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Abstract

A population with an age distribution which remains constant over time is referred to as stable. A stable population of
constant size is said to be stationary. These concepts are of considerable antiquity. Subject to age-specific mortality and
fertility rates which remain unchanged over time a population will eventually develop a stable age distribution which
depends on those mortality and fertility rates but is independent of the initial age distribution of the population. This result,
due to Sharpe and Lotka (1911), caused renewed interest in stable populations among demographers, and the theory
underlying it is outlined. Although demographers usually think of a stable population as one with an age distribution which
is unchanging, such a definition is restrictive, because populations can also exhibit stability in respect of other characteristics
as well as age and in more general situations. The discrete approach of Bernardelli, Leslie, and Lewis, which readily permits
generalizations to a range of population stability situations is therefore described, as well as extensions covering migration,
multiregional populations, populations studied by parity of woman, and membership of particular organizations. Appli-
cations are discussed only very briefly with cross-references to the relevant article. Limitations of the underlying models are
also mentioned, again with a cross-reference.

A population with an age distribution which remains constant
over time is referred to as ’stable.’ A stable population of constant
size is said to be ’stationary.’ These concepts are of considerable
antiquity. Euler, for example, knew in 1760 the stable age distri-
bution a population needed to have if it were to have a given
growth rate. Compilers of some of the early life tables such as
Graunt in 1662 appear to have assumed populations which were
stationary, and nineteenth-century actuaries certainly made use of
the stationary population concept (King, 1902).

Subject to age-specific mortality and fertility rates which
remain unchanged over time a population will eventually
develop a stable age distribution which depends on those
mortality and fertility rates but is independent of the initial age
distribution of the population. This result, due to Sharpe and
Lotka (1911) caused renewed interest in stable populations
among demographers. Although demographers usually think
of a stable population as one with an age distribution which
is unchanging, such a definition is restrictive, because
populations can also exhibit stability in respect of other
characteristics as well as age and in more general situations.

The Population Model of Sharpe and Lotka

Sharpe and Lotka considered the male population alone and
assumed that the growth of the female population would be
such as to justify assumptions of constant age-specific fertility
and mortality for the males. Subsequent writers have usually
applied the model to the female component of the population
because of its shorter reproductive age span and the fact that
the number of females in the reproductive age range plays
a more significant role in determining the number of births
than the number of males (Pollard, 1973).

Applied to the female population, themodel assumes F(x, t)
dx females in the age range (x, xD dx) at time t and B(t)dt female
births between times t and t þ dt. Then, if the average number
of daughters born per female aged exactly x in time element dt is

l(x)dt and the probability that a female survives from age u to age
u þ v is vpu, the following relationship is immediately apparent:

BðtÞ ¼
ZN

0

Fðx; tÞ lðxÞdx [1]

Noting that those alive and aged x at time t, enumerated in
F(x, t) dx, must either have been born at time t� x (x< t) or else
have been aged x – t at time 0 (x> t), eqn [1] may be rewritten as

BðtÞ ¼
Z t

0

Bðt � xÞxp0lðxÞdxþ GðtÞ [2]

with

GðtÞ ¼
ZN

0

Fðx; 0Þtpxlðxþ tÞdx [3]

The solution to the integral equation (2) reveals that for
large values of t, under quite general assumptions

BðtÞyC ert [4]

where the constant r (the intrinsic growth rate of the population)
is the unique real solution to the integral equation

ZN

0

e�rx
xpolðxÞdx ¼ 1 [5]

and the constant C depends on the initial age distribution of
the population as well as the age-specific mortality and fertility
rates (Keyfitz, 1968; Pollard, 1973).

Since the females aged between x and x D dx at time t are
the survivors of those born x years earlier between times t – x
and t – xþ dx, it follows from eqn [4] that

Fðx; tÞyC erðt�xÞ
xpo ¼ �

C ert
��
e�rx

xp0
�

[6]

The first factor in the right-hand side of eqn [6] indicates that the
population grows exponentially asymptotically at rate r,while the
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second reveals that the age distribution is asymptotically inde-
pendent of t. In other words, a stable age distribution is reached.

The Discrete Time Model of Bernardelli, Leslie,
and Lewis

Whilst the continuous timemodel of Sharpe and Lotka is elegant
and predicts a stable population asymptotically under condi-
tions of constant age specific mortality and fertility, the discrete
time formulation of Bernardelli (1941), Lewis (1942) and Leslie
(1945), which makes similar assumptions, is more readily
adapted to analyze stability in more complicated situations.

The number of females aged x last birthday at time t is
represented by nx,t. There is no migration, and no one can live
beyond age k last birthday. The average number of daughters
born to a female while she is aged x last birthday, those daughters
surviving to be enumerated as being aged zero at the next point
of time, is Fx, and the proportion of females aged x last birthday
surviving to be aged xþ 1 last birthday a year later is Px. Under
these assumptions, the following matrix recurrence equation
must apply to the numbers of females in successive years:

0
BBBBBB@

n0; tþ1
n1; tþ1
n2; tþ1
n3; tþ1
/

nk; tþ1

1
CCCCCCA

¼

0
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P0
P1

P2
1

Pk�1

1
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/
nk; t

1
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[7]

This equation may be written more concisely as

ntþ1 ¼ A nt [8]

so that

nt ¼ At n0 [9]

Under fairly general conditions, matrix A is positive regular,
in which case it has a dominant eigenvalue a which is positive,
of multiplicity one, and greater in absolute size than any other
eigenvalue. It follows from eqn [9] therefore that for large t,

n y C at z [10]

where C is a constant which depends on the initial age
distribution of the population, and z is the column eigen-
vector corresponding to the eigenvalue a. If Ps is written
instead of the product P0P1...PS, the elements of z are
P0a

�0;P1a
�1; :::; Pka

�k. It follows, therefore that the
number of females aged x last birthday at time t is

nx;t y
�
C at

� �
a�x Px

�
[11]

This is the discrete analogue of the Sharpe and Lotka
formula, eqn [6]. The second factor defines the asymptotic
stable age distribution; the first shows the exponential growth
of the population (Keyfitz, 1968; Pollard, 1973).

Stability with Migration

The most appropriate model for a population subject to
significant migration must depend on the pattern that migra-
tion takes. In the case of a country accepting a constant number

of immigrants each year with a constant age pattern, for
example, the discrete time recurrence of eqn [8] needs to be
modified as follows:

ntþ1 A nt þ b [12]

where b is a constant vector of immigrants. Under this
model, immigrants are assumed to adopt immediately the
mortality and fertility patterns of their new homeland.
Repeated application of eqn [12] for t ¼ 0, 1, 2, ... reveals
that, provided the dominant eigenvalue of A is not equal
to one,

nt ¼ At n0 þ
�
I� At� ðI� AÞ�1 b [13]

If the rate of natural increase of the population is less than
zero, a will be less than one, and for very large t

nt y ðI� AÞ�1b [14]

The population will become stationary with its age structure
determined by the ages of the immigrants (vector b), as well as
the mortality and fertility of the host country (matrix A). Where
the fertility of the host country is greater than replacement
level, a will be greater than one, and the following asymptotic
formula follows from eqn [13] for very large t:

nt y C0 at z [15]

In this case, the population grows asymptotically with the
same exponential growth rate as it did in the discrete non-
immigration case of Section 2. The asymptotic stable age distri-
bution (vector z) is also the same. The constant C0 , however, is
different, depending on the initial age structure, the vector of
immigrants b, and the mortality and fertility of the population.

In the pathological case where the levels of mortality and
fertility in the population correspond exactly to replacement, a
is equal to one, and a different algebraic approach is necessary
to the solution of eqn [12], which yields, for very large t, the
following asymptotic result:

nt y C00 t z [16]

The population grows linearly asymptotically and the
asymptotic age distribution is the same as in the previous case.
The constant C00 depends on the immigration vector, as well as
the fertility and mortality rates of the population.

For a population experiencing net emigration with
a proportion bx of females aged x departing each year, the matrix
model of Section 2 can be utilized with each of the Px in matrix
A replaced by Px–bx. The mathematical theory can then be
applied in the same manner as before, and an asymptotic stable
population emerges. The dominant eigenvalue and eigenvector
will of course be different from those in Section 2. Depending
on whether the dominant eigenvalue of themodifiedmatrix A is
less than, equal to, or greater than one, the population will
ultimately decline, become stationary or grow in size.

The above models are only two of a very wide range of
possible migration models appropriate in different circum-
stances. They demonstrate how the discrete time model of
Section 2 may be readily modified to take account of migration
and the fact that population stability will usually emerge in the
presence of migration when the migration parameters, mortality,
and fertility remain unchanged over time.
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Generalizations

The discrete time models of the earlier sections are readily
adapted to study populations partitioned according to other
characteristics as well as age. Multiregional demography is the
best known example (Rogers, 1966, 1975). Females of
a population are characterized by age and geographical
region in an extended column vector nt of dimension mk,
where k is the maximum age last birthday attainable and m is
the number of regions in the country. As well as surviving
and reproducing in the manner of Section 2 with rates that
may differ from region to region, females can move from one
region to another with transition rates which depend on the
regions involved and may also depend on age. The matrix
recurrence equation is again eqn [8], but with nt of
dimension mk and A of dimension mk � mk. Conditions for
a unique dominant eigenvector are readily determined, and
asymptotic stability for the population by age and geographic
region is predicted.

Another partition characteristic sometimes proposed is the
parity of woman. Females at time t are enumerated in a vector
nt with elements {nx,y,t} which record the numbers aged x last
birthday who already have y children. The only possible
transitions for a female aged x and parity y remaining within
the system are to age x þ 1 and parity y or to age xþ 1 and
parity yþ 1 (ignoring the small possibility of multiple births).
Where there is a change in parity, a new female will be
introduced into the population aged 0 last birthday and parity
0 if the mother’s change in parity corresponds to a female
birth. Recurrence matrix A contains these transition rates. The
fundamental recurrence equation is again eqn [8]. For all
realistic populations, the enlarged matrix A will have a unique
dominant eigenvector, and the population enumerated by age
and parity will approach stability (Keyfitz, 1968).

The discrete-time models of Sections 2 and 3 have also been
applied to workforce planning (Bartholomew, 1973; Pollard,
1967), membership of learned societies (where Fellows are
elected on merit and there is a danger of the society becoming
a rapidly aging institution), and membership of other groups
including pension schemes (Sherris and Pollard, 1980). A
learned society, for example, might have a policy of electing
five new Fellows each year. The membership of the society at
time t can be summarized by a vector nt with elements {nx,t}
representing the numbers at the various ages at that time. The
number of new members (five) and their age distribution can
be summarized in a vector b. The transition rates in the
recurrence matrix are simply the proportions {Px} surviving
from age x last birthday to age x þ 1 last birthday a year later,
for all relevant ages. Assuming that the ages are listed in their
natural increasing order, the transition matrix A is particularly
simple in this case: all its elements are zero, except those
immediately below the main diagonal which comprise the
survival proportions {Px}. With nt, b, and A defined in this
manner, the recurrence equation for the society is eqn [12].
All the eigenvalues of A are zero, and for t greater than the
number of ages involved, At [ O. The society will approach
a stationary state given by eqn [14].

All such linear models with realistic assumptions concern-
ing transition between states, entry and reproduction can be
shown to predict stable populations asymptotically.

Applications

No observed population experiences constant levels of
mortality and fertility. Nevertheless the concept of a stable
population finds frequent application. Keyfitz’s elegant
formula for the effect of population momentum (see Pop-
ulation Dynamics: Momentum of Population Growth)
assumes that the population is stable immediately prior to
fertility falling to replacement level. Yet the formula works
remarkably well for observed populations which are not stable.
Stable population theory may be helpful in deducing results in
respect of populations with unreliable and/or limited demo-
graphic data. Equation (4), for example, can be used to infer an
approximate value for the crude birth rate of a population
where contraception is not widely practiced, using only a reli-
able census of the population and a more or less appropriate
life table (Bourgeois-Pichat, 1957). Many of the applications of
model life tables rely on stable population theory (see
Population Dynamics: Classical Applications of Stable
Population Theory).

Limitations

The discrete time model of Bernardelli, Leslie, and Lewis, like
the continuous (female) formulation of Sharpe and Lotka,
assumes that the development of the male component of the
population is such as to justify the assumption of unchanging
female age-specific mortality and fertility. Linear models which
include the male component of the population alongside the
females have also been proposed, and mathematical analysis
analogous to that presented in Section 2 predicts a stable age–
gender composition for the whole population. Nonlinear
models have also been proposed to accommodate the ’two-sex
problem’ (see Population Dynamics: Two-Sex Demographic
Models). Many of these nonlinear models would also seem to
predict populations which are asymptotically stable under
conditions of unchanging rates of mortality, fertility and
nuptiality.

For many developing countries, for which stable pop-
ulation theory had been an extremely helpful tool, mortality
began to decline in the second half of the twentieth century,
but fertility remained essentially unchanged from previous
levels. To accommodate the improvements in mortality,
the concept of a quasi-stable population was introduced:
one with improving mortality but constant fertility (Coale,
1963).
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