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Abstract

The relation between individual reproduction and the probability that populations die out is given. Populations that decrease
on average will, of course, always die out, but populations whose expected sizes grow can also have a high probability of
extinction. Malthus’s law of exponential growth of populations, i.e., not dying out, holds in general, not only for populations
of independently reproducing individuals, but also under some types of interaction. The stable age distribution and general
stable composition, appearing as a consequence of exponential growth, are described. Finally, populations whose size and
composition may influence individual reproduction are described.

Extinction, Stable Size, or Explosion?

Historically, probabilistic population theories originate from
the extinction problem: suppose you know the probabilities of
begetting 0, 1, 2, 3,. children. Now determine the probability
that a population of a known number of individuals will
eventually die out. Already Malthus had noted that a rapid
increase of the whole population could occur together with
frequent extinction of the separate families constituting the
population. Rephrased in the terminology of evolutionary
biology, frequent extinction of species does not contradict
a rapid growth of the biomass of the world.

The mathematical explanation of this apparent paradox is
due to Bienaymé (1845) and independently, 30 years later
and only in parts correctly, to Galton and Watson, who were
later to lend their names to the simplest, generation-counting
version of the so-called branching processes that provide the
mathematical structure underlying most stochastic pop-
ulation dynamics. Indeed, if pk denotes the probability of
giving birth to k children, k ¼ 0, 1, 2, 3, ., then the
extinction probability of a population stemming from one
ancestor will be the smallest nonnegative solution q of the
equation,

X

k

pkq
k ¼ q:

If we disregard the trivial case p1 ¼ 1, q will equal 1 if and
only if the mean number of children,

m ¼
X

k

pkk � 1:

If m > 1, then the population growth rate per generation
will be m, and even though q must be less than 1 it can still be
pretty large: it is easy to formulate demographically or bio-
logically plausible cases, where, say, m exceeds 2 and q is still
around 0.8.

The preceding argument presumes that individuals repro-
duce independently of one another. In deterministic pop-
ulation theories dependence structure is not made precise, and
stable population sizes can arise, cf Keyfitz 1968. The situation

in stochastic models with interaction or dependence upon the
population as a whole is therefore of great interest.

Population Growth

To describe population growth in real time rather than
generation-wise, a more sophisticated description of individual
life and reproduction is needed. Probabilistic population
dynamics is individual-based in the sense that it starts from such
a description. Deterministic theories, on the other hand, often
start directly from an assumed behavior of the population as
a whole. Demographic theory is often pseudo-probabilistic, in that,
it uses probabilistic notions but makes conclusions only about
the expected behavior of the population as a whole. (This is the
reason why there exist deterministic populations with stationary
sizes: if the underlying stochastic population is critical in the
sense that on average each individual is replaced by one child,
then the expected total population size will be stationary,
whereas the population itself will die out sooner or later.)

The most general probabilistic formulation of individual
life goes as follows: at birth an individual inherits a type from
her mother. The type determines her survival distribution as
well as the distribution of age at childbearing. It also deter-
mines the types of the children she will give birth to in her turn.
(Think of the type as a genotype, or a genotype combined with
the social and biological conditions of life.)

In the supercritical case, where there is a positive chance
of nonextinction, the probability laws of survival and
childbearing determine a positive Malthusian parameter that
gives the rate of exponential growth. In the theory of branching
processes this rate is usually denoted by a, so that the pop-
ulation will grow like eat, as time t passes. In deterministic
theory the conventional notation is often r instead.

Reproduction Influenced by the Population
as a Whole, Extinction or Quasi-Stationarity

Now assume that individual reproduction can be influenced by
the present state of the population as a whole, its size or its
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composition or both, or only by special individuals like
neighbors or close relatives.

If this is the case, the situation can be drastically different
and it is easy to exhibit examples of populations with high
growth rate (m > 1), which still are bound to extinction
(Haccou et al., 2005). It can, however, be proved very generally
that a stochastic population, which is not dying out, must grow
beyond all limits (Jagers, 1991; see also Haccou et al., 2005).
This is a consequence of stochasticity and the asymmetry
between extinction and big sizes: however big the population,
there remains an albeit small but still positive risk of extinction,
whereas an extinct population cannot be resurrected.

Even though exponential growth appears to be a conse-
quence of the independence assumed (tacitly or explicitly)
between the reproduction of different individuals, it is inter-
esting to note that such growth has been proved also to occur in
many cases where individual reproduction depends upon the
population as a whole, e.g., its size. For such results in the case
of simple Galton–Watson branching processes, see Klebaner
(1984). In cases where the reproduction approaches criticality
as the population grows, nonMalthusian growth can
occur nevertheless, e.g., in the form of linear growth
(Klebaner, 1994).

But a finite world cannot sustain infinite growth. One can
therefore argue that probabilistic population dynamics show
that all real populations will die out sooner or later. But before
that happens there may be a long period of growth, or even – as
recent research has shown – long periods of quasi-stationarity.

Indeed, consider a population where individual repro-
duction at any time is influenced by total population size, and
assume that there is a carrying capacity K, a numerical value
above which the population is subcritical and cannot sustain
itself, whereas it is supercritical below K. Then, if starting
small, it may die out directly, or else in time span of order log
K, for large K, it will reach a band around the carrying
capacity, where it will then stay during a period whose length
is exponential in K, until it finally dies out (Jagers and
Klebaner, 2011).

Stable Population Theory

In contrast to population size, the composition of growing
populations, where individuals reproduce independently,
tends to stabilize. The description of this composition, or rather
the various stable compositions pertaining to different repro-
duction and survival laws, is the object of stable population
theory.

The most well-known aspect of stable population compo-
sition is the stable age distribution, first described by Euler in
1760 and since then rediscovered repeatedly: if the Malthusian
parameter is a > 0 and all individuals have the same survival

function ‘, then the age of an individual sampled at random in
an old population will have the density

e�aa‘ðaÞRN
0 e�au‘ðaÞdu

at age a, exactly as in deterministic theory. This is, of course,
a law-of-large-numbers effect; we are considering ever-
increasing populations.

If, as in the general setup mentioned above, there are
several types of individuals, each with its own life span
distribution, then the situation will be more complex. First of
all, the type distribution will converge to a stable type law,
determined by an eigen-measure property. Then the survival
function l, above will have to be replaced by an average of all
the different survival functions weighted by the stable type
distribution.

But the stable composition describes many other aspects of
a balanced growing population besides ages. For example, the
probability of being firstborn can be calculated as well as other
aspects of family structure. In modern evolutionary biology the
genealogy of individuals and, say, the mutational history play
an important role. In an old population this is described by
a stable, typical ancestry, which can be used to determine time
back to some event like divergence between species. In a strict
sense, such results have yet been proven only for populations
of independently reproducing individuals. Little is known
about stabilization during the quasi-stationary stage in pop-
ulation size dependence.

See also: Population Dynamics: Mathematic Models of
Population, Development, and Natural Resources; Population
Dynamics: Momentum of Population Growth; Population
Dynamics: Theory of Nonstable Populations.
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