Current and future demographics of the Veteran population, 2014–2024

Ernesto Amaral, Michael Pollard, Joshua Mendelsohn, Matthew Cefalu

VA health care assessment

- The Department of Veterans Affairs (VA) provides health care to eligible Veterans
- Veterans Access, Choice, and Accountability Act of 2014
 - Improve access to high-quality health care
 - Independent assessment of VA's health care delivery systems and management processes
 - Estimate current and projected demographics of Veterans

Objectives

- Project the Veteran population from 2014 to 2024 and their geographic distribution
 - Surveys collect information on Veterans, but no full national accounting since 2000 Census
- Describe the demographic characteristics of Veterans
 - Age, sex, race/ethnicity, service era, geographic distribution (PUMA level)

Projections for each service era

- Pre-1950
- Korean War: July 1950–January 1955
- Pre-Vietnam: February 1955–July 1964
- Vietnam: August 1964–April 1975
- Post-Vietnam: May 1975–July 1990
- Gulf War: August 1990–August 2001
- Post-9/11: September 2001 or later

Data

- 2000 Demographic Census
 - Baseline of Veteran population
 - Age, sex, race/ethnicity, service era
- U.S. Defense Manpower Data Center (DMDC)
 - Age, sex, race/ethnicity, anticipated loss date
- American Community Survey (ACS)
 - 5-year estimates: 2005-09, 2009-13
 - American FactFinder (U.S. Census Bureau)
 - Prior to 2005, no migration information (residence in previous year)

ACS specificities

- Undercounts number of Veterans
 - We used 2000 Census and estimated Veterans who would be alive in 2013
 - Number is equivalent to 2013 ACS estimates
 - ACS undercounts new Veterans from 2000 to 2013
- Captures distribution of Veterans by age, sex, race/ethnicity, service era, location
- Determines Veteran geographic distribution and migration patterns

Population projection

- 1. Standard cohort component model
 - U.S. Census Bureau's Rural and Urban Projection (RUP) Program
 - 2000 Census provides counts of Veterans
 - New Veterans (DMDC): 2000-24
 - Apply mortality rates (VA, CDC): 2000–24
 - Estimate national Veteran population: 2005-24
- 2. Distribute projections into PUMAs (ACS)
- 3. Adjust initial projections by migration (ACS)

Mortality rates

- 2014 Veteran population mortality rates
 - Department of Veterans Affairs (VA)
 - By age, sex, but not race/ethnicity
- 2011 rates by race/ethnicity
 Centers for Disease Control and Prevention (CDC)
- Derive race/ethnicity rates based on CDC that reflect overall VA rates
- Following estimates are done for each sex...

Steps to estimate mortality rates (1/4)

Race /	Distribution of Veterans in each age group				CDC mortality rates				Standardized rates if Veterans had same rates as civilians						
Ethnicity	17 to 20	20 to 24		80 to 84	85+	17 to 20	20 to 24		80 to 84	85+	17 to 20	20 to 24		80 to 84	85+
White	а					b					a*b				
Black															
Hispanic															
Asian															
Other															
Total	1.0	1.0	1.0	1.0	1.0						S	S	S	S	S

Steps to estimate mortality rates (2/4)

	Age group					
Mortality rates	17 to 20	20 to 24		80 to 84	85+	
Standardized rates if Veterans had same rates as civilians	S	S	S	S	S	
VA mortality rates	V	V	V	V	V	
VA rates / Standardized rates	v/s	v/s	v/s	v/s	v/s	

Steps to estimate mortality rates (3/4)

 Ratio of observed Veteran mortality rate to the standardized rate

Age group

Steps to estimate mortality rates (4/4)

Race /	CDC mortality rates					Adjusted mortality rates				
Ethnicity	17 to 20	20 to 24		80 to 84	85+	17 to 20	20 to 24		80 to 84	85+
White	b					b*v/s				
Black										
Hispanic										
Asian										
Other										
Ratio	v/s	v/s	v/s	v/s	v/s	_				

Assumption: ratio (inflation/deflation factor) is the same for each race/ethnicity

1. National projection (apply "births" and mortality)

2. Distribute national projection into PUMAs: 2014 example

- Assumption: ACS captures geographic distribution
- By 5-year age group, sex, race/ethnicity, service era

3. Migration procedures

- Disaggregate PUMA groups in previous year
 Correspondence files in IPUMS-USA website
- Convert 2009-11 PUMAs into 2010 codes
 - Engine by Missouri Census Data Center
- Gravity models (2009-13)
 - Migration as a function of squared distance, sex, service era, age, race/ethnicity
- Apply predicted rates to 2014 projection
 - Generate number of in- and out-migrants
 - Adjust in-migrants to generate null net migration

Results of service era for out-migration

Service era

Results of age group for out-migration

Results of race/ethnicity for out-migration

Migration: final projection

2014

Number of in-migrants

(estimated with ACS rates and initial projection)

PUMA	Number of in-migrants	
1	###	
2	###	\mathbf{b}
2351	###	

2014 Number of out-migrants (estimated with ACS rates and initial projection)						
PUMA 1-year ago	Number of out-migrants					
1	###	<i>.</i>				
2	###	y				
2351	###					

2014 Initial projection

PUMA Population 1 ### 2 ### 2351

2014 Final projection

(after migration)

PUMA	Population	Net migration	Population after mig.
1	###	+/- ###	###
2	###	+/- ###	###
2351	###	+/- ###	###

Migration for 2015–24

- Iterate this process for subsequent years
- Use final 2014 projection as baseline for 2015 national projection
- Apply migration rates to get final 2015 distribution
- Adjust marginal counts with weight calibration to keep national totals

Iterative proportional fitting (raking)

• Process continues through 2024

Main results

- Veterans will decrease by 19%
 21.6 million (2014), 17.5 million (2024)
- Mean age will increase slightly
 - 65+ years: 49% (2014), 52% (2024)
- Modest changes by sex and race/ethnicity
 - Males: 92% (2014), 89% (2024)
 - White: 80% (2014), 76% (2024)
- Service era composition will change
 - Vietnam: 31% (2014), 29% (2024)
 - Gulf War, Post-9/11: 27% (2014), 42% (2024)

Total Veteran population, 2014

Total Veteran population, 2024

Veterans under age 35, 2014

Veterans under age 35, 2024

Veterans age 65+, 2014

Veterans age 65+, 2024

Percent Veteran population change and VA medical centers, 2014–24

Total number: 17.5m (100%) Lambert Conformal Conic Projection Alaska Rendered at One-Third Scale

Final considerations

- Concentration in urban areas
 - Ohio River Valley and upper Midwest: proportion of Veterans will diminish
 - Southwest will not be supported properly by existing VA medical centers
- Migration is less frequent among Veterans than non-Veterans
 - Will not play substantial role in 2014–24 geographic distribution

Policy recommendations: data collection

- Re-implement data collection on the Veteran population in 2020 Census
- This allows smaller surveys to refine sampling strategies to reflect population of Veterans

Policy recommendations: plan for shrinking population

- VA should begin to plan for a shrinking population
- Consider alternative approaches to meeting the needs of its population
- E.g., purchase care from civilian sector even while patient population is growing

Policy recommendations: services for specific age groups

• Overall Veteran population will continue to age over the projection horizon

- Health services for aging will be needed

- Younger Veterans (<35) are expected to concentrate in several areas
 - Los Angeles; Dallas; Washington, DC; northern New Jersey; northern California; central Washington state; Midwest; Wyoming; Utah
 - Provide health care services for young adults

Policy recommendations: geographic distribution

- Geographic distribution of Veterans will moderately change from 2015–24
- Areas with adequate VA health services
 - Decline of Veterans: Ohio River Valley, upper Midwest
 - Growth of Veterans: Washington, DC; Charlotte, NC; San Antonio, Austin, TX
- Areas that need more VA health services
 Crowth of Votorons: o.g. Montone, W/voming
 - Growth of Veterans: e.g., Montana, Wyoming, Colorado, Southwest

Rural Communities Explorer

- These projection methods can be applied to the Oregon context
 - Census, ACS
 - Migration models
- Demographic projections can be linked to other topics of the Communities Reporter Tool
 - Health services
 - Education
 - Employment, income
 - Environment, natural resources
 - Crime, corrections
 - Social service needs

Extension Activities

- Previous experience
 - In Brazil, policy studies to improve the quality of life in locally underserved communities
 - At RAND, projects' outcomes are frequently reported to non-academic audiences
- OSU Division of Outreach and Engagement, and OSU Extension Service
 - Applied studies where I can see the impact of work on communities more quickly
 - Linked with a research university, which combines academic and applied environments
 - Direct relation to the government, policymakers