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Abstract

In this article, modern statistical language is used to explain the basic notions of the oldest tool of demographic analysis,
namely the life table. Following a long tradition in which demographers seek to establish sensible results out of a suboptimal
data set, a real-life example is used to describe how one might produce a simple life table in the presence of digital preference
(age heaping, grouped time reporting). An extension to multiple-decrement (or competing-risk) life tables is also provided.

The life table is perhaps the oldest tool developed for the anal-
ysis of survival patterns in human and other populations. Its
roots go back at least to the famous book on the English Bills
of Mortality that John Graunt published in 1662, a book that
is sometimes cited as the beginning of systematic statistical
science. Life-table techniques are described in detail in most
introductory textbooks on the methods of actuarial statistics,
biostatistics, demography, and epidemiology (see, e.g.,
Chiang, 1984; Elandt-Johnson and Johnson, 1980; Manton
and Stallard, 1984; Hinde, 1998; Preston et al., 2001). In this
article the basic notions of life-table construction are explained
with a focus on issues that are sometimes underemphasized in
other accounts. More of the underlying mathematical theory
can be found in Hoem (1998) and in the textbooks. For the
history of the topic, consult Seal (1977), Smith and Keyfitz
(1977), and Dupâquier (1996).

A Cohort Life Table

Classical presentations of life-table techniques typically
start with data in a format like that of the first four columns
in Table 1. These particular data come from the Eritrean
Demographic and Health Survey of 1995 and show the
survival up through their fourth birthday of 7098 girls whose
births and deaths were recorded in the survey. This data set
is different from normal textbook examples in two ways.
First, the data are given for intervals of single-month segments
instead of the usual single-year intervals. Second, the present
data are subject to strong heaping in the reported age at death
for the girls that died. In part this is due to a typical inherent
inaccuracy of age reporting in societies like the data source at
the time of data collection, and in part due to the fact that
(probably for that very reason) only integer years of age
attained was asked except for very young ages at death. By
contrast, an individual child’s age when observation ended
(age at censoring) could be computed accurately to the
month, for in these data a child’s record was censored only
because the child’s parent was interviewed; the age of a live
child could then be calculated from its date of birth. This
unconventional data set is used in order to illuminate how
a number of practical issues that confront a demographer
can be handled in a first analysis of mortality. A more
complete investigation would subsequently use intensity-
regression methods from event-history analysis (see Event

History Analysis: Applications), as was done by Woldemicael
(1999).

If there had not been any heaping in the reported ages at
death, one would calculate Rx ¼ Sx � 1

2 ðDx þWxÞ as an
approximate number of person-months of exposure at age
x. Here Sx is the number of children who survive to exact
age x months, Dx is the number of deaths recorded between
exact ages x and xþ1 months, and Wx is the corresponding
number of records that were censored during this interval.
The approximation consists in assigning deaths and inter-
views to in the middle of the month on average. It has
become known as the ‘actuarial method.’ The next step
would be to compute occurrence/exposure rates Dx/Rx (see
Demographic Techniques: LEXIS Diagram). The age heaping
is abundantly evident in the plot of the ‘raw’ death rates
(converted to ‘deaths per 1000 person-years’) in Table 1.

Such age heaping must have been caused by a shift of the
real age at death to a reported near-by ‘round’ anchor age like
3 months, 6 months, or multiples of 12 months. The deaths
in some interval [x0�a, x0þb] around each anchor age x0
have largely been assigned to the anchor age instead of to
each age in the interval, but the total number of deathsPb

t¼�aDx0þt in such an interval should be largely correct. Simi-
larly, the total exposures

Pb
t¼�aRx0þt in the interval should be

about right, even though the individual term in the latter sum
may be wide off the mark. Under these circumstances it is more
sensible to compute death rates for groups of reported ages and
list them in the row for the corresponding anchor age. By this
reasoning,

m3 ¼
X4
x¼2

Dx=
X4
x¼2

Rx

is entered for age 3 months,

m6 ¼
X7
x¼5

Dx=
X7
x¼5

Rx

is entered for age 6 months, and so on, as indicated in column
7 of Table 1. For the intervening ages x, rates mx have been
computed by linear interpolation. The corresponding curve of
rates is given with the label ‘grouped’ in Table 1.

The rest of the life-table computations are based on the
following simple mathematical theory. Each individual child
i has a lifetime Ti with some distribution function F(t)¼ P
{Ti� t} (with F(0)¼ 0), a probability density f(t)¼ dF(t)/dt,
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and a ‘force of mortality’ or ‘death intensity’ m(t)¼ f(t)/
{1� F(t)}. The various lifetimes Ti are independent of each
other and they have the same distribution F(t). Simple

integration gives FðxÞ ¼ 1� expf �
Z x

0
mðtÞdtg. The death

probability is.

qx ¼ P
�
Ti � xþ 1

��Ti > x
� ¼ fFðxþ 1Þ � FðxÞg=FðxÞ

from which is derived

qx ¼ 1� exp

8<
:�

Z1
0

mðxþ tÞdt
9=
; [1]

Table 1 Life-table computations for Eritrean girls aged 0 through 4 years

Age x in
months

Observed

survivors

Deaths

Dx

Censored

Wx

Exposures

Rx

Raw rate

Dx/Rx per

1000

Age grouping

(months)

Grouped

rates mx

Death probab.

1000qx

Life-table

survivors

lx

0 7098 208 15 6986.5 357.26 0 357.26a 29.33 100 000
1 6875 48 39 6831.5 84.32 1 84.32a 7.00 97 067
2 6788 36 39 6750.5 64.00 70.01b 5.82 96 387
3 6713 43 36 6673.5 77.32 2–4 55.70a 4.63 95 826
4 6634 14 29 6612.5 25.41 56.00b 4.66 95 383
5 6591 21 22 6569.5 38.36 56.30b 4.68 94 939
6 6548 50 42 6502 92.28 5–7 56.60a 4.71 94 494
7 6456 21 23 6434 39.17 54.98b 4.57 94 050
8 6412 26 31 6383.5 48.88 53.35b 4.44 93 620
9 6355 19 26 6332.5 36.00 51.73b 4.30 93 204
10 6310 16 23 6290.5 30.52 50.11b 4.17 92 803
11 6271 10 37 6247.5 19.21 48.48b 4.03 92 417
12 6224 144 30 6137 281.57 8–17 46.86a 3.90 92 044
13 6050 6 34 6030 11.94 45.45b 3.78 91 685
14 6010 7 31 5991 14.02 44.05b 3.66 91 339
15 5972 3 15 5963 6.04 42.64b 3.55 91 004
16 5954 5 35 5934 10.11 41.24b 3.43 90 681
17 5914 3 31 5897 6.10 39.83b 3.31 90 370
18 5880 25 34 5850.5 16.40 38.43b 3.20 90 071
19 5821 5 24 5806.5 10.33 37.02b 3.08 89 783
20 5792 2 28 5777 4.15 35.62b 2.96 89 506
21 5762 0 16 5754 0.00 34.21b 2.85 89 241
22 5746 0 29 5731.5 0.00 32.81b 2.73 88 987
23 5717 2 18 5707 4.21 31.40b 2.61 88 744
24 5697 148 25 5610.5 316.55 18–30 30.00a 2.50 88 512
25 5524 0 34 5507 0.00 29.28b 2.44 88 291
26 5490 0 32 5474 0.00 28.57b 2.38 88 076
27 5458 0 31 5442.5 0.00 27.85b 2.32 87 866
28 5427 0 27 5413.5 0.00 27.14b 2.26 87 663
29 5400 0 35 5382.5 0.00 26.42b 2.20 87 465
30 5365 0 33 5348.5 0.00 25.71b 2.14 87 272
31 5332 0 39 5312.5 0.00 24.99b 2.08 87 086
32 5293 0 28 5279 0.00 24.27b 2.02 86 904
33 5265 0 36 5247 0.00 23.56b 1.96 86 729
34 5229 0 24 5217 0.00 22.84b 1.90 86 559
35 5205 0 28 5191 0.00 22.13b 1.84 86 394
36 5177 109 22 5111.5 255.89 31–42 21.41a 1.78 86 235
37 5046 0 38 5027 0.00 20.44b 1.70 86 081
38 5008 0 20 4998 0.00 19.48b 1.62 85 935
39 4988 0 32 4972 0.00 18.51b 1.54 85 795
40 4956 0 31 4940.5 0.00 17.54b 1.46 85 663
41 4925 0 30 4910 0.00 16.57b 1.38 85 538
42 4895 0 30 4880 0.00 15.60b 1.30 85 420
43 4865 0 24 4853 0.00 14.63b 1.22 85 309
44 4841 0 26 4828 0.00 13.66b 1.14 85 205
45 4815 0 18 4806 0.00 12.70b 1.06 85 108
46 4797 0 20 4787 0.00 11.73b 0.98 85 018
47 4777 0 16 4769 0.00 10.76b 0.90 84 935
48c 4761 46 20 4728 116.75 43–54 9.79a 0.82 84 859

aComputed as (sum of deaths)/(sum of exposures) for age groups indicated. (Used for rows where age groups are indicated.)
bComputed by linear interpolation.
cAdditional rows for ages 49–60 months have been deleted.
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If one approximates the function m(xþ t) by the constant
mx for 0< t< 1 (the assumption of piecewise constancy),
then (1) gives qx ¼ 1� e�mx , which has been used to
compute the next-to-last column in Table 1. Finally, a life-
table ‘survival function’ is defined as ‘(x)¼ ‘(0){1� F(x)},
with l(0)¼ 100 000. This is the expected number of
survivors to exact age x out of an original cohort of ‘(0)
initial individuals. Simple manipulation with the definition
of qx gives

‘ðxþ 1Þ ¼ ‘ðxÞð1� qxÞ; for x ¼ 0;1;. [2]

This is a practical recursive formula by which we have
computed the final column in Table 1. From the final entry
in the ‘(x) column in Table 1 we see that more than 15% of
the original cohort of girl babies would die before age 4 (years)
according to our data, because 1�0.848 59 ¼ 0.151 41.

Themean number ofmonths lived between birth and age n is

e
�

0:n j ¼ EminðTi; nÞ ¼
Zn
0

‘ðtÞdt=‘ð0Þ [3]

If one partitions the integral here into a sum of n termsZ x

x�1
‘ðtÞdt for x¼ 1, 2,., n, use the trapezoidal rule of numer-

ical integration to see that this integral is approximately equal
to 1

2 f‘ðx� 1Þ þ ‘ðxÞg, and collect terms suitably, we get the
numerical approximation

e
�

0:n jx
(Xn

x¼0

‘ðxÞ � 1
2
� 1
2
‘ðnÞ

)
=‘ð0Þ [4]

The girls in the Eritrean data set lost 5 months of life on
average before they reached their fourth birthday, for according
to eqn [4] with n¼ 48 months they experienced a mean life-
time of 43 months.

Other Life-Table Procedures

Life-table construction consists in the estimation of parame-
ters and tabulation of functions like those above from empir-
ical data. The data can be for age at death to individuals, as
in the illustrative example, but they can also be observations
of duration until recovery from an illness, of intervals
between births, of time until breakdown of some piece of
machinery, or of any other positive duration variable. In
general, a Ti is the duration until occurrence of some event
that ends individual survival in a given status. The method
of estimation depends on the character of the data. If accu-
rate (ungrouped) individual-level data are available, then
the Kaplan–Meier estimator (see Event History Analysis:
Applications) can be used to estimate ‘(x) for all relevant
x, and estimates of the other life-table functions can then
be computed subsequently. Alternatively a segment of the
Nelson–Aalen estimator can be used to estimate each integralZ 1

0
mðxþ 1Þdt.
Equation [1] can then be used to estimate qx for each integer

x, and the rest of the computations follow suit. Sometimes
the force of mortality is represented by some function h(x;q),

where q is a vector of parameters. For instance, actuaries often
use the classical Gompertz–Makeham function h(x; a, b, c)¼
aþ bcx for the force of mortality in their life tables (see ‘Demo-
graphic Models; Population Dynamics: Probabilistic Extinc-
tion, Stability, and Explosion Theorems).

From any given schedule of death probabilities q0, q1, q2,.,
the ‘(x) table is easily computed using the recursive eqn [2].
Much of the effort in life-table construction is, therefore,
concentrated on providing a schedule {qx}.

So far, this account has assumed that the data come from
a group of independent individuals who have all been
observed in parallel, essentially a cohort that is followed
from a significant starting point (namely from birth in our
empirical example) and that is diminished over time due to
‘decrements’ (‘attrition’) caused by the risk in question and
also subject to reduction due to censoring. The empirical
example displayed data only for the first 4 years of life of
such a cohort. One would have had to follow the cohort until
the end of the cohort’s total life to produce a ‘complete cohort
life table.’ It is more common to compute a qx schedule from
data collected for themembers of a population during a limited
time period and to use the mechanics of life-table construction
to produce a ‘period life table’ from the qx values. If real
mortality patterns are tied to cohorts, individuals who live at
widely differing ages in the observational period do not nor-
mally have the same risk structure, and the period taken by
the life table to reflect the patterns of a ‘synthetic (fictitious)
cohort’ exposed to the risks of the period at their various ages.

Whichever way the life-table survivor column has been
produced, eqn [4] can always be used to calculate mean numbers
of time-units lived under the risk for which the life-table was
constructed. If the time unit is a year and n is chosen so large
that no one lives more than n years (symbolized by letting
n¼N and ‘(N)¼ 0), e

�

0:Nj is called the ‘life expectancy’ of the

life table and is normally denoted e
�
0. The subscript 0 indicates

that the calculation is made for a newborn individual. Similar
computations can be made at any age x and one gets expected

remaining lifetimes of the form e
�

x:n j ¼
Z n

0
‘ðxþ tÞdt=‘ðxÞ,

with approximation formulas similar to eqn [4].

Multiple-Decrement Tables

When suitable data are available, the risk of death (or force of
mortality) may be partitioned according to mutually exclu-
sive causes of death. Let mk(t) be death intensity or force of
mortality for cause k at age t, and let the total force of
mortality be mðtÞ ¼ P

k
mkðtÞ. Then the probability that an

individual who is alive at age x will die from cause k before
age xþ 1 is

qðkÞx ¼
Z1
0

tpxmkðxþ tÞdt [5]

where tpx is the probability of surviving to age xþ t for an
individual who is alive at age x. For given risk intensities
{mk($)}, q

ðkÞ
x can be computed by numerical integration in eqn

[5]. A corresponding column of qðkÞx values may then be added
to the life table for each k, and other cause-specific life-table
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functions may also be computed. Note that qðkÞx is influenced by
risk intensities other than mk(,), for

tpx ¼ exp

8<
:�

X
j

Z t

0

mjðxþ sÞds
9=
;

where the exponent depends on all mj(,), including those
for jsk.

Several further life-table functions can be defined by
formal reduction or elimination of one or more of the risk
intensities in formulas like eqn [5]. In particular, a ‘single-
decrement life table’ can be computed for each cause k in
order to show what the life table would look like in the hypo-
thetical case where this cause was the only one operating in
the study population and where it did so with the risk func-
tion estimated from the data. The purpose is to see the ‘pure’
effect of the risk in question on a fictitious cohort without
interference from other causes. (The decrement probabilities
and other features of the single-decrement life table do not
depend on any other intensities than the one for which the
table is computed.) This does not mean that one should
believe that the total risk intensity can actually be reduced
to the risk in focus or that this risk operates independently
of other causes.

Most single-decrement life-table functions have straightfor-
ward interpretations. If, for instance, ‘k(x) denotes the corre-
sponding survival function, then ‘k(x)/‘k(0) is the probability
of surviving to age x in the fictitious table. Suppose, for
example, that the study population is a group of unpartnered
individuals subject to the competing risks of marital and
nonmarital union formation as well as to the risk of death.
One can then compute a single-decrement life table based on
the risk of transition into a nonmarital union alone and find
the probability that an individual would end up in such a union
by age 50 years, say, if marriage were no alternative and death
did not operate, even though in reality marriages continue to
be formed by group members and unpartnered individuals
continue to die. In such a table one may get ‘k(N)> 0 because
the event never occurs to some individuals, even if it operates
alone. (We will all die but some individuals never enter
a nonmarital partnership even if they live to age 100 years.)

Life expectancies e
�

15:n j computed in the three-decrement
life table would be interpreted as the mean number of years
(say) lived in the unpartnered state between ages 15 and
15þ n years. In the single-decrement life table for nonmar-
ital-union formation, one possibility is to compute the mean
age of entry into a nonmarital union only for those who do
enter such a union by age n, that is, the conditional mean.Zn

0

‘kðxÞdx=f‘kð0Þ � ‘kðnÞg [6]

Conversely one can compute a ‘cause-deleted life table’ by
eliminating one or more of the cause intensities in the
formulas. To ‘remove’ cause k, introduce m�k(t)¼ m(t)� mk(t)
and construct a ‘normal’ life table by replacing m(t) by
m�k(t) everywhere. This would show what the life table would
look like if it were possible to eliminate cause k without

changing the risk of any other cause. It could be used for
example to see how partnering probabilities would appear if
the partnering process were undisturbed by mortality. One
would then remove the force of mortality from the life-table
formulas and operate only with the sum m�k(t) of the intensi-
ties of marital and nonmarital union formation in the compu-
tations. Note that this is again a purely hypothetical construct;
in fact it is counterfactual for mortality cannot of course be
completely removed.

Life expectancies can be calculated for a cause-deleted life
table as for any other life table. If ‘�k(x) is the table’s survival
function and ‘�k(N)¼ 0, then a formula for the cause-

eliminated life expectancy is e+ð�kÞ
0 ¼

Z N

0
‘�kðxÞdx=‘�kð0Þ.

The classical applications were to cause-of-death removal,

and the difference e+ð�kÞ
0 � e

�
0 was interpreted as the (fictitious)

gain in life expectancy produced by removal of cause k. For
example, Westergaard (1907) found that according to the
English life tables of 1881–90, life expectancy for females
would increase by 2.7 years if tuberculosis deaths could be
eliminated, by a year if cancer deaths could be removed, and
by 1.1 years if deaths due to diarrhea and dysentery could be
deleted separately. The effects were not additive, and if all three
cause-of-death groups could be removed, the gain would
be 5.6 years and not 4.8. The life expectancy for females in
the original table was e

�
0 ¼ 47:2 years.

See also: Age Structure; Demographic Models; Demographic
Techniques: LEXIS Diagram; Event History Analysis:
Applications; Motivation: Life Course and Sociological
Perspectives.
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