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Abstract

Demographic models can have twomeanings, one broad and one narrow. In its broadmeaning, demographic models refer to
all mathematical, statistical, forecast, andmicrosimulationmodels that are applied to studies of demographic phenomena. In
its narrow meaning, demographic models refer to empirical regularities in age patterns of demographic events. This article is
concerned with demographic models in the narrow definition. Demographic models are widely used (1) to improve data
quality and (2) to compare demographic outcomes and processes across populations or subpopulations. Both parametric
and semiparametric specifications have been proposed for modeling age patterns of demographic events, giving rise to
parametric models and semiparametric models. Successful applications of both types of models are found in research on
mortality, nuptiality, and fertility. As an integral part of formal demography, demographic models have been linked closely to
mathematical demography. In recent decades, however, statistical demography has played an increasingly important role in
demographic models.

The term ‘demographic models’ can have two meanings, one
broad and one narrow. In its broad meaning, demographic
models refer to all mathematical, statistical, forecast, and
microsimulation models that are applied to studies of
demographic phenomena. In its narrow meaning, demo-
graphic models refer to empirical regularities in age patterns
of demographic events. Demographic models in the broad
definition can be found in various entries related to demog-
raphy (see, among others, Multistate Transition Models in
Demography; Event History Analysis: Applications; Pop-
ulation Dynamics: Theory of Stable Populations; Population
Forecasts; Microsimulation in Demographic Research). This
article is concerned with demographic models in the narrow
definition.

Age Patterns of Demographic Events

In a classic statement, Hauser and Duncan (1959) defined
demography as ‘the study of the size, territorial distribution,
and composition of population, changes therein, and the
components of such changes’ (p. 2). In the Hauser–Duncan
definition of demography, the study of population changes
goes hand in hand with the study of the components of
population changes. This is necessitated by the need to
decompose a population into components and then study
changes in the components before arriving at an overall
understanding of the changes in the population. The most
elementary, and also the most important, form of pop-
ulation decomposition is by sex and age. Since men are only
indirectly involved in reproduction, demographic analysis is
often simplified by focussing on women. Such simplifica-
tion is called ‘one-sex’ modeling (see Population Dynamics:
Two-Sex Demographic Models), as is commonly seen in
fertility and nuptiality models. In mortality models,
however, men and women are always kept distinct, and
there are substantial mortality differentials in favor of
women.

The treatment of age is of significant concern in demo-
graphic research. Without exception, the occurrence of all
demographic events is age-dependent. Here, the correct
interpretation of age-dependency is one of life-course, that is,
the likelihood of the occurrence of an event changes as
a person (or a cohort) ages. This is true even though most
demographic methods and models use cross-sectional data,
capitalizing on age-gradients of vital rates in any given pop-
ulation. The use of period-based data usually is necessitated
by the lack of cohort-based data.

Demographic models of age schedules are developed on the
observation that age patterns of demographic events often
show some regularity. Two cautionary notes are in order. First,
age regularity is not universal, either across space or over time.
Second, all that is assumed is empirical regularity; theoretical
reasons behind such regularities are typically neither well
established nor well understood. Nonetheless, demographic
models capitalizing on empirical regularities are very useful in
practice and may provide the basis for theoretical work. A brief
discussion of the main uses of demographic models is given as
follows.

Use of Demographic Models

Demographic models are intended to summarize empirical
regularities in age patterns of demographic events, ideally in
simple mathematical formulas. Such models can prove very
useful in demographic research. One type of use of demo-
graphic models concerns data quality. For example, demo-
graphic models may be used to detect and correct faulty data,
impute missing data, and allow researchers to infer from partial
data. Not surprisingly, this use of demographic models is often
found in historical demography and research in less developed
countries, where quality data are scarce.

The second type of use is substantive and commonly it is
found in research with a comparative focus, be it over time
(trends) or across societies, regions, or subpopulations. Age-
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schedule models are also useful for actuarial calculations
of life-insurance premiums and premium reserves and for
the computation of national or regional population
forecasts (e.g., Lee and Tuljapurkar, 1994). In demographic
applications, cross-group variations in age patterns are typi-
cally parameterized as functions of two components: a shape
component to capture age effects and a modification
component reflecting group membership. Ideally, we would
like the second component to be as parsimonious as possible.
When demographic models are fully parametric, the two
components are integrated, with the functional form being
the shape component and the parameter values being the
modification component. However, parametric models are
not the norm in demography. Parametric models and semi-
parametric models will be discussed separately below, with
concrete examples taken from research on mortality,
nuptiality, and fertility. Coale and Trussell (1996) give a more
detailed account of some of the models.

Parametric Models

Gompertz (1825) is accredited for the discovery that mortality
rates in human populations increase nearly as an exponential
function of age. This regularity holds true only after early
adulthood (ages 25–30). According to ‘Gompertz’ law,’ the
force of mortality (or hazard) is a parsimonious loglinear
function of age

InðmxÞ ¼ Aþ Bx [1]

where mx denotes the force of mortality at age x. Naturally, A is
the parameter characterizing the level of mortality at early ages
and B is the parameter characterizing the rate of increase in
mortality with age. While very parsimonious, the Gompertz
model does not always fit empirical data well. Other
researchers have modified the model either by adding addi-
tional terms or by changing the functional form. For example,
Makeham (1867) altered the simple loglinear relationship of
eqn. [1] by adding a time invariant term intended to capture
cause-specific ‘partial forces of mortality.’ Heligman and
Pollard’s (1980) three-component model is another such
extension.

In studying age patterns of first marriages among women,
Coale (1971) found a basic form that is common in different
populations. Through trial-and-error, Coale was able to char-
acterize the typical age pattern of first marriage by a double-
exponential curve

rx ¼ ð0:174Þ exp½�4:411 expð�0:309xÞ� [2]

where rx denotes the hazard rate (or risk) of first marriage at age
x. This mathematical function was shown later to be approxi-
mated closely by the density function corresponding to the sum
of distributions representing demographic processes (Coale
and McNeil, 1972).

To fit observed age patterns of fertility, Brass (1960)
proposed a model using polynomial functions. Although
Brass’ parametric model is very flexible, it requires the estima-
tion of four unknown parameters. Since fertility rates typically
are given in a limited number of 5-year intervals, this method
leaves very few degrees of freedom for evaluating goodness-of-

fit. An evaluation of various parametric models based on
empirical data is given by Hoem et al. (1981).

There are three notable problems with parametric models.
First, parametric models often do not fit observed phenomena.
Demographers have dealt with such empirical deviations
through (1) restricting the applicable age range and
(2) allowing for further parameterization. Both solutions
have surfaced in research using the Gompertz model.

The second major disadvantage associated with parametric
models is the lack of behavioral interpretations for key
parameters. This problem arises from the fact that almost all
parametric models have resulted from exercises of curve-fitting.
Parametric models may reproduce observed age patterns of
demographic events, but theoretical interpretation of involved
parameters is often unclear.

Finally, parametric models are not always convenient to use
for comparing populations or subpopulations, even though
this was one of the motivations for developing them in the first
place. This problem is apparent, for example, in the case of
a polynomial model. When several parameters in a polynomial
function differ between two populations, it is difficult to
characterize one population as having higher or lower rates
than the other population.

Semiparametric Models

In response to these problems with parametric models, semi-
parametric models have been developed. Semiparametric
models are similar to parametric models in specifying parsi-
monious mathematical functions but differ from parametric
models in allowing age-dependency to be unconstrained and
subject to empirical estimation, that is, semiparametric models
do not impose any global constraint limiting the age pattern to
the rigidity of a parametric mathematical function. Instead, the
age pattern is estimated freely and empirically from observed
data or calculated from external sources. One manifestation of
the semiparametric approach is the use of model schedules or
model tables. While allowing for the flexibility in a common
age function, model tables place constraints on the variations
in the age pattern across populations or subpopulations. Such
constraints are often motivated by substantive knowledge of
demographic phenomena.

In the area of mortality studies, for example, model life
tables have been in wide use, primarily as a tool for correcting
faulty data and estimating missing data. In essence, a model life
table allows for a typical age schedule of mortality shared by
a set of populations that differ mainly in their levels of
mortality. The age pattern is flexible and empirically deter-
mined over all ages but constrained across populations; and
cross-population variability lies in the overall level of
mortality. The earliest model life table was developed by the
United Nations (1955) for all national populations. Subse-
quently, Coale and Demeny (1966) added more flexibility by
identifying four regional model life tables based on distinctive
age patterns of mortality and refined the technique for con-
structing model life tables.

As an alternative, Brass (1968) developed a system of rela-
tional life tables, in which a standard mortality schedule is
modified by two parameters through a logit equation
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logitðpxjÞ ¼ aj þ bjlogitðp�xÞ [3]

Here pxj is the probability of survival to age x in population j, p�x
is the probability of survival to age x in a selected standard
table, and aj and bj are parameters characterizing population j.
In the Brass system, a determines the level of survival, whereas
b changes the shape of survival parametrically.

In fertility research, Henry (1961) posited the existence of
natural fertility with a peculiar age pattern. According to him,
for physiological and social factors, different populations
not exercising fertility control may have different levels of
fertility but exhibit the same age pattern. Coale and Trussell
(1974) later formalized this idea into the Mm method for
studying age patterns of marital fertility. Let the marital
fertility rate for the xth age of the jth population be denoted
by rxj. The Coale–Trussell Mm method parsimoniously
describes the cross-population variation in age patterns of
marital fertility with

rxj ¼ nxMjexpðmjvxÞ [4]

Here nx is the standard age pattern of natural fertility; vx is
a typical age-specific deviation of controlled fertility from
natural fertility; and Mj and mj measure the jth population’s
fertility level and control, respectively. Equation [4] then states
that marital fertility can be modeled as a product of natural
fertility and a factor reflecting fertility control. The former is
represented by nxMj; the latter by exp(mjvx). Coale and Trussell
estimated n and v and suggested that these age schedules be
taken as known in all applications. This approach has been
superseded by Xie (1990) and Xie and Pimentel (1992),
who suggested that n and v be regarded as parameters to be
estimated along with M and m from any set of empirical
fertility rates rxj.

Statistical Demography versus Mathematical
Demography

The construction and derivation of parametric and semi-
parametric demographic model age schedules have been
accomplished through mostly mathematical and sometimes
graphical methods. From the outset, demographicmodeling has
been regarded as part of mathematical demography. Since the
1980s, however, a mainline statistical approach has played an
increasingly important role in the development of demographic
models (e.g., Clogg and Eliason, 1988; Hoem, 1987; Xie, 1990,
Xie and Pimentel, 1992) for a number of good reasons.

First, the advancement of demography has brought with it
more, richer, and better data in the form of sample data, and the
use of sample data requires statistical tools. Treating sample
data as exactly known quantities induces the danger of
contamination by sampling errors. Second, while themethod of
disaggregation commonly used in mathematical demography

may easily lead to inaccurate estimation due to small group
sizes, statistical methods more efficiently utilize covariates to
examine group differences. Third, because observed data may
sometimes be irregular or simply missing, statistical models can
help smooth or impute data. Conversely, the strength of
empirical techniques developed around demographic models
(e.g., indirect estimation, age patterns of fertility, model life
tables, etc.) is that they provide descriptions of age patterns that
can be utilized to improve statistical analysis.

See also: Demographic Measurement: General Issues and
Measures of Fertility; Demographic Measurement: Nuptiality,
Mortality, Migration, and Growth; Demography: History Since
1900.

Bibliography

Brass, W., 1960. The graduation of fertility distributions by polynomial functions. Pop-
ulation Studies 14, 148–162.

Brass, W., 1968. The Demography of Tropical Africa. Princeton University Press,
Princeton, NJ.

Clogg, C.C., Eliason, S.R., 1988. A flexible procedure for adjusting rates and proportions,
including statistical methods for group comparisons. American Sociological Review
53, 267–283.

Coale, A.J., 1971. Age patterns of marriage. Population Studies 25, 193–214.
Coale, A.J., Demeny, P., 1966. Regional Model Life Tables and Stable Populations.

Princeton University Press, Princeton, NJ.
Coale, A.J., McNeil, D.R., 1972. The distribution of age of the frequency of first marriage

in a female cohort. Journal of the American Statistical Association 67, 743–749.
Coale, A.J., Trussell, T.J., 1974. Model fertility schedules: variations in age structure of

childbearing in human populations. Population Index 40, 185–258.
Coale, A.J., Trussell, T.J., 1996. The development and use of demographic models.

Population Studies 50, 469–484.
Gompertz, B., 1825. On the nature of the function expressive of the law of human

mortality and on a new mode of determining the value of life contingencies.
Philosophical Transactions of the Royal Society of London 115 (Part II),
513–585.

Hauser, P.M., Duncan, O.D., 1959. The Study of Population: An Inventory and Appraisal.
University of Chicago Press, Chicago.

Heligman, L., Pollard, J.H., 1980. The age pattern of mortality. Journal of the Institute of
Actuaries 107, 49–80.

Henry, L., 1961. Some data on natural fertility. Eugenics Quarterly 8, 81–91.
Hoem, J.M., 1987. Statistical analysis of a multiplicative model and its application to the

standardization of vital rates: a review. International Statistical Review 55, 119–152.
Hoem, J.M., Madsen, D., Nielsen, J.L., Ohlsen, E.M., Hansen, H.O., Rennermalm, B.,

1981. Experiments in modeling recent Danish fertility curves. Demography 18,
231–244.

Lee, R.D., Tuljapurkar, S., 1994. Stochastic population forecasts for the United States:
beyond high, medium, and low. Journal of the American Statistical Association 89,
1175–1189.

Makeham, W.M., 1867. On the law of mortality. Journal of the Institute of Actuaries 13,
325–367.

United Nations, 1955. Age and Sex Patterns of Mortality: Model Life Tables for Under-
developed Countries. United Nations, New York.

Xie, Y., 1990. What is natural fertility? The remodelling of a concept. Population Index
56, 656–663.

Xie, Y., Pimentel, E.F., 1992. Age patterns of marital fertility: revising the Coale-Trussell
method. Journal of the American Statistical Association 87, 977–984.

Demographic Models 125


	Demographic Models
	Age Patterns of Demographic Events
	Use of Demographic Models
	Parametric Models
	Semiparametric Models
	Statistical Demography versus Mathematical Demography
	Bibliography


