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Estimating Migration Flows from Birthplace-Specific
Population Stocks of Infants

When adequate data on migration are unavailable, demographers infer such data in-
directly, usually by turning to residual methods of estimating net migration. This
paper sets out and illustrates an inferential method that uses population totals in the
first age group of birthplace-specific counts of residents in each region of a multire-
gional system to indirectly infer the entire age schedule of directional age-specific mi-
gration flows. Specifically, it uses an estimate of infant migration that is afforded by a
count of infants enumerated in a region other than their region of birth to infer all
other age-specific migration flows. Since infants migrate with their parents, the mi-
gration propensities of both are correlated, and the general stability of the age profiles
of migration schedules then allows the association to be extended to all other age
groups. 

1. INTRODUCTION

The next national census in the United States will be the first since the 1930 enu-
meration to lack a question on internal migration. The U.S. Census Bureau plans to
drop its long-form questionnaire in 2010 and to replace it with a continuous monthly
survey called the American Community Survey (ACS), which is based on its success-
ful Current Population Survey (CPS). This change, a response to the pressure from
Congress to reduce the cost of the decadal census, will provide more up-to-date in-
formation, but the absence of the larger sample provided by the census count will
complicate the measurement and analysis of internal migration flows for use in small
area population projections, for example. The ACS will provide more timely data, but
the samples will be smaller than have been provided by the census, and the strategy
of averaging accumulated samples over time will mix changing migration patterns.
Finally, the migration question will refer to a one-year time interval instead of the
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five-year interval used in the decennial censuses of 1960 through 2000, complicating
historical comparisons and multiregional projections based on five-year age groups.
Consequently, students of territorial mobility increasingly will find it necessary to
complement or augment possibly inadequate data collected on migration with data
obtained by means of “indirect estimation.”

When adequate migration data for a particular study region are unavailable, social
scientists generally estimate such data indirectly by combining related information
(perhaps drawn from several sources, time periods, and geographical areas) with
models that produce estimates of migration on the basis of information that may be
only indirectly related to its value. When confronted with the absence of any data on
migration streams, for example, analysts have turned to residual methods of estimat-
ing net migration (e.g., Bogue, Hinze, and White 1982). Such methods attribute dif-
ferences in population totals between two dates to natural increase and to net
migration. By subtracting the known or estimated contribution of the former, they
obtain the latter as a residual. The estimates produced by such techniques can be
subject to considerable error in instances of differential rates of net undercounts be-
tween pairs of censuses. And even in instances of similar undercount levels, residually
estimated net migration totals accumulate many other possible errors (such as age
misreporting) made in the estimation process.

Residual methods of estimating net migration continue to be used today, generally
coupled with minor refinements in technique or data. One such refinement, birth-
place-specific net migration, has been used when birthplace-specific population stock
data are available (Eldridge and Kim, 1968). For example, this method was applied
by Miller (1994) to analyze historical data (the censuses of 1900 and 1910) made
available by the Integrated Public Use Microdata Series (IPUMS) project based at
the University of Minnesota.

This paper sets out a method that uses the population totals in the first age group
of birthplace-specific population data to indirectly infer the entire age schedule of di-
rectional origin-destination-specific migration flows, and it applies this method to
data provided by the same historical censuses studied by Miller (1994). The focus is
on the internal migration of the U.S.-born population. The method will be useful to
at least three user communities: (1) historical demographers and geographers seeking
to identify changing mobility patterns hidden in the recently available historical pop-
ulation censuses that lack a migration question; (2) migration analysts studying mo-
bility patterns in data poor less-developed countries; and (3) population researchers
faced with the prospective loss of migration data previously contained in the to-be-
eliminated “long form” questionnaire of past U.S. decennial censuses.

We test our particular method of indirect estimation on the post-1950 U.S. decen-
nial censuses that did ask a migration question, and then demonstrate and evaluate
the methods of indirectly estimating migration using three historical IPUMS data sets
drawn from the U.S. censuses of 1900, 1910, and 1920—censuses that did not ask a
migration question. In addition, we include estimates of interregional migration for
the 1935 to 1940 and 1945 to 1950 periods, intervals for which the 1940 and 1950
censuses did provide data on migration, but only for a small sample in the 1940 cen-
sus and only for a one-year interval in the 1950 census. Data for the 1930 census are
not yet available in a PUMS version.

2. THE INDIRECT ESTIMATION OF MIGRATION PROPENSITIES

Although indirect estimation techniques have been applied fruitfully in studies of
mortality and fertility, they have not been developed as systematically and formally
for the analysis of migration. For example, the United Nations manual on the subject
is very explicit in its non-coverage of migration: “A further limitation of the Manual is
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that it deals mainly with the estimation of fertility and mortality in developing coun-
tries. There are other demographic processes affecting the populations of these coun-
tries (migration for example) which are not treated here” (United Nations 1983, p. 1).

The first set of “model” mortality schedules published by the United Nations
summarized the age-specific death rates of 158 life tables of national populations by
using “ . . . regression equations which linked the probability of death in each five-
year age interval with the corresponding probability in the previous age interval. . . .
Thus model schedules could be calculated by assigning alternative probabilities of in-
fant death from very high to very low, and associating with each . . . the schedule of
death probabilities in successive groups calculated from the corresponding regres-
sions” (Coale and Trussell 1996, p. 475). The set of life tables so developed would be
appropriate for describing the mortality schedule of a particular population so long as
the age patterns of death rates were similar in different populations at roughly the
same level of mortality, and so long as the 158 life tables were based on reasonably ac-
curate data. An analogous approach for describing the migration schedule of a partic-
ular population seems to be an obvious starting point for the estimation of territorial
mobility.

The justifications listed for the persistence of regularities in the age profiles of mor-
tality have their counterparts in the search for comparable regularities in the age pro-
files of migration. Young adults in their early twenties usually exhibit the highest
migration rates, and teenagers, in their senior year in high school, the lowest. The
migration rates of children necessarily mirror the rates of their parents; thus the mi-
gration rates of infants exceed those of adolescents. Retirees, migrating for non-job-
related reasons, tend to move to regions with warmer climates and to locations with
relatively high levels of social services and cultural amenities, often creating “retire-
ment peaks” in those flows that originate in the Snowbelt states and end in the Sun-
belt states.

In several studies of regularities in age patterns of migration, the senior author and
his students (e.g., Rogers and Castro 1981; Rogers and Watkins 1987; Rogers and Lit-
tle 1994) discovered that the mathematical expression called the multiexponential
function provides a remarkably good fit to a wide variety of empirical interregional
migration schedules. That goodness-of-fit has led a number of demographers and ge-
ographers to adopt it in various studies of migration all over the world. The multiex-
ponential model migration schedule has been fitted successfully, for example, to
migration flows between local authorities in England (Bates and Bracken 1982;
1987); Sweden’s regions (Holmberg 1984); Canada’s metropolitan and nonmetropoli-
tan areas (Liaw and Nagnur 1985); Indonesia’s regions (United Nations 1992); the re-
gions of Japan, Korea, and Thailand (Kawabe 1990); and South Africa’s and Poland’s
national patterns (Hofmeyr 1988; Potrykowska 1988). Most recently, Statistics
Canada has adopted the multiexponential model migration schedule to produce its
provincial population projections (George et al. 1994), and doctoral dissertations
have applied it to represent interregional migration flows in Mexico (Pimienta 1999)
and in Indonesia (Muhidin 2002). Collectively these studies have shown that age pro-
files of migration fall into two fundamental “families”: those exhibiting a retirement
peak and those that do not. The multiexponential function, described below, accom-
modates both families of age profiles. (Yet a third “family” may be specified: one that
includes an “upward slope” at the oldest ages; see Rogers and Watkins 1987.)

Figure 1 illustrates a typical observed migration schedule (the round dots) and its
graduation by a multiexponential model migration schedule (the superimposed
smooth outline) defined as the sum of four components:

1. A single negative exponential curve of the pre-labor force ages, with its descent
parameter α1;
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2. A left-skewed unimodal curve of the labor force ages positioned in µ2 on the age
axis and exhibiting parameters of ascent (λ2) and descent (α2);

3. An almost bell-shaped curve of the post-labor force ages positioned in µ3 on the
age axis and exhibiting parameters of ascent (λ3) and descent (α3);

4. A constant curve A0, the inclusion of which improves the fit of the mathematical
expression to the observed schedule, and three constants A1, A2, and A3, that de-
fine the relative levels of their three associated curves.

Estimates of the parameters of the model migration schedule are obtained using a
nonlinear algorithm that searches for the “best” parameter values for the parameter-
ized model migration schedule:

(1)

where S(x) denotes the conditional migration probability at age x. Frequently the re-
tirement peak is absent, and the function then is defined by 7 parameters. (In yet
other instances, an upward slope at the oldest ages is evident, in which case a positive
exponential curve is added, and the function then is defined by 9 parameters if a re-
tirement peak is absent and by 13 parameters if it is present.)

The observed regularities in the age patterns of countless migration schedules sug-
gest that, as in the case of mortality patterns, information on the probabilities associ-
ated with infants may be linked with the corresponding probabilities in each of the
subsequent age intervals, and therefore also of all age intervals aggregated together,
by means of regression equations. Empirical patterns show one of three prototypical
age profiles of migration but exhibit different levels under those profiles (i.e., related
areas under the different parts of prototypical age profiles). This paper draws on such
observed regularities to set out a procedure for obtaining estimates of age and origin-
destination-specific migration propensities from knowledge only of the propensity ex-
hibited by infants.
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FIG.1. Observed and Predicted (11 Parameter Model Migration Schedule) U.S. Internal Migration
from the Northeast to the South, 1955–1960



3. OBTAINING AN INITIAL ESTIMATE

A single census distribution that is birthplace-specific (as well as age- and residence-
specific) offers in its very first age group an indicator of migration. Children who are,
say, 0–4 years old at the time of the census and living in region j, having been born in
region i, must have migrated during the immediately preceding five-year interval.
Given their young age, and the fact that they were on average born 21/2 years ago, it is
unlikely that they experienced more than one migration. These data provide our ini-
tial estimate of spatial patterns and of migration level. Regression equations may be
used to expand these child migration levels and spatial patterns into age-specific lev-
els and patterns.

To illustrate the method, consider the data from the 1990 census presented in Fig-
ure 2 below, which shows a plot of the aggregate conditional survivorship proportion,
Sij(�), against the corresponding first age-group-specific component of that aggre-
gate proportion, Sij(�5). The former represents the fraction of persons of all ages
who resided in region i at the start of the time interval and in region j at the end of it.
The latter is the first member of the set of age-group-specific proportions Sij(x), that
in a suitably weighted linear combination comprise the former; it represents the frac-
tion of all births born in region i during the past, say, five years who survived to the
census date to enter the 0–4 years age group resident in region j at that date. Conse-
quently, it can be calculated by back-casting to region i all i-born 0–4 year olds enu-
merated at the time of the census, no matter where they lived, and then deriving the
fraction of that number who ended up in region j at the time of the census count.
(The Sij(�5) measure is defined on pages 98–99 of Rogers 1995.) Note that there are
twelve observations, one for each interregional flow present in the 4 by 4 matrix of ag-
gregate migration streams reported in the 1990 census for the U.S. regional disaggre-
gation into the Northeast, Midwest, South, and West.

Returning to the scatter plot in Figure 2 we notice that a straight line offers a good
approximation of the relationship between the infant migration level (Sij(�5)) be-
tween regions i and j, and the corresponding level across all ages. Table 1 shows that
the adjusted R2 is 0.86 and the t-statistic is 8.3. Adding the corresponding data for
three other censuses (1960, 1970, and 1980) lowers the adjusted R2 to 0.77, but in-
creases the t-statistic to 12.4.
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FIG.2. Aggregate Survivorships (Sij(�)) as a Function of Infant Survivorships (Sij(�5)) for 1990



Somewhat more robust results can be obtained by adding a second independent
variable to the regression equation. Let iKj(�)% denote the percentage of i-borns of
all ages who are enumerated in region j at census time, and let 

Sij(�) � a � bSij(�5) � ciKj(�)% � error term (2)

Table 2 sets out the relevant statistics for this multiple linear regression model. Note
that the adjusted R2 for the 12 observations from the 1990 census increases from 0.86
to 0.92, and the adjusted R2 for the 48 observations generated by the four decadal
censuses grows from 0.77 to 0.83.

A visual examination of the data suggests that further improvements might be
achieved by disaggregating the forty-eight observations into the twelve with a retire-
ment peak (the flows from the Northeast to the Midwest and to the South, and the
flows from the Midwest to the West) and the remaining thirty-six without one. Table 3
reveals that such a disaggregation does indeed improve the quality of the fit achieved
by the regression model. The adjusted R2 for the twelve schedules with a retirement
peak is 0.92; that for the remaining thirty-eight schedules without one is 0.85. 

Figure 3 demonstrates how these two regression equations, fitted to the forty-eight
interregional migration streams enumerated by the 1960, 1970, 1980, and 1990
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TABLE 1
The Simple Regression Model

Year Constant t-score Slope Sij(�5) t-score R-sq Adj R-sq N

1960 0.002 0.615 0.904 5.929 0.779 0.756 12
1970 0.002 0.608 0.805 5.054 0.719 0.691 12
1980 �0.001 �0.322 1.147 7.193 0.838 0.822 12
1990 �0.001 �0.405 1.198 8.347 0.875 0.862 12

1960–1990 0.001 0.416 0.991 12.406 0.780 0.765 48

FIG. 3. Historical Regional Survivorships (Sij(�)) from 1900–1990
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censuses, perform when applied to the infant migration propensities found in the
IPUMS census files for 1900, 1910, 1920, 1940, and 1950. The estimated aggregate
interregional migration levels that they “predict” for the first half of the twentieth
century are significantly lower than those prevailing during the second half, a finding
that accords with what has been reported in the scholarly literature on the population
history of the United States (Haines and Steckel 2000).

Table 4 sets out the associated predicted and observed 4 by 4 matrices of migration
flow numbers and the percent errors for the 1985 to 1990 time period. 

Clearly, the best fits were obtained for the destination-specific out-migration flows
from the Midwest, and the worst fits for the out-migration streams from the West.
These fits are reflected in the respective values of the corresponding statistics in the
table, showing the Mean Average Percent Error (MAPE). For all 1990 flows, the
MAPE is 10.45. On average, the flow values were underestimated by 7 percent.

4. INTRODUCING THE AGE DISTRIBUTION

Since equation (2) successfully describes the association between the aggregate
proportion of migrating as a function of the corresponding proportion for infant mi-
grants, and of the percentage of i-borns of all ages who are residing in region j at cen-
sus time, it is likely that it also does so for each age group contained in the aggregate.
Therefore, let

Sij(x) � a � b(x)Sij(�5) � c(x)iKj(�)% � error term (3)

for x � 0, 5, …, 80. Table 5 presents the resulting fit of this model to the 1960–1990
data.
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TABLE 4
Predicted and Observed U.S.-Born Migration Flows for 1985–1990 and percent error

Residence in 1990*

NE MW S W

NE 329,847 1,603,751 469,284 
335,024 1,537,269 334,806 

MW 343,920 1,672,414 946,995 
317,937 1,720,916 886,917 

S 760,298 1,180,046 1,122,041 
800,489 1,310,702 1,005,956 

W 339,742 658,281 1,052,769 
304,300 570,839 805,489 

*predicted values are in bold

Residence in 1990

NE MW S W MAPE

NE 1.57 4.15 28.7 11.47

MW 7.55 2.90 6.34 5.60

S 5.29 11.07 10.35 8.90

W 10.43 13.28 23.49 15.73

MAPE 7.76 8.64 10.18 15.13
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For the thirty-six schedules without a retirement peak, the adjusted R2 values
range from a high of 0.90, for x � 0, to a low of 0.49 for x � 80. All of the t-scores for
the first independent variable are statistically significant. For the twelve schedules
with retirement peaks the range for the adjusted R2 values extend from a high of 0.93
for x � 20 to a low of 0.47 for x � 75. And here again, the first independent variable
is statistically significant, having the expected positive signs. 

Figure 4 illustrates some of the age patterns that are predicted for 1960 to 1990 cen-
sus periods by the simple model of equation (3), for the particular origin-destination
pair of Northeast to South and of South to Northeast, with the corresponding ob-
served age patterns set out below the predicted. However, the simple multiple re-
gression model set out in equation (3) does not guarantee a non-negative estimate for
Sij(x). To ensure that the estimated conditional survivorship proportions always are
non-negative, and range between zero or unity, we turn next to logistic regression.
Instead of predicting the survivorship proportions using a linear estimation ap-

proach, the logged odds of the survivorship are predicted, then converted back into
probabilities. Specifically, let

(4)

for x � 0, 5, …, 80. Table 6 illustrates the separate regressions of equation (4) for
each age category, with and without retirement peaks, using least squares estimation.

As with the previous age-specific model of equation (3), a moderate range of good-
ness of fit values (adjusted R2) across age categories is obtained. The adjusted R2 val-
ues are highest for the younger age groups: 0.90 for x � 0 in the model without
retirement peaks, and 0.93 for x � 5 in the model with retirement peaks. Conversely,
the adjusted R2 values are lowest in the oldest age categories: 0.50 for x � 80, in the
model without retirement peaks, and 0.54 for x � 75 in the model with retirement
peaks. Once again, as in the estimation results for equation (3), the coefficient for re-
gional distribution of migrants, iKj(�)% is not significant in the model without retire-
ment peaks. However, it is sometimes a significant predictor of the logged odds of
Sij(x) in the model with retirement peaks.

The coefficients are described in table 6 in terms logged-odds of Sij(x), making in-
terpretation somewhat cumbersome. Figures 5, 6, and 7 show the results of the pre-
dicted survivorships, after the logged odds are transformed back to probabilities.
Figure 5 examines the relationships between predicted and observed estimates of the
Sij(x) for best and worst fits. The predicted migration schedule from the Midwest to
the Northeast for 1960 is the best-fitting with a mean average percent error of 9 per-
cent. The worst-fitting migration schedule is from the Northeast to West for 1980,
which had a mean average percent error of 50 percent.  

Figure 6 illustrates the age profiles of predicted Sij(x) for four different flows from
1960 to 1990; notice that the Northeast to South flow includes a retirement peak,
which produces pronounced rises in the flows at the older ages.

Finally, using the regression results in table 7, figure 7 sets out some of the esti-
mated Sij(x) for 1900 to 1950 (with 1930 missing because of a lack of data). These are
our “best estimates” of the historical migration flows in the United States for those
time periods.

On average, the age patterns follow the standard regularities observed in empirical
schedules, but the flows tend to be underestimated by 9 percent. The age category
that is best predicted by the model is that of 20–24 year olds, with a mean average
percent error (MAPE) of 11 percent. The worst predicted category is that of the
80–84 year olds with a MAPE of 34 percent. This result is intuitively plausible, since

ln
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FIG. 4A. Predicted and Observed Migration Schedules from the Northeast to South and South to
Northeast
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FIG. 4B. Predicted and Observed Migration Schedules from the Northeast to South
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FIG. 5. Predicted versus Observed Migration Schedules: Best Fit and Worst Fit
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FIG. 6. Predicted 1960–1990 Migration Schedules
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infant migration should better predict the migration flow of parents instead of grand-
parents. The best predicted migration schedules over all the years are from Northeast
to South (MAPE � 12 %); the worst predictions for the migration schedules are from
the Northeast to the West (MAPE � 39%). Across the four census years, the best
predicted schedules were for 1955 to 1960 (MAPE � 19%), and the worst were for
1985 to 1990 (MAPE � 25%).

6. CONCLUSION

The indirect estimation of migration flows (numbers) and propensities (probabili-
ties, or proportions) is made possible by the persistent regularities that are observed
in the demographic data. Capturing those regularities with models, therefore, is an
important component of any estimation strategy. In the case of migration, two pat-
terns are central to such a strategy: the first must deal with the age structure, the sec-
ond with the spatial structure. Model migration schedules of the multiexponential
variety have been shown to be valuable in accomplishing the former task (Rogers and
Castro 1981; Rogers and Raymer 1999); log-linear and logistic models have been suc-
cessfully used to accomplish the latter task (Sweeney and Konty 2002; Rogers et al.
2002; Rogers, Willekens, and Raymer 2003). It is important to recognize, however,
that both patterns are scale-dependent, and that the models, therefore, need to be re-
estimated when applied to changing spatial resolution levels of the underlying data.

In this paper, we have outlined a method for obtaining an initial estimate of migra-
tion age and spatial patterns using just one propensity to infer all of the rest: namely,
the estimate of infant migration that is afforded by the number of infants enumerated
in a survey or census, who at the time of the survey reside in an area different from
their place of birth. Since infants migrate with their parents, the two migration
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FIG. 7. Predicted 1900–1950 Migration Schedules
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propensities have a natural association, one that may be captured by means of a re-
gression equation. And the stability of the age profile of migration schedules then al-
lows the association to be extended to all other age groups.

It could be said that inferring an entire schedule of age-specific migration propor-
tions from just a single infant migration propensity is like reconstructing an entire di-
nosaur from just a single hip bone. But that is the way of indirect estimation methods
in demography. For example, a single infant mortality rate often has been used to es-
timate an entire life table, because scores of studies have demonstrated that strong
regularities in age profiles are exhibited by such tables (United Nations 1955). That is
what makes life insurance a workable proposition. We believe that analogous regular-
ities in age profiles, and spatial structures, are exhibited by migration data, and our
results are surprisingly successful and merit testing in other settings. A multinational
comparative study is being launched by Rogers and an international team of collabo-
rators to carry out such a test (Rogers 2002). In the meantime, we offer a few conclu-
sions that might guide such efforts.

First, there is the question of spatial scale. Indirect estimation of the twelve migra-
tion flows associated with a four-region disaggregation of the United States is of lim-
ited interest to most people. To be practically useful, it is necessary to increase the
resolution level. A first step in that direction is moving toward a larger number of re-
gions, for example, the eight observed destination-specific migration schedules asso-
ciated with each of the nine U.S. Census Divisions, according to the 1990 census. Our
preliminary efforts in this direction indicate that the methodology continues to pro-
duce satisfactory estimates, with the same regression models when they are fitted to
data reported for the changed resolution level. For example, deleting the three of the
seventy-two schedules that exhibit a retirement peak leaves a sample size of sixty-
nine schedules, for which the quality of fit afforded by even our simplest univariate
age-specific (non-logistic) regression model is impressive with R2 values that range
from a high of 0.99 (for x � 25) to a low of 0.77 (for x � 55) with all but four exceed-
ing 0.90. All of the slope coefficients associated with the infant migration proportion
have the expected positive sign and are statistically significant, but most of those as-
sociated with iKj(�)% have a negative sign, and almost half are not statistically signif-
icant. Nevertheless, even the simplest model predicts reasonable migration
schedules, and this suggests that further disaggregations are feasible.

Second, having obtained initial estimates of all migration schedules, one could seek
improvements in the quality of the results by fitting model migration schedules to the
initially estimated age profiles and logistic models to the initially estimated spatial
structures. The latter would involve judgments by the analyst, or a panel of experts,
regarding the reasonableness of deviations from past and expected future trends in
parameter values or odds ratios. In an earlier article we illustrate such a procedure by
adjusting the spatial structure of an observed interregional migration pattern for 1980
to 1985, as exhibited by the (small) sample Current Population Survey (CPS) data, to
better reflect the expected trends exhibited by the bordering (large) sample census
data for 1975 to 1980 and 1985 to 1990 (Rogers, Willekens, and Raymer 2003).

Third, there is the added option of “cleaning up” the data by fitting model migration
schedules to the input data before carrying out the regression analysis. Underreporting
of the infant population can be a problem in some regions, and such model schedules
would “improve” the data. And there also is the possibility of introducing additional in-
dependent variables, such as regional dummy variables, into the regression analysis.

Finally, there is the unresolved issue of how to deal with the internal migration of
the foreign-born population. Their infant population stocks reflect international, not
internal, migration flow totals and so cannot be used to predict the interregional mi-
gration patterns inside the United States. Perhaps such patterns could be approxi-
mated by linking of the internal migration patterns of the foreign-born to the net
migration induced changes in the population stocks of foreign-born adolescents, i.e.,
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by estimating the same regression equations, but using net migration-based estimates
of the migration propensities of adolescents instead of infants. We are currently ex-
perimenting with this approach.

LITERATURE CITED

Bates, J., and I. Bracken. (1987). “Migration Age Profiles for Local Authority Areas in England,
1971–1981.” Environment and Planning A 19, 521–35.

———. (1982). “Estimation of Migration Profiles in England and Wales.” Environment and Planning A 14,
889–900.

Bogue, D. J., K. Hinze, and M. White. (1982). Techniques of Estimating Net Migration. Chicago: Commu-
nity and Family Study Center, University of Chicago.

Coale, A. J., and J. Trussell. (1996). “The Development and Use of Demographic Models.” Population
Studies 50(3), 469–84.

Eldridge, H. T., and Y. Kim. (l968). “The Estimation of Intercensal Migration from Birth-Residence Sta-
tistics.” Analytical and Technical Report No. 7. Philadelphia: Population Studies Center, University of
Pennsylvania.

George, M. V. et al. (1994). Population Projections for Canada, Provinces, and Territories: 1993–2016. Ot-
tawa: Statistics Canada.

Haines, M. R., and R. H. Steckel, eds. (2000). A Population History of America. Cambridge: Cambridge
University Press.

Hofmeyr, B. E. (1988). “Application of a Mathematical Model to South African Migration Data,
1975–1980.” Southern African Journal of Demography 2(1), 24–28.

Holmberg, I. (1984). “Model Migration Schedules: the Case of Sweden.” In Proceedings of the Scandina-
vian Demographic Symposium, vol. 6. Stockholm: Scandinavian Demographic Society.

Kawabe, H. (1990). Migration Rates by Age Group and Migration Patterns: Application of Rogers’ Migra-
tion Schedule Model to Japan, the Republic of Korea, and Thailand. Tokyo: Institute of Developing
Economies.

Liaw, K. L., and D. N. Nagnur. (1985). “Characterization of Metropolitan and Nonmetropolitan Outmi-
gration Schedules of the Canadian Population System, 1971–1976.” Canadian Studies of Population
12(1), 81–102.

Miller, A. R. (1994). “Estimating Interregional Migration in the United States from Sample Data.” Histor-
ical Methods 27(1), 5–23.

Muhidin, S. (2002). The Population of Indonesia. Amsterdam: Rosenberg Publishers.
Pimienta, R. (1999). “Analisis Multirregional de los Patrones des Edad y Sexo de la Migraciion Interna el

Caso de Mexico.” Ph.D. diss., Center for the Study of Demography and Urban Development, El Cole-
gio de Mexico, Mexico, D.F.

Potrykowska, A. (1988). “Age Patterns and Model Migration Schedules in Poland.” Geographia Polonica
54, 63–80.

Rogers, A. (2002). “The Indirect Estimation of Migration: A Proposal for a Multinational Study.” Working
Paper 02-04, Population Program, Institute of Behavioral Science, University of Colorado, Boulder, Col-
orado.

Rogers, A. (1995). Multiregional Demography: Principles, Methods, and Extensions. London: John Wiley.
Rogers, A., and L. Castro. (1981). Model Migration Schedules, Research Report. Laxenburg, Austria: In-

ternational Institute for Applied Systems Analysis.
Rogers, A., and J. Little. (1994). “Parameterizing Age Patterns of Demographic Rates with the Multiexpo-

nential Model Schedule.” Mathematical Population Studies 4(3), 175–94.
Rogers, A., and J. Raymer. (1999). “Fitting Observed Demographic Rates with the Multiexponential

Model Schedule: An Assessment of Two Estimation Programs.” Review of Urban and Regional Devel-
opment Studies 11(1), 1–10.

Rogers, A., and J. Watkins. (1987). “General Versus Elderly Interstate Migration and Population Redistri-
bution in the United States.” Research on Aging 9(4), 483–529.

Rogers, A., F. Willekens, J. Little, and J. Raymer. (2002). “Describing Migration Spatial Structure.” Papers
in Regional Science 81, 29–48.

Rogers, A., F. W. Willekens, and J. Raymer. (2003). Imposing Age and Spatial Structures on Inadequate
Migration-Flow Data Sets. The Professional Geographer 55(1), 56–69.

Sweeney, S. H., and K. J. Konty. (2002). “Population Forecasting with Nonstationary Multiregional Growth
Matrices.” Geographical Analysis 34(4), 289–312.

United Nations. (1992). Preparing Migration Data for Subnational Population Projections. New York: De-
partment of International Economic and Social Affairs, United Nations.

United Nations. (1983). Manual X: Indirect Techniques for Demographic Estimation. New York: Depart-
ment of International Economic and Social Affairs, United Nations.

United Nations. (1955). “Age and Sex Patterns of Mortality: Model Life Tables of Under-Developed Coun-
tries.” Population Studies No. 22. New York: United Nations.

Andrei Rogers and Lisa Jordan / 53


