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Abstract

This article introduces the demographic theory of nonstable populations. The analysis of population dynamics was originally
a branch of mathematical biology but is also important for social demography because it provides elegant models for how
populations ebb and flow.

Background

To introduce the theory of nonstable population dynamics, we
start by presenting a Malthusian model studied by Lee (1974).
Consider an overlapping-generation framework in which each
individual lives one or two periods. The first period is childhood
and the second is adulthood, and all surviving adults will be in
the labor force. The Malthusian model can be characterized by
the following two equations: Wt¼ f(Nt), bt¼ g(Wt), where Wt

is the wage rate (at time t), N is the size of the adult group, b is
the crude birth rate, the f(.) function characterizes the wage/
employment relationship in the labor market, and the g(.) func-
tion specifies the influenceof the labormarket rewardon fertility.

Suppose the number of children born in period t is Bt, and
the child survival rate is l, thenNt¼ l$Bt–1. The above two equa-
tions can be combined in the following reduced form:
Bt¼ h(Bt–1), where h(Bt)¼ g(f(l$Bt–1))$l$Bt–1. The above
expression is a recursive equation of Bt, from which the
dynamic pattern can be analyzed, and the possible existence
of cyclicity can be studied. Here, the Malthusian model is inter-
preted as a model of density dependency, where the density is
characterized by the birth size of the previous period. It turns
out that the Malthusian model described above may not
converge to a ‘dismal’ steady state, as Malthus suggested. Math-
ematically, the Bt series may converge, diverge, or be cyclic, and
the volatility of the birth series Bt crucially hinges on the
feedback elasticity of h(.) with respect to Bt–1. When this
elasticity is sufficiently large, the Bt series can easily have cycles.
This is the classical case of nonstable population. Modern
versions of nonstable population will be discussed below, after
we introduce the general population structure.

The General Population Structure

Let Nth (Nt, 1, ., Nt, n) be an n-type population vector at
period t, where Nt, i, i¼ 1,., n indicates the size of type-i pop-
ulation at period t. The type here may refer to any criterion that
is used to classify the population, such as age, sex, and occupa-
tion. A general formulation of population dynamics can be
written as follows:

Ntþ1 ¼ QðNtÞNt [1]

where Q(Nt) is the transition matrix. The simplest case is
when Q(Nt)¼Q, a time-independent matrix. In this situation,
the above equation reduces to a time-invariant Markov

chain: Ntþ1¼QNt. It is a well-known implication of the
Frobenius–Perron theorem that if Q is positively regular,
meaning that there is flexible cross-period mobility across
types, then the population vector Nt will converge to a steady
state, in which all elements of the Nt vector grow at the same
exponential rate, thereby the population composition is also
time invariant. It has been shown by Chu (1998) that, for most
population models with time-independent Q, this positive
regularity condition is likely to be satisfied, therefore any
nonstable behavior of the population would appear only when
Q(Nt) is not a constant matrix, or equivalently when the rela-
tionship betweenNtþ1 andNt in eqn [1] has some nonlinearity.
Below we will introduce several special cases of the generic
setting in eqn [1], and discuss their empirical relevance. The
reader can see that each model corresponds to a special
interpretation of the generic setting in eqn [1].

Age-Structured Cycles

For demographers, the most familiar version of the dynamic
models in eqn [1] is the Lotka–Leslie age-specific models,
where the type criterion is age. Let Nt, i be the number of pop-
ulation aged i at period t, Bt�i the birth size at period t� i, and li
probability that a person can survive to age i, then the following
relationship must hold: Nt, i¼ Bt�i$li. The transformed
dynamics in terms of Bt is the well-known Lotka’s equation:

BðtÞ ¼
X
i

Bt�i$li$mt;i ¼
X
i

Bt�i$ft;i [2]

where mt, i is the average number of births per surviving
member aged i at period t, and ft, ih li$mt, i is the net maternity
function. Evidently, the Malthusian model presented in the
previous section is a special case of eqn [2] with two age types.
As we mentioned, when the fertility function mt, i is indepen-
dent of t, then the process of Bt follows a time-invariant Markov
chain, and the usual convergence result applies. But if m(t, i) is
time dependent, then cycles or more volatile behavior may
appear. One typical case of such time dependency is when the
age-specific fertility rates are functions of previous birth sizes
mt, i¼mi$(Bt), where Bth (Bt–1, Bt–2, .).

Suppose the birth series corresponding to eqn [2] has
a steady state. Taking a Taylor expansion around this steady
state, Lee (1974) showed that the volatility of the birth series
characterized by eqn [2] hinges upon the elasticities of the
net maternity function with respect to Bt. When previous birth
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sizes are larger, usually the density pressure is larger. Intuitively,
larger feedback elasticities imply that present reproduction
would be more sensitive to previous birth shocks; hence the
birth series would be more volatile. Easterlin (1961) argued
that the baby-boom/baby-bust cycles observed in the United
States are typical examples of a feedback cycle.

How large the feedback elasticities are is an empirical ques-
tion. In order to estimate such elasticities, two models have
been proposed: The first is to assume that ft, i is only a function
of the cohort size aged i: ft, i¼ fi$(Bt�i) and the second is to
assume that ft, i is a function of the weighted average of birth
sizes of different ages ft, i¼ fi$(

P
jwj$Bt�j). The former is

referred to as the cohort model, and the latter as the period
model. However, empirical evidence has so far failed to back
up either of these two models in producing persistent birth
cycles that fit all characteristics (such as amplitude and period).
Moreover, even if there does exist a cyclic solution to eqn [2],
the information concerning feedback elasticity is not sufficient
for us to tell whether the cyclical solution in question is stable.
Related analysis is rather technical, and the reader is referred to
Tuljapurkar (1987) for details.

Predator–Prey Cycles

The predator–prey model describes a two-type population
structure, where the types are prey and predator, respectively,
referred to as type-1 and type-2. The simplest formulation of
the predator–prey model is characterized by the following
difference equations:

DNtþ1;1hNtþ1;1 �Nt;1

¼ aNt;1 � bNt;1Nt;2

DNtþ1;2hNtþ1;2 �Nt;2

¼ �cNt;2 þ dNt;1Nt;2; a; b; c; d > 0

[3]

Equation [3] is obviously a special case of eqn [1]. The prey
is considered the only food resource available to the predator.
Thus, if Nt, 1¼ 0, the predator population decreases exponen-
tially at the rate C. With the nonexistence of predators, the
prey population grows exponentially at the rate a.

In the steady state of eqn [3], DNt, 1¼DNt, 2¼ 0, there is
only one nontrivial solution: ðN�

1;N
�
2Þ ¼ ðc=d; a=bÞ. Let the

Jacobian matrix of eqn [3] around the nontrivial solution be
denoted J. It turns out that the J matrix can be written as

J ¼
�
a� bN�

2 �bN�
1

dN�
2 �cþ dN�

1

�
¼
 

0 �bc=d

ad=b 0

!

Hence, we have jJj ¼ ac> 0 and the trace of J is zero.
Thus, we know that the eigenvalues of J are purely imaginary,

meaning that besides the equilibrium point ðc=d; a=bÞ itself, the
solution trajectories of eqn [3] are cyclic and nonstable. But it
was also pointed out that when the predator–prey model
embodies the concerns of diminishing or increasing returns,
then the solution becomes locally stable or divergent.

Occupation–Switch Cycles

Based on stylized facts found in Chinese history, Chu and Lee
(1994) proposed an occupation-specific population model, in

which the population is separated into three types: peasants,
soldiers, and bandits. Peasants grow crops and pay taxes,
soldiers (rulers) collect taxes and hunt for bandits, and bandits
rob food and clash with peasants and soldiers. It is assumed
that soldiers are drafted by the government, and all other civil-
ians can choose to become peasants or bandits. Their occupa-
tion choice is made depending on which occupation is
expected to generate a higher utility. When the bandit/soldier
ratio is relatively high, it is likely that the incumbent power
regime will be overthrown by the bandit group, and the
dynasty switches. It turns out that this pattern of population
dynamics characterizes the dynamic evolution of dynasties in
Chinese history, and the cycles were called dynastic cycles by
historians.

There is a unique feature associated with the above-
mentioned occupation-switching cycles. For most animals, it
is believed that when density pressure occurs, the environment
becomes less favorable, and the reproduction rate of animals is
reduced. One might expect that rational human decisions may
be able to weaken the outside density pressure through institu-
tional and rational regulations. But the scenario of dynastic
cycles seems to be a counterexample.

Human beings’ occupational choice between peasants and
bandits has a ‘demonstration effect,’ which tends to magnify
the originally weak density pressure and ‘destablize’ the
dynamics of the population compositional structure.

Laborer–Capitalist Cycles

The cyclical pattern of population composition mentioned
above is not the only case we find in human societies. Some
researchers have considered a neoclassical economic growth
model, and focused on the two economic classes in the
economy: the laborers and the capitalists. Let ut be the income
share attributed to labor, and vt be the employment rate of
labor. Under some reasonable assumptions, Goodwin (1967)
has shown that the dynamics of ut and vt mimic that of eqn
[3]. Thus, the conclusion that the capitalists’ economy appears
to be ‘permanently oscillating’ was reached. But just as the orig-
inal predator–prey model is sensitive to variations in institu-
tional specifications, Goodwin’s model after some minor
modification also generates qualitatively different results. Defi-
nite evidence of the nonstability of human population is yet to
be found.

Human Development Cycles

The final population dynamics we discuss is related to the
economic development process of human beings. The
Neolithic Revolution about 10 000 years ago triggered the
human society from hunter-gatherer to agricultural. The Indus-
trial Revolution 250 years ago marked the beginning of the
modern phase. In terms of population dynamics, we observe
that in the agricultural epoch the population was dominated
by the Malthusian rule with a stable population size and
a constant per-capita income, whereas after we entered the
industrial revolution we first experienced a demographic tran-
sition and then a near-replacement level population growth.
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The demographic transition changes parents’ choices from
quantity to quality of children, and the increased level of child
education leads to the growth of per capita income. In short, we
have a subsistence level family income and stagnant popula-
tion size 300 years ago, and a growing population size (esti-
mated 9.3 billion by 2050) with drastically different income
levels across countries. What is behind this big regime change
of dynamics?

It was the contribution of Galor (2011) to have explained
the above-mentioned regime change in a unified model.
Among others, there are two factors that dominated the change
of population dynamics. The first is the binding subsistence
level of consumption in the Malthusian period, when parents
cannot spare their resources to increase children’s quality. The
second is the improved life expectancy and the change of
market/household comparative advantage, which facilitate
women to adopt a quantity–quality trade-off. Countries in
the modern world are therefore divided into pre-transition,
transition-leaders and transition-followers. The first category
has a fast population growth but yet a low income level, and
the latter two categories have a stable population size and
a growing income level.

See also: Demographic Models; Population Dynamics: Classical
Applications of Stable Population Theory; Population
Dynamics: Theory of Stable Populations.
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