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Abstract

Demographic microsimulation is an individual-based and computationally intensive tool used by population scientists to
model demographic processes, to gain insights on life course transitions and to make projections. Several microsimulators
have been developed, since the 1960s, to address questions for which standard techniques or data sets cannot provide
answers. Examples of applications include historical studies of demographic constraints on household formation, the impact
of the HIV/AIDS epidemic on kinship resources for orphans and the elderly, and the study of interaction and feedback
mechanisms in demographic behavior. From the methodological point of view, calibration of stochastic microsimulators is
an area of active research.

Demographic microsimulation is a computationally intensive
tool used by population scientists to model demographic
processes, to gain insights on life course transitions and to
make projections. Two important features distinguish micro-
simulation from other models. First, the unit of analysis is the
individual (hence ‘micro’). Second, the sequences of events that
individuals experience over time are the result of stochastic
experiments with predetermined probabilistic rules. Transi-
tions between states are typically generated using computer
algorithms and techniques also known as Monte Carlo
methods (hence ‘simulation’).

In a standard situation, each individual in the simulation
is an observation in a rectangular data file, which contains
records of demographic characteristics and other key variables
of interest. The simulator takes as input population files and
demographic rates, and updates the population accordingly.
Each simulated person is subject to a set of rates, conditional
on certain demographic characteristics such as age, sex,
marital status, etc. For every predefined time interval, each
individual faces the risk of a number of events including
death, marriage, childbirth, and migration. The selection of
the event and the waiting time until the event occurs are
determined stochastically, often using a competing risk
model. Some constraints may be included in the simulation
program in order to restrict the range of potential events for
particular subgroups of the population (e.g., to avoid social
taboos such as incest, to allow for a minimum interval of time
between births from the same mother, etc.). Each event for
which the individual is at risk is often modeled as a piecewise
exponential distribution. The waiting time until each event
occurs is randomly generated according to the input demo-
graphic rates. The individual’s next event is the one with the
shortest waiting time.

Major Modeling Options

A number of microsimulators have been developed over the
course of several decades to address different types of
research questions. Microsimulation models can be classi-
fied into various categories based on some distinctive
features.

Continuous versus Discrete Time

The scheduling of events for simulated individuals is an
important feature of each microsimulator. The algorithms that
determine the next event for each agent may treat time as
a continuous or as a discrete variable.

In continuous-time microsimulations, the timing and
sequence of events that individuals experience over the life
course are the result of a competing risk model. For every event
for which an individual is potentially at risk, the simulator
randomly generates a waiting time until the event occurs. The
most common waiting time distribution is the piecewise
exponential. Other standard distributions include the Weibull
and the Gompertz distributions (Willekens, 2009). The
parameters for the distributions of waiting times are chosen
according to the input demographic rates for each subgroup in
the population. The individual’s next event is the one with the
shortest waiting time. Every individual is always at risk of
death; only women in reproductive age are at risk of giving
birth; only married people are at risk of divorce, etc. The relative
risk of each event happening next depends on input demo-
graphic rates, which typically vary by age, sex, marital status,
parity, etc. Once the scheduled event occurs, a new set of
waiting times is generated and a new event is scheduled
accordingly.

In discrete-time simulations, time intervals are modeled,
instead of the exact times before events occur. Each time
period is considered separately from the others and each
event is executed only once within the time period. Different
events may occur within the same interval of time. As time
periods get shorter and shorter, results from discrete-time
simulations get more and more similar to the ones of
continuous models. Continuous models have some logical
and practical advantages. In continuous microsimulations, it
is the sequence of events and transitions that is modeled and
not state occupancies at different points in time. In discrete-
time models, the duration of events can be modeled only
approximately. Thus, multiple transitions within a period of
time require assumptions about the ordering and the timing
of events. Moreover, discrete-time models cannot handle
complex and interdependent sequences of events (Willekens,
2009).
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Closed versus Open Population

Microsimulations where individuals can enter the sample only
through ‘birth’ from an existing woman, and can exit only
through ‘death,’ are referred to as closedmodels. Whenever new
people in the simulated population are generated other than
through birth, then the simulation is defined open.

The distinction between closed and open populations
mainly refers to the modeling technique used to match part-
ners. In closed-population models, the choice of the spouse is
restricted to individuals existing in the population. In open-
population models, partners with suitable demographic char-
acteristics are created in order to satisfy the demand for spouses
at any given time.

Closed-population models require complex matching
algorithms and fairly large population sizes in order for the
marriage market to clear. Open-population models do not
require sophisticated matching algorithms. However, the
history of newly generated individuals is typically missing. One
of the main advantages of closed models is that they allow
kinship ties to be tracked over time.

A standard example of closed-population kinship simulator
is SOCSIM, a computer software developed at UC Berkeley in
the 1970s. The computer program uses a two-stage process to
pair eligible males and females from within the simulated
population. When the next-scheduled event for an individual is
‘marriage,’ then the person is placed in a pool of eligible
members to form a union. If a member of the opposite sex with
appropriate demographic characteristics is available in the pool,
then the two individuals are paired. Otherwise, the person stays
in the pool until an appropriate mate ‘picks’ him or her, based
on a random process with probabilities dependent on demo-
graphic characteristics of the two potential spouses.

In closed-population simulations, migrations are often
modeled by introducing a group of people, representative of
the ‘rest of the world,’ who evolve independently of the pop-
ulation of interest. Migrants, or entire families of migrants, are
drawn from the pool of people who represent the rest of the
world.

Starting Population

The initial population for a simulation can come from a cross-
sectional sample of the entire population, like the group of
respondents to a sampling survey, or can be a synthetic pop-
ulation generated in a way that is consistent with the expected
age structure and other relevant characteristics of the pop-
ulation under study.

When the initial starting population comes from a cross-
sectional data set representative of the entire population,
then individual life histories are simulated for the future. This
approach is relatively simple and guarantees that the starting
population has demographic characteristics consistent with the
ones of the population under study. However, no information
on the history of individuals before the starting point of the
simulation is then available. Therefore, most kinship ties
cannot be reconstructed. In addition, when the initial sample
size comes from a survey, it may be relatively small and thus
there could be high levels of stochasticity in the outputs of the
simulation.

Often, the starting population is produced using a synthetic
procedure. A population of a given size, composed of unrelated
individuals, is randomly generated. Then the population is
projected forward for a long period of time (say at least
100 years) using demographic rates that generate a population
consistent with the population under study at the beginning of
the simulation (in terms of age structure, age at marriage, age at
childbirth, divorce rates, etc.). In the synthetic population,
kinship ties have been tracked and can thus be projected for the
future.

Top-Down versus Bottom-Up

Microsimulation models simulate demographic events for
individuals in a way that is consistent with macro-demographic
rates. One of the goals of microsimulation is to evaluate the
consequences of demographic change for a number of quan-
tities of interest. The methodology can be seen as a top-down
approach. An alternative line of individual-based simulations,
often referred to as agent-based models, pursues a bottom-up
approach. Agent-based models simulate agents with built-in
behavioral rules of action and interaction with other individ-
uals and their environments. The main goal of agent-based
models is to study the emergence of global patterns from
simple behavioral rules of autonomous agents.

Standard microsimulation models tend to emphasize the
modeling of macro-to-micro interactions, and are used to
evaluate the impact of policy changes, long-term demographic
trends, and demographic shocks, on various quantities of
interest. Agent-based models focus on the micro-to-macro
direction and are often used to test theories and to evaluate
the emergence of complex phenomena.

Although standard microsimulation and agent-based
models are built on different assumptions and used for
different goals, in practice the boundaries between the two
approaches are not clearly defined. Agent-based models often
include some macro-demographic rates that serve as macro-
controls for the dynamics of the simulated population.
Microsimulation, on the other hand, includes important
behavioral rules that regulate, for instance, preferences and
interaction in the marriage market.

Calibration

In principle, perfect knowledge of demographic rates should
lead to an unbiased reconstruction of population dynamics and
kinship networks through demographic microsimulation. The
only uncertainty associated to the simulated kinship structure
would be related to the stochasticity of the microsimulation. In
practice, knowledge of vital rates is far from being perfect.
Kinship reconstruction and forecasting demand a level of detail
for demographic rates that is often missing in available data
sets. For instance, transition rates from one marital status to
another are usually not readily available and estimates may not
be very accurate. Fertility rates are usually not broken down by
marital status or parity, especially in the developing world. In
most cases, demographic rates that are used as input to the
microsimulation need to be estimated from various data
sources with different sampling errors. Even when reliable data
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sources exist to compute demographic rates broken down by
the categories of interest, the heterogeneity of the population’s
rates within the tabulated categories constrains the accuracy of
the microsimulation (Wachter et al., 1997).

Traditionally, the problem of calibrating microsimulations
has been addressed using ad hoc tuning. Input rates are
adjusted on a trial and error basis in order for the output of the
simulation to match key summary demographic measures
obtained from a population census or sample surveys. The
validity of the microsimulation has been tested by comparing
kinship forecasts generated in the past with external standards
provided by surveys with detailed information on numbers and
ages of kin in the United States (Wachter et al., 1997).

In the past, the development of methods to calibrate
microsimulations has been mainly constrained by the limita-
tion of computer power. Traditional methods have relied
heavily on minimizing the number of simulation runs. That
was done, for instance, using expert judgment for adjusting the
input demographic rates in a consistent and appropriate way.
With increasing computer power, there has been more and
more interest in the development of methods to calibrate
simulation models. The Bayesian melding method (e.g.,
Raftery et al., 1995; Poole and Raftery, 2000), in particular, has
proved useful to formalize the process of calibration and
statistical inference. It is a Bayesian approach since it relies on
the Bayesian machinery of combining prior distributions with
likelihoods to obtain posterior distributions. It has been
named ‘melding’ because it “provides a way of combining
different kinds of information (qualitative or quantitative,
fragmentary or extensive, based on expert knowledge or on
data) about different quantities, as long as the quantities to
which they relate can be linked using a deterministic model”
(Poole and Raftery, 2000). Sevcikova et al. (2007) and Zagheni
(2010) extended the approach to stochastic simulations.

When using the Bayesian melding method, the researcher
first has to express the available information about inputs and
outputs in terms of probability distributions. For instance, this
can be done by providing a prior distribution on the inputs.
Then the researcher has to specify a conditional probability
distribution of the data given the outputs. This yields a likeli-
hood for the outputs, and, implicitly, produces a likelihood for
the inputs. The combination of the prior on the inputs and the
likelihood, using the Bayes’ rule, gives the posterior distribu-
tion. In order to obtain the posterior distribution for the
quantities of interest, Sevcikova et al. (2007) suggested
a computational approach that is based on the sampling
importance resampling algorithm of Rubin (1987, 1988). They
applied the method to urban simulations. A similar approach
has been used for the calibration of demographic micro-
simulations (Zagheni, 2010).

Some Applications

The idea behind the development of microsimulation
methods as a research tool dates back to the late 1950s and
early 1960s (Orcutt, 1957; Orcutt et al., 1961). Since then,
a large number of microsimulators have been proposed and
used to address demographic questions (Morand et al., 2010).
It is beyond the purposes of this article to provide an

exhaustive list of microsimulators and applications. Some
illustrative examples that give a flavor of the scope of appli-
cations of microsimulation to demographic research will be
presented in this section.

The study of kinship structure is one of the most successful
applications of microsimulation models in demographic
research. Two of the most widely used microsimulators are
SOCSIM and CAMSIM. SOCSIM originates from a collabora-
tion between Peter Laslett, Eugene Hammel, and Kenneth
Wachter in the early 1970s. CAMSIM was developed in the
late 1970s and early 1980s by Peter Laslett, James Smith, and
Jim Oeppen (Zhao, 2006). Both simulators have been
designed to study kinship networks. However, they use quite
different algorithms, since SOCSIM is a closed model,
whereas CAMSIM is an open-population simulator.

SOCSIM has been originally developed for historical studies
of demographic constraints on household formation. In
particular, it was used to test the hypothesis that social norms,
and not unfavorable demographic conditions, were the cause
of the low proportion of stem family households in pre-
industrial England (Wachter et al., 1978). Other historical
analyses include the assessment of the 1698 Slavonian
census, using SOCSIM (Hammel and Wachter, 1996a,b) and
the evaluation of potential biases in genealogical data, using
CAMSIM (Zhao, 2001). A second line of research that has
largely benefited from the use of microsimulators is the study
of change of kinship availability over time. SOCSIM has been
used to project kinship resources (including step-kin) for the
elderly in the US (Wachter, 1997) as well as long-term
changes in family and kinship networks in Britain (Murphy,
2011). Zhao (2006) offers a comparative review of
applications of SOCISM and CAMSIM.

For countries with a generalized HIV/AIDS epidemic,
microsimulation has been used to assess kinship resources for
the elderly in Thailand (Wachter et al., 2002) and for orphans
in Zimbabwe (Zagheni, 2011). Demographic micro-
simulations that include modules for the transmission and
progression of HIV/AIDS have been used to model population
dynamics of polygynous populations in sub-Saharan Africa
(Clark, 2001). In the area of indirect estimation,
microsimulation has proven useful to evaluate bias for
methods developed to estimate mortality from sibling
survival data (Masquelier, 2013).

Microsimulation has been the dominant research tool to
analyze the consequences of demographic change for family
and kinship networks. Agent-based models have recently
emerged as a complementary tool to study marriage
formation, choice of partners, and the role of behavior,
interaction and feedback mechanisms in demographic
research (Billari and Prskawetz, 2003). For instance, it has
been found that relatively simple mate search rules that
adjust on the basis of sequential encounters with potential
partners may generate regularities in the distribution of the
age at first marriage (Todd et al., 2005; Billari et al., 2007).

Strengths and Limitations

Microsimulation models have been developed to address
questions for which standard tools could not provide an
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answer. In that sense, microsimulation amplifies the power of
scientific imagination of researchers, it allows population
scientists to go beyond some of the simplifying assumptions
made in standard macro-demographic models.

Microsimulation is the most appropriate tool when pop-
ulation heterogeneity and interaction matter, and when the
number of variables and the number of attributes that these
variables can take is very large (Van Imhoff and Post 1998;
Spielauer, 2011). Microsimulation can accommodate interac-
tions between individuals and between variables much better
than macromodels with a large state space. More specifically,
“microsimulation is particularly appropriate if the results of the
process are complex but the driving forces of the process are
simple” (Van Imhoff and Post 1998). Anytime processes are
complex at the macrolevel, but better understood at the
microlevel, or when individual histories are relevant, then
microsimulation/individual-based models are the preferred
choice.

Microsimulation is a very attractive tool both to gain
insights into population dynamics and for policy-relevant
analyses. However, there are two important limitations that
need to be taken into account. First, microsimulations
typically require high quality and very specific types of input
data that are often not available. Moreover, even if detailed
demographic data are available, the calibration process may
prove difficult. Second, failing to model correlations between
demographic events in models of kinship may lead to less
variation in the frequency of kin of any particular type than
would occur in the real population (Ruggles, 1993). In other
words, models tend to underestimate the fraction of people
with many kin and the fraction of people with few kin. In
most situations the extent of the underestimation is very
small and, for practical purposes, could be ignored. However,
there may be cases where the size of the underestimation is
not negligible and thus, in those situations, modeling of
correlations is advisable.

See also: Demographic Models; Demographic Techniques:
Indirect Estimation; Historical Demography; Mortality and the
HIV/AIDS Epidemic; Multilevel Models in Demography;
Population Dynamics: Mathematic Models of Population,
Development, and Natural Resources.

Bibliography

Billari, F., Prskawetz, A. (Eds.), 2003. Agent-based Computational Demography.
Contributions to Economics. Physica-Verlag.

Billari, F., Prskawetz, A., Diaz, B.A., Fent, T., 2007. The “Wedding ring”: an agent-
based marriage model based on social interaction. Demographic Research 17, 59.

Clark, S.J., 2001. An Investigation into the Impact of HIV on Population Dynamics in
Africa (Ph.D. dissertation). University of Pennsylvania, Philadelphia.

Hammel, E., Wachter, K., 1996a. Evaluating the slavonian census of 1698, Part I:
structure and meaning. European Journal of Population 12, 145–166.

Hammel, E., Wachter, K., 1996b. Evaluating the slavonian census of 1698, Part II:
a microsimulation test and extension of the evidence. European Journal of Pop-
ulation 12, 295–326.

Masquelier, B., 2013. Adult mortality from sibling survival data: a reappraisal of
selection biases. Demography 50 (1), 207–228.

Morand, E., Toulemon, L., Pennec, S., Baggio, R., Billari, F., 2010. Demographic
Modeling: The State of the Art. SustainCity Working Paper 2.1a. Ined, Paris.

Murphy, M., 2011. Long-term effects of the demographic transition on family and
kinship networks in Britain. Population and Development Review 37 (1), 55–80.

Orcutt, G.H., 1957. A new type of socio-economic system. Review of Economics and
Statistics 39, 116–123.

Orcutt, G.H., Greenberger, M., Korbel, J., Rivlin, A., 1961. Microanalysis of Socio-
economic Systems: A Simulation Study. Harper & Row, New York.

Poole, D., Raftery, A.E., 2000. Inference for deterministic simulation models: the
bayesian melding approach. Journal of the American Statistical Association 95
(452), 1244–1255.

Raftery, A.E., Givens, G.H., Zeh, J.E., 1995. Inference from a deterministic population
dynamics model for bowhead whales. Journal of the American Statistical Asso-
ciation 90 (430), 402–416.

Rubin, D., 1987. Comment on “The calculation of posterior distributions by data
augmentation”, by M. Tanner and W.H. Wang. Journal of the American Statistical
Association 82, 543–546.

Rubin, D., 1988. In: Bernardo, J.M., DeGroot, M.H., Lindley, D.V., Smith, A.F.M. (Eds.),
Using the SIR Algorithm to Simulate Posterior Distributions. Bayesian Statistics 3.
Clarendon Press, Oxford, UK, pp. 395–402.

Ruggles, S., 1993. Confessions of a microsimulator. Historical Methods 26, 161–169.
Sevcikova, H., Raftery, A.E., Waddell, P.A., 2007. Assessing uncertainty in urban

simulations using Bayesian melding. Transportation Research. Part B 41, 652–669.
Spielauer, M., 2011. What is social science microsimulation? Social Science Computer

Review 29 (1), 9–20.
Todd, P.M., Billari, F., Simao, J., 2005. Aggregate age-at-marriage patterns from

individual mate-search heuristics. Demography 42 (3), 559–574.
Van Imhoff, E., Post, W., 1998. Microsimulation methods for population projection.

Population: An English Selection 10 (1), 97–138.
Wachter, K.W., Hammel, E.A., Laslett, P., 1978. Statistical Studies of Historical Social

Structure. Academic Press, New York.
Wachter, K.W., 1997. Kinship resources for the elderly. Philosophical Transactions of

the Royal Society of London – Series B: Biological Sciences 352 (29).
Wachter, K.W., Blackwell, D., Hammel, E.A., 1997. Testing the validity of kinship

microsimulation. Journal of Mathematical and Computer Modeling 26, 89–104.
Wachter, K.W., Knodel, J.E., VanLandingham, M., 2002. AIDS and the elderly of

Thailand. Demography 39 (1), 25–41.
Willekens, F., 2009. Continuous-time microsimulation in longitudinal analysis. New

Frontiers in Microsimulation Modeling, 353–376.
Zagheni, E., 2010. The impact of the HIV/AIDS epidemic on orphanhood probabilities

and kinship structure in Zimbabwe (Ph.D. Dissertation). University of California,
Berkeley.

Zagheni, E., 2011. The impact of the HIV/AIDS epidemic on kinship resources
for orphans in Zimbabwe. Population and Development Review 37 (4),
761–783.

Zhao, Z., 2001. Chinese genealogies as a source for demographic research: a further
assessment of their reliabilities and biases. Population Studies 55, 181–193.

Zhao, Z., 2006. Computer microsimulation and historical study of social structure:
a comparative review of SOCSIM and CAMSIM. Revista de Demografia Historica
XXIV (II), 59–88.

346 Microsimulation in Demographic Research


	Microsimulation in Demographic Research
	Major Modeling Options
	Continuous versus Discrete Time
	Closed versus Open Population
	Starting Population
	Top-Down versus Bottom-Up

	Calibration
	Some Applications
	Strengths and Limitations
	Bibliography


