Factors associated with internal migration at the local level in the United States

Ernesto F. L. Amaral Shih-Keng Yen Jingqiu Ren

May 5, 2021

www.ernestoamaral.com

Objective

- Several studies described associations of socioeconomic and demographic characteristics with internal migration rates in the United States
 - There is less focus on the profile and spatial distribution of internal migrants
- We investigate
 - Factors associated with internal migration in recent years
 - Local indicators of spatial association to understand clusters of internal migrants

Recent trends in migration

- The U.S. has been experiencing the lowest levels of internal migration since the late 1940s (Frey 2019)
 - 20% in 1950-1960
 - 9.8% in 2019

 Migration rates are higher for better educated, whites, African Americans, households without children, renters, unemployed (Molloy, Smith, Wozniak 2011; Moretti 2011)

Reasons for decline

- Robust economy in 1950–1960 (Frey 2019)
- In more recent decades (Frey 2019)
 - Older population
 - Labor market more homogeneous across country
 - Telecommuting, jobs from home
 - 2008 economic recession
- Neoclassical theory emphasizes that people move to places with more job opportunities
 - Fewer people are changing jobs, which seems to be related with the decline of internal migration (Molloy, Smith, Wozniak, 2017)

2008 economic recession

- Low-skilled Mexican immigrants were more responsive to the 2008 economic crisis than lowskilled U.S.-born workers (Cadena, Kovak 2016)
 - Reallocation of immigrants within the U.S. diminished spatial differences between local labor markets
 - Low-skilled U.S.-born workers in areas with many
 Mexican immigrants were shielded from the crisis
- Social networks (Motel, Patten 2012)
 - Communities with large proportions of Mexican immigrants are more likely to facilitate the flexibility of these groups in the labor market

Data and geographical areas

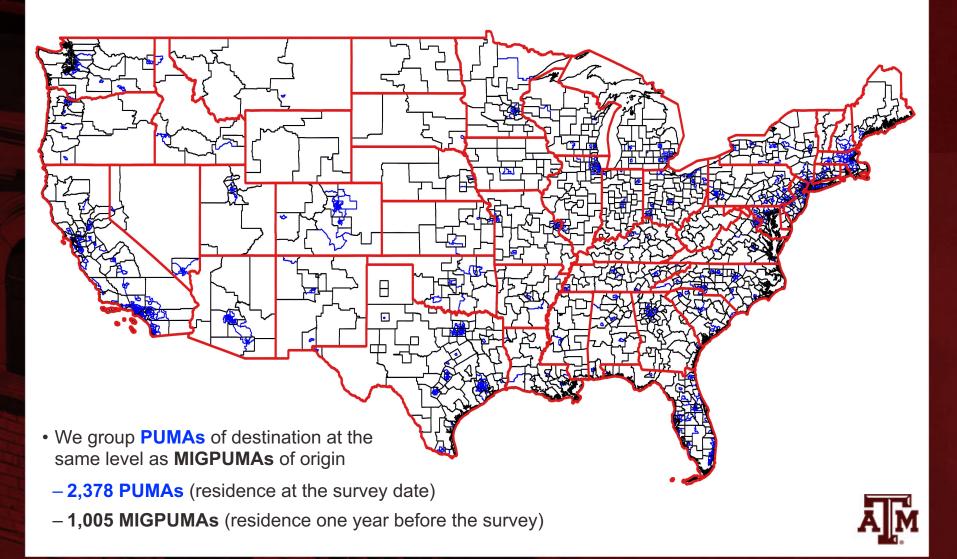
- We analyze spatial distributions of internal migrants with the 2005–2019 American Community Surveys
- Areas of destination (current residence)
 - Publicly available data has information on Public Use Microdata Areas (PUMAs) as the lowest level of geographic aggregation (100,000+ residents)
- Areas of origin (previous residence)
 - Data relates to PUMAs or, for confidentiality issues, groups of PUMAs (also known as MIGPUMAs)

Homogenize areas

- We group PUMAs of destination at the same geographic level as MIGPUMAs of origin
 - 2,378 PUMAs (current residence)
 - 1,005 MIGPUMAs (previous residence)

 This is a strategy to homogenize areas of previous and current residence

State, MIGPUMA, PUMA



Migration status

- Internal migrants
 - Those who resided in another MIGPUMA one year before the survey
- Non-migrants
 - Those who resided in the same area in the previous year
- International migrants
 - Those who resided in another country one year before the survey (not included in our analysis)

Methods

- Estimate factors associated with internal migration flows
 - 2005–2019 American Community Surveys (ACS)
 - Logistics models
 - Dependent variable: internal migrants vs. non-migrants
 - Sample size: 36,039,390 (only people aged 18+)
- Analysis of spatial distribution of proportion of internal migrants
 - 2019 ACS: focus on area of destination
 - Local indicators of spatial association (LISA)

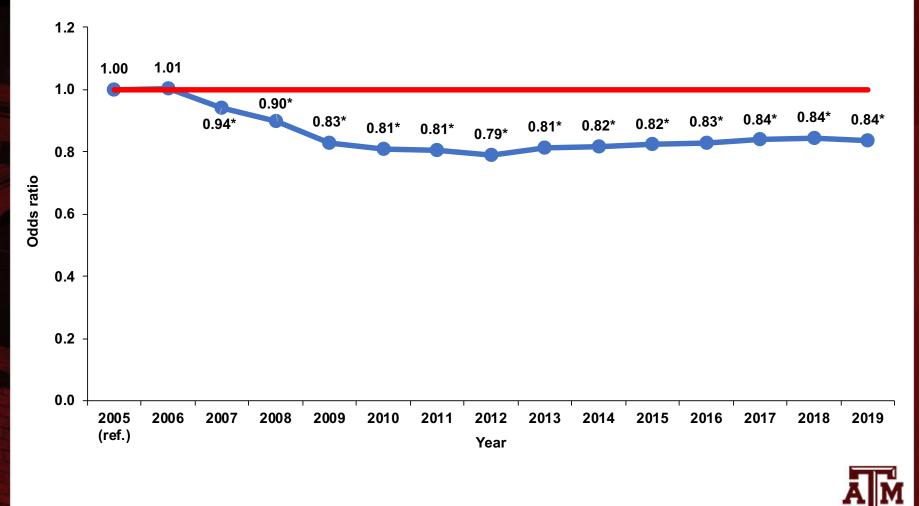
Logistic regressions

- Independent variables
 - Year
 - Sex
 - Age group
 - Educational attainment
 - Marital status
 - Citizenship
 - Nativity (foreign born, U.S. born)
 - Race/ethnicity
 - At least one child in the household
 - Homeownership
 - Region of residence one year ago

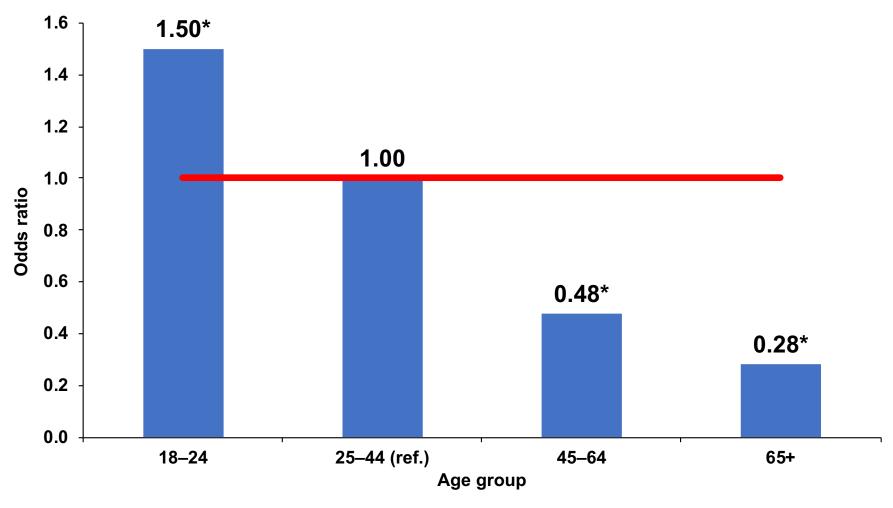
Note: Results for variables in red are presented in the following slides. Variables selected based on Molloy, Smith, Wozniak (2011, 2017).

- Interaction
 - Nativity * race/ethnicity
- For people 18+
 - In school
 - Speak English
 - Any disability
 - Occupation and employment status
 - Top 50% income

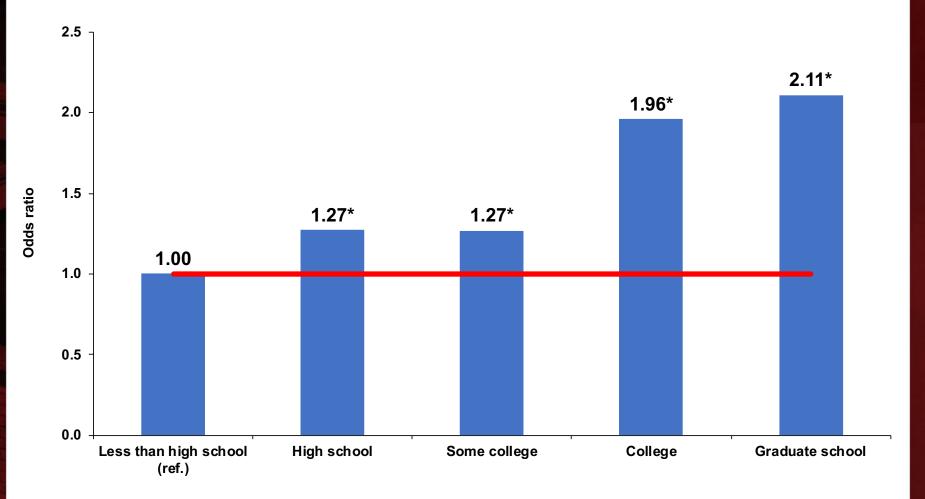
Odds ratios of being an internal migrant by year



Odds ratios of being an internal migrant by age group



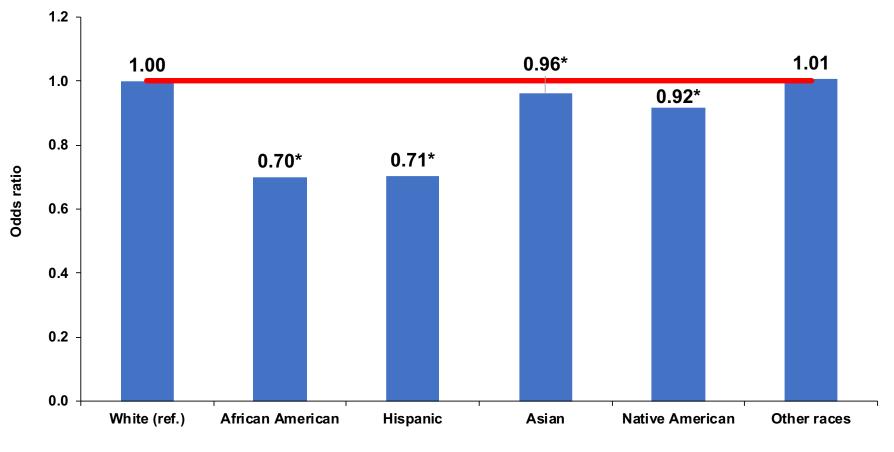
Odds ratios of being an internal migrant by educational attainment



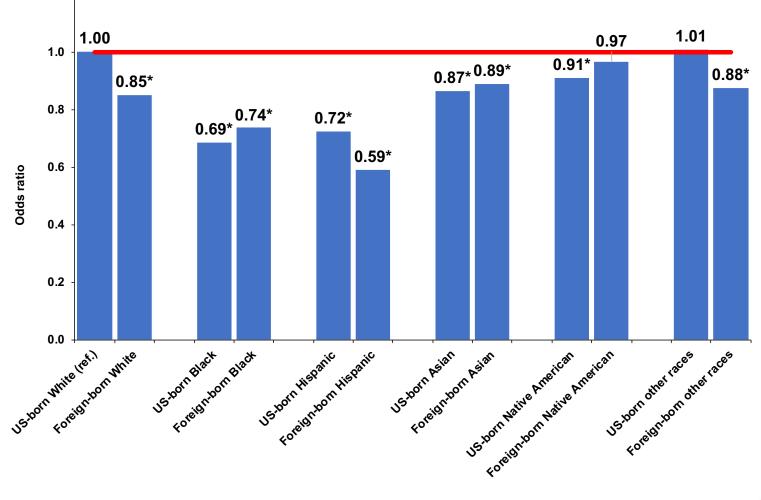
Odds ratios, selected variables

- Citizenship
 - Non-citizen (ref.): 1.00
 - Citizen: 1.07*
- Nativity
 - U.S. born (ref.): 1.00
 - Foreign born: 0.90*

Odds ratios of being an internal migrant by race/ethnicity



Odds ratios of being an internal migrant by nativity and race/ethnicity



Note: Only for people aged 18+. * Significant at p<.01. Source: 2005–2019 American Community Surveys.

1.2

Analysis of spatial association

- In spatial association analysis, we recognize that people are not randomly distributed over space
- Local indicator of spatial association (LISA) identifies local clusters and spatial outliers
 - It estimates contributions of each area (Anselin 1995)
 - We considered neighbors as areas sharing a border (queen contiguity)
- We analyze concentration of internal migrants in areas of destination in the U.S.

Spatial clusters and outliers

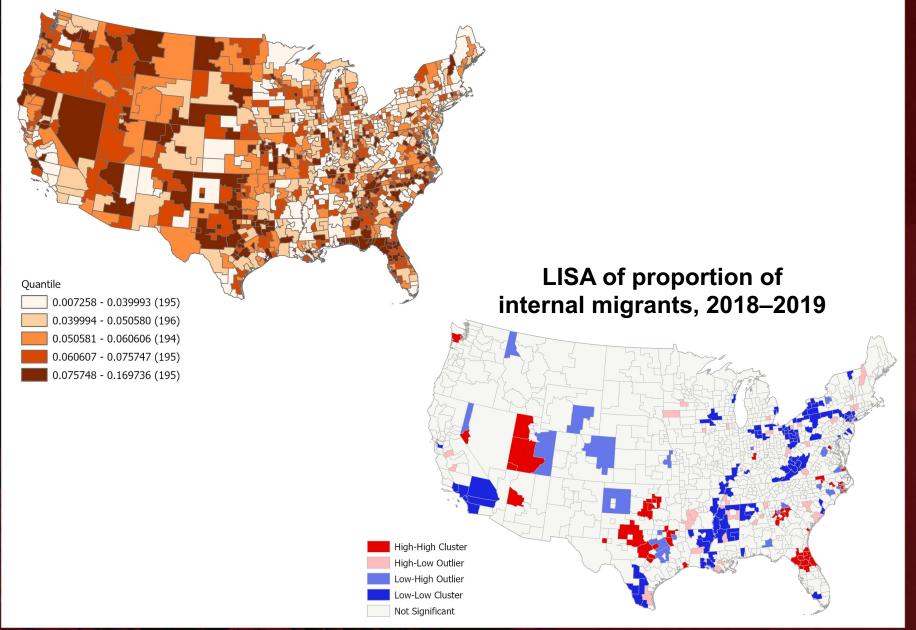
Spatial clusters

- High-High: areas with <u>high</u> levels of a specific indicator surrounded by areas with <u>high</u> levels for that indicator
- Low-Low: areas with <u>low</u> levels of a specific indicator surrounded by areas with <u>low</u> levels for that indicator

Spatial outliers

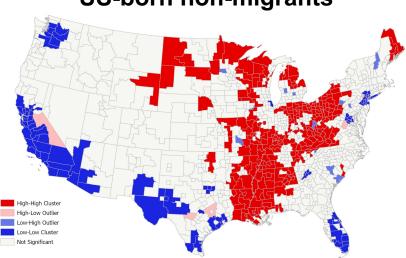
- High-Low: areas with <u>high</u> levels of a specific indicator surrounded by areas with <u>low</u> levels for that indicator
- Low-High: areas with <u>low</u> levels of a specific indicator surrounded by areas with <u>high</u> levels for that indicator

Proportion of internal migrants, 2018–2019



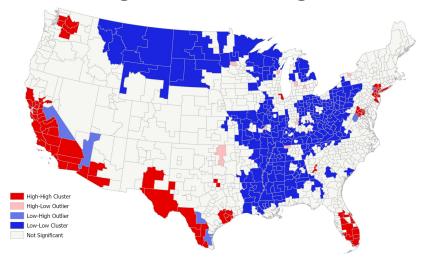
Source: 2019 American Community Survey.

Internal migrants are those who changed residence between 2018 and 2019

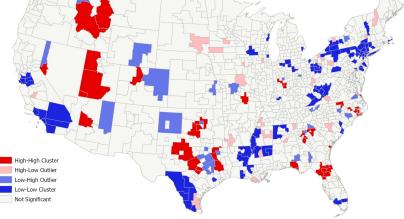


US-born non-migrants

Foreign-born non-migrants

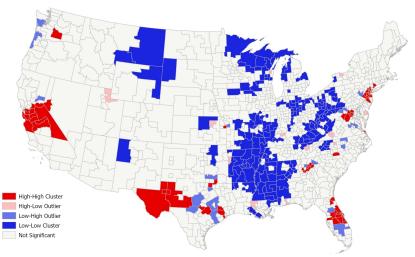


A Start of Start American

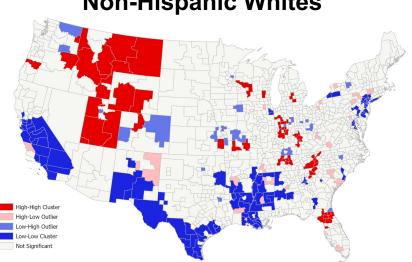


US-born internal migrants

Foreign-born internal migrants

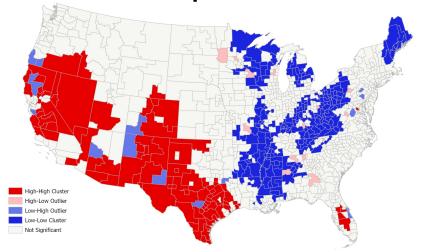


All maps below are for internal migrants, 2018–2019

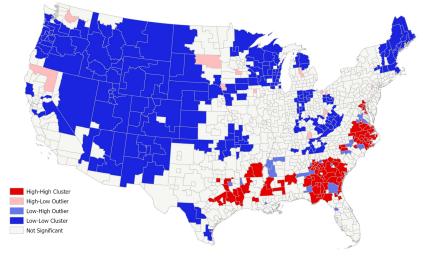


Non-Hispanic Whites

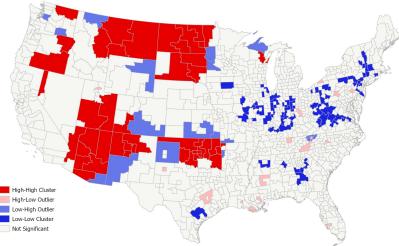
Hispanics



Non-Hispanic African Americans



Non-Hispanic Native Americans



Final considerations

- Factors associated with migration rates similar to previous findings (Molloy, Smith, Wozniak 2011; Moretti 2011)
- Neoclassical theory (Molloy, Smith, Wozniak, 2017)
 - People move to areas with more jobs
 - Areas in Midwest with economic issues still have higher concentration of non-migrants
- Social networks (Motel, Patten 2012)
 - Spatial patterns of internal migration vary for different nativity and race/ethnicity groups
 - Areas with large proportions of specific race/ethnicity groups are attracting more of these groups

Next steps

- We will continue this analysis by incorporating 1950–2000 Censuses and 2005–2019 ACS
 - Analyze restricted data at the Texas Research Data Center (TXRDC) at Texas A&M University
- Models will estimate variations of area-level counts of migrants as the dependent variable
 - Integration of individual-level and area-level models
 - Distance and spatial terms will be introduced in the individual-level models as additional sets of predictors

Area-level models

- Gravity models
 - These models will have a set of independent variables, including distance between areas
- Autoregressive spatial models
 - Spatial dependence: influence of neighboring areas at origin and destination on the likelihood of migrating (Anselin, Rey 2014; LeSage, Pace 2008, 2009; Sardadvar, Vakulenko 2020)
 - Bayesian statistics approach: use prior knowledge
 based on other data sources and historical trends (LeSage, Fischer 2016; LeSage, Satici 2016)

Gravity models

Poisson models will use population at the beginning of the period (*P_i*), population at the end of the period (*P_j*), and distance between areas (*d_{ij}*) to estimate migration flows (Head 2000; Lowry 1966; Pöyhönen 1963; Stillwell 2005, 2009; Tinbergen 1962)

$M_{ij} = exp(b_0 + b_1 \log P_i + b_2 \log P_j + b_3 \log d_{ij}) + \varepsilon_{ij}$

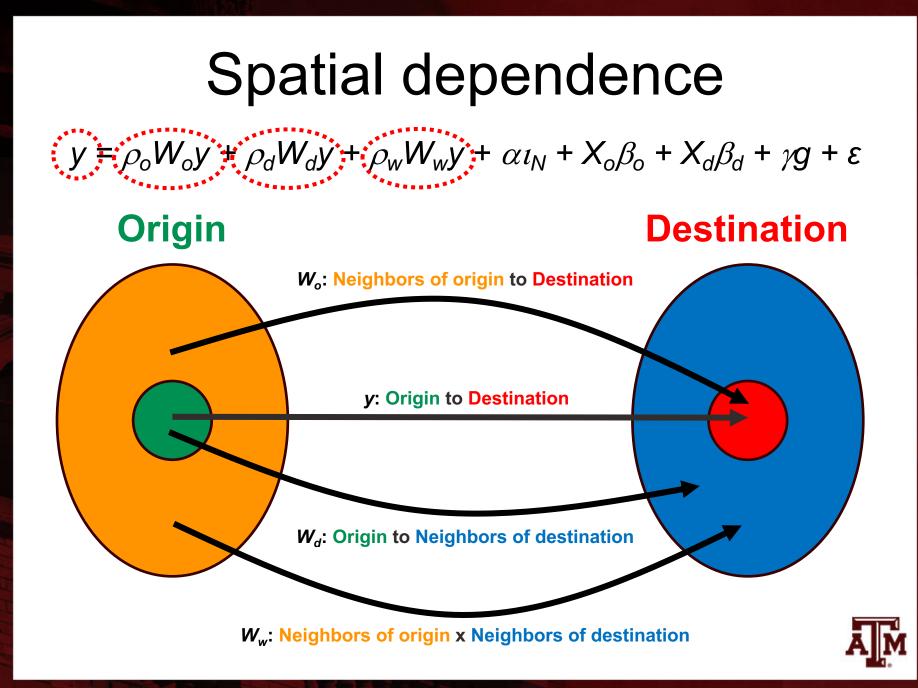
- M_{ij} : counts of migrants at the end of the period between areas of origin (*i*) and destination (*j*)
- b_0 : constant
- b_1 : coefficient associated with the population in area of origin at the beginning of the period (P_i)
- b_2 : coefficient associated with the population in area of destination at the end of the period (P_j)
- b_3 : coefficient related to the distance between areas (d_{ij})
- ε_{ii} : random error term associated with all pairs of areas

Spatial models

• The general spatial autoregressive model takes into account origin, destination, and origin-to-destination dependence (LeSage, Pace 2008, 2009)

 $y = \rho_o W_o y + \rho_d W_d y + \rho_w W_w y + \alpha \iota_N + X_o \beta_o + X_d \beta_d + \gamma g + \varepsilon$

- $-W_o$: spatial dependence at the origin
- $-W_d$: spatial dependence at the destination
- $-W_w$: interaction between origin and destination neighbors
- X_o : characteristics for each of the regions of origin
- X_d : characteristics for each of the regions of destination
- Scalar γ : effect of distance g
- α : constant term parameter on ι_N regions



Bayesian statistics approach

- Use IRS data to determine prior distributions
 IRS sample size is much larger than ACS
- Then, we can estimate models with ACS
 - More detailed information about socioeconomic and demographic characteristics

Comparison between American Community Survey and IRS county-to-county migration data

Issue	ACS Migration Products	IRS Migration Data
Sample size	Approximately 2 million households per year	116 million+ households
Data universe	Sample is all US households	Universe is tax-filing households
Coverage period	2005–2016	1990–2016
Time period reported	Five-year average	Annual
Demographic characteristics	Each five-year product reports different sociodemographic characteristics (e.g., 2010–2014 contains relationship, household type, and tenure, 2011–2015 contains age/sex/race/Hispanic origin	No demographic characteristics

Source: Hauer, Byars 2019.

Research agenda

- Include a longitudinal analysis by linking individuals through time across censuses and surveys (Alexander et al. 2015; Leibbrand et al. 2019; Leibbrand et al. 2020; Logan, Stults, Xu 2016; Logan, Xu, Stults 2014; Wagner, Layne 2014)
- Intergenerational mobility among internal and international migrants (Leibbrand et al. 2019; Leibbrand et al. 2020)
- Estimate effects of our predicted migration flows on local labor, health, and educational outcomes
- Integrate **external data sources** to include other covariates
- Investigate Mexico-U.S. migration by merging other surveys
- Conduct **immigration policy simulations** to inform policymakers on the impacts of various policy options
- Simulate future migration flows under different hypothetical scenarios (Massey, Zenteno 1999; Klabunde, Willekens 2016)

Agent-based models

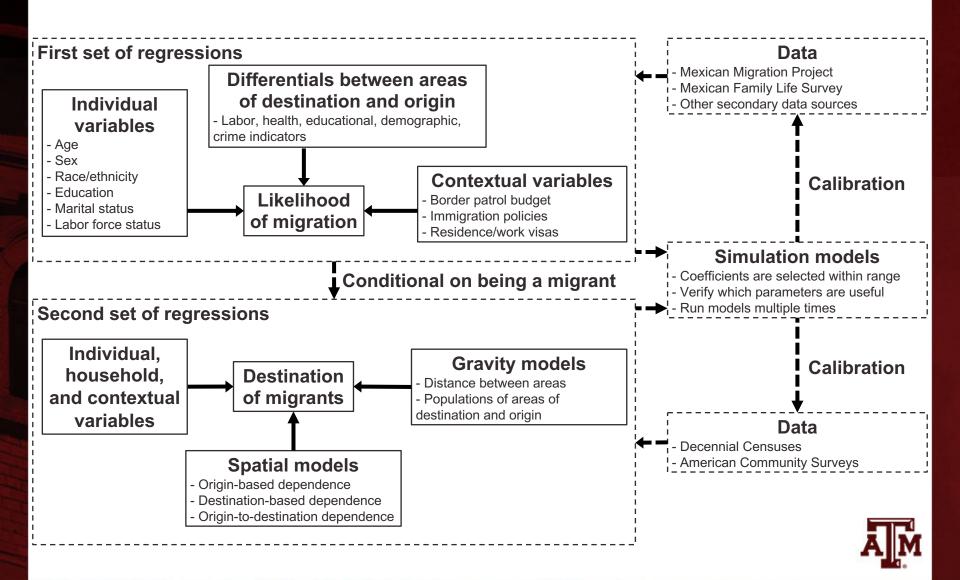
- Agent-based models can incorporate interactions between individual decisions, behavioral responses, and social networks related to migration outcomes (Massey, Zenteno 1999; Klabunde, Willekens 2016; Klabunde et al. 2017)
- These models can formalize interconnections and simulate potential feedback relationships between migration streams and several endogenous predictors
 - Education systems
 - Labor markets
 - Healthcare systems
 - Migration policies, border security
 - Social networks
- Agent-based models allow us to build different scenarios and simulate future population flows (Kabunde et al. 2017)

External data sources

• Combine textual data with demographic data with machine learning methods (Alburez-Gutierrez et al. 2019)

- Integrate data from other sources (e.g., social media, textual archives, private companies' data) to Census Bureau databases
 - Traditional datasets have the advantage of providing representative samples at the national, state, and local levels
 - Information from other sources tend to be more up to date (Alexander et al. 2019)

Mexico-U.S. migration



References

Anselin L. 1995. "Local indicators of spatial association – LISA." Geographical Analysis, 27(2): 93–115.

Anselin L, Rey SJ. 2014. Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL. Chicago: GeoDa Press LLC.

- Bijak J, Hilton J, Silverman E, Cao VD. 2013. "Reforging the Wedding Ring: Exploring a Semi-Artificial Model of Population for the United Kingdom with Gaussian process emulators." Demographic Research, 29(27): 729–766.
- Cadena BC, Kovak BK. 2016. "Immigrants equilibrate local labor markets: Evidence from the Great Recession." American Economic Journal: Applied Economics 8(1): 257–290.

Cirillo P, Gallegati M. 2012. "The Empirical Validation of an Agent-based Model." Eastern Economic Journal, 38: 525–547.

- Frey WH. 2019. "For the first time on record, fewer than 10% of Americans moved in a year: Millennials are driving the trend." The Brookings Institution (https://www.brookings.edu/blog/the-avenue/2019/11/22/for-the-first-time-on-record-fewer-than-10-of-americans-moved-in-a-year/).
- Grazzini J, Richiardi M. 2015. "Estimation of ergodic agent-based models by simulated minimum distance." Journal of Economic Dynamics & Control, 51: 148–165.
- Hauer M, Byars J. 2019. "IRS county-to-county migration data, 1990–2010." Demographic Research, 40(40): 1153–1166.

Head K. 2000. "Gravity for beginners." Rethinking the Line: The Canada-U.S. Border Conference, Vancouver, British Columbia.

- Klabunde A, Willekens F. 2016. "Decision-making in agent-based models of migration: State of the art and challenges." European Journal of Population, 32(1): 73–97.
- Klabunde A, Zinn S, Willekens F, Leuchter M. 2017. "Multistate modelling extended by behavioural rules: An application to migration." Population Studies, 71(S1): S51–S67.

LeSage JP, Pace RK. 2008. "Spatial econometric modeling of origin-destination flows." Journal of Regional Science, 48(5): 941–967.

LeSage JP, Pace RK. 2009. Introduction to Spatial Econometrics. Boca Raton: CRC Press, Taylor & Francis Group.

Massey DS, Zenteno RM. 1999. "The dynamics of mass migration." Proceedings of the National Academy of Sciences (PNAS), 96: 5328–5335.

Molloy R, Smith CL, Wozniak A. 2011. "Internal Migration in the United States." Journal of Economic Perspectives 25(3): 173–196.

Molloy R, Smith CL, Wozniak A. 2017. "Job changing and the decline in long-distance migration in the United States." Demography 54: 631–653.

- Moretti E. 2011. "Local labor markets." In Handbook of Labor Economics, edited by O. Ashenfelter and D. Card, 1237-1313. Amsterdam: North-Holland.
- Motel S, Patten E. 2012. "Characteristics of the 60 largest metropolitan areas by Hispanic population." Pew Research Center, Hispanic Trends. http://www.pewhispanic.org/2012/09/19/characteristics-of-the-60-largest-metropolitan-areas-by-hispanic-population/.
- Poole D, Raftery AE. 2000. "Inference for deterministic simulation models: The Bayesian melding approach." Journal of the American Statistical Association, 95(452): 1244–1255.
- Stillwell, J. 2005. "Inter-regional migration modelling: A review and assessment." 45th Congress of the European Regional Science Association, Vrije Universiteit Amsterdam, The Netherlands, August, 23–27.
- Stillwell, J. 2009. "Inter-regional migration modelling: A review." In Migration and Human Capital, edited by Jacques Poot, Brigitte Waldorf and Leo van Wissen, 29–48. Cheltenham: Edward Elgar Publishing.

