Small in Size, Selective in Location, Limited on Healthcare Access Improvement

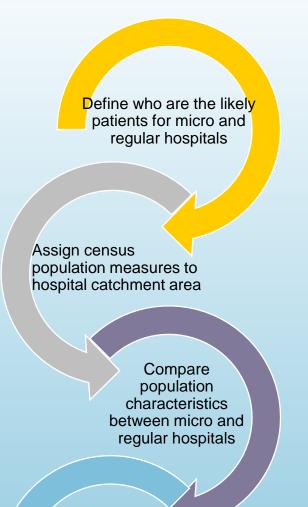
Exploring the Accessibility of micro hospitals in Texas through demographic spatial modeling

Introduction

- What is a micro hospital
 - Most for-profit small healthcare facilities
 - 15,000 -50,000 square feet in size
 - Licensed facilities with emergency, surgical, imaging, and lab
 - Limited (8-12) inpatient short-stay beds

Baptist Emergency Hospital Thousand Oaks in San Antonio. Photo: @Michael Johnson https://www.bdcnetwork.com/microhospitals-healthcares-newest-patient-access-point

- Business opportunities
 - In metropolitan areas:
 - Ease access congestion in densely populated metro areas
 - In rural areas:
 - Provide hospital access in areas unable to afford full-service hospitals


Our Methods

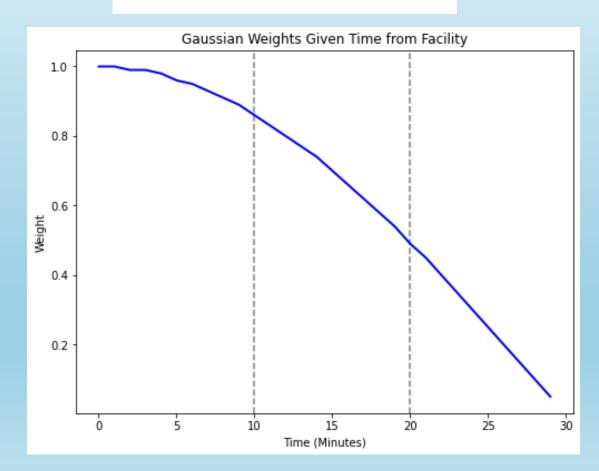
Research question

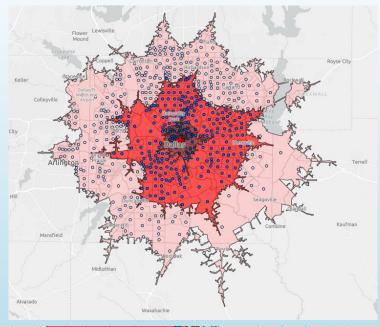
Do micro hospitals really fill the gap in healthcare access for those disadvantaged?

Research hypothesis

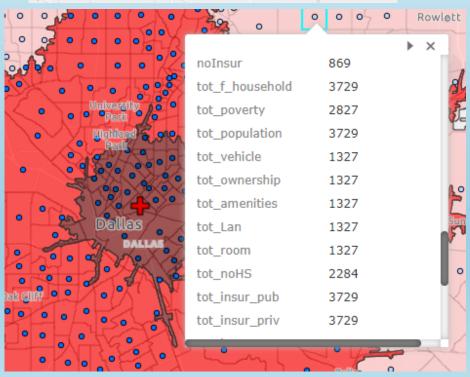
micro hospitals are more likely to be located closer to more affluent population clusters. As a result, their ability to deliver healthcare access to needy populations may be limited.

Use logistic regression to examine relationships between population variables and micro hospital presence


Data


- Hospital list from
 Texas Department of
 State Health Services
 (updated a of May
 2019)
- American Community Survey Five-year Estimates (2014-2018)
- ESRI proprietary
 Streetmap Network
 Dataset

Who Are The Likely Patients


Gaussian Distribution

$$G(t_{kj}, t_0) = \begin{cases} \frac{e^{-(\frac{1}{2}) \times (\frac{t_{kj}}{t_0})^2 - e^{-(\frac{1}{2})}}}{1 - e^{-(\frac{1}{2})}}, t_{kj} \le t_0 \\ 0, t_{kj} > t_0 \end{cases}$$

Assign census population measures to each hospital catchment areas

Socioeconomic Dimensions of Probable Patient Base

Dimension	Variable
Health Needs by Demographics	Percentage of seniors 65 years and older
	Percentage of children 0-4 years of age
	Percentage of women 15-44 years of age
Socioeconomic Indicators	Percentage of population with income in the past 12 months
	below poverty
	Percentage of population in female-headed households
	Percentage of population with home ownership
	Median household income
	Percentage of population living in dwellings with more than 1
Living Environment	occupant per room
Living Environment	Percentage of population living in dwellings lacking plumbing
	or kitchen facilities
Linguistic and Awareness	Percentage of nonwhite minorities
Barriers	Percentage of population without a high school diploma
	Percentage of household with limited English speaking status
Transportation Mobility	Percentage of households without vehicles
Insurance Coverage	Percentage of population with private insurance
	Percentage of population with public insurance
	Percentage of population with no insurance

Compare population characteristics between micro and regular hospitals based on hospital catchment areas

Do Micro and Regular Hospital Patients Differ

- Populations with better access to micro hospitals tend to have higher socioeconomic status.
- They are in areas with higher coverage in insurance, particularly private insurance, and with lower percentages of seniors.
- Population differences between micro and regular hospitals are sharper in shorter distance areas to the hospitals.
- Demographic factors such as being minorities and immigrants (as often indicated by limited English speaking abilities) do not appear to be significantly different between those with access to either type of hospitals.

Table 2 Means of Population	Characteristics by	Hospital T	Type and	Catchment Window	1

Variables	0 -10 Minute		10-20 Minute		20-30 Minute		Combined 0-30 Minute	
	Micro	Regular	Micro	Regular	Micro	Regular	Micro H	Regular
female -headed households (%)	11.3	11.4	11.3	11.5	11.3	11.6	11.3	11.5
population in poverty (%)	10.9	15.3	12.8	13.6	12.6	13.4	12.1	14.1
nonwhite minorities (%)	51.3	55.2	57.1	54.0	56.5	53.9	55.0	54.3
households without vehicles (%)	4.7	6.8	5.5	5.4	5.1	5.2	5.1	5.8
home ownership (%)	62.1	56.0 ***	59.7 **	63.3	61.3	64.6	61.0	61.4
housing units lack of basic amenities (%)	1.1	1.5	1.1	1.4	1.1	1.3	1.1	1.4
households with linguistic isolation (%)	5.9	7.3	8.4	7.6	8.4	7.3	7.6	7.4
households with more than one person per room (%)	3.7	4.5	4.7	4.7	4.6	4.8	4.3	4.7 *
population without high school diploma (%)	12.3	16.9	16.1	17.7	16.6	17.8	15.0	17.5
Population with high healthcare needs - seniors with ages above 65 (%)	12.1	13.3	11.2	13.4	11.4	13.1	11.56	13.3
Population with high healthcare needs - children with ages 0-4 (%)	6.9	6.9	7.2	7.0	6.9	7.0	7.0	7.0
Population with high healthcare needs - women with ages 15-44 (%)	21.9	22.0	21.9	20.8	21.5	20.8	21.8	21.2
Probable patient population	112,191	86,571	387,191	257,943	222,646	143,572	241,166	162,842
Annual median income in dollar	75,281 ***	59,966 ***	66,612 **	60,705 **	66,991 ***	60,221	69,551	60,298 ***
Health insurance coverage - Public insurance (%)	25.6	29.9 ***	27.8	30.5	27.2	30.3	26.9	30.2
Health insurance coverage - Private insurance (%)	69.0	62.1	62.7	61.6	63.8	61.7	65.1	61.8
Health insurance coverage - No insurance (%)	14.2	17.2	17.2	17.4	17.1	17.4	16.2	17.3

Compare population characteristics between micro and regular hospitals based on hospital catchment areas

Logistic Regressions Results

Table 4. Logistic regression results estimates associating the presence of micro hospital versus that of regular hospital in the service area, Texas 2014-2018

	(1)	(2)	(3)
VARIABLES	hospital_type	hospital_type	hospital_type
Minority	0.00740***	-0.00876	-0.00585
	(0.00262)	(0.00555)	(0.00821)
Language Isolation	0.0716***	0.0844***	0.0860***
	(0.0132)	(0.0190)	(0.0182)
More Than One	-0.0865**	-0.137**	-0.135**
Person in a Room			100
	(0.0391)	(0.0596)	(0.0579)
No Insurance	-0.111***	-0.0569*	-0.0285*
	(0.0282)	(0.0327)	(0.0163)
Children	0.112	-0.0837	-0.0983
	(0.0798)	(0.0915)	(0.0960)
Female Headed		0.145***	0.133***
household			
		(0.0152)	(0.0176)
Senior		-0.224***	-0.180**
		(0.0609)	(0.0885)
Women		-0.0519***	-0.00439
		(0.0192)	(0.0448)
Home Ownership		0.00343	0.00328
		(0.0126)	(0.00789)
No Vehicle		MEN 18 20 T	0.00465
			(0.0553)
Poverty			-0.0537**
			(0.0258)
Constant	-1.604***	1.891	0.596
	(0.385)	(2.151)	(2.737)
Observations	1,304	1,304	1,304

Note: Standard errors allow for intragroup correlation within catchment areas. Robust standard errors are reported in parentheses. * Significant at p<0.10; ** Significant at p<0.05; *** Significant at p<0.01 Source: ESRI traffic network; 2014–2018 American Community Survey 5-Year Estimates

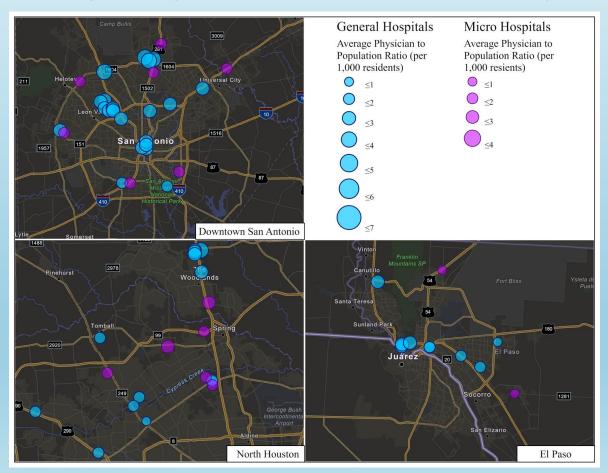
Use logistic regression to examine relationships between selected population variables and the associated odds of micro hospital presence

Table 5. Percentage changes in odds for logistic regression model 3 estimates associating the presence of micro hospital versus that of regular in the service area, Texas 2014-2018

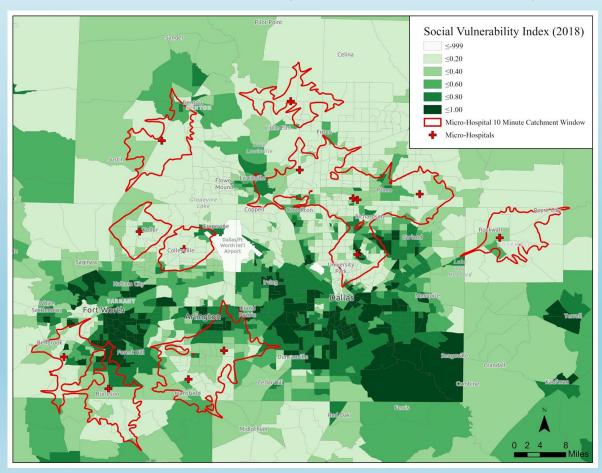
	b	Z	P> z	%	%StdX	SDof)
Minority	-0.0059	-0.713	0.476	-0.6	-10.9	19.777
Language Isolation	0.0860	4.719	0.000	9.0	64.1	5.759
More Than One Person in a Room	-0.1347	-2.326	0.020	-12.6	-27.5	2.388
No Insurance	-0.0285	-1.748	0.081	-2.8	-13.4	5.054
Children	-0.0983	-1.025	0.306	-9.4	-11.8	1.27
Female Headed household	0.1327	7.528	0.000	14.2	20.7	1.41
Senior	-0.1802	-2.035	0.042	-16.5	-54.0	4.30
Women	-0.0044	-0.098	0.922	-0.4	-1.4	3.28
Home Ownership	0.0033	0.416	0.677	0.3	4.0	12.07
No Vehicle	0.0047	0.084	0.933	0.5	1.3	2.77
Poverty	-0.0537	-2.084	0.037	-5.2	-25.6	5.49
Constant	0.5963	0.218	0.828			

b = raw coefficient

z = z-score for test of b=0


P>|z| = p-value for z-test

Note: Percentage calculations using SPost13 command by J. Scott Long and Jeremy Freese (2005, Regression Models for Categorical Outcomes Using Stata. Second Edition. College Station, TX: Stata Press).


Two Tales of "equal opportunity"

"Equal opportunity" in healthcare access is important -- but "equal" can be interpreted differently:

Geographically and market orientated "equal opportunity"

Population vulnerability defined "equal opportunity"

Our Innovations

- Use advanced GIS techniques and spatial modeling to dynamically capture the potential patient basis
- Take into account travel time when creating service area boundaries
- Integrate both nonspatial and spatial dimensions of healthcare access by generating, mapping and illustrating patterns that regression alone cannot.

Our Limitations

- Cross-sectional population characteristics may not reflect the neighborhood composition changes over time
- Access to patient data with geographic information will greatly enhance the estimation of healthcare access

Jingqiu Ren

Texas A&M University

jren@tamu.edu

Ryan Earl

Texas A&M University

re022598@tamu.edu

Ernesto Amaral

amaral@tamu.edu