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Abstract

A population cycle is a roughly periodic variation over time in the size or composition of a population. Here, compo-
sition refers to the component structure of the population, for example into distinct age classes. The formal theory of
population cycles consists of mathematical tools that yield qualitative and quantitative information about the charac-
teristics of cycles, such as their amplitude or period. There are three broad types of cycle: transient cycles are a response to
a perturbation of finite duration such as a fertility transition; externally driven cycles are triggered and sustained by
a persistent external perturbation such as an economic cycle; internally driven cycles are maintained by interactions within
the population such as a feedback between cohort size and cohort fertility. This article discusses the theory for these
three types of cycles, dealing mainly with age-structured populations, although other aspects of population structure
are mentioned.

A population cycle is a roughly periodic variation over time in
the size or composition of a population. Here, composition
refers to the component structure of the population, for
example into distinct age classes. The formal theory of pop-
ulation cycles consists of mathematical tools that yield quali-
tative and quantitative information about the characteristics of
cycles, such as their amplitude or period. There are three broad
types of cycle: transient cycles are a response to a perturbation of
finite duration such as a fertility transition, externally driven
cycles are triggered and sustained by a persistent external
perturbation such as an economic cycle; internally driven cycles
are maintained by interactions within the population such as
a feedback between cohort size and cohort fertility. This article
discusses the theory for these three types of cycles, dealing
mainly with age-structured populations, although other aspects
of population structure are considered briefly.

Mechanisms Driving Population Cycles

To explain the different mechanisms that drive cycles, and the
kinds of formal theory that are required, it is useful to begin
with Lotka’s classical demographic equation which relates
births B(t) at the present time t > 0 to past births, by summing
the reproductive contributions fða; tÞ made by individuals of
all ages a, as

BðtÞ ¼
Z t

0

dafða; tÞBðt � aÞ þHðtÞ: [1]

Here H(t) specifies births to individuals who were present at
t ¼ 0, and immigration is ignored. The theory of this classical
demographic model is discussed in Population Dynamics:
Theory of Stable Populations; Population Dynamics: Classical
Applications of Stable Population Theory; Population
Dynamics: Theory of Nonstable Populations.

Transient cycles typically occur in a population whose vital
rates, i.e., mortality and fertility, change over a time interval, say
from t ¼ 0 to t ¼ t1, and are constant thereafter. A practical
example of such a perturbation is a decline from high fertility to

replacement fertility that starts at t ¼ 0 and is completed at
t ¼ t1. After time t1, the population is described by classical
demographic theory and undergoes damped oscillations
towards the classical stationary state. But the dynamics during
the transition are also oscillatory and require a different
treatment.

Externally driven cycles result from a persistent perturbation
of vital rates. One example is a periodic variation over time in
fertility that is generated by an exogenous force, such as an
economic cycle in wages. Another example is an irregular,
stochastic variation in fertility or mortality that produces an
ongoing stochastic response that has cyclical components.
Formally, such perturbations are described by an appropriate
time-dependence in the function fða; tÞ.

Internally driven cycles result from changes in vital rates that
are driven by changes in population size and composition. In
such cases, the net reproduction fða; tÞ has a functional
dependence on the past trajectory of births, or on past vital
rates. One example is a relationship between the fertility of
a cohort in its childbearing years with the size of the cohort: for
a substantive discussion of such relationships, see Fertility
Transition: Economic Explanations. Another example is
provided by inverse projection in historical demography (Lee
1977), in which observed counts of births and deaths over
time are used in conjunction with the Lotka equation to
estimate the time-variation in the level of mortality rates.
Here, the constraint of matching observed counts results in
a feedback between the level of mortality and population
counts (Wachter 1986).

The formal theory of cycles driven by each of these mech-
anisms is discussed below, followed by a brief consideration of
future directions.

Transient Cycles

A perturbation such as a fertility transition may take decades to
complete, and a formal theory must provide formulas for
the birth sequence B(t) both during and after the perturbation.
Li and Tuljapurkar (1999b) provide an explicit if cumbersome
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description of the decaying population cycles that result from
a perturbation. This theory shows that the population
undergoes damped cyclical changes during and after the
transition. The characteristics of these cycles have not been
explored except in particular cases; but this analysis makes
possible the computation of population momentum for all
gradual transitions (Li and Tuljapurkar 1999a). It is worth
noting that the analytical results for this case rest on
properties of the roots of Lotka’s equation. The relationship
between these roots and the age-pattern of reproduction has
been studied by approximate (Keyfitz 1985) and exact
(Wachter 1984) methods that are also useful in the analysis
of externally and internally driven cycles.

Externally Driven Cycles

An illuminating treatment of population cycles driven by
external periodic variation in reproduction was given by Coale
(1972), who showed that the population responds with
periodic variation in the numbers and relative sizes of its age
components. The challenge for the theory lies in the
nonlinearity of eqn. (1) when fða; tÞ contains a periodic
component. To see this, suppose that fða; tÞ ¼ fðaÞ þ jða; tÞ
with j being periodic in time t, and suppose that
the resulting birth sequence in eqn. (1) has the form
B(t) ¼ B þ b(t), with b also a periodic function. Substitution
of these forms into eqn. (1) shows that the unknown b(t)
depends on a nonlinear product j(a, t�a) b(t�a). General
results for nonlinear renewal eqns. of this type are not
known. There are analytical approximations which employ
an expansion in the amplitude of the periodic perturbation
j; these describe the amplitude response of the population
and the phase difference between population cycles and the
external driving cycle (Tuljapurkar 1985). An interesting class
of periodically perturbed Lotka models has been described
and analyzed exactly by Kim and Schoen (1997), Schoen and
Kim (1994, 1997). The latter work demonstrates that it is
sometimes possible to solve exactly the homogeneous form
of equation (1), i.e., with H ¼ 0, for an explicitly time-
dependent f(a, t). Such analytical examples can be valuable
as a source of insight into the dynamics, and as a check on
approximate theories intended for less tractable problems.

The analysis of periodic perturbations suggests that
a persistent stochastic perturbation of vital rates will also
generate a superposition of cycles of population change. The
dynamics of a population subject to stochastic perturbation are
also nonlinear, so again the theory has relied upon approxi-
mations. Lee (1975) pioneered the application of time-series
methods to the linearized analysis of stochastic perturbations.
To go beyond linearization, e.g., if the perturbations are large
or have strong positive serial correlations, a higher order
approximation may be used as discussed by Tuljapurkar
(1990), Tuljapurkar and Lee (1997).

Internally Driven Cycles

The formal analysis of internally driven cycles is quite distinct
from the analyses used in classical demography, and draws on

developments in nonlinear dynamics (for a review of modern
nonlinear techniques for dynamics, see Guckenheimer and
Holmes (1983)). To start with, it is important to recognize
that there are different forms of internal feedback. One class
of feedback is exemplified by cohort size effects on fertility:
large birth cohorts go on to have lower fertility than their
parents and the opposite for small birth cohorts (Lee 1974,
1976, Wachter and Lee 1989). A second class of feedback is
generated by social norms or expectations: for example,
individual fertility is influenced by the average fertility in the
population (Kohler 2000). A third class of feedback arises
through an interaction between a population and external
variables – for example, economic conditions, environmental
conditions, or resources such as land holdings – and these
external variables in turn influence fertility or mortality
(Bonneuil 1990, 1992, 1997, Chu 1998, 1999, Feichtinger and
Sorger 1990, Feichtinger and Dockner 1990, Lee 1987, Milik
and Prskawetz 1996).

The formal theory of such feedbacks shares several elements
that may be illustrated by considering a nonlinear version of
Eqn. (1). Suppose that the net reproduction fða; tÞ in that
equation changes with the population structure: for example,
the fertility of individuals aged a at time t depends on the size
of that cohort relative to the size of their parents’ cohort. Such
feedbacks result in a functional relationship of the form

fða; tÞ ¼ fðaÞhðg; a; fBðt � sÞ;0 < s < SgÞ: [2]

Here the function h on the right describes the effect of the other
birth cohorts, born as long as S > 0 years ago, on the fertility of
the cohort aged a. The parameter g controls the strength of the
feedback, for example, by controlling the gradient of h. Lotka’s
equation is now a nonlinear renewal equation, which can be
written in abstract form as

B ¼ L ðm;BÞ: [3]

The nonlinear operator L maps past values of births into their
current value. This verbal description can be formalized suit-
ably; for an example of the mathematical details see, e.g.,
Cushing (1978).

In most applications the nonlinear eqn. (3) has a constant
solution, E(m). The dynamic stability of this solution is
examined by studying small deviations x(t) ¼ {B(t)�E(n)}:
stability means that x(t) should decrease over time. An
expansion of the nonlinearity in eqn. (3) yields a series of
terms of the form

x ¼ H ðm; xÞ þ G ðm; x; xÞ þR : [4]

The operatorH is a linear operator,G is quadratically nonlinear,
and R involves higher-order nonlinear terms. Local stability
is determined by the eigenvalues of the linear operator H ,
and these in turn depend on the elasticity of the linear response
(Wachter 1991a). In typical examples, the equilibrium is locally
stable when g < g*, say, but becomes unstable when g � g*.
Local instability means that small deviations from the
equilibrium births will change with time as exp{(p þ iq)t}
where p > 0 and q are given by eigenvalues of the linear
operator H . The local change in x(t) follows a cycle of period
(2p/q). The central question now is: when such local
instabilities grow and experience the nonlinear forces in
equation (4), will they turn into sustained, stable cycles? If they
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do, increases in the parameter g past the threshold value g* will
generate a sustained population cycle, called a limit cycle. Since
E(m) is still a constant solution, eqn. (3) (or its solution) is said
to have undergone a bifurcation at g ¼ g*.

For any value of g above but not far from the threshold g*,
the nonlinear limit cycle may be represented by a superposition
of periodic solutions to the linear part of eqn. (3). Numerical
illustrations of such limit cycles are given by Frauenthal and
Swick (1983). A systematic procedure for computing the
amplitude, period, and stability properties of this limit cycle
beyond the bifurcation point is described by Tuljapurkar
(1987), and substantive applications that illustrate these
computations are given by Wachter (1991b) and Chu
(1998). These procedures may be extended to many other
models with feedback, and provide an important part of the
theory of population cycles. Other feedback mechanisms may
result in a different approach to bifurcation (e.g., bifurcation
in fertility level, Kohler 2000).

New Directions

The formal theory of cycles has moved considerably beyond
classical demographic theory. The nonlinear bifurcation anal-
ysis discussed above can be considerably extended. Wachter
(1994) has explored global properties of feedback models,
addressing the behavior of cycles far above a bifurcation
threshold. Bonneuil (1992), Prskawetz and Feichtinger
(1995), and Tuljapurkar et al. (1994) show that increasing
feedback can lead to more complex types of population
cycles including aperiodicity and chaos. Purely internal
feedbacks may not be strong enough to generate demo-
graphic cycles in human populations, but feedbacks mediated
by social or external interactions may well be strong enough.
The challenges that face the theory now lie in two areas:
confrontation with data to test and modify theories, and the
development of new models that incorporate a wider range
of demographic dynamics and interaction. As yet, nonlinear
cycles in human populations have not been examined in
the realistic and rich way that biologists have explored cycles
in the structure of laboratory populations (de Roos 1997,
Cushing 1997).
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