (X, Z), which is equivalent to letting each of the exogenous variables in X
function as its own instrument. In this case, the IV estimator is,

dI V = (Z∗′
W)−1(Z∗′

y). (4)

Greene (2003, 76, 77) shows that this estimator is consistent with an asymptotic
normal distribution.

The situation where one has more instruments than original right-hand side en-
dogenous variables, L > M, is handled somewhat differently, though the theory is
the same. Since plim (Z ′U )/n = 0 any set of M variables selected from Z will yield
consistent estimates for „. Further, all M linear combinations of the variables in Z
also give consistent estimates. It turns out that the linear combination obtained by
regressing each variable in Y on all the variables in Z and using the predicted values
for Y from these regressions, denoted as Ŷ , as the right-hand side variables in the
regression with y as the left-hand side variable has the lowest asymptotic variance of
any linear combination of the Z’s (Brundy and Jorgenson 1971; Goldberger 1973).

This common reference to this method as two-stage least squares, or 2SLS, derives
from this process. More formally, denote by a the matrix of coefficients obtained
from regressing each variable in Y on the variables in Z and by Ŵ the matrix Ŵ =
(X, Ŷ ) = (X, Za) = [X, Z(Z

′
Z)−1 Z

′
Y ] = Z∗(Z∗′

Z∗)−1 Z∗′
W:

Step One : Ŷ = Za = Z(Z ′ Z)−1(Z ′Y )

Step Two : d2sls = (Ŵ′Ŵ)−1(Ŵ′Y )

= [(W
′
Z∗)(Z∗′

Z∗)−1(Z∗′
W)]−1[(W

′
Z∗)(Z∗′

Z∗)−1(Z∗′
y)]

= [W
′
Pz∗ W]−1W

′
Pz∗ y,

where Pz∗ = Z∗(Z∗′
Z∗)−1 Z∗′

. Step two is just estimating the equation

y = X‚ + Ŷ„ + Â. (5)
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This expression for d2sls reduces to equation (4) if there are exactly as many instru-
ments as variables in Y , i.e. K = L .

Some intuition into IV estimation would be helpful before discussing alternative
versions. Consider a companion equation to equation (3) that relates the included
endogenous variables, Y , to the set of instruments, Z,

Y = Z + Â, (6)

with E (Z ′Â) = 0. In the full model discussed in section 4 these instruments will
include the exogenous variables in the structural equations for Y but excluded from
the equation for y, equation (3), as well as the exogenous variables in equation (3).5

For now, we only need the condition that Z is uncorrelated with Â plus the previous
conditions for instrumental variables that Z is related to Y , meaning that  =/ 0, and
Z is uncorrelated with U .

Substituting equation (6) relating Y to Z into equation (3) for y gives,

y = X‚ + (Z)„ + U + Â„. (7)

Were  known we could get unbiased estimates for ‚ and „ in equation (7) by
regressing y on X and the product Z, assuming the various conditions making U
and Â uncorrelated with X and Z are satisfied. But, alas,  is not known but only
estimated in the first stage regression of Y on Z, p = (Z ′ Z)−1 Z ′Y =  + (Z ′ Z)−1 Z ′Â.
Substituting Ŷ = Zp for Z in equation (7) is the second stage of the 2SLS estimator,
shown in equation (5). With this substitution the second stage is estimating the
equation,

y = X‚ + (Zp)„ + u + Â„. (8)

Equation (8) shows both the attractiveness and limitations of the IV estimator.
With an infinite sample the distribution of p collapses at , or formally plim p = ,
which means that the estimates for ‚ and „ will also collapse about their true values.
Hence the consistency result. The IV estimator is biased for finite samples, however,
because p is a function of Â from the first stage, meaning that Zp and the error term
in equation (8) are correlated. These conditions are what makes the IV estimator a
biased but consistent estimator for equation (3).

A second important IV estimator is the limited information maximum likelihood
estimator, or LIML. Following the notation in Hansen, Hausman, and Newey (2006),
the LIML estimator is,

dliml = (W
′
Pz∗ W − ·̃W

′
W)−1(W

′
Pz∗ y − ·̃W

′
y), (9)

where ·̃ is the smallest eigenvalue of the matrix (W̃
′
W̃)−1(W̃

′
Pz∗ W̃) with W̃ =

(y, W) = (y, X, Y ).6 This is the maximum likelihood estimator for d if the stochastic
terms are normally distributed. The LIML estimator also has more desirable small

5 In this model equation (6) is referred to as the reduced form equations for Y .
6 The 2SLS and LIML estimator are special cases of a general estimator referred to as a k-class

estimator, which is dk = (W
′
Pz∗ W − ·̂W

′
W)−1(W

′
Pz∗ y − ·̂W

′
y). For the LIML estimator ·̂ is defined

above and for 2SLS ·̂ = 0.
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sample properties, as measured by a mean squared error criteria, than 2SLS under
many conditions (Donald and Newey 2001). We will consider both the 2SLS and LIML
estimators.

There is a further consideration in choosing instruments. The justification for an
IV estimator is its consistency, but it is biased in finite samples, as noted previously.
Donald and Newey (2001, 1165) give expressions for the mean squared error of
the 2SLS and LIML estimators and Hahn and Hausman (2002) give an expression
showing the bias of the 2SLS estimator with one endogenous variable. These errors
are proportional to the number of instruments and to the correlation between the
error terms in the reduced form, Â, and the structural equation, U , and inversely
related to the variance of the reduced form error term. There does not seem to be
a generalization to equations with more than one endogenous variable, but these
proportional relationships should still hold. The implication here is that one should
be cautious about selecting both the number and the composition of the instruments.
(See section 3 for a discussion of these concerns.)

2.2 An Example: IV

We can illustrate the use of IV estimation with the model relating to representatives’
deviations and electoral margins. Jackson and King propose that representatives’
party should be treated as an endogenous variable. Doing so here enables us to
illustrate IV estimation with an endogenous right-hand side variable that is not
simultaneously related to other endogenous variables. Accordingly we treat members’
party as endogenous and use a polynomial with Ford’s vote to the third, fourth, and
fifth power as instruments,7

Repub = B11 + B21Ford3 + B31Ford4 + B41Ford5 + U1. (10)

This equation can be estimated with OLS as the 1976 Ford vote variables are consid-
ered to be exogenous and uncorrelated with the stochastic term in the party equation.

The designation of members’ party as an endogenous variable implies that the
party electoral advantage variable, which includes members’ party, is also endogenous
but in a non-linear manner. This specification permits this example to demonstrate
how IV estimation can be used to accommodate non-linear relationships among the
endogenous and exogenous variables. The important works on structural models
with non-linear specifications are Goldfeld and Quandt (1972), Jorgenson and Laffont
(1974), Kelejian (1971), and Newey (1990), and see Achen (1986) and Wooldridge
(2003) for good discussions of how to apply these results. The key element is to
expand the non-linear parts of the model to find an expression that is linear in
the parameters and that includes enough functions of the exogenous variables to

7 In this model Repub is being treated as a continuous interval variable, which it is not. The model
with polynomial Ford variables gives predicted probabilities that range from −0.02 to 0.97 and whose
correlation with the predicted probabilities from a probit model is 0.9988, suggesting this equation very
closely approximates the better specified but non-linear probit model.
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function as instruments for the non-linear term. In the example here the expansion
of the party advantage variable is readily done and leads to a clear specification of
instruments and estimation strategy for the first stage of the IV procedure. Recall that
Partadv = Repub ∗ Ford + (1 − Repub) ∗ (1 − Ford). Substituting the expression for
Repub in equation (10) gives,

Partadv = (1 − B11) + (2B11 − 1)Ford − B21Ford3 + (2B21 − B31)Ford4

+ (2B31 − B41)Ford5 + 2B41Ford6 + (2 ∗ Ford − 1) ∗ U1. (11)

The coefficients in equation (11) are linear combinations of those in equation
(10). The best way to estimate such a system is as a seemingly unrelated regression
model (SUR) that incorporates these constraints and allows for the correlation be-
tween the error terms in the two equations.8 The exogenous variables in the Marg
and Dev equations—South, Age Gap, ƒPop, and ƒ Inc—constitute the remaining
instruments.

The first-stage equations for Repub and Partadv are estimated with the SUR
model, but with two different specifications. The first specification excludes the
exogenous variables from the Marg and Dev equations, as they are not included in
the reduced-form equations for Repub and Partadv. Achen (1986) suggests that for
hierarchical models such as this exogenous variables from higher-order equations
should be excluded for asymptotic efficiency reasons. Most standard procedures,
and programs such as Stata, included all the exogenous variables as instruments in
the first-stage equations for all included endogenous variables. Our examples will
use both specifications, as the results illustrate questions related to the selection of
instruments.

The estimated equations for electoral margin and voting deviations using the
IV procedures are shown in Table 17.2. The estimation is done using the 2SLS and
LIML estimators. The OLS estimates from Table 17.1 are shown for comparisons.
The asymptotic coefficient standard errors (Greene 2003, 400) and the corrected
standard errors derived in Bekker (1994) and discussed in Hansen, Hausman, and
Newey (2006) are presented.9

All the IV estimation results for the coefficients relating Dev and Marg, shown
in boldface, differ substantially from the OLS estimates and are in line with the
initial propositions. Larger deviations from constituency opinion are associated with
decreased electoral margins, with the coefficients ranging from −0.24 to −0.3. Con-
versely, members with larger margins, and presumably safer seats, deviate more from
constituency opinion, with the coefficient likely between 0.4 and 0.5. In all but one
set of estimations the 2SLS and LIML estimates are very similar. The exception is

8 The stochastic term in equation (11) is heteroskedastic because of the (2 ∗ Ford − 1) term. Proper
GLS estimation requires weighting by the reciprocal of this term, which is not defined for Ford = 0.5.
This heteroskedasticity is ignored in subsequent estimations as it only affects the efficiency of the
first-stage estimations. The IV estimator remains consistent.

9 The calculations are done in Stata following the expressions given in Hansen et al. 2006, 4. The
corrected standard errors do not include the terms related to the third and fourth moments that Hansen
et al. say, “. . . are present with some forms of nonnormality.”
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Table 17.2. Instrumental variable estimates

Variable Estimation Method

OLS
Coeff

Two-stage least squares Limited information ML

Coeff sb(cse) sb(asy) Coeff sb(cse) sb(asy)

Margin equation—limited instruments
Deviation 0.063 −0.280 0.133 0.133 −0.314 0.147 0.142
Part. Adv. 0.697 0.673 0.098 0.098 0.668 0.101 0.101
South 0.102 0.123 0.019 0.019 0.125 0.020 0.019
Age Gap −0.120 −0.071 0.075 0.076 −0.071 0.077 0.077
Constant 0.310 0.396 0.070 0.069 0.408 0.075 0.072
R 2 0.268 0.156 0.132

Margin equation—all instruments
Deviation 0.063 −0.261 0.134 0.133 −0.244 0.126 0.128
Part. Adv. 0.697 0.679 0.099 0.098 0.670 0.096 0.097
South 0.102 0.122 0.019 0.019 0.121 0.018 0.019
Age Gap −0.120 −0.131 0.076 0.076 −0.130 0.075 0.075
Constant 0.310 0.398 0.069 0.068 0.392 0.066 0.067
R 2 0.268 0.169 0.108

Deviation equation—limited instruments
Margin 0.159 0.496 0.131 0.128 0.835 0.243 0.237
Republican 0.152 0.227 0.045 0.044 0.338 0.083 0.081
ƒPop 0.178 0.184 0.044 0.045 0.165 0.062 0.062
Inc78/Inc70 0.035 0.046 0.028 0.028 0.048 0.037 0.037
Constant −0.194 −0.494 0.123 0.120 −0.757 0.208 0.204
R 2 0.327 0.164 −0.428

Deviation equation—all instruments
Margin 0.159 0.411 0.112 0.113 0.426 0.119 0.118
Republican 0.152 0.213 0.040 0.040 0.218 0.042 0.041
ƒPop 0.178 0.174 0.044 0.044 0.173 0.044 0.045
Inc78/Inc70 0.035 0.044 0.027 0.027 0.044 0.027 0.027
Constant −0.194 −0.411 0.108 0.108 −0.423 0.113 0.111
R 2 0.327 0.232 0.219

the LIML estimate of the Dev equation with the limited set of instruments for the
Republican variable. We discuss this discrepancy in the next section.

The coefficients on partisan advantage and the exogenous variables are quite con-
sistent across all three estimation methods and match expectations, with one excep-
tion. The larger the members’ partisan advantage the larger their electoral margin,
and southern representatives had safer seats than representatives from outside the
south. The OLS estimation and the IV estimations using the full set of instruments
suggest that the larger the age gap between representative and constituency the
smaller the electoral margin. The IV estimations with only the Ford vote variables
as instruments for Repub have much smaller and statistically insignificant coefficients
for Age Gap though the differences are less than the standard errors of the coefficients.
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In the deviation equations, Republicans and members from districts with large pop-
ulation changes and income growth deviated more from constituency opinion than
did Democrats and those from stable districts.

The R2 are lower in the IV models but this a not particularly meaningful statistic.
The residuals in the estimated equation are calculated using the observed values
of the RHS endogenous variables, not their predicted values from the first stage.
Subsequent sample statistics—the estimate for Û2

u, the estimated coefficient standard
errors, and the R2—all depend on these calculations. By construction the R2 of the IV
estimates will be smaller than that of the OLS estimates because the latter are chosen
to minimize the sum of squared errors using the observed values of the included
endogenous variables. The R2’s in the OLS estimations, however, do not have much
meaning as we are starting with the premiss that because of the endogenity these OLS
coefficients are biased and inconsistent.

These results suggest that one’s underlying assumptions about the data-generating
process and the choice of method may have profound substantive consequences.
In the presence of endogeneity, which may be likely in observational studies, if the
conditions for IV estimation are met it is possible, in theory, to overcome these
confounding effects. But, theory and practice are not always the same thing.

3. Instrumental Variables in Practice
.............................................................................................................................................

The application of instrumental variables poses several serious, possibly daunting,
issues. The most critical is that the instruments must be independent of the stochastic
term in the equation of interest. The second condition is that the instrument must be
correlated with the variable for which it it being used as the instrument. Bartels (1991),
in a classic discussion of these problems, shows how they affect the asymptotic mean
squared error, AMSE, of the IV estimator. (Also, see Bound, Jaeger, and Baker 1995.)
Bartels shows how the AMSE of the IV estimator is related to these two correlations.

AMSE (b I V ) ∝ Ò2
ZU |X + 1/N

Ò2
ZY |X

, (12)

where Ò2
ZU |X is the squared population partial correlation between the instruments

and the stochastic term in the equation being estimated and Ò2
ZY |X is the squared

population partial correlation between the instruments and the endogenous variables
for which they serve as instruments. Bartels makes it clear that it is the partial corre-
lations holding the included exogenous variables, X , constant that are critical. This
requirement is also evident in equation (5). As with any OLS regression the greater
the variance in Ŷ and the lower the correlations of Ŷ with the variables in X the more
reliable the estimates of „ in the second-stage estimation of equation (5).
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Bartels argues that these conditions are problematic in practice, hence the name
“quasi-instruments,” so users must consider what happens in practice, how to diag-
nose potential problems, and how best to manage the tradeoffs among second-best
estimators. The discussion and assessment of weak instruments is also the subject of
important work in econometrics over the past decade. These conditions and how one
might assess their fit, or lack of, to specific data are discussed and illustrated in this
section.

3.1 Correlations of Instruments and Endogenous Variables

We begin the discussion of the practice of IV estimation with the denominator in
equation (12) as it is easier to observe and to estimate with available data. The term
Ò2

ZY |X , referring to the squared population partial correlation, can be estimated by
the partial correlation between Z and Y in the sample data. The most direct way to
make this assessment is to regress Y on X and Z and then conduct the F-test for the
null hypothesis that the coefficients on Z equal zero. There are two weaknesses to
this test, however. The first is that the null hypothesis being tested by the F-statistic
is not the null hypothesis of interest and one should be most concerned about a
type II not a type I error. Rejecting the null hypothesis that the coefficients are zero
is not identical to saying they are not zero with some probability of error. Baum,
Schaffer, and Stillman (2003) suggest that with one included endogenous variable an
F-statistic greater than ten is an appropriate rule of thumb of accepting the alternative
hypothesis that the coefficients are not zero.

A second difficulty arises when there is more than one RHS endogenous variable, as
in this example. The previous test is designed to ensure that the included endogenous
variables are strongly correlated with the excluded exogenous variables, Z, holding
constant the included exogenous variables, X . But, what if the same variables in Z
account for the independent variation in all the included Y ’s? This effectively means
that the coefficients on these included endogenous variables are not really identified
despite appearing to meet the technical criteria.

Shea (1997) presents a test for the strength of the partial relationship between
each included endogenous variable and the excluded instruments controlling for the
included instruments and the other included endogenous variables. Shea presents a
four-step procedure for calculating these statistics, usually referred to as Shea’s partial
R2 and denoted as R2

p . Godfrey (1999) presents a simplified calculation based on
the ratios of the coefficients’ variances and the R2 statistics from the OLS and 2SLS
estimations respectively. This expression is:

R2
p =

(
Ûol s

b

Û2s l s
b

)2 (
Û2s l s

u

Ûol s
u

)2

=

(
Ûol s

b

Û2s l s
b

)2 (
1 − R2

2s l s

1 − R2
ols

)
,

where Ûb is the coefficient standard error, Ûu is the standard error of the estimate, and
R2 is the unadjusted centered R-squared from the respective estimated equations. Un-
fortunately neither Shea nor Godfrey report a test statistic for this partial R-squared
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Table 17.3. Tests for instrument relevance

Endogenous Variable Deviation Part advant. Margin Republican

1st Stage R 2 0.165 0.721 0.236 0.255
F(K 1, K 2)a 8.02 135.59 12.59 17.97

Partial R 2 0.141 0.713 0.233 0.226
F(K 1, K 2)b 8.55 182.85 15.87 21.43

Shea’s R 2 0.135 0.698 0.156 0.149

a K 1 = 9 and K 2 = 366 for Dev and Marg and K 1 = 7 and K 2 = 368 for Repub and
Part Adv.
b K 1 = 7 and K 2 = 366 for Dev and Marg and K 1 = 5 and K 2 = 368 for Repub and
Part Adv.

so we cannot test the null hypothesis that it is zero, and thus that the instruments
for that particular coefficient are irrelevant. In performing these computations one
must assure that all estimated standard errors are calculated with the same degrees of
freedom.10

Table 17.3 reports the R2 and associated F-statistics for the first-stage regressions,
the partial R2 and associated F-statistics and the Shea’s partial R2 for the estimations
just reported, using the full set of instruments.11 None of these statistics suggests a
problem with how well the necessary instruments correlate with the included endoge-
nous variables. The F-statistic for the partial R2 for Dev is only 8.55, but the P-value
for this F with the appropriate degrees of freedom is approximately 1.X10−09, which
suggests a very low likelihood of a type II error if the null hypothesis of no relationship
is rejected. The other F-statistics are even larger. The Shea’s partial R2 statistics range
from 0.135 to 0.156, with the value for Partisan Advantage equal to 0.70. On the basis
of these statistics we conclude that these instruments adequately meet the standards
for relevance, as discussed by Bartels, Bound, and subsequent authors.

3.2 Independence of Instruments and Stochastic Terms

The second critical requirement for consistent IV estimators is independence between
the instruments and the stochastic term in the equation being estimated. This is the
numerator in Bartels’s assessment of the asyptotic mean squared error of the IV
estimator, equation (12). This condition is difficult to test in practice as it requires
information on the unobservable stochastic term in the equation being estimated.

10 Some 2SLS estimations do not use a degrees of freedom correction in calculating standard errors
under the assumption that only the asymptotic properties are of interest. In Stata, for example, the
“small” option adjusts for the degrees of freedom in the equation being estimated.

11 The equations for Repub and Part Adv have fewer degrees of freedom because following equations
(10) and (11) there are only nine coefficients being estimated. The equations for Dev and Marg, because
Ford and Ford6 are included and none of the coefficients are constrained estimate eleven coefficients.
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There are several approaches to approximating this test discussed in this section. All,
however, require that the equation being estimated is overidentified, meaning that
there are more instruments than included endogenous variables, L > K . The first
statistic is attributed to Sargan (1958) and is reported as the Sargan statistic. This
statistic is the proportion of the sum of squared residuals from the estimated equation
that can be “explained” by the full set of instruments,

Sargan statistic =
û

′
Z∗(Z∗′

Z∗)−1 Z∗′
û

û
′
û/n

, (13)

where Z∗ = (X, Z) and û denotes the residuals from the estimated equation using
the observed values for the included endogenous variables. Sargan shows that as-
ymptotically this ratio is distributed as a Chi-squared statistic with (L − K ) degrees
of freedom. If we knew the true values of the stochastic term and if the instruments
are truly independent of the stochastic term this statistic should be zero, meaning
that the instruments do not explain any of the residual variance. The Sargan statistic
approximates this ratio by using the residuals calculated from the estimated equation.
There is also a version of the Sargan statistic that multiplies the ratio by (n − L ) rather
than n, which is also distributed as a Chi-squared statistic with (L − K ) degrees of
freedom.

Basmann (1960) proposes a second statistic that compares the same fitted values of
the residuals in the Sargan statistic to the unexplained variance in the residuals rather
than the total variance of the residuals,

Basmann’s statistic =
û

′
Z∗(Z∗′

Z∗)−1 Z∗′
û/(L − K )

[û
′
û − û

′
Z∗(Z∗′ Z∗)−1 Z∗′û]/(n − L )

. (14)

Basmann shows that asymptotically this statistic has an F-distribution with (L − K )
and (n − L ) degrees of freedom. Basmann and Sargan present other variations on
these statistics but the core comparison is the relationship between the residuals in
the estimated structural equation and the instrumental variables.

One weakness of these tests is the same as with the tests of instrument relevance.
The null hypothesis being tested is that the instruments and stochastic term are
uncorrelated, plim Z ′u/n = 0. If this null is rejected then it is clear that the variables
are not adequate instruments. But, not rejecting the null is not equivalent to accepting
it, which is the critical issue. The smaller the Sargan and/or Basmann statistics the
higher the likelihood of getting that value by chance if the null hypothesis is true,
and thus the lower the probability of a type II error if the null is accepted. But, at
the end of the analysis the best that can be said is that these statistics are useful for
rejecting the null hypothesis and thus putting the instruments in doubt but are not
strong enough for establishing that these instruments are valid.

Table 17.4 shows the Sargan and Basmann statistics for the estimated equations, in-
cluding the estimations with the limited set of instruments for the Repub and Part Adv
variables. Recall from Table 17.2 that the LIML estimates for the Dev equation with
the limited set of instruments produced questionable results. The 2SLS and LIML
estimations using the full set of instruments in the first-stage estimates for Repub and
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Table 17.4. Tests for instrument independence

Test (DOF) Marg Dev

2SLS LIML 2SLS LIML

Full instruments
Sargan ˜2(5) 1.143 1.213 2.114 2.098
P-Value 0.950 0.944 0.833 0.835
Basmann F(5,366) 0.187 0.198 0.346 0.343
P-Value 0.967 0.963 0.885 0.887

Limited instruments
Sargan ˜2(5) 1.844 1.872 2.769 9.963
P-Value 0.870 0.867 0.736 0.076
Basmann F(5,366) 0.301 0.306 0.454 1.665
P-Value 0.912 0.909 0.810 0.142

Part Adv have very low Sargan and Basmann statistics with very high probabilities of
occurrence if the null hypothesis of independence is true. The estimates of the Marg
equation with only the Ford variables as instruments for Part Adv have similarly low
Sargan and Basmann statistics, again suggesting instrument independence.

The questionable results are the limited instrument LIML estimation of the Dev
equation. We noted earlier that the coefficient on Marg was inconsistent with the
other estimations and that the estimates fit the observed data very badly. The Sargan
and Basmann statistics indicate there is a problem with the assumption that the in-
struments are uncorrelated with the stochastic term. It is hard to explain these results,
as all of the other results with similar specifications and even the 2SLS estimates
with the same specifications give more consistent results and have more acceptable
summary statistics. There are two things one may want to conclude from these results.
Results are sensitive to the choice of instruments, as is also seen in the estimates for
the coefficients on Age gap in Table 17.2, and estimation method in unexpected ways.
This makes the exploration of the robustness of the results to these choices important.
It is also the case that some of the diagnostic statistics, such as the assessments of
instrument relevance and independence, may reveal problems and should be reported
in all studies.

4. Full Information Estimation
.............................................................................................................................................

The previous estimators are limited information estimators because the estimation
proceeds one equation at a time. A second estimation strategy, referred to as full
information estimation, estimates the entire structural model. This section talks
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briefly about this strategy and applies it to the running example. The reference to
the entire structure means there is an equation of the form of equation (3) for each
endogenous variable in the model,

y1 = X1‚1 + Y1„1 + U1 = W1‰1 + U1

...
...

ym = Xm‚m + Ym„m + Um = Wm‰m + Um (15)

...
...

yM = XM‚M + YM„M + UM = WM‰M + UM.

Assume that E (X
′
U ) = 0 and that the Ui ’s are iid, so that,

E (Uis U
′
j t) = �u, for i = j & s = t (16)

= 0, otherwise. (17)

We also assume that the specification of the exogenous and endogenous variables
excluded from each equation plus any other a priori constraints are sufficient to
meet the identification requirements. (Identification of each equation is required for
estimation and is a complex topic that is not addressed in this chapter. The classic
work here is Fisher 1966, but see any text, such as Greene 2003, 385–95 or Wooldridge
2003, 211–30.) We discuss two different full information estimation strategies and
both parallel those examined above. The first is an extension of the 2SLS estimator
to the full model, referred to as Three-Stage Least Squares, or 3SLS. The second is a
maximum likelihood, or FIML, estimator.

4.1 Three-Stage Least Squares

Three-Stage Least Squares (Zellner and Theil 1962) stacks each of the M equations in
equation (16) into one large TM × 1 system, as shown in equation (18),

⎛
⎜⎜⎜⎜⎜⎜⎝

y1
...

ym
...

yM

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

W1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Wm · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · WM

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

‰1
...

‰m
...

‰M

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

U1
...

Um
...

UM

⎞
⎟⎟⎟⎟⎟⎟⎠

. (18)

This expression can be summarized as Y = W‰ + U .
Each equation in this system could be estimated by 2SLS using the same

IV procedures and instruments discussed above. In this estimation the instru-
ments for each equation are all the exogenous variables in the system, X , so that
Ŵm = (Xm, Ŷm) = [Xm, X(X

′
X)−1 X

′
Ym]. The 2SLS estimator for each equation is,
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d̂2sls = (Ŵ
′
Ŵ)−1Ŵ

′
Y . Unless �u is diagonal, meaning all the stochastic terms are

independent of each other, this method loses asymptotic efficiency by not considering
these stochastic term covariances. (See Judge et al. 1988, 646–51.) The standard 3SLS
estimator uses the residuals from the 2SLS estimation of each equation to form an
estimate for the elements in �u, which is the second stage in the 3SLS procedure. The
inverse of this estimated variance-covariance matrix is used in a feasible GLS estima-
tion of the full system. Let �̂−1

u denote this inverted estimated variance-covariance
matrix, which following the conditions in equation (17) has the following structure,

�̂−1
u =

⎛
⎜⎝

Û̂11 I · · · Û̂1M I
...

...
...

Û̂1M I · · · Û̂MM I,

⎞
⎟⎠ (19)

where the I are T × T identity matrices. The 3SLS estimator is,

d̂3s l s = (Ŵ
′
�̂−1

u Ŵ)−1(Ŵ
′
�̂−1

u Y ). (20)

This is a specific application of Zellner’s (1962) seemingly unrelated regression. Often
this process is iterated using the residuals from successive 3SLS estimations to get �̂u

until convergence is achieved, which is usually fairly rapidly.
The justification for 3SLS depends heavily on its asymptotic properties, even more

so than 2SLS. In addition to the conditions required for consistency and the factors
that make 2SLS biased in finite samples, with 3SLS the user is relying on the asymp-
totic condition that the variances and covariances of the stochastic terms in the equa-
tions being esimated are given by �u and that the variances and covariances of the
residuals from the estimated equations are an adequate approximation to this matrix.
But, this ignores the fact that the error term in the equation being estimated consists
of Um and a term involving the deviations of the estimated reduced form coefficients
from their true values. Asymptotically this term goes to zero, but in practice for finite
samples it is not zero and thus will contribute to the variance of the error term in the
equation being estimated. Whether including the FGLS approximation to �u actually
improves efficiency depends on the actual sample and might be open to conjecture.

4.2 Full Information Maximum Likelihood

The full information analog to the LIML estimator uses the assumption that the
stochastic terms are normally distributed, i.e. Ui is N(0, �u). To develop the FIML
estimator equation (16) is rearranged to give,

(y1, . . . , yM) = X(‚1, . . . , ‚M) + Y („1, . . . , „M) + (U1, . . . , UM), (21)

where Y is a (T × M) matrix of observations on all the endogenous variables and X
is a (T × K ) matrix of observations on all the exogenous variables in the model. ‚m is
a (K × 1) vector of coefficients relating ym to the exogenous variables, which implies
that any exogenous variable excluded from this equation has a value of zero in this
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vector. „m is an (M × 1) vector of coefficients relating ym to the other endogenous
variables. Any endogenous variable omitted from the RHS of this equation has a zero
coefficient in this vector, including the mth entry, which corresponds to ym. Equation
(22) summarizes this expression,

Y√ + X B + U = 0. (22)

The matrix √ has values of −1 on its main diagonal corresponding to the implicit
coefficient on ym in equation (21).

The FIML estimator rearranges equation (22) to isolate the stochastic component,

V = −U√−1 = Y + X B√−1. (23)

If the Ui ’s are normally distributed then V is N(0, √−1′
�u√

−1). From this, the log
likelihood function for the observed data is,

log L = −T

2
[M log (2) + log |�v| + tr (

1

T
�−1

v V
′
V)]

= −T

2

{
Í + log |√−1′

�u√
−1| + tr

[
1

T
(√

′
�−1

u √)(Y + X B√−1)
′
(Y + X B√−1)

]}

= −T

2
[Í + log |�u| − 2 log |√| + tr (�−1

u S)], (24)

where sij = 1
T (Y√i + X Bi )

′
(Y√ j + X B j ). The inclusion of log |√| in the likelihood

function imposes one more constraint on the model in order to compute the FIML
estimator. As the value of this determinant approaches zero the likelihood function
approaches minus infinity, effectively ruling out that particular set of parameter
values.

The FIML estimator provides a test of model specification not present in the
other estimators if the model is overidentified. The estimated model’s fit is based on
how well the estimated model predicts the variance-covariance matrix of observed
variables. In an exactly identified model the number of parameters being estimated,
including the variances and covariances of the stochastic terms, exactly equals the
number of entries in the observed variance-covariance matrix. In this case the es-
timated model will fit the observed matrix perfectly. As additional restrictions are
added to the model by specifying that specific variables are excluded from certain
equations, i.e. that certain elements of B and √ are zero, the fit decreases as does the
log likelihood function. The test of the overidentifying restrictions then is a function
of the difference in the log likelihood functions of the just identified model and the
estimated model. Asymptotically minus twice this difference is distributed as a ˜2

variable with degrees of freedom equal to the number of overidentifying restrictions
(Jöreskog 1973). A poor fit and accompanying large value for the ˜2 statistic leads to
rejection of the null hypothesis that the overidentifying restrictions are satisfied. The
functional difference with the Sargan statistic is that this statistic is testing the fit of
the whole model, not just the restrictions in an individual equation.
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Estimation proceeds by maximizing the expression in equation (24) subject to
the constraints and restrictions placed on the model to obtain identification and to
conform to any other a priori information about the model. This produces a set of
non-linear simultaneous equations that requires a numerical analysis for solution
that is challenging to solve in practice and the discussion of which is beyond the
scope of this chapter. The possible presence of sets of parameter values that lead to
the condition that log |√| = 0 further complicates the computational task. These sin-
gularities create distinct regions that must be searched separately in order to find the
global maximum. The complexity of the computational tasks has led most analysts to
use 3SLS more often than FIML. The 3SLS computational advantage actually comes
at little cost asymptotically if the stochastic terms are normally distributed. Greene
(2003, 409) shows that FIML is also an IV estimator. He then goes on to state that
with normally distributed stochastic terms 3SLS and FIML have identical asymptotic
distributions. He also says that small sample properties are “ambiguous” and may
differ between the two methods.

4.3 Example: Full Information Estimation

The estimates reported in Table 17.2 were redone using both the 3SLS and FIML
procedures.12 The results are shown in Table 17.5, which include the estimates for
the Repub equation. (Coefficients for the Part Adv equation are not reported as they
are just linear functions of the coefficients in the Repub equation. See equation (11)).
The table also shows the Sargan statistic calculated for the Margin and Deviation
equations. The results from the two methods are remarkably similar, differing by
at most 0.012 and in most cases by considerably less and the estimated asymptotic
standard errors are nearly identical as well. A likely explanation for the similarities
in results are that the estimated covariances among the stochastic term are quite
small, on the order of 0.13 to 0.23. The Sargan statistics are quite low and have a
high probability of occurring by chance if the instruments and stochastic terms are
independent. The ˜2 test of the whole model with the FIML estimation is 22.61 with
26 degrees of freedom, which has a P-value of 0.665, again suggesting it is probably
safe to accept the null hypothesis that the identifying restrictions are consistent with
the data and justify the IV variables.

Full information estimators are more susceptible to specification problems, though
this sensitivity was not evidenced in this example. Because 2SLS and LIML estimate
each equation separately a misspecification in one equation in the structural system
does not influence the estimation of other equations, subject to the requirements that
the instruments for the equation being estimated are both relevant and uncorrelated
with the stochastic terms in the estimated equation. With the full information meth-
ods a misspecification in one equation can affect the estimates of other equations be-
cause the 3SLS and FIML procedures try to fit the entire structure. This means that the

12 The FIML estimation was done using the package LISREL for Windows.
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Table 17.5. Full information results

3SLS FIML

Coeff sb(asy) Coeff sb(asy)

Repubican
Ford 3/100 −0.136 0.031 −0.135 0.031
Ford 4/100 0.543 0.102 0.542 0.102
Ford 5/100 −0.443 0.084 −0.443 0.084
Constant 0.023 0.022 0.023 0.022
R 2 0.250 0.250

Margin
Dev −0.296 0.132 −0.308 0.139
Part Adv 0.685 0.098 0.687 0.097
South 0.119 0.019 0.119 0.018
Age Gap −0.144 0.075 −0.145 0.075
Constant 0.406 0.067 0.409 0.069
R 2 0.147 0.139
Sargan ˜2(5) 1.208 1.241
P-Value 0.944 0.941

Deviation
Marg 0.451 0.113 0.464 0.123
Repub 0.218 0.039 0.223 0.042
ƒPop 0.171 0.043 0.170 0.043
ƒInc 0.037 0.026 0.037 0.026
Constant −0.423 0.104 −0.433 0.113
R 2 0.205 0.191
Sargan ˜2(5) 1.788 1.844
P-Value 0.878 0.870

conditions of relevance and independent required of the instrumental variables must
be satisfied in every equation (Wooldrige 2003, 199). For these and computational
reasons, one of the k-class of limited information estimators seem to be preferred in
practice and are more frequently encountered in the literature.

5. Comparisons of Estimators
.............................................................................................................................................

This section briefly compares and summarizes the results obtained with the differ-
ent estimators. The discussion focuses on the relationships between Dev and Marg
estimated in each of their respective equations. Table 17.6 shows the five different
estimated relationships between these variables, where first Marg and Dev are the
left-hand side variables. There is little substantive difference among the IV estima-
tions, though the full information estimates are somewhat larger than the limited
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Table 17.6. Coefficients with different estimation methods

LHS Var. RHS Var. Estimation Method

OLS 2SLS LIML 3SLS FIML

Marg Dev 0.063 −0.261 −0.244 −0.296 −0.308
Dev Marg 0.159 0.411 0.426 0.451 0.464

information estimates. There is even less statistical difference as even the largest
difference between the estimates is less than half the magnitude of the standard errors.

The substantial difference is between the OLS and IV estimators, as one would
expect if Marg, Dev, and Repub are not exogenous variables, and if the instruments
are appropriate. The IV estimates for the effect of voting deviations from constituency
preferences on electoral margin range from −0.24 to −0.30, compared to 0.06 with
OLS estimation. Conversely, the estimated effect of electoral margin on deviations
ranges from 0.41 to 0.46 with the IV estimators, compared to 0.16 for the OLS model.
The IV results are more consistent with expectations, particularly in the equations
testing the proposition that deviations from constituency preferences are punished in
the next election. The final topic is a test of whether RHS variables can be treated as
exogenous, and thus which of these estimators is preferred.

If the RHS variables are fully exogenous then the OLS estimator is preferred
because it is unbiased, consistent, and efficient and it is the MLE estimator. This gives
it a great advantage over less efficient estimators, such as IV. If the RHS variables are
not exogenous, then the IV estimators are biased and less efficient but consistent.
Specification tests proposed by Durbin (1954), Wu (1973), and Hausman (1978), often
referred to as DWH tests, provide information for this choice.13 Excellent discussions
of the versions of these tests are in Baum, Schaffer, and Stillman (2003), Davidson
and MacKinnon (1993, 237–42), Greene (2003, 80–3), and Nakamura and Nakamura
(1981). The basis for the test is a comparison of the differences in the OLS and
IV coefficient values and variances. Denote by biv the consistent but inefficient IV
estimates and by Siv the matrix of estimated asymptotic variances and covariances
of these estimates. The null hypothesis is no endogeneity, in which case the OLS
estimated coefficients, denoted as bols, are also consistent but more efficient than
the IV estimator. Denote the estimated variances and covariances of these efficient
estimates as Sols. The test statistic is,

H = (biv − bols)
′
[Siv − Sols]

−1(biv − bols)

= n(biv − bols)
′
[

(Ŵ
′
Ŵ)−1

s 2
u

− (W
′
W)−1

s 2
u

]−1

(biv − bols),

13 Hausman’s paper and statistic is developed for the general case where one wants to compare a
consistent with an efficient but possibly inconsistent estimator, which includes a number of important
contexts and is not limited to the case of possible endogeneity and IV estimation.
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Table 17.7. Endogeneity tests

Equation

Margin Deviation

Statistic P-Value Statistic P-Value

˜2(2)
2SLS 8.51 0.014 6.88 0.032
3SLS 11.39 0.003 9.47 0.009

F(2,369)
2SLS 4.85 0.008 3.78 0.024

where following the notation in equation (16) W = (Xm, Ym) and Ŵ = (Xm, Ŷm) and
s 2

u is the estimated variance of the stochastic term. This statistic has a ˜-squared
distribution with Mm degrees of freedom where Mm denotes the number of LHS
endogenous variables.

The variations in the calculations of the H test statistic arise from one’s choice
of the estimate for s 2

u . One choice is the standard error of the estimate from the
OLS estimation, which was Durbin’s proposal. A second choice is the estimate from
the IV estimation and a third option is to use each of the estimates in their respective
estimates for S.14 Asymptotically these three ratios should be equal, but in finite
samples they will not be. Baum et al., among others, suggest using the OLS estimate as
it is the most efficient estimate.

Both Davidson and MacKinnon (1993) and Greene (2003) describe a computa-
tionally easier way to test for endogeneity in the IV estimation context. Recall from
equation (16) the equation being estimated, ym = Xm‚m + Ym„m + Um. Now estimate
the equation,

ym = Xm‚m + Ym„m + Ŷm· + Um. (25)

Wu (1973) and Davidson and MacKinnon (1993) show that the conventional F-test for
the null hypothesis H0 : · = 0 is asymptotically equivalent to the DWH test above.
This F-statistic has Mm and (n − Km − 2 ∗ Mm) degrees of freedom where Km and
Mm are the number of included exogenous and endogenous variables. Again, with
finite samples this F-statistic will not be identical in its P-value to the versions of the
H ˜2 statistics.

Table 17.7 shows the DWH ˜2 and F statistics for the 2SLS equations reported
in Table 17.2 and the ˜2 statistic for the 3SLS equations reported in Table 17.5. The
˜2 statistics are computed using the OLS estimates for s 2

u . All results quite clearly
reject the null hypothesis that OLS produces asymptotically equivalent but more

14 If the third option is chosen the difference in the matrices of asymptotic variances and covariances
may not be positive definite meaning the generalized inverse must be used in the calculations.
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efficient estimates than the different IV estimators at conventional confidence levels.
This means that the IV estimators are probably “better” estimates of the joint rela-
tionships between Dev and Marg, being biased and inefficient, but consistent. The
DWH statistics for the 3SLS estimation are larger than for the 2SLS, which should
be expected as the difference between these estimates for the relationships between
Dev and Marg and the OLS estimates are larger than the differences with the 2SLS
estimator. In this particular example the F-tests had smaller P-values than the DWH
test. In this example both tests reject the null, but it is possible the DWH test is more
conservative on this point than the F-test. Staiger and Stock (1997, 568) argue that
the DWH test using the OLS estimate for s 2

u has more power than the other forms of
the test and is recommended if one suspects weak instruments. There seems to be an
absence of work comparing the ˜2 and F-test versions of the test, possibly because of
Hausman’s demonstration that the former can be applied in a number of important
estimation contexts.

6. Concluding Remarks
.............................................................................................................................................

The continuing need to use observational data routinely raises the problem of en-
dogeneity of RHS variables and thus of covariance between these variables and the
equation’s stochastic term, in violation of a key condition justifying the OLS or GLS
estimators. This has and continues to be a daunting problem for empirical social
science researchers. At one point it was hoped that instrumental variables and the
associated estimators discussed here constituted a possible and adequate remedy.
(See Goldberger and Duncan 1973 as one example.) The difficulty of matching real
data to the conditions justifying IV estimation and the estimators’ potential small
sample biases despite the asymptotic properties has reduced some of this optimism
and enthusiasm. These concerns have been augmented by various studies showing
the weakness of the IV estimators even with very large data sets (Bound, Jaeger, and
Baker 1995).

Well-founded reservations about the robustness and reliability of the IV estimators
are leading some researchers to undertake very creative studies that follow the experi-
mental paradigm. (On experiments see Kinder and Palfrey 1993; and Druckman et al.
2006.) There is also considerable interest in building on the work of statisticians such
as Rubin and Rosenbaum to develop techniques to mimic the experimental condi-
tions of treatment and control groups by matching subjects in observational studies.
(See Rosenbaum 2001 for an overview and Arceneaux, Gerber, and Green 2006 for a
critique of matching methods.) The hope is that these efforts will lead to better tests
of causal arguments by avoiding or at least reducing possible endogeneity biases. And
one can only applaud and encourage work that expands the methodologists, ability
to generate and analyze data in wider contexts.
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It is not, however, a situation of replacing one method with another. There will
continue to be important substantive questions engaging political science researchers
that are not amenable to some of these other methods. Consider the examples given
at the beginning of this chapter. Propositions about inter-state rivalry, or the effects
of institutions on economic performance, or the consequences of campaign spending
are unlikely to be manipulable in an experimental setting. There is also a need to
examine how well results obtained in well-controlled laboratory settings apply in
non-laboratory political settings. Thus, in many instances our empirical evidence
will continue to be the classic observational study, replete with endogeneity problems.
Rather than foregoing analyses of these data and questions because of the reservations
about a particular method it is better to use and to improve those methods in the
context of these studies and data. This is surely what stimulates the ongoing work in
econometrics to understand better the properties of IV estimators, to develop and use
better the diagnostics that help inform judgments about the statistical results, and to
encourage the reporting of these newer statistics.
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