AULA 07 Análise de Regressão Múltipla: Problemas Adicionais

Ernesto F. L. Amaral

24 de julho de 2012 Análise de Regressão Linear (MQ 2012) www.ernestoamaral.com/mq12reg.html

Fonte:

Wooldridge, Jeffrey M. "Introdução à econometria: uma abordagem moderna". São Paulo: Cengage Learning, 2008. Capítulo 6 (pp.174-206).

EFEITOS DA DIMENSÃO DOS DADOS NAS ESTATÍSTICAS

- Mudanças das unidades de medida das variáveis não afeta o R².
- A intenção agora é de examinar o efeito do redimensionamento das variáveis dependente ou independente sobre:
 - Erros-padrão.
 - Estatísticas t.
 - Estatísticas F.
 - Intervalos de confiança.
- Escolhendo as unidades de medida, a aparência da equação estimada pode melhorar, sem alterar a essência do modelo.
- É geralmente realizada com valores monetários,
 especialmente quando os montantes são muito grandes.

EXEMPLO

- pesônas: peso dos recém-nascidos, em onças.
- cigs: número médio de cigarros que a mãe fumou por dia durante a gravidez.
- rendfam: renda anual familiar, em milhares de dólares.
- Equação 1:

$$pe\widehat{son}as = \hat{\beta}_0 + \hat{\beta}_1 cigs + \hat{\beta}_2 rendfam$$

EFEITOS DA DIMENSÃO DOS DADOS

Variável Dependente	(1) pesonas	(2) pesonaslb = pesonas/16	(3) pesonas
Variáveis Independentes			
cigs	-0,4634 (0,0916)	-0,0289 (0,0057)	
maços = cigs/20			-9,268 (1,832)
rendfam	0,0927 (0,0292)	0,0058 (0,0018)	0,0927 (0,0292)
intercepto	116,974 (1,049)	7,3109 (0,0656)	116,974 (1,049)
Observações	1.388	1.388	1.388
R-quadrado	0,0298	0,0298	0,0298
SQR	557.485,51	2.177,6778	557.485,51
EPR	20,063	1,2539	20,063

MUDANÇA NA DEPENDENTE

 Não importa como a variável dependente seja medida, os efeitos da constante e coeficientes são transformados nas mesmas unidades.

– Equação 2:

$$pe\widehat{sonas}/16 = \hat{\beta}_0/16 + (\hat{\beta}_1/16)cigs + (\hat{\beta}_2/16)rendfam$$

E A SIGNIFICÂNCIA ESTATÍSTICA?

- A alteração da variável dependente de onças para libras não tem efeito sobre o quanto são estatisticamente importantes as variáveis independentes.
- Os erros-padrão na coluna (2) são 16 vezes menores que os da coluna (1).
- As estatísticas t na coluna (2) são idênticas às da coluna (1).
- Os pontos extremos dos intervalos de confiança na coluna
 (2) são exatamente os pontos extremos na coluna
 (1) divididos por 16, já que ICs mudam pelos mesmos fatores dos erros-padrão.
- IC de 95% é beta estimado +/- 1,96 erro padrão estimado.

E O GRAU DE AJUSTE? E O SQR? E O EPR?

- − Os R² das duas regressões são idênticos, como esperado.
- A soma dos resíduos quadrados (SQR) e o erro-padrão da regressão (EPR) possuem diferentes equações.
- Quando *pesonaslb* é a variável dependente, o resíduo da observação *i* na equação (2) é: $\hat{u}_i/16$
- O resíduo quadrado em (2) é: $(\hat{u}_i/16)^2 = \hat{u}_i^2/256$
- Por isso, SQR(2) = SQR(1) / 256.
- Como: $EPR = \hat{\sigma} = \sqrt{SQR/(n-k-1)} = \sqrt{SQR/1.385}$
- Por isso, **EPR(2) = EPR(1) / 16**.

REDUZIMOS O ERRO?

- O erro na equação com pesonaslb como a variável dependente tem um desvio-padrão 16 vezes menor do que o desvio-padrão do erro original.
- Isso não significa reduzir o erro por mudar a medida da variável dependente.
- O EPR menor simplesmente reflete uma diferença nas unidades de medida.

MUDANÇA NA INDEPENDENTE

– maços: quantidade de maços de cigarros fumados por dia:maços = cigs / 20

$$pesonas = \hat{\beta}_0 + (20\hat{\beta}_1) \left(\frac{cigs}{20}\right) + \hat{\beta}_2 rendfam$$
$$= \hat{\beta}_0 + (20\hat{\beta}_1) maços + \hat{\beta}_2 rendfam$$

- O intercepto e o coeficiente de inclinação de rendfam não se alteraram.
- O coeficiente de maços é 20 vezes o de cigs.
- O erro-padrão de maços é 20 vezes o de cigs, o que significa que a estatística t é a mesma.
- Se maços e cigs fossem inseridos conjuntamente, teríamos multicolinearidade perfeita.

COEFICIENTES BETA

- Algumas vezes, uma variável-chave é medida em uma dimensão de difícil interpretação.
- Primeiro exemplo: ao invés de perguntar o efeito sobre o salário, proveniente do aumento em dez pontos em um teste, talvez faça mais sentido perguntar sobre efeito proveniente do aumento de um desvio-padrão.
- Segundo exemplo: é o caso de variáveis criadas com análise fatorial, já que não sabemos exatamente o que a unidade de medida significa.
- Como o desvio-padrão da variável "fatorial" é geralmente próximo de uma unidade, verificamos o efeito na unidade da variável dependente (beta), após a alteração de um desviopadrão na variável independente.

COEFICIENTES PADRONIZADOS

- Algumas vezes é útil obter resultados de regressão quando todas as variáveis tenham sido padronizadas.
- Uma variável é padronizada pela subtração de sua média e dividindo o resultado por seu desvio-padrão.
- Ou seja, computamos a transformação z de cada variável e depois fazemos a regressão usando esses valores z.
- Portanto, partimos de:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_k x_{ik} + \hat{u}$$

- Novo beta = beta original * (dp de x / dp de y)
- Intercepto (beta zero) não existe mais:

$$z_y = \hat{b}_1 z_1 + \hat{b}_2 z_2 + \dots + \hat{b}_k z_k + erro$$

– Para j = 1,...,k, os coeficientes são: $\hat{b}_j = (\hat{\sigma}_j/\hat{\sigma}_y)\hat{\beta}_j$

INTERPRETANDO COEFICIENTES PADRONIZADOS

- Os coeficientes padronizados são também chamados de coeficientes beta.
- Se x_1 aumentar em um desvio-padrão, então o y predito será alterado em b_1 desvios-padrão.
- Os efeitos não estão sendo medidos em termos das unidades originais de y ou de x_j , mas em unidades de desvios-padrão.
- A dimensão das variáveis independentes passa a ser irrelevante, colocando-as em igualdade.
- Quando cada x_j é padronizado, a comparação das magnitudes dos coeficientes (significância econômica) é mais convincente. Ou seja, a variável com maior coeficiente (em módulo) é a "mais importante".
- O Stata apresenta os beta padronizados com opção ", beta".

USO DE FORMAS FUNCIONAIS LOGARÍTMICAS

 O uso de logaritmos das variáveis dependentes ou independentes é o artifício mais comum em econometria para permitir relações não lineares entre a variável explicada e as variáveis explicativas.

$$\widehat{\log}(y) = \hat{\beta}_0 + \hat{\beta}_1 \log(x_1) + \hat{\beta}_2 x_2$$

- $-\beta_1$ é a elasticidade de y, em relação a x_1 :
 - Quando x_1 aumenta em 1%, y aumenta em β_1 %, mantendo x_2 fixo.
- $-100^*\beta_2$ é a semi-elasticidade de y, em relação a x_2 :
 - Quando x_2 aumenta em 1, y aumenta em 100*[exp(β_2)-1], mantendo x_1 fixo.
 - No entanto, podemos utilizar $100^*\beta_2$, quando temos pequenas mudanças percentuais.

PECULIARIDADES DO USO DE LOGARITMOS

- Com log, ignoramos unidades de medida das variáveis, pois coeficientes de inclinação não variam pelas unidades.
- Quando y>0, os modelos que usam log(y) satisfazem MQO mais do que os modelos que usam o nível original de y.
- Log é útil para variáveis estritamente positivas com grandes valores e distribuição concentrada, tais como: renda, vendas de empresas, população, matrículas, empregados, votação.
- Log estreita amplitude dos valores, tornando estimativas menos sensíveis a observações extremas (outliers).
- Variáveis medidas em anos aparecem em forma original.
- Taxas geralmente aparecem em forma original.
- Log não é usado se variável tem valor zero ou negativo.
- Não é válido comparar R² entre modelos com y e log(y).

MODELOS COM FUNÇÕES QUADRÁTICAS

 Funções quadráticas são usadas para capturar efeitos marginais crescentes ou decrescentes.

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$$

- Sempre existe um valor positivo de x, no qual o efeito de x sobre y é zero, chamado de ponto crítico: $x^* = |\beta_1/(2\beta_2)|$.
- Interpretações: (1) após ponto crítico, a relação se inverte;
 (2) após/antes ponto crítico, há poucos casos; (3) falta incluir variáveis; ou (4) falta transformar variáveis.
- Quando o coeficiente de x é positivo e o coeficiente de x^2 é negativo, a função quadrática tem um formato parabólico (∩):
 - Antes desse ponto, x tem um efeito positivo sobre y.
 - Após esse ponto, x tem um efeito negativo sobre y.
- Se β_1 é negativo e β_2 é positivo, função tem formato U.

MODELOS COM TERMOS DE INTERAÇÃO

 O efeito de uma variável independente, sobre a variável dependente, pode depender de outra variável explicativa:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + u$$

- O efeito parcial de x_2 sobre y é: $\Delta y/\Delta x_2 = \beta_2 + \beta_3 x_1$.
- $-\beta_2$ é o efeito parcial de x_2 sobre y, quando x_1 =0, o que pode não ser de interesse prático.
- Podemos então reparametrizar o modelo, tal como:

$$y = \alpha_0 + \delta_1 x_1 + \delta_2 x_2 + \beta_3 (x_1 - \mu_1)(x_2 - \mu_2) + u$$
, sendo:

 μ_1 e μ_2 médias populacionais de x_1 e x_2 .

 $-\delta_2$ é o efeito parcial de x_2 sobre y no valor médio de x_1 :

$$\delta_2 = \beta_2 + \beta_3 \mu_1$$

É complicado interpretar modelos com termos de interação.

VARIÁVEL CENTRALIZADA NA MÉDIA

– No exemplo abaixo, temos o efeito de idade (x_1) e escolaridade (x_2) sobre a renda (y), sendo que idade varia de 15 a 64 e escolaridade varia de 0 a 15:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

- Não faz sentido interpretar β_0 , já que $\beta_1 x_1$ nunca será igual a zero (não temos idade igual a zero).
- Podemos reparametrizar o modelo, subtraindo a idade de cada unidade de análise pela média de idade na amostra.
- A equação abaixo ilustra o novo modelo populacional:

$$y = \beta_0 + \beta_1(x_1 - \mu_1) + \beta_2 x_2 + u$$

– Neste caso, β_0 será o valor estimado de *y* quando a idade for igual à média e a escolaridade for igual a zero.

GRAU DE AJUSTE E SELEÇÃO DE REGRESSORES

- Seleção de variáveis explicativas com base no tamanho do R² pode levar a modelos absurdos.
- Nada nas hipóteses do modelo linear clássico exige que o R² esteja acima de qualquer valor em particular.
- O \mathbb{R}^2 é simplesmente uma estimativa do quanto da variação em y é explicado por $x_1, x_2, ..., x_k$ na população.
- Modelos com R² pequenos significam que não incluímos fatores importantes, mas não necessariamente significam que fatores em u estão correlacionados com os x's.
- O tamanho de R² não tem influência sobre a média dos resíduos ser igual a zero.
- R² pequeno sugere que variância do erro é grande em relação à variância de y, mas isso pode ser compensado por amostra grande.

R² AJUSTADO

– Sendo σ_y^2 a variância populacional de y e σ_u^2 a variância populacional do erro, R^2 da população é a proporção da variação em y na população, explicada pelas independentes:

$$R^2 = 1 - \sigma_u^2 / \sigma_y^2$$

- $-R^2$ usual = SQE/SQT = 1 SQR/SQT = 1 (SQR/n) / (SQT/n)
- Podemos substituir o SQR/n e SQT/n, por termos nãoviesados de $\sigma_{\rm u}^{\ 2}$ e $\sigma_{\rm v}^{\ 2}$, e chegamos ao R² ajustado:

R² = 1 - [SQR/(*n-k-1*)] / [SQT/(*n-1*)] = 1 -
$$\hat{\sigma}^2$$
 / [SQT/(*n-1*)]
= 1 - (1 - R²)(*n* - 1)/(*n* - *k* - 1)

- R² ajustado não corrige viés de R² na estimativa do R² da população, mas penaliza inclusão de independentes.
- R² ajustado negativo indica adaptação ruim do modelo, relativo ao número de graus de liberdade.

R² NA ESCOLHA DE MODELOS NÃO-ANINHADOS

- O R² ajustado auxilia na escolha de modelo sem variáveis independentes redundantes (entre modelos não-aninhados).
- A estatística F (test) permite testar somente modelos aninhados.
- No exemplo do World Values Survey, podemos testar se modelo com informação se religião é muito importante (religiao) é melhor do que modelo com crença no céu (ceu):

tradrat5 =
$$\beta_0$$
 + β_1 homem + β_2 religiao + u
tradrat5 = β_0 + β_1 homem + β_2 ceu + u

- Neste caso, não queremos incluir as duas variáveis em conjunto, pois teoricamente medem a mesma dimensão.
- Estes são modelos não-aninhados, exigindo comparação do R² ajustado.

R² E MODELOS COM DIFERENTES FORMAS FUNCIONAIS

 Comparação dos R² ajustados pode ser feita para optar entre modelos com formas funcionais diferentes das variáveis independentes:

$$y = \beta_0 + \beta_1 \log(x) + u$$
$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$$

- Não podemos usar nem o R² nem o R² ajustado para escolher entre modelos não-aninhados com diferentes formas funcionais da variável dependente.
- Os R² medem a proporção explicada do total da variação de qualquer variável dependente:
 - Portanto, diferentes funções da variável dependente terão diferentes montantes de variação a serem explicados.

CONTROLE DE MUITOS FATORES NA REGRESSÃO

- Estamos preocupados com omissão de fatores importantes que possam estar correlacionados com as variáveis independentes.
- Se enfatizarmos o R², tenderemos a controlar fatores em um modelo que n\u00e3o deveriam ser controlados.
- Ao estudar o efeito da qualidade do ensino sobre a renda, talvez não faça sentido controlar os anos de escolaridade, pois subestimará o retorno da qualidade. Podemos estimar a equação com e sem anos de estudo.
- A questão de decidir se devemos ou não controlar certos fatores nem sempre é bem definida.
- Se nos concentrarmos na interpretação ceteris paribus da regressão, não incluiremos fatores no modelo, mesmo que estejam correlacionadas com a dependente.

ADIÇÃO DE FATORES: REDUZIR VARIÂNCIA DO ERRO

- A adição de uma nova variável independente pode aumentar o problema da multicolinearidade.
- Porém, ao adicionar uma variável, estamos reduzindo a variância do erro.
- Devemos incluir variáveis independentes que afetem y e que sejam não-correlacionadas com todas variáveis independentes, pois:
 - Não induzirá multicolinearidade.
 - Reduzirá variância do erro.
 - Diminuirá erros-padrão dos coeficientes beta, gerando estimativas mais precisas (estimador com menor variância do erro amostral).

INTERVALOS DE CONFIANÇA DE PREVISÕES

 Intenção é de mostrar como obter intervalos de confiança de previsões da linha de regressão MQO.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$

- O valor predito de cada observação leva em consideração os valores de todas variáveis independentes daquele caso.
- Porém, podemos querer estimar um intervalo de confiança de y com valores específicos das variáveis independentes.
- Para construir um intervalo de confiança de valores preditos, precisamos de um erro-padrão do parâmetro estimado.

INTERVALOS DE CONFIANÇA DA MÉDIA

 Podemos obter um intervalo de confiança de y, com base nos valores médios do conjunto de covariáveis:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1(x_{i1} - \mu_1) + \hat{\beta}_2(x_{i2} - \mu_2) + \dots + \hat{\beta}_k(x_{ik} - \mu_k)$$

- O β_0 previsto desta equação informa o valor estimado de y, quando todas covariáveis são iguais à media.
- Erro padrão do β_0 previsto é o erro padrão de y deste caso.
- O intervalo de confiança de 95% da média de y esperado será igual a:

$$\hat{\beta}_0 \pm 1,96 [ep(\hat{\beta}_0)]$$

INTERVALOS DE CONFIANÇA INDIVIDUAL

- Intervalo de confiança de uma unidade particular da população deve levar em consideração a variância do erro não observado (fatores não observados que afetam y).
- Intervalo de previsão (y^0) é o valor para o qual gostaríamos de construir um intervalo de confiança.
- O erro de previsão é: $\hat{e}^{\,0}=y^0-\hat{y}^0$
- A variância do erro de previsão é:

$$Var(\hat{e}^{\,0}) = Var(\hat{y}^{\,0}) + Var(u^{\,0}) = Var(\hat{y}^{\,0}) + \sigma^{\,2}$$

- Em amostras grandes, variância de y pode ser pequena.
- Erro padrão do erro de previsão: $ep(\hat{e}^0) = \{[ep(\hat{y}^0)]^2 + \hat{\sigma}^2\}^{1/2}$
- Intervalo de confiança de 95% para y⁰:

$$\hat{y}^0 \pm t_{0.025} * ep(\hat{e}^0)$$

ANÁLISE DE RESÍDUOS

 É importante analisar os resíduos das observações individuais e examinar se valor efetivo da variável dependente está acima ou abaixo do valor previsto:

$$\hat{u}_i = y_i - \hat{y}_i$$

 Resíduo mais negativo indica valor observado mais baixo do que o previsto na regressão e vice-versa.

PREVISÃO DE y QUANDO A DEPENDENTE É log(y)

- Temos um modelo de regressão:

$$log(y) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

– A previsão de log(y) é dada por:

$$\widehat{log(y)} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k$$

– A previsão de y ocorre por:

$$\hat{y} = exp(\hat{\sigma}^2/2) * exp(\widehat{\log(y)})$$

... onde σ^2 é a variância de *u* estimado (*MS Residual*).

- Previsão de y que não depende da normalidade de u é:

$$\hat{y} = \hat{\alpha}_0 exp(\widehat{\log(y)})$$

... onde α_0 é o valor esperado de $\exp(u)$.

OPERACIONALIZAÇÃO DA PREVISÃO QUANDO log(yi)

- Obtenha os valores estimados de log(y_i) da regressão:
 - predict ypred
- Para cada observação i, crie exp[log(y_i)]:
 - gen ypredexp=exp(ypred)
- Faça a regressão de y sobre a variável ypredexp sem um intercepto (regressão simples passando pela origem):
 - reg y ypredexp, nocons
- O único coeficiente que existe na regressão acima é a estimativa de α_0 .
- Obtenha a previsão de y:
 - gen yfinal = alfa * ypredexp

R² QUANDO A DEPENDENTE É log(y)

- Podemos usar o método anterior de obter previsões para determinar o quanto o modelo com log(y) como variável dependente explica bem a variável y.
- O objetivo é obter um indicador de grau de ajuste do modelo log(y) que possa ser comparado ao R² do modelo em que y é variável dependente.
- Após passos anteriores, encontramos a correlação amostral entre y estimado (yfinal) e o verdadeiro y na amostra.
- O quadrado dessa correlação amostral pode ser comparado ao R² do modelo em que y é variável dependente.
- Na equação com y, o R² é a correlação quadrada entre y observado e y estimado.