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Chapter 1

Program and introduction

1.1 Program

The daily program will have one lecture and one practical sesssion each morning and each
afternoon.

Lectures will be between 45 and 90 minutes; normally with one or two breaks.

Time schedule

9:15 Lectures / pracs
10:30 Coffee break (about 20 min)
12:30 Lunch
14:00 Lectures / pracs
15:30 Coffee break (about 20 min)
17:30 Close of day

2



Program and introduction 1.2 Reading 3

Course contents

Moday 19th September
Morning Overview of follow-up data.

Likelihood for follow-up data. Poisson likelihood. Relation to Cox
partial likelihood.
Lexis diagrams. Tabular data in the Lexis diagram.
Lexis triangles

Afternoon Poisson models for tabular data.
Splines and other parametic smoothers.
Relation to factor models.

Tuesday 20th September
Morning Age-Period and Age-Cohort models and their parametization.
Afternoon Age-Period-Cohort model.

The identifiability problem, projections and subspaces.

Wednesday 21st September
Morning APC-models for different outcomes.

APC-models for different groups.
Afternoon Reporting APC-models; tabular and graphical representation.

APC-models for prevalences and other types of data.
Evaluation and wrap-up.

1.2 Reading

It would be helpful if you had read the papers which cover the essentials of the models that
we will cover: [4, 2, 3, 1]

These are the main references, and they are available as .pdf on the course web-site
bendixcarstensen.com/APC/Lisbon-2009.

The section “Concepts in survival and demography” is meant as a reference for the
central aspects linking traditional survival analysis and demographic concepts.

1.3 Introduction to exercises

Most of the following exercises all require basic skills in computing with R, in particular the
use of the graphical facilities.

1.3.1 Datasets and how to access them.

All the datasets for the exercises in this section are in the folder APC\data. This can be
accessed through the homepage of the course, in the folder
bendixcartsensen.com/APC/Lisboa-2011/data.

The datasets with .txt extension are plain text files where variable names are found in
the first line. Such datasets can be read into R with the command read.table.

bendixcarstensen.com/APC/Lisbon-2009
bendixcartsensen.com/APC/Lisboa-2011/data
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1.3.2 R-functions

All the relevant functions for this course (and several more) are supplied in the R-package
Epi, which you should have installed, as it does not come with standard R.

> library( Epi )
> lls("package:Epi")

The latter command will list the names of all the functions available in the Epi package.
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1.4 Concepts in survival and demography

This section briefly summarizes relations between various quantities used in analysis of
follow-up studies. They are used all the time in the analysis and reporting of results.
Hence it is important to be familiar with all of them and the relation between them.

1.4.1 Probability

Survival function:

S(t) = P {survival at least till t}
= P {T > t} = 1− P {T ≤ t} = 1− F (t)

Conditional survival function:

S(t|tentry) = P {survival at least till t| alive at tentry}
= S(t)/S(tentry)

Cumulative distribution function of death times (cumualtive risk):

F (t) = P {death before t}
= P {T ≤ t} = 1− S(t)

Density function of death times:

f(t) = lim
h→0

P {death in (t, t+ h)} /h = lim
h→0

F (t+ h)− F (t)

h
= F ′(t)

Intensity:

λ(t) = lim
h→0

P {event in (t, t+ h] | alive at t} /h

= lim
h→0

F (t+ h)− F (t)

S(t)h
=
f(t)

S(t)

= lim
h→0
− S(t+ h)− S(t)

S(t)h
= − d logS(t)

dt

The intensity is also known as the hazard function, hazard rate, rate,
mortality/morbidity rate.

Relationships between terms:

− d logS(t)

dt
= λ(t)

m

S(t) = exp

(
−
∫ t

0

λ(u) du

)
= exp

(
−Λ(t)

)
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The quantity Λ(t) =
∫ t

0
λ(s) ds is called the integrated intensity or the cumulative

rate. It is not an intensity, it is dimensionless.

λ(t) = − d log(S(t))

dt
= −S

′(t)

S(t)
=

F ′(t)

1− F (t)
=
f(t)

S(t)

The cumulative risk of an event (to time t) is:

F (t) = P {Event before time t} =

∫ t

0

λ(u)S(u) du = 1− S(t) = 1− e−Λ(t)

For small |x| (< 0.05), we have that 1− e−x ≈ x, so for small values of the integrated
intensity:

Cumulative risk to time t ≈ Λ(t) = Cumulative rate

1.4.2 Statistics

Likelihood from one person:
The likelihood from a number of small pieces of follow-up from one individual is a
product of conditional probabilities:

P {event at t4|entry at t0} = P {event at t4| alive at t3} ×
P {survive (t2, t3)| alive at t2} ×
P {survive (t1, t2)| alive at t1} ×
P {survive (t0, t1)| alive at t0}

Each term in this expression corresponds to one empirical rate1

(d, y) = (#deaths,#risk time), i.e. the data obtained from the follow-up of one
person in the interval of length y. Each person can contribute many empirical rates,
most with d = 0; d can only be 1 for the last empirical rate for a person.

Log-likelihood for one empirical rate (d, y):

`(λ) = d log(λ)− λy

This is under the assumption that the underlying rate (λ) is constant over the
interval that the empirical rate refers to.

Log-likelihood for several persons. Adding log-likelihoods from a group of persons
(only contributions with identical rates) gives:

D log(λ)− λY,

where Y is the total follow-up time, and D is the total number of failures.

Note: The Poisson log-likelihood for an observation D with mean λY is:

D log(λY )− λY = D log(λ) +D log(Y )− λY
1This is a concept coined by BxC, and so is not necessarily generally recognized.
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The term D log(Y ) does not involve the parameter λ, so the likelihood for an
observed rate can be maximized by pretending that the no. of cases D is Poisson
with mean λY . But this does not imply that D follows a Poisson-distribution. It is
entirely a likelihood based computational convenience. Anything that is not
likelihood based is not justified.

A linear model for the log-rate, log(λ) = Xβ implies that

λY = exp
(
log(λ) + log(Y )

)
= exp

(
Xβ + log(Y )

)
Therefore, in order to get a linear model for λ we must require that log(Y ) appear as
a variable in the model for D ∼ (λY ) with the regression coefficient fixed to 1, a
so-called offset-term in the linear predictor.

1.4.3 Competing risks

Competing risks: If there is more than one, say 3, causes of death, occurring with
(cause-specific) rates λ1, λ2, λ3, that is:

λc(a) = lim
h→0

P {death from cause c in (a, a+ h] | alive at a} /h, c = 1, 2, 3

The survival function is then:

S(a) = exp

(
−
∫ a

0

λ1(u) + λ2(u) + λ3(u) du

)
because you have to escape any cause of death. The probability of dying from cause 1
before age a (the cause-specific cumulative risk) is:

P {dead from cause 1 at a} =

∫ a

0

λ1(u)S(u) du 6= 1− exp

(
−
∫ a

0

λ1(u) du

)
The term exp(−

∫ a

0
λ1(u) du) is sometimes referred to as the “cause-specific survival”,

but it does not have any probabilistic interpretation in the real world. It is the
survival under the assumption that only cause 1 existed an that the mortality rate
from this cause was the same as when the other causes were present too.

Together with the survival function, the cause-specific cumulative risks represent a
classification of the population at any time in those alive and those dead from causes
1,2 and 3 respectively:

1 = S(a) +

∫ a

0

λ1(u)S(u) du+

∫ a

0

λ2(u)S(u) du+

∫ a

0

λ3(u)S(u) du, ∀a

Subdistribution hazard Fine and Gray defined models for the socalled subdistribution
hazard. Recall the relationship between between the hazard (λ) and the cumulative
risk (F ):

λ(a) = −
d log

(
S(a)

)
da

= −
d log

(
1− F (a)

)
da
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When more competing causes of death are present the Fine and Gray idea is to use
this tranformation to the cause-specific cumulative risk for cause 1, say:

λ̃1(a) = −
d log

(
1− F1(a)

)
da

This is what is called the subdistribution hazard, it depends on the survival function
S, which depends on all the cause-specific hazards:

F1(a) = P {dead from cause 1 at a} =

∫ a

0

λ1(u)S(u) du

The subdistribution hazard is merely a transformation of the cause-specific
cumulative risks. Namely the same transformation which in the single-cause case
transforms the cumulative risk to the hazard.

1.4.4 Demography

Expected residual lifetime: The expected lifetime (at birth) is simply the variable age
(a) integrated with respect to the distribution of age at death:

EL =

∫ ∞
0

af(a) da

where f is the density of the distribution of lifetimes.

The relation between the density f and the survival function S is f(a) = −S ′(a), and
so integration by parts gives:

EL =

∫ ∞
0

a
(
−S ′(a)

)
da = −

[
aS(a)

]∞
0

+

∫ ∞
0

S(a) da

The first of the resulting terms is 0 because S(a) is 0 at the upper limit and a by
definition is 0 at the lower limit.

Hence the expected lifetime can be computed as the integral of the survival function.

The expected residual lifetime at age a is calculated as the integral of the conditional
survival function for a person aged a:

EL(a) =

∫ ∞
a

S(u)/S(a) du

Lifetime lost due to a disease is the difference between the expected residual lifetime for
a diseased person and a non-diseased (well) person at the same age. So all that is
needed is a(n estimate of the) survival function in each of the two groups.

LL(a) =

∫ ∞
a

SWell(u)/SWell(a)− SDiseased(u)/SDiseased(a) du

Note that the definition of the survival function for a non-diseased person requires a
decision as to whether one will consider non-diseased persons immune to the disease
in question or not. That is whether we will include the possibility of a well person
getting ill and subsequently die. This does not show up in the formulae, but is a
practical consideration to have in mind when devising an estimate of SWell.
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Lifetime lost by cause of death is using the fact that the difference between the
survival probabilities is the same as the difference between the death probabilities. If
several causes of death (3, say) are considered then:

S(a) = 1− P {dead from cause 1 at a}
− P {dead from cause 2 at a}
− P {dead from cause 3 at a}

and hence:

SWell(a)− SDiseased(a) = P {dead from cause 1 at a|Diseased}
+ P {dead from cause 2 at a|Diseased}
+ P {dead from cause 3 at a|Diseased}
− P {dead from cause 1 at a|Well}
− P {dead from cause 2 at a|Well}
− P {dead from cause 3 at a|Well}

So we can conveniently define the lifetime lost due to cause 2, say, by:

LL2(a) =

∫ ∞
a

P {dead from cause 2 at u|Diseased & alive at a}

−P {dead from cause 2 at u|Well & alive at a} du

These will have the property that their sum is the years of life lost due to total
mortality differences:

LL(a) = LL1(a) + LL2(a) + LL3(a)

The term in the integral are computed as (see the section on competing risks):

P {dead from cause 2 at u|Diseased & alive at a} =

∫ u

a

λ2,Dis(x)SDis(x)/SDis(a) dx
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Chapter 2

Practical exercises

2.1 Regression, linear algebra and projection

This exercise is aimed at reminding you about the linear algebra behind linear models.
Therefor we use artificial data

1. First generate a continuous variable x, and a factor f on 3 levels, each with 100 units,
say:

> x <- runif(100,20,50)
> f <- factor( sample(letters[1:3],100,replace=T) )
> x
> table( f )

Then generate a response variable y by some function (the exact shape is immaterial):

> y <- 0.2*x + 0.02*(x-25)^2 + 3*as.integer(f) + rnorm(100,0,1)
> plot( x, y, col=f, pch=16 )

2. Now fit the same model using lm, so this should get your parameter estimates back
(almost):

> mm <- lm( y ~ x + I(x^2) + f )
> summary( mm )

3. Now verify that you get the same results using the matrix formulae. You will first
have to generate the design matrix:

> X <- cbind( 1, x, x^2, f=="b", f=="c" )

Recall that the matrix formula for the estimates is:

β̂ = (X ′X)−1X ′y

To make this calculation explicitly in R you will need the transpose t() and the
matrix inversion solve() functions, as well as the matrix multiplication operator %*%.

An explicit calculation then gives:

> bb <- solve( t(X) %*% X ) %*% t(X) %*% y
> cbind( bb, coef(mm) )

11
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2.2 Reparametrization of models

This exercise is aimed at showing you how to reparametrize a model: Suppose you have a
model parametrized by the linear predictor Xβ, but that you really wanted the
parametrization Aγ, where the columns of X and A span the same linear space.

So Xβ = Aγ, and we assume that both X and A are of full rank,
dim(X) = dim(A) = n× p, say.

We want to find γ given that we know Xβ and that Xβ = Aγ. Since we have that
p < n, we have that A−A = I, by the properties of G-inverses, and hence:

γ = A−Aγ = A−Xβ

1. try to generate a dataset with a response hat is normally distributed in three groups,
and then fit the model using the “usual” parametrization:

> f <- factor( sample(letters[1:3],20,replace=T) )
> y <- 5+2*as.integer(f) + rnorm(20,0,1)
> mm <- lm( y ~ f )
> library( Epi )
> ci.lin( mm )

2. Set up the model matrix X for this regression, and versify that you get the same
results by entering X as regression in lm

> ( X <- cbind( 1, f=="b", f=="c" ) )
> ci.lin( lm( y ~ X-1 ) )

3. Now suppose you want a parametrization with the last level as reference instead. You
could then easily convert the parameters, but use the formulae from above to do it,
by first setting up A corresponding to the desired parametrization, and then using
ginv from the MASS library:

> library( MASS )
> ( A <- cbind( 1, f=="a", f=="b" ) )
> ginv(A) %*% X
> ginv(A) %*% X %*% ci.lin( mm )[,1]

4. Verify that you get the results you expect:

> ( X <- cbind( 1, f=="b", f=="c" ) )
> ( A <- cbind( 1, f=="a", f=="b" ) )
> ginv(A) %*% X

5. Try to obtain the conversion from the parametrization with an intercept and two
contrasts to the parametrization with a separate level in each group by constructing
the matrices using the model.matrix function.

> ( X <- model.matrix( ~f ) )
> ( A <- model.matrix( ~f-1 ) )
> ginv(A) %*% X

The essences of these calculations are:
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• Given that you have a set of fitted values in a model (in casu ŷ = Xβ) and you want
the parameter estimates you would get if you had used the model matrix A. Then
they are γ = A−ŷ = A−Xβ.

• Given that you have a set of parameters β, from fitting a model with design matrix
X, and you would like the parameters γ, you would have got had you used the model
matrix A. Then they are γ = A−Xβ.

2.3 Danish prime ministers

The following table shows all Danish prime ministers in office since the war. They are
ordered by the period in office, hence some appear twice. Entry end exit refer to the office
of prime minister. A missing date of death means that the person was alive at the end of
2008.

Name Birth Death Entry Exit

Vilhelm Buhl 16/10/1881 18/12/1954 05/05/1945 07/11/1945
Knud Kristensen 26/10/1880 29/09/1962 07/11/1945 13/11/1947
Hans Hedtoft 21/04/1903 29/01/1955 13/11/1947 30/10/1950
Erik Eriksen 20/11/1902 07/10/1972 30/10/1950 30/09/1953
Hans Hedtoft 21/04/1903 29/01/1955 30/09/1953 29/01/1955
H C Hansen 08/11/1906 19/02/1960 01/02/1955 19/02/1960
Viggo Kampmann 21/07/1910 03/06/1976 21/02/1960 03/09/1962
Jens Otto Kragh 15/09/1914 22/06/1978 03/09/1962 02/02/1968
Hilmar Baunsgaard 26/02/1920 30/06/1989 02/02/1968 11/10/1971
Jens Otto Kragh 15/09/1914 22/06/1978 11/10/1971 05/10/1972
Anker Jorgensen 13/07/1922 . 05/10/1972 19/12/1973
Poul Hartling 14/08/1914 30/04/2000 19/12/1973 13/02/1975
Anker Jorgensen 13/07/1922 . 13/02/1975 10/09/1982
Poul Schlüter 03/04/1929 . 10/09/1982 25/01/1993
Poul Nyrup Rasmussen 15/06/1943 . 25/01/1993 27/11/2001
Anders Fogh Rasmussen 26/01/1953 . 27/11/2001 05/04/2007
Lars Løkke Rasmussen 15/05/1964 . 05/04/2009 .

The data in the table can be found in the file pm-dk.txt.

> st <- read.table( "../data/pm-dk.txt", header=T, as.is=T,
+ na.strings="." )
> st
> str( st )

1. Draw a Lexis diagram with life-lines of the persons, for example by using the Lexis

machinery from the Epi package:

> # Change the character variables with dates to fractional calendar
> # years
> for( i in 2:5 ) st <- cal.yr( st, format="%d/%m/%Y" )
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> # Attach the data for those still alive
> st$fail <- !is.na(st$death)
> st[!st$fail,"death"] <- 2011
> st
> attach( st )
> # Lexis object
> L <- Lexis( entry = list(per=birth),
+ exit = list(per=death, age=death-birth),
+ exit.status=fail,
+ data=st )
> # Plot Lexis diagram
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, xaxt="n" ) # Omit x-labels
> plot( L, xlim=c(1945,2015), ylim=c(25,95),
+ xaxs="i", yaxs="i", lwd=3, las=1,
+ grid=0:20*5, col="black", xlab = "Calendar time", ylab="Age" )
> points( L, pch=c(NA,16)[L$lex.Xst+1] )
> # Put names of the prime ministers on the plot
> text( death, death-birth, Name, adj=c(1.05,-0.05), cex=0.7 )
> par( xaxt="s" )
> axis( side=1, at=seq(1950,2010,10) ) # x-labels at nice places

2. Mark with a different color the periods where they have been in office. You could try
something like:

> # New Lexis object describing periods in an office
> # and lines added to a picture
> st <- transform( st,
+ in_office = c( rep(FALSE,nrow(st)-1),TRUE ),
+ exit = ifelse( is.na(exit), 2011, exit ) )
> Lo <- Lexis( entry = list(per=entry),
+ exit = list(per=exit, age=exit-birth),
+ exit.status=in_office,
+ data = st )
> lines( Lo, lwd=3, las=1, col="red" )
> # the same may be plotted using command segments
> box()
> segments( birth, 0, death, death-birth, lwd=2 )
> segments( entry, entry-birth, exit, exit-birth, lwd=4, col="red" )

3. Draw the line representing age 50 years.

> abline( h=50 )

4. How many 50th birthdays have been celebrated in office since the war?

> age_entry <- Lo$age
> age_exit <- Lo$age + Lo$lex.dur
> n_birthday <- sum( ( age_entry<50 ) & ( age_exit>50 ) )
> n_birthday

5. Draw the line representing 2 October 1972. (Why just that?)

> abline( v=cal.yr( "2/10/1972", format="%d/%m/%Y" ) )

6. How many present and former prime ministes were alive at 31st December 2008?
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> alive <- (L$death >=2004)
> n_alive <- sum( alive )
> n_alive
> #Anker Jorgensen - 1 person has got 2 lex.id's
> levels( as.factor( subset( L$Name, alive==T ) ) )

7. Which period(s) since the war has seen the maximal number of former post-war
prime ministers alive?

> # New lexis object - since entry to the office to the death
> Ln <- Lexis( entry = list(per = entry),
+ exit = list(per = death,
+ age = death-entry ),
+ exit.status = death,
+ data = st )
> ny <- 2008-1945
> n_alive <- vector( "numeric", ny )
> for (i in 1:ny)
+ {
+ alive <- ( (Ln$death >=(1944+i))&(Ln$entry<=(1944+i)) )
+ n_alive[i] <- nlevels( as.factor( subset( Ln$Name, alive==T ) ) )
+ }
> plot( n_alive~seq(1945,(1945+ny-1),1), type="l", xlab="Calendar year",
+ ylab = "Maximal numbers of former prime ministers alive" )

8. Mark the area in the diagram with person years lived by persons aged 50 to 70 in the
period 1 January 1970 through 1 January 1990.

> rect( 1970, 50, 1990, 70, lwd=2, border="green",col="lightgreen" )

9. Mark the area for the lifetime experience of those who were between 10 and 20 years
old in 1945.

> polygon( c(1955,2010,2010,1965,1955), c(30,85,75,30,30), lwd=2,
+ border="blue", col="lightblue" )
> # Now draw the Lexis diagram again on top of the shaded areas

10. How many prime-minister-years have been spent time in each of these sets? And in
the intersection of them?

> # Prime-minister years lived by persons
> # aged 50 to 70 in the period 1 January 1970 through 1 January 1990.
> x1 <- splitLexis( Lo ,breaks = c(0,50,70,100), time.scale="age" )
> x2 <- splitLexis( x1, breaks = c(1900,1970,1990,2010), time.scale="per" )
> summary( x2 )
> tapply( status(x2,"exit")==1, list( timeBand(x2,"age","left"),
+ timeBand(x2,"per","left") ), sum )
> tapply( dur(x2), list( timeBand(x2,"age","left"),
+ timeBand(x2,"per","left") ), sum )
> # Computing the person-years in the 1925-35 cohort
> x3 <- subset( Lo, birth>1925 & birth<=1935 )
> summary( x3 )
> dur( x3 )
> # Computing person years in the intersection
> x4 <- subset( x2 , birth>1925 & birth<=1935 )
> summary( x4 )
> dur( x4 )
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2.4 Reading and tabulating data

The following exercise is aimed at tabulating and displaying the data typically involved in
age-period-cohort analysis.

1. Read the data in the file lung5-M.txt, and print the data. What does each line refer
to?

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung
> head(lung)

> attach( lung )

2. Print the no. cases in a nice tabular form, and likewise with the person-years. Is
there someything special about the last period?

> D_table_nice <- stat.table( index=list(A,P), sum(D), data=lung, margin=T )
> print( D_table_nice, digits=c(sum=0) )
> Y_table_nice <- stat.table( index=list(A,P), sum(Y), data=lung, margin=T )
> print( Y_table_nice, digits=c(sum=2) )

3. Compute the empirical rates, and print them in a table too.

> R_table_nice <- stat.table( index=list(A,P), list(Rate=ratio(D,Y,100000)),
+ data=lung, margin=T )
> print( R_table_nice, digits=c(sum=2) )

Try also this other way of computation - not using the standard tapply function.
tapply does not have a data= argument so we use the with()-function to avoid
writing lung$ several times:

> D_table <- with( lung, tapply( D, list(A,P), sum ) )
> Y_table <- with( lung, tapply( Y, list(A,P), sum ) )
> R_table <- D_table/Y_table*(10^5)

4. Make the four classical graphs of the data. Consider whether a log-scale for the y-axis
is appropriate. Think about where on the x-axis each age-class is located.

(a) Age-specific rates for each period. (Rates from the same period connected).

> rateplot( R_table, which=c("AP"), ann=TRUE )

(b) Age-specific rates for each cohort. (Rates from the same cohort connected).

> rateplot( R_table, which=c("AC"), ann=TRUE )

(c) Rates for each age-class versus period. (Rates from the same age-class
connected).

> rateplot( R_table, which=c("PA"), ann=TRUE )

(d) Rates for each age-class versus cohort. (Rates from the same age-class
connected).

> rateplot( R_table, which=c("CA"), ann=TRUE )
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5. How would each of these curves look if:

(a) age-specific rates did not change at all by time?
> # age-specific rates remain still the same as in period 1943
> R_table_no_change <- matrix( R_table[,1], dim(R_table)[1], dim(R_table)[2] )
> colnames( R_table_no_change ) <- colnames( R_table )
> rownames( R_table_no_change ) <- rownames( R_table )
> R_table_no_change

> par( mfrow=c(2,2) )
> rateplot( R_table_no_change, log.ax="")

(b) If age-specific rates were only influenced by period?
> #age-specific rates are only influence by period
> step <- 2
> change_p <- matrix(rep(seq(1,11*step,step),10),10,11,byrow=T)
> change_p
> R_table_p <- R_table_no_change+change_p
> colnames( R_table_p ) <- colnames( R_table )
> rownames( R_table_p ) <- rownames( R_table )
> R_table_p

> par( mfrow=c(2,2) )
> rateplot( R_table_p, log.ax="" )

(c) age-specific rates were only influenced by cohort?
> #age-specific rates are only influence by cohort
> nr <- nrow(R_table)
> nc <- 10
> p <- c( rep(NA,nc), R_table[,1] )
> np <- length( p )
> R_table_c <- cbind( p[(np-nr+1):np], p[(np-nr):(np-1)],
+ p[(np-nr-1):(np-2)],p[(np-nr-2):(np-3)],
+ p[(np-nr-3):(np-4)], p[(np-nr-4):(np-5)],
+ p[(np-nr-5):(np-6)], p[(np-nr-6):(np-7)],
+ p[(np-nr-7):(np-8)], p[(np-nr-8):(np-9)],
+ p[(np-nr-9):(np-10)] )
> colnames( R_table_c ) <- colnames( R_table )
> rownames( R_table_c ) <- rownames( R_table )
> R_table_c

> par( mfrow=c(2,2) )
> rateplot( R_table_c, log.ax="" )

2.5 Rates and survival

1. Consider the following data:

Year of birth Year of death Age at death

1994 1995

1994 2,900 500 0
1993 120 130 1
1992 50 60 2
1991 45 55 3
1990 40 40 4
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(a) Represent these data in a Lexis diagram.

> # Enter the data from the table into a matrix
> D <- matrix( c(2900,120,50,45,40,500,130,60,55,40), 5, 2 )
> D

> # Make a Lexis diagram and represent the numbers there
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> Lexis.diagram( age=c(0,5), date=c(1991,1996), int=1, lab.int=1,
+ coh.grid=T )
> box()
> text( 1994+rep( c(2,4)/3, c(5,5) ),c(0:4+1/3,0:4+2/3), paste( D ) )

(b) On the basis of these data, can you calculate the age-specific death rate for
two-year-olds (1m2) in 1994? If you can, do it. If you cannot, explain what
additional information you would need.

(c) On the basis of these data, can you calculate the probability of surviving from
age 2 to age 3 (1q2) in for the cohort born in 1992?

If you can, do it. If you cannot, explain what additional information you would
need.

2. Consider the following data:

• Live births during 1991: 142,000

• Number of infants born in 1991 who did not survive until the end of 1991: 2,900

• Number of infants born in 1991 who survived to the end of 1991, but did not
reach their first birthday: 500

• Live births during 1992: 138,000

• Number of infants born in 1992 who did not survive until the end of 1992: 2,600

• Number of infants born in 1992 who survived to the end of 1992, but did not
reach their first birthday: 450

(a) Represent the data on a Lexis diagram.

> # Enter the information in two data structures
> B <- c(142, 138)*1000
> D <- c(2900, 500, 2600, 450)

> # Make a Lexis diagram and represent the numbers there
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> Lexis.diagram( age=c(0,5), date=c(1991,1996), int=1, lab.int=1,
+ coh.grid=T )
> text( 1991+c(2,4,5,7)/3, c(1,2,1,2)/3, paste( D ) )
> text( 1991.5+0:1, 0, paste( B ), adj=c(0.5,-0.2), col="red" )

(b) Calculate the infant mortality rate (IMR) for 1992 under the assumption that
you were only able to observe events occurring in 1992, and that you did not
know the birth dates of infants dying during that year.

(c) Same as above, except that now you do know the birth dates of infants dying
during 1992.

(d) Assume all data are known: Calculate the IMR.

(e) What is the IMR for the 1992 birth cohort?
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2.6 Age-period model

The following exercise is aimed at familiarizing you with the parametrization of the
age-period model. It will give you the opportunity explore how to extract and and plot
parameter estimates from models. It is based on Danish male lung cancer incidence data in
5-year classes.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung
> with( lung , table( A ) )
> with( lung , table( P ) )
> with( lung , tapply( Y, list(A,P), sum ) )

What do these tables show?

2. Fit a Poisson model with effects of age (A) and period (P) as class variables:

> ap.1 <- glm( D ~ factor(A) + factor(P) + offset(log(Y)),
+ family=poisson, data=lung )
> summary( ap.1 )

What do the parameters refer to, i.e. which ones are log-rates and which ones are
rate-ratios?

3. Fit the same model without intercept (use -1 in the model formula); call it ap.0 —
we shall refer to this subsequently. What do the parameters now refer to?

4. Fit the same model, using the period 1968–72 as the reference period, by using the
relevel command for factors to make 1968 the first level:

> ap.3 <- glm( D ~ factor(A) - 1 + relevel(factor(P),"1968") + offset(log(Y)),
+ family=poisson, data=lung )

5. Extract the prameters from the model, by doing:

> ap.cf <- summary( ap.3 )$coef

6. Now plot the estimated age-specific incidence rates, remembering to annoatte them with
the correct scale. We need the first 10 parameters, with their standard errors:

> age.cf <- ap.cf[1:10,1:2]

This means that we take rows 1–10 and columns 1–2. The corresponding age classes are
40, . . . , 85. The midpoints of these age-classes are 2.5 years higher. The ages can be
generated in R by saying seq(40,85,5)+2.5.

Now put confidence limits on the curves by taking ±1.96× s.e.. The line of the estimates
can be over-drawn once more in a thicker style:

> lines( seq(40,85,5)+2.5, exp(age.cf[,1]), lwd=3 )

7. Now for the rate-ratio-parameters, take the rest of the coefficients:

> RR.cf <- ap.cf[11:20,1:2]



20 2.6 Age-period model Age-Period-Cohort models

But the reference group is missing, so we must stick two 0s in the correct place. We use the
command rbind (row-bind):

> RR.cf <- rbind( RR.cf[1:5,], c(0,0), RR.cf[6:10,] )

Now we have the same situation as for the age-specific rates, and can plot the relative risks
(relative to 1968) in precisely the same way as for the agespecific rates.

Make a line-plot of the relative risks with confidence intervals.

8. However, the relevant parameters may also be extracted directly from the model without
intercept, using the function ci.lin (remember to read the documentation for this!)

The point is to define a contrast matrix, which multiplied to (a subset of) the parameters
gives the rates in the reference period. The log-rates in the reference period (the first level
of factor(P) are the age-parameters. The log-rates in the period labelled 1968 are these
plus the period estimate from 1968.

Now construct the following matrix and look at it:

> cm.A <- cbind( diag( nlevels( factor(A) ) ), 1 )

Now look at the parameters extracted by ci.lin, using the subset= argument:

> ci.lin( ap.0, subset=c("A","1968") )

Now use the argument ctr.mat= in ci.lin to produce the rates in period 1968 and plot
them on a log-scale.

9. Save the estimates of age aned period effects along with the age-points and period-points,
using save (look up the help page if you are not familiar with it. You will need these in the
next exercise on the age-cohort model.

10. We can also use the same machinery to extract the rate-ratios relative to 1968. The
contrast matrix to use is the difference between two: The first one is the one that extracts
the rate-ratios with a prefixed 0:

> cm.P <- rbind(0,diag( nlevels(factor(P))-1 ) )
> cm.P
> ci.lin( ap.0, subset="P", ctr.mat=cm.P )

In order to subtract the value corresponding to 1968, we must subtract a 11× 10 matrix,
that just selects the 1968 column:

> cm.Pref <- cm.P * 0
> cm.Pref[,5] <- 1
> cm.Pref

The contrast matrix to use is the difference between these two:

> cm.P - cm.Pref
> ci.lin( ap.0, subset="P", ctr.mat=cm.P-cm.Pref )

Use the Exp=TRUE argument to get the rate-ratios and plot these with confidence intervals
on a log-scale.
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11. For the real nerds: Plot the rates and the rate ratios beside each other, and make sure that
the physical extent of the units on both the x-axis and the y-axis are the same.

Hint: You may want to use par(mar=c(0,0,0,0), oma=), the function layout as well as
the xaxs="i" argument to plot.

2.7 Age-cohort model

This exercise is aimed at familiarizing you with the parametrization of the age-cohort
model. It will give you the opportunity explore how to extract and and plot parameter
estimates from models. It is parallel to the exercise on the age-period model and is therefor
less detailed.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

> library(Epi)
> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung
> attach( lung )
> table( A )
> table( P )
> table( P-A )

What do these tables show?

2. Fit a Poisson model with effects of age (A) and cohort (C) as class variables. You
will need to form the variable C (cohort) as P − A first.

What do the parameters refer to ?

3. Fit the same model without intercept. What do the parameters now refer to ?

Hint: Use -1 in the model formula.

4. Fit the same model, using the cohort 1908 as the reference cohort. What do the
parameters represent now?

Hint: Use the Relevel command for factors to make 1968 the first level.

5. What is the range of birth dates represented in the cohort 1908?

6. Extract the age-specific incidence parameters from the model and plot then against
age. Remember to annotate them with the correct units. Add 95% confidence
intervals.

Hint: Use the function ci.lin from the Epi package.

7. Extract the cohort-specific rate-ratio parameters and plot then against the date of
birth (cohort). Add 95% confidence intervals.

8. Now load the estimates from the age-period model, and plot the estimated
age-specific rates from the two models on top of each other.

Why are they different? In particular, why do they have different slopes?
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2.8 Age-drift model

This exercise is aimed at introducing the age-drift model and make you familiar with the
two different ways of parametrizing this model. Like the two previous exercises it is based
on the male lung cancer data.

1. First read the data in the file lung5-M.txt and create the cohort variable:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung$C <- lung$P - lung$A

Alternatively you can do:

> lung <- transform( lung, C = P - A )

2. Fit a Poisson model with effects of age as class variable and period P as continuous
variable.

What do the parameters refer to ?

3. Fit the same model without intercept. What do the parameters now refer to?

4. Fit the same model, using the period 1968–72 as the reference period.

Hint: When you center a variable on a reference value ref, say, by entering P-ref

directly in the model formula will cause a crash, because the “-” is interpreted as a
model operator. You must “hide” the minus from the model formula interpretation by
using the identity function, i.e. use: I(P-ref).

Now what do the parameters represent?

5. Fit a model with cohort as a continuous variable, using 1908 as the reference, and
without intercept. What do the resulting parameters represent?

6. Compare the deviances and the slope estimates from the models with cohort drift
and period drift.

7. What is the relationship between the estimated age-effects in the two models?

Verify this empirically by converting one set of age-parameters to the other.

8. Plot the age-specific incidence rates from the two different models in the same panel.

9. The rates from the model are:

log(λap) = αp + δ(p− 1970.5)

Therefore, with an x-variable: (1943,. . . ,1993) + 2.5, the log rate ratio relative to
1970.5 will be:

log RR = δ̂ × x
and the upper and lower confidence bands:

log RR = (δ̂ ± 1.96× s.e.(δ))× x

Now extract the slope parameter, and plot the rate-ratio functions as a function of
period.
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2.9 Age-period-cohort model

The following exercise is aimed at familiarizing you with the parametrization of the
age-period-cohort model and with the realtionship of the APC-model to the other model
that you have been working with, so we will refer back to those, and assume that you have
the results from them at hand.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung
> attach( lung )

2. Fit a Poisson model with effects of age (A), period (P) and cohort (C) as class
variables. Also fit a model with age alone as a class variable. Write down a scheme
showing the deviances and degrees of freedom for the 5 models you have models fitted
to this dataset.

3. Compare the models that can be compared, with likelihood-ratio tetsts. You will
want to use anova (or specifically anova.glm) with the argument test="Chisq".

4. Next, fit the same model without intercept, and with the first and last period
parameters and the 1908 cohort parameter set to 0. Before you do so a few practical
things must be fixed:

You can merge the first and the last period level using the Relevel function (look at
the documentation for it).

> lung$Pr <- Relevel( factor(lung$P), list("first-last"=c("1943","1993") ) )

You can also use this function to make the 1908 cohort the first level of the cohort
factor:

> lung$Cr <- Relevel( factor(lung$P-lung$A), "1908" )

It is a good idea to tabulate the new factor against the old one (i.e. that variable
from which it was created) in order to meake sure that the relevelling actually is as
you intended it to be.

5. Now you can fit the model, using the factors you just defined. What do the
parameters now refer to?

6. Make a graph of the parameters. Remember to take the exponential to convert the
age-parameters to rates (and find out what the units are) and the period and cohort
parameters to rate ratios. Also use a log-scale for the y-axis. You may want to use
ci.lin to facilitate this.

7. Fit the same model, using the period 1968–72 as the reference period and two cohorts
of your choice as references. To decide which of the cohorts to alias it may be useful
to see how many observations there are in each:

> with( lung, table(P-A) )
> with( lung, tapply(D,list(P-A),sum) )
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Having fitted the model, now what do the parameters in it represent?

8. Make a plot of these parameters.

Add the parameters from the previous parametrization to the same graph.

2.10 Age-period-cohort model for trianglular data

The following exercise is aimed at showing the problems associated with age-period-cohort
modelling for triangular data.

Also you will learn how to overcome these problems by parametric modelling of the three
effects.

1. Read the Danish male lung cancer data tabulated by age period and birth cohort,
lung5-Mc.txt. List the first few lines of the dataset and make sure you understand
what the variables refer to. Also define nthe synthetic cohorts as P5-A5:

> library( Epi )
> ltri <- read.table( "../data/lung5-Mc.txt", header=T )
> ltri$S5 <- ltri$P5 - ltri$A5
> attach( ltri )

2. Make a Lexis diagram showing the subdivision of the follow-data. You will explore
the function Lexis.diagram.

> Lexis.diagram( age=c(40,90), date=c(1943,1998), coh.grid=TRUE )

3. Use the variables A5 and P5 to fit a traditional age-period-cohort model with
synthetic cohort defined above as S5=P5-A5:

> ms <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=ltri )

How many parameters does this model have? (Use the summary() function)

4. Now try to fit the model with the “real” cohort variable C5:

> mc <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(C5) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mc )$df

How many parameters does this model have?

5. Plot the parameter estimates from the two models on top of each other, with
confidence intervals. Remember to put the correct scales on the plot.

> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(A5)) )
> p.pt <- as.numeric( levels(factor(P5)) )
> s.pt <- as.numeric( levels(factor(S5)) )
> c.pt <- as.numeric( levels(factor(C5)) )
> matplot( a.pt, ci.lin( ms, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Age", ylab="Rates", log="y" )
> matlines( a.pt, ci.lin( mc, subset="A5", Exp=TRUE )[,5:7]/10^5,



Practical exercises 2.10 Age-period-cohort model for trianglular data 25

+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( ms, subset="P5",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Period", ylab="RR", log="y" )
> matlines( p.pt, rbind( c(1,1,1), ci.lin( mc, subset="P5",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
> matplot( s.pt, rbind(c(1,1,1),ci.lin( ms, subset="S5", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Cohort", ylab="RR", log="y" )
> matlines( c.pt, rbind(c(1,1,1),ci.lin( mc, subset="C5", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )

How do the confidence limits compare between the three effects?

6. Now fit the model using the proper midpoints of the triangles as factor levels. How
many parameters does this model have?

> mt <- glm( D ~ -1 + factor(Ax) + factor(Px) + factor(Cx) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mt )$df

7. Plot the parameters from this model in three panels as for the previous two models.

> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(Ax)) )
> p.pt <- as.numeric( levels(factor(Px)) )
> c.pt <- as.numeric( levels(factor(Cx)) )
> matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Age", ylab="Rates", log="y" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Period", ylab="RR", log="y" )
> matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Cohort", ylab="RR", log="y" )

We see that the parameters clearly do not convey a reasonable picture of the effects;
som severe indeterminacy has crept in.

8. What is the residual deviance of this model?

> summary( mt )$deviance

9. The dataset also has a variable up, which indicates whether the observation comes
from an upper or lower triangle. Try to tabulate this variable against P5-A5-C5.

> table( up, P5-A5-C5 )

10. Fit an age-period cohort model separately for the subset of the dataset from the
upper triangles and from the lowere triangles. What is the residual deviance from
each of these models and what is the sum of these. Compare to the model using the
proper midpoints as factor levels.
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> m.up <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=subset(ltri,up==1) )
> summary( m.up )$deviance
> m.lo <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=subset(ltri,up==0) )
> summary( m.lo )$deviance
> summary( m.lo )$deviance + summary( m.up )$deviance
> summary( mt )$deviance

11. Next, repeat the plots of the parameters from the model using the proper midpoints
as factor levels, but now super-posing the estimates (in different color) from each of
the two models just fitted. What goes on?

> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(Ax)) )
> p.pt <- as.numeric( levels(factor(Px)) )
> c.pt <- as.numeric( levels(factor(Cx)) )
> a5.pt <- as.numeric( levels(factor(A5)) )
> p5.pt <- as.numeric( levels(factor(P5)) )
> s5.pt <- as.numeric( levels(factor(S5)) )
> matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Age", ylab="Rates", log="y" )
> matpoints( a5.pt, ci.lin( m.up, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ pch=c(16,3,3), col="blue" )
> matpoints( a5.pt, ci.lin( m.lo, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ pch=c(16,3,3), col="red" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Period", ylab="RR", log="y" )
> matpoints( p5.pt[-1], ci.lin( m.up, subset="P5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="blue" )
> matpoints( p5.pt[-1], ci.lin( m.lo, subset="P5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="red" )
> matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Cohort", ylab="RR", log="y" )
> matpoints( s5.pt[-1], ci.lin( m.up, subset="S5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="blue" )
> matpoints( s5.pt[-1], ci.lin( m.lo, subset="S5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="red" )

12. Now, load the splines package and fit a model using the correct midpoints of the
triangles as quantitative variables in restricted cubic splines, using the function ns:

> library( splines )
> mspl <- glm( D ~ -1 + ns(Ax,df=7,intercept=T)
+ + ns(Px,df=6,intercept=F)
+ + ns(Cx,df=6,intercept=F) + offset(log(Y)),
+ family=poisson, data=ltri )

13. Compute the residual degrees of freedom for the two models and compare the
deviance of the models with these

> summary( mspl )
> summary( mt )$deviance - summary( mspl )$deviance
> summary( mt )$df - summary( mspl )$df

How do the deviances compare?
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14. Make a prediction of the terms, using predict.glm using the argument
type="terms", and plot these estimated terms.

15. Repeat the last three questions based on a moedl where you have interchanged the
sequence of the period and cohort term.

2.11 Using apc.fit etc.

This exercise is aimed at introducing the functions for fitting and plotting the results from
age-period-cohort models: apc.fit apc.plot apc.lines and apc.frame.

You should read the help page for the apc.fit function, in particular you should be
aware of the meaning of the argument

1. Read the testis cancer data and collapse the cases over the histological subtypes:

> th <- read.table( "../data/testis-hist.txt", header=T )
> str( th )

Knowing the names of the variables in the dataset, you can collapse the dataset over
the histological subtypes. You may want to use the function aggregate; note that
there is no need to tabulate by cohort, because even for the triangular data the
relationship c = p− a holds.

Note that the original data had three subtypes of testis cancer, so while it is OK to
sum the number of cases (D), risk time should not be aggregated across histological
subtypes — the aggregation is basically as for competing risks only events are added
up, the risk time is the same. (Take a look at the help page for aggregate):

2. Present the rates in 5-year age and period classes from age 15 to age 59 using
rateplot. Consider the function subset. To this end you must make a table, for
example using something like:

> with( tc, tapply( D, list(floor(A/5)*5+2.5,
+ floor((P-1943)/5)*5+1945.5), sum ) )

— assuming your aggregated data is in the data frame tc. and a similar construction
for the risk time.

3. Fit an age-period-cohort model to the data using the machinery implemented in
apc.fit. The function returns a fitted model and a parametrization, hence you must
choose how to parametrize it, in this case "ACP" with all the drift included in the
cohort effect and the reference cohort being 1918.

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,10), parm="ACP", ref.c=1918 )

Can any of the effects be omitted from the model?

4. Plot the estimates using the apc.plot function:

> apc.plot( tapc, ci=TRUE )
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5. Now explore in more depth the cohort effect by increasing the number of parameters
used for it:

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
+ parm="ACP", ref.c=1918, scale=10^5 )
> fp <- apc.plot( tapc, ci=TRUE )

Do the extra parameters for the cohort effect have any influence on the model fit?

6. Explore the effect of using the residual method instead, and over-plot the estimates
from this method on the existing plot:

7. The standard display is not very pretty — it gives an overview, but certainly not
anything worth publishing, hence a bit of handwork is needed. Use the apc.frame for
this, and create a nicer plot of the estimates from the residual model. You may not
agree with all the parameters suggested here:

> par( mar=c(3,4,1,4), mgp=c(3,1,0)/1.7, las=1 )
> fp <- apc.frame( a.lab=seq(20,60,10),
+ a.tic=seq(10,60,5),
+ cp.lab=seq(1900,2000,20),
+ cp.tic=seq(1885,2000,5),
+ r.lab=c(c(1,2,5)/10,1,2,5,10),
+ r.tic=c(1:9/10,1:10),
+ gap=8,
+ rr.ref=1)
> apc.lines( tapc, ci=TRUE, col="blue", frame.par=fp )
> apc.lines( tac.p, ci=TRUE, col="red", frame.par=fp )

8. Try to repeat the exercise using period as the primary timescale, and add this to the
plot as well.

What is revealed by looking at the data this way?

2.12 Histological subtypes of testis cancer

The purpose of this exercise is to handle two different rates that both obey (possibly
different) age-period-cohort models. The analysis shall compare rates of seminoma and
non-seminoma testis cancer.

1. Read the testis cancer data:

> th <- read.table( "../data/testis-hist.txt", header=T )
> str( th )

2. Restrict the dataset to seminomas (hist=1) and non-seminomas (hist=2), and
define hist as factor with two levels, suitably named. Also restrict to the age-range
relevant for testis cancer analysis, 15–65 years.

3. Make the four classical rate-plots:

(a) for data grouped in 5× 5year classes of age and period.

(b) for data grouped in 3× 3year classes of age and period.
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4. Fit separate APC-models for the two histological types of testis cancer, and plot
them together in a single plot.

5. Check whether age, period or cohort effects are similar between the two types:

(a) by testing formally the interactions

(b) by plotting the relevant interactions and visually inspecting whether they are
alike.

What restrictions are imposed on the parameters for the two models? What
restrictions are imposed on the parameters for the rate-ratio?

6. Define a sensible model for description of the two histological types, and report:

(a) The rates for one type

(b) The rate-ratio between the types

7. Conlude on the data and graphs.

2.13 Lung cancer: the sex difference

The purpose of this exercise to analyse lung cancer incidence rates in Danish men and
women and make comparisons of the effects between the two.

1. Read the lung cancer dataset from the

> lung <- read.table("../data/apc-Lung.txt", header=T )
> str( lung )
> summary( lung )

These data are tabulated by sex, age, period and cohort in 1-year classes, i.e. each
observation corresponds to a triangle in the Lexis diagram.

2. The variables A, P and C are the left endpoints of the tabulation intervals. In order to
be able to properly analyse data, compute the correct midpoints for each of the
triangles.

3. Produce a suitable overview of the rates using the rateplot on suitably grouped
rates. Make the plots separately for men and women.

4. Fit an age-period-cohort model for male and female rates separately. Plot them in
separate displays using apc.plot. Use apc.frame to set up a display that will
accomodate plotting of both sets of estimates.

5. Can you find a way of estimating the ratios of rates and the ratios of RRs between
the two sexes (including confidence intervals for them) using only the apc objects for
males and females separately?
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6. Use the function ns (from the splines package) to create model matrices describing
age, period and cohort effects respectively. Then use the function detrend to remove
intercept and trend from the cohort and period terms.

Fit the age-period-cohort model with these terms separately for each sex, for example
by introducing an interaction between sex and all the variables (remember that sex
must be a factor for this to be meaningful).

7. Are there any of the effects that possibly could be assumed to be similar between
males and females?

8. Fit a model where the period effect is assumed to be identical between males and
females and plot the resulting fit for the male/female rate-ratios, and comment on
this.

2.14 Prediction of breast cancer rates

1. Read the breast cancer data from the text file and take a look at it for example by:

> breast <- read.table("../data/breast.txt", header=T )
> str( breast )
> summary( breast )

These data are tabulated be age, period and cohort, i.e. each observation correspond
to a triangle in the Lexis diagram.

2. The variables A, P and C are the left endpoints of the tabulation intervals. In order to
be able to proper analyse data, compute the correct midpoints for each of the
triangles.

3. Produce a suitable overview of the rates using the rateplot on suitably grouped
rates.

4. Fit the age-period-cohort model with natural splines and plot it in a
age-period-cohort display. Adjust the display to proper quality using apc.frame.

5. Based on the model fitted, make a prediction of future rates of breast cancer:

• at year 2020.

• in the 1960 generation.

Use extensions of the estimated period and cohort effects through the last point and
a point 30 years earlier. Try also to see how using a distance of 40 and 20 years work
too.

As a start, add the prediction of the period and cohort effects to the plot of the
effects.

You will need to look into the single components of the apc object from apc.fit, and
you should take a look at the function approx for linear interpolation.
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6. Now use predictions of the period- and cohort effects based on the 30-year differences
to make predictions of cross-sectional rates in 2020 and of the (longitudinal) rates in
the 1960 cohort.

Most likely you will need to compute extrapolated values for the period- and
cohort-effects anew.

Show the predicted rates in a plot.



Chapter 3

Solutions to exercises

3.1 Regression, linear algebra and projection

This exercise is aimed at reminding you about the linear algebra behind linear models.
Therefore we use artificial data, that we generate on the fly. And hence you will not get the
same results when you run this on your own computer.

1. First we generate a continuous variable x, and a factor f on 3 levels, each with 100
units, say:

> x <- runif(100,20,50)
> f <- factor( sample(letters[1:3],100,replace=T) )
> x

[1] 24.10397 22.34232 32.04774 45.86181 33.06499 43.93338 33.76696 40.00161
[9] 30.39386 46.57370 21.89188 44.43169 42.41620 31.21647 27.06847 35.84046
[17] 29.58382 34.45157 30.46682 24.97252 43.93036 20.62591 31.13731 25.87754
[25] 36.59102 23.73028 28.88272 25.74771 40.63516 44.18673 24.89159 46.36958
[33] 22.75197 27.46995 44.06038 38.28532 36.74227 29.32073 49.09018 37.22029
[41] 35.09558 48.74621 38.85967 43.65416 49.82889 45.74206 38.25419 28.92522
[49] 26.92406 20.02602 30.49847 23.78427 21.83220 44.76990 32.36798 26.67270
[57] 49.42784 24.13522 20.01124 38.65118 49.43878 23.95820 28.78340 38.20684
[65] 42.15657 38.18511 33.15108 33.60525 35.55412 37.29789 45.60368 32.05936
[73] 44.85105 24.96006 20.08720 40.25447 42.69426 36.14511 47.27412 21.72982
[81] 24.74991 44.22257 29.27562 32.15164 33.55031 26.48700 25.88570 24.89421
[89] 46.71906 43.63474 33.52461 32.31005 49.71857 31.13442 47.30515 48.81089
[97] 41.70477 30.37612 28.09355 38.04100

> table( f )

f
a b c
38 30 32

Then we generate a response variable y by some function (the exact shape is
immaterial):

> y <- 0.2*x + 0.02*(x-35)^2 + 3*as.integer(f) + rnorm(100,0,1)
> plot( x, y, col=f, pch=16 )

32
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2. Now we fit the model generating the data to the generated dataset using lm:

> mm <- lm( y ~ x + I(x^2) + f )
> summary( mm )

Call:
lm(formula = y ~ x + I(x^2) + f)

Residuals:
Min 1Q Median 3Q Max

-1.93473 -0.62667 -0.05771 0.57176 2.28158

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.067812 1.533334 17.00 <2e-16
x -1.100387 0.089843 -12.25 <2e-16
I(x^2) 0.018417 0.001269 14.51 <2e-16
fb 3.540357 0.210779 16.80 <2e-16
fc 6.026376 0.207284 29.07 <2e-16

Residual standard error: 0.8567 on 95 degrees of freedom
Multiple R-squared: 0.938, Adjusted R-squared: 0.9353
F-statistic: 359.1 on 4 and 95 DF, p-value: < 2.2e-16

We can briefly show the data and the fitted values:

> plot( x, y, col=f, pch=16 )
> points( x, fitted(mm), col=f, pch=16, cex=2 )

3. To verify that you get the same results using the matrix formulae from elementary
regression, you will first have to generate the design matrix:

> X <- cbind( 1, x, x^2, f=="b", f=="c" )

Recall that the matrix formula for the estimate of the parameter vector is:

β̂ = (X ′X)−1X ′y

To make this calculation explicitly we use the transpose t() and the matrix inversion
solve() functions, as well as the matrix multiplication operator %*%.

The explicit calculation then gives the same results as the fitting of the linear model:

> bb <- solve( t(X) %*% X ) %*% t(X) %*% y
> cbind( bb, coef(mm) )

[,1] [,2]
26.06781159 26.06781159

x -1.10038742 -1.10038742
0.01841652 0.01841652
3.54035725 3.54035725
6.02637590 6.02637590

4. We can also verify the the residuals y −Xβ̂ are orthogonal to the columns of the
model matrix X, bar small rounding errors.

> res <- y - fitted(mm)
> res %*% X
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Figure 3.1: Generated data and fitted values; coloring correspond to factor levels.

x
[1,] 1.24345e-14 4.424343e-13 1.651917e-11 0 5.329071e-15
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3.2 Reparametrization of models

This exercise is aimed at showing how to reparametrize a model: Suppose you have a
model parametrized by the linear predictor Xβ, but that you really wanted the
parametrization Aγ, where the columns of X and A span the same linear space.

So Xβ = Aγ, and we assume that both X and A are of full rank,
dim(X) = dim(A) = n× p, say.

We want to find γ given that we know Xβ and that Xβ = Aγ. Since we have that
p < n, we have that A−A = I, by the properties of G-inverses, and hence:

γ = A−Aγ = A−Xβ

1. First we generate a dataset with a response that is normally distributed in three
groups, and then fit the model using the “usual” parametrization:

> f <- factor( sample(letters[1:3],20,replace=T) )
> y <- 5 + 2*as.integer(f) + rnorm(20,0,1)
> mm <- lm( y ~ f )
> library( Epi )
> ci.lin( mm )

Estimate StdErr z P 2.5% 97.5%
(Intercept) 6.848135 0.6092572 11.240139 0.000000e+00 5.6540131 8.042257
fb 1.708847 0.6811702 2.508692 1.211789e-02 0.3737775 3.043916
fc 3.365316 0.7706561 4.366819 1.260689e-05 1.8548578 4.875774

2. Set we up the model matrix X for this model, and verify that we get the same results
by entering X as regression in lm. Note that R cannot automatically know what is in
the matrix so the default is to add an intercept. But the intercept is already in the
matrix, so we must take it out of the model:

> ( X <- cbind( 1, f=="b", f=="c" ) )

[,1] [,2] [,3]
[1,] 1 0 1
[2,] 1 0 1
[3,] 1 1 0
[4,] 1 1 0
[5,] 1 0 1
[6,] 1 1 0
[7,] 1 1 0
[8,] 1 0 0
[9,] 1 1 0
[10,] 1 0 0
[11,] 1 1 0
[12,] 1 1 0
[13,] 1 1 0
[14,] 1 1 0
[15,] 1 1 0
[16,] 1 0 1
[17,] 1 0 1
[18,] 1 1 0
[19,] 1 0 0
[20,] 1 1 0



36 3.2 Reparametrization of models Solutions to exercises

> ci.lin( lm( y ~ X-1 ) )

Estimate StdErr z P 2.5% 97.5%
X1 6.848135 0.6092572 11.240139 0.000000e+00 5.6540131 8.042257
X2 1.708847 0.6811702 2.508692 1.211789e-02 0.3737775 3.043916
X3 3.365316 0.7706561 4.366819 1.260689e-05 1.8548578 4.875774

3. If we want a parametrization with the last level as reference instead, we could easily
convert the parameters, but we shall use the formulae from above to do it:

> library( MASS )
> ( A <- cbind( 1, f=="a", f=="b" ) )

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 1 0 0
[3,] 1 0 1
[4,] 1 0 1
[5,] 1 0 0
[6,] 1 0 1
[7,] 1 0 1
[8,] 1 1 0
[9,] 1 0 1
[10,] 1 1 0
[11,] 1 0 1
[12,] 1 0 1
[13,] 1 0 1
[14,] 1 0 1
[15,] 1 0 1
[16,] 1 0 0
[17,] 1 0 0
[18,] 1 0 1
[19,] 1 1 0
[20,] 1 0 1

> ginv(A) %*% X

[,1] [,2] [,3]
[1,] 1.000000e+00 6.069618e-16 1
[2,] -9.570286e-17 1.520695e-16 -1
[3,] 6.938894e-17 1.000000e+00 -1

> ginv(A) %*% X %*% ci.lin( mm )[,1]

[,1]
[1,] 10.213451
[2,] -3.365316
[3,] -1.656469

4. Finally we can verify that you get the results you expect:

> ( X <- cbind( 1, f=="b", f=="c" ) )
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[,1] [,2] [,3]
[1,] 1 0 1
[2,] 1 0 1
[3,] 1 1 0
[4,] 1 1 0
[5,] 1 0 1
[6,] 1 1 0
[7,] 1 1 0
[8,] 1 0 0
[9,] 1 1 0
[10,] 1 0 0
[11,] 1 1 0
[12,] 1 1 0
[13,] 1 1 0
[14,] 1 1 0
[15,] 1 1 0
[16,] 1 0 1
[17,] 1 0 1
[18,] 1 1 0
[19,] 1 0 0
[20,] 1 1 0

> ( A <- cbind( 1, f=="a", f=="b" ) )

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 1 0 0
[3,] 1 0 1
[4,] 1 0 1
[5,] 1 0 0
[6,] 1 0 1
[7,] 1 0 1
[8,] 1 1 0
[9,] 1 0 1
[10,] 1 1 0
[11,] 1 0 1
[12,] 1 0 1
[13,] 1 0 1
[14,] 1 0 1
[15,] 1 0 1
[16,] 1 0 0
[17,] 1 0 0
[18,] 1 0 1
[19,] 1 1 0
[20,] 1 0 1

> ginv(A) %*% X %*% coef( lm( y ~ f ) )

[,1]
[1,] 10.213451
[2,] -3.365316
[3,] -1.656469

> coef( lm( y ~ relevel(f,3) ) )

(Intercept) relevel(f, 3)a relevel(f, 3)b
10.213451 -3.365316 -1.656469
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5. Try to obtain the conversion from the parametrization with an intercept and two
contrasts to the parametrization with a separate level in each group by constructing
the matrices using the model.matrix function.

> ( X <- model.matrix( ~f ) )

(Intercept) fb fc
1 1 0 1
2 1 0 1
3 1 1 0
4 1 1 0
5 1 0 1
6 1 1 0
7 1 1 0
8 1 0 0
9 1 1 0
10 1 0 0
11 1 1 0
12 1 1 0
13 1 1 0
14 1 1 0
15 1 1 0
16 1 0 1
17 1 0 1
18 1 1 0
19 1 0 0
20 1 1 0
attr(,"assign")
[1] 0 1 1
attr(,"contrasts")
attr(,"contrasts")$f
[1] "contr.treatment"

> ( A <- model.matrix( ~f-1 ) )

fa fb fc
1 0 0 1
2 0 0 1
3 0 1 0
4 0 1 0
5 0 0 1
6 0 1 0
7 0 1 0
8 1 0 0
9 0 1 0
10 1 0 0
11 0 1 0
12 0 1 0
13 0 1 0
14 0 1 0
15 0 1 0
16 0 0 1
17 0 0 1
18 0 1 0
19 1 0 0
20 0 1 0
attr(,"assign")
[1] 1 1 1
attr(,"contrasts")
attr(,"contrasts")$f
[1] "contr.treatment"



Age-Period-Cohort models 3.2 Reparametrization of models 39

> ginv(A) %*% X

(Intercept) fb fc
[1,] 1 0.000000e+00 0
[2,] 1 1.000000e+00 0
[3,] 1 2.103366e-16 1

The essences of these calculations are:

• Given that you have a set of fitted values in a model (in casu ŷ = Xβ) and you want
the parameter estimates you would get if you had used the model matrix A. Then
they are γ = A−ŷ = A−Xβ.

• Given that you have a set of parameters β, from fitting a model with design matrix
X, and you would like the parameters γ, you would have got had you used the model
matrix A. Then they are γ = A−Xβ.
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3.3 Danish prime ministers

The following table shows all Danish prime ministers in office since the war. They are
ordered by the period in office, hence some appear twice. Entry end exit refer to the office
of prime minister. A missing date of death means that the person was alive at the end of
2008.

Name Birth Death Entry Exit

Vilhelm Buhl 16/10/1881 18/12/1954 05/05/1945 07/11/1945
Knud Kristensen 26/10/1880 29/09/1962 07/11/1945 13/11/1947
Hans Hedtoft 21/04/1903 29/01/1955 13/11/1947 30/10/1950
Erik Eriksen 20/11/1902 07/10/1972 30/10/1950 30/09/1953
Hans Hedtoft 21/04/1903 29/01/1955 30/09/1953 29/01/1955
H C Hansen 08/11/1906 19/02/1960 01/02/1955 19/02/1960
Viggo Kampmann 21/07/1910 03/06/1976 21/02/1960 03/09/1962
Jens Otto Kragh 15/09/1914 22/06/1978 03/09/1962 02/02/1968
Hilmar Baunsgaard 26/02/1920 30/06/1989 02/02/1968 11/10/1971
Jens Otto Kragh 15/09/1914 22/06/1978 11/10/1971 05/10/1972
Anker Jorgensen 13/07/1922 . 05/10/1972 19/12/1973
Poul Hartling 14/08/1914 30/04/2000 19/12/1973 13/02/1975
Anker Jorgensen 13/07/1922 . 13/02/1975 10/09/1982
Poul Schlüter 03/04/1929 . 10/09/1982 25/01/1993
Poul Nyrup Rasmussen 15/06/1943 . 25/01/1993 27/11/2001
Anders Fogh Rasmussen 26/01/1953 . 27/11/2001 05/04/2009
Lars Løkke Rasmussen 15/05/1964 . 05/04/2009 04/03/2010

The data in the table can be found in the file pm-dk.txt.

> st <- read.table( "../data/pm-dk.txt", header=T, as.is=T,
+ na.strings="." )
> st

Name birth death entry exit
1 Vilhelm Buhl 16/10/1881 18/12/1954 05/05/1945 07/11/1945
2 Knud Kristensen 26/10/1880 29/09/1962 07/11/1945 13/11/1947
3 Hans Hedtoft 21/04/1903 29/01/1955 13/11/1947 30/10/1950
4 Erik Eriksen 20/11/1902 07/10/1972 30/10/1950 30/09/1953
5 Hans Hedtoft 21/04/1903 29/01/1955 30/09/1953 29/01/1955
6 H C Hansen 08/11/1906 19/02/1960 01/02/1955 19/02/1960
7 Viggo Kampmann 21/07/1910 03/06/1976 21/02/1960 03/09/1962
8 Jens Otto Krag 15/09/1914 22/06/1978 03/09/1962 18/02/1968
9 Hilmar Baunsgaard 26/02/1920 30/06/1989 18/02/1968 09/10/1971
10 Jens Otto Krag 15/09/1914 22/06/1978 09/10/1971 05/10/1972
11 Anker Jørgensen 13/07/1922 <NA> 05/10/1972 18/12/1973
12 Poul Hartling 14/08/1914 30/04/2000 18/12/1973 13/02/1975
13 Anker Jørgensen 13/07/1922 <NA> 13/02/1975 10/09/1982
14 Poul Schlüter 03/04/1929 <NA> 10/09/1982 25/01/1993
15 Poul Nyrup Rasmussen 15/06/1943 <NA> 25/01/1993 27/11/2001
16 Anders Fogh Rasmussen 26/01/1953 <NA> 27/11/2001 05/04/2009
17 Lars Løkke Rasmussen 15/05/1964 <NA> 05/04/2009 <NA>

> str( st )
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'data.frame': 17 obs. of 5 variables:
$ Name : chr "Vilhelm Buhl" "Knud Kristensen" "Hans Hedtoft" "Erik Eriksen" ...
$ birth: chr "16/10/1881" "26/10/1880" "21/04/1903" "20/11/1902" ...
$ death: chr "18/12/1954" "29/09/1962" "29/01/1955" "07/10/1972" ...
$ entry: chr "05/05/1945" "07/11/1945" "13/11/1947" "30/10/1950" ...
$ exit : chr "07/11/1945" "13/11/1947" "30/10/1950" "30/09/1953" ...
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Figure 3.2: Lexis diagram of life lines of all post-war Danish prime ministers, from 30 years
of age.

1. Draw a Lexis diagram with life-lines of the persons.

> # Change the character variables with dates to fractional calendar
> # years
> for( i in 2:5 ) st[,i] <- cal.yr( as.Date( st[,i], format="%d/%m/%Y" ) )
> st$exit[nrow(st)] <- cal.yr(Sys.Date())
> # Attach the data for those still alive
> st$fail <- !is.na(st$death)
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> st[!st$fail,"death"] <- cal.yr(Sys.Date())
> st

Name birth death entry exit fail
1 Vilhelm Buhl 1881.792 1954.961 1945.340 1945.849 TRUE
2 Knud Kristensen 1880.820 1962.742 1945.849 1947.864 TRUE
3 Hans Hedtoft 1903.300 1955.076 1947.864 1950.827 TRUE
4 Erik Eriksen 1902.884 1972.765 1950.827 1953.745 TRUE
5 Hans Hedtoft 1903.300 1955.076 1953.745 1955.076 TRUE
6 H C Hansen 1906.851 1960.133 1955.084 1960.133 TRUE
7 Viggo Kampmann 1910.550 1976.420 1960.138 1962.671 TRUE
8 Jens Otto Krag 1914.704 1978.471 1962.671 1968.130 TRUE
9 Hilmar Baunsgaard 1920.152 1989.493 1968.130 1971.769 TRUE
10 Jens Otto Krag 1914.704 1978.471 1971.769 1972.760 TRUE
11 Anker Jørgensen 1922.528 2012.100 1972.760 1973.962 FALSE
12 Poul Hartling 1914.616 2000.327 1973.962 1975.117 TRUE
13 Anker Jørgensen 1922.528 2012.100 1975.117 1982.690 FALSE
14 Poul Schlüter 1929.253 2012.100 1982.690 1993.066 FALSE
15 Poul Nyrup Rasmussen 1943.451 2012.100 1993.066 2001.904 FALSE
16 Anders Fogh Rasmussen 1953.069 2012.100 2001.904 2009.258 FALSE
17 Lars Løkke Rasmussen 1964.368 2012.100 2009.258 2012.100 FALSE

> attach( st )

The following object(s) are masked from 'st (position 8)':

birth, death, entry, exit, fail, Name

> # Lexis object
> L <- Lexis( entry = list(per=birth),
+ exit = list(per=death,age=death-birth),
+ exit.status = fail,
+ data = st )
> # Plot Lexis diagram
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, xaxt="n" ) # Omit x-labels
> plot( L, xlim=c(1945,2010), ylim=c(32,88), lwd=3, las=1,grid=0:20*5, col="black",
+ xlab="Calendar time", ylab="Age" )
> points( L, pch=c(NA,16)[L$lex.Xst+1] )
> #put names of the prime ministers on the plot
> text( death, death-birth, Name, adj=c(1.05,-0.05), cex=0.7 )
> par( xaxt="s" )
> axis( side=1, at=seq(1950,2010,10) ) # x-labels at nice places

2. Mark with a different color the periods where they have been in office.

> # New Lexis object describing periods in an office
> # and lines added to a picture
> in_office <- c( rep(FALSE,nrow(st)-1), TRUE )
> st <- cbind( st, in_office )
> Lo <- Lexis( entry = list(per=entry),
+ exit = list(per=exit,age=exit-birth),
+ exit.status = in_office,
+ data = st )
> lines( Lo, lwd=3, las=1, col="red" )
> # the same may be plotted using command segments
> box()
> segments( birth, 0, death, death-birth, lwd=2 )
> segments( entry, entry-birth, exit, exit-birth, lwd=4, col="red" )



Age-Period-Cohort models 3.3 Danish prime ministers 43

3. Draw the line representing age 50 years.

> abline( h=50 )

4. How many 50th birthdays have been celebrated in office since the war?

> age_entry <- Lo$age
> age_exit <- Lo$age+Lo$lex.dur
> n_birthday<- sum( ( age_entry<50) & ( age_exit>50 ) )
> n_birthday

[1] 7

5. Draw the line representing 2 October 1972. (Why just that?)

> abline( v=cal.yr( "2/10/1972", format="%d/%m/%Y" ) )

6. How many present and former prime ministers were alive at 31st December 2008?

> alive <- (L$death >=2004)
> n_alive <- sum(alive)
> n_alive

[1] 6

> #Anker Jorgensen - 1 person has got 2 lex.id's
> levels( as.factor( subset( L$Name,alive==T ) ) )

[1] "Anders Fogh Rasmussen" "Anker Jørgensen" "Lars Løkke Rasmussen"
[4] "Poul Nyrup Rasmussen" "Poul Schlüter"

7. Which period(s) since the war has seen the maximal number of former post-war
prime ministers alive?

> # New Lexis object - since entry to the office to the death
> Ln <- Lexis( entry=list(per=entry), exit=list(per=death,age=death-entry),
+ exit.status=fail, data=st )
> ny <- 2008-1945
> n_alive <- vector( "numeric", ny )
> for (i in 1:ny)
+ {
+ alive <- ( (Ln$death >=(1944+i)) & (Ln$entry<=(1944+i)) )
+ n_alive[i] <- nlevels( as.factor( subset( Ln$Name, alive==T ) ) )
+ }

The maximal number of former post-war prime ministers alive was 5 in 1974-1976 3.3.

8. Mark the area in the diagram with person years lived by persons aged 50 to 70 in the
period 1 January 1970 through 1 January 1990.

> rect( 1970, 50, 1990, 70, lwd=2, border="green",col="lightgreen" )

9. Mark the area for the lifetime experience of those who were between 10 and 20 years
old in 1945.
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Figure 3.3: Number of former prime ministers alive.

> polygon( c(1955,2005,2005,1965,1955), c(30,80,70,30,30), lwd=2,
+ border="blue", col="lightblue" )
> # Now draw the Lexis diagram again on top of the shaded areas

The Lexis diagram with all the requested lines etc. is shown in figure 3.2 .

10. How many prime-minister-years have been spent time in each of these sets? And in
the intersection of them?

> # Prime-minister years lived by persons
> # aged 50 to 70 in the period 1 January 1970 through 1 January 1990.
> x1 <- splitLexis ( Lo ,breaks=c(0,50,70,100), time.scale="age" )
> x2 <- splitLexis ( x1, breaks=c(1900,1970,1990,2010), time.scale="per" )
> summary( x2 )

Transitions:
To



Age-Period-Cohort models 3.3 Danish prime ministers 45

From FALSE TRUE Records: Events: Risk time: Persons:
FALSE 26 1 27 1 66.75 17

Rates:
To

From FALSE TRUE Total
FALSE 0 0.01 0.01

> tapply( status(x2,"exit")==1, list( timeBand(x2,"age","left"),
+ timeBand(x2,"per","left") ), sum )

1900 1970 1990 2010
0 0 0 0 1
50 0 0 0 NA

> tapply( dur(x2), list( timeBand(x2,"age","left"),
+ timeBand(x2,"per","left") ), sum )

1900 1970 1990 2010
0 11.10198 0.1519507 2.291581 2.099932
50 13.54415 19.8480493 17.708419 NA

> # Computing the person-years in the 1925-35 cohort
> x3 <- subset( Lo , birth>1925 & birth<=1935 )
> summary( x3 )

Transitions:
To

From FALSE Records: Events: Risk time: Persons:
FALSE 1 1 0 10.38 1

Rates:
To

From FALSE Total
FALSE 0 0

> dur( x3 )

[1] 10.37645

> # Computing person years in the intersection
> x4 <- subset( x2 , birth>1925 & birth<=1935 )
> summary( x4 )

Transitions:
To

From FALSE Records: Events: Risk time: Persons:
FALSE 2 2 0 10.38 1

Rates:
To

From FALSE Total
FALSE 0 0
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> dur( x4 )

[1] 7.310062 3.066393

The number of person-years in office in ages 50-69 in the period 1979-1989 is 19.85.
The number of prime-minister-years in the 1925-35 cohort is 10.38. The intersection
of the two sets holds 7.31 person-years.
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3.4 Reading and tabulating data

The following exercise is aimed at tabulating and displaying the data typically involved in
age-period-cohort analysis.

1. Read the data in the file lung5-M.txt, and print the data. What does each line refer
to?

First we have read the data concerning the lung cancer tabulated in 5 years wide age
and period groups. Variables in a data set represent the Age group (A), Period (P),
number of cancer cases (D) and person-years (Y). Each line represents number of
cancer cases and person-years at risk in for a specific age group and period.

> lung <- read.table( "../data/lung5-M.txt", header=T )
> head(lung)

A P D Y
1 40 1943 80 694046.5
2 40 1948 81 754769.5
3 40 1953 73 769440.7
4 40 1958 99 749264.5
5 40 1963 82 757240.0
6 40 1968 97 709558.5

> attach( lung )

2. Print the no. cases in a nice tabular form, and likewise with the person-years. Is
there someything special about the last period?

Table D_table_nice represents number of cancer cases in a tabulater form. Similarly,
table Y_table_nice represents person-years in a tabulater form. While the
person-years at risk are constant or slightly increasing for previous periods, in the last
period 1993 the person-years and number of cases (for age groups older then 55 years
and even more for men older then 65) are slightly smaller. These were born during
and before the the second-world war.

> D_table_nice <- stat.table(index=list(A,P), sum(D), data=lung, margin=T )
> print( D_table_nice, digits=c(sum=0) )

--------------------------------------------------------------------------------------------------------
------------------------------------------------P------------------------------------------------

A 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993 Total
--------------------------------------------------------------------------------------------------------
40 80 81 73 99 82 97 86 90 116 149 91 1044
45 135 163 208 226 252 284 263 251 257 265 251 2555
50 197 292 442 508 560 580 657 608 591 493 446 5374
55 261 404 596 772 1052 1075 1115 1218 1090 995 696 9274
60 213 394 577 955 1342 1682 1654 1826 1885 1497 1113 13138
65 141 273 491 868 1235 1856 2136 2231 2188 2193 1485 15097
70 110 215 300 596 976 1448 1924 2283 2293 2157 1691 13993
75 54 126 167 320 514 860 1213 1559 1824 1640 1221 9498
80 20 57 87 157 220 390 573 753 881 837 716 4691
85 7 10 23 48 72 110 176 213 307 286 262 1514

Total 1218 2015 2964 4549 6305 8382 9797 11032 11432 10512 7972 76178
--------------------------------------------------------------------------------------------------------
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> Y_table_nice<-stat.table( index=list(A,P), sum(Y), data=lung, margin=T )
> print( Y_table_nice, digits=c(sum=2) )

---------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------P-------------------------------------------------------------------

A 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993 Total
---------------------------------------------------------------------------------------------------------------------------------------------
40 694046.50 754769.50 769440.67 749264.50 757240.00 709558.50 695210.17 756263.00 941402.00 1026461.33 752950.17 8606606.34
45 622256.67 676718.00 738290.50 754357.67 737405.67 747054.83 697976.33 681063.83 741553.17 924431.83 821389.83 8142498.33
50 538964.17 600506.33 653867.50 715819.83 733590.17 717677.33 724880.33 675371.50 659498.33 719660.00 700860.17 7440695.66
55 471016.00 512338.00 571270.67 622413.33 681097.00 699103.17 683242.67 686939.50 640796.83 626481.33 544088.17 6738786.67
60 403172.50 435098.33 474197.50 528106.33 573204.83 627036.33 644142.67 627509.17 630384.50 590669.00 463087.83 5996608.99
65 328690.50 357694.83 386083.00 419562.00 463265.17 501020.00 548399.50 564173.50 548586.17 553420.50 421467.67 5092362.84
70 230090.83 269235.83 294786.67 317388.00 341288.33 373577.00 404348.83 442925.00 458828.33 448996.33 365932.67 3947397.82
75 140110.67 166641.83 195729.83 214930.33 228793.50 245932.00 268415.17 290162.33 319152.67 336461.67 262910.17 2669240.17
80 67778.83 80587.00 98561.33 116116.67 125697.33 136646.17 150131.83 163433.00 175767.17 196465.83 168011.67 1479196.83
85 24656.17 28463.83 34280.50 42136.33 49263.33 56018.17 63742.67 71226.50 77621.50 85376.67 74610.50 607396.17

Total 3520782.84 3882053.48 4216508.17 4480094.99 4690845.33 4813623.50 4880490.17 4959067.33 5193590.67 5508424.49 4575308.85 50720789.82
---------------------------------------------------------------------------------------------------------------------------------------------

3. Compute the empirical rates, and print them in a table too.

Table R_table_nice represents age-specific incidence rate per 100 000 person-years
in a tabulater form. Despite the change in person-years, the age-specific rates for
period 1993 do not diverge from the rates of previous ones.

> R_table_nice <- stat.table( index=list(A,P), list(Rate=ratio(D,Y,100000)),
+ data=lung, margin=T )
> print( R_table_nice, digits=c(sum=2) )

--------------------------------------------------------------------------------------------------------
------------------------------------------------P------------------------------------------------

A 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993 Total
--------------------------------------------------------------------------------------------------------
40 11.53 10.73 9.49 13.21 10.83 13.67 12.37 11.90 12.32 14.52 12.09 12.13
45 21.70 24.09 28.17 29.96 34.17 38.02 37.68 36.85 34.66 28.67 30.56 31.38
50 36.55 48.63 67.60 70.97 76.34 80.82 90.64 90.02 89.61 68.50 63.64 72.22
55 55.41 78.85 104.33 124.03 154.46 153.77 163.19 177.31 170.10 158.82 127.92 137.62
60 52.83 90.55 121.68 180.83 234.12 268.25 256.78 290.99 299.02 253.44 240.34 219.09
65 42.90 76.32 127.17 206.88 266.59 370.44 389.50 395.45 398.84 396.26 352.34 296.46
70 47.81 79.86 101.77 187.78 285.98 387.60 475.83 515.44 499.75 480.40 462.11 354.49
75 38.54 75.61 85.32 148.89 224.66 349.69 451.91 537.29 571.51 487.43 464.42 355.83
80 29.51 70.73 88.27 135.21 175.02 285.41 381.66 460.74 501.23 426.03 426.16 317.13
85 28.39 35.13 67.09 113.92 146.15 196.36 276.11 299.05 395.51 334.99 351.16 249.26

Total 34.59 51.91 70.30 101.54 134.41 174.13 200.74 222.46 220.12 190.83 174.24 150.19
--------------------------------------------------------------------------------------------------------

We can also get the same tabulation by hand, using the tapply function which is
part of the standard R:

> cat( "tabulate-sol" )

tabulate-sol
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> D_table <- with( lung, tapply( D, list(A,P), sum ) )
> Y_table <- with( lung, tapply( Y, list(A,P), sum ) )
> R_table <- D_table/Y_table*(10^5)

4. Make the four classical graphs of the data. Consider whether a log-scale for the y-axis
is appropriate. Think about where on the x-axis each age-class is located.

(a) Age-specific rates for each period. (Rates from the same period connected).

> rateplot( R_table, which=c("AP"), ann=TRUE )

(b) Age-specific rates for each cohort. (Rates from the same cohort connected).

> rateplot( R_table, which=c("AC"), ann=TRUE )

(c) Rates for each age-class versus period. (Rates from the same age-class
connected).

> rateplot( R_table, which=c("PA"), ann=TRUE )

(d) Rates for each age-class versus cohort. (Rates from the same age-class
connected).

> rateplot( R_table, which=c("CA"), ann=TRUE )

5. How would each of these curves look if:

(a) age-specific rates did not change at all by time?

When age-specific rates did not change at all by time, the age-specific rates are
identical for all periods and cohorts. The period and cohort effects are
represented by constant horizontal lines. Fig.3.5

> # age-specific rates remain still the same as in period 1943
> R_table_no_change <- matrix( R_table[,1], dim(R_table)[1], dim(R_table)[2] )
> colnames( R_table_no_change ) <- colnames( R_table )
> rownames( R_table_no_change ) <- rownames( R_table )
> R_table_no_change

1943 1948 1953 1958 1963 1968 1973 1978
40 11.52661 11.52661 11.52661 11.52661 11.52661 11.52661 11.52661 11.52661
45 21.69523 21.69523 21.69523 21.69523 21.69523 21.69523 21.69523 21.69523
50 36.55159 36.55159 36.55159 36.55159 36.55159 36.55159 36.55159 36.55159
55 55.41213 55.41213 55.41213 55.41213 55.41213 55.41213 55.41213 55.41213
60 52.83098 52.83098 52.83098 52.83098 52.83098 52.83098 52.83098 52.83098
65 42.89750 42.89750 42.89750 42.89750 42.89750 42.89750 42.89750 42.89750
70 47.80721 47.80721 47.80721 47.80721 47.80721 47.80721 47.80721 47.80721
75 38.54096 38.54096 38.54096 38.54096 38.54096 38.54096 38.54096 38.54096
80 29.50774 29.50774 29.50774 29.50774 29.50774 29.50774 29.50774 29.50774
85 28.39046 28.39046 28.39046 28.39046 28.39046 28.39046 28.39046 28.39046

1983 1988 1993
40 11.52661 11.52661 11.52661
45 21.69523 21.69523 21.69523
50 36.55159 36.55159 36.55159
55 55.41213 55.41213 55.41213
60 52.83098 52.83098 52.83098
65 42.89750 42.89750 42.89750
70 47.80721 47.80721 47.80721
75 38.54096 38.54096 38.54096
80 29.50774 29.50774 29.50774
85 28.39046 28.39046 28.39046
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Figure 3.4: Four rate plots for lung cancer data. Top left: Age on x axis, the rates correspond-
ing to same period are connected by lines. Top right: Age on x axis, the rates corresponding
to same cohorts are connected by lines. Bottom left: Period on x axis, the rates correspond-
ing to same age groups are connected by lines. Bottom right: Cohort on x axis, the rates
corresponding to same age groups are connected by lines.

> par( mfrow=c(2,2) )
> rateplot( R_table_no_change, log.ax="" )

(b) age-specific rates were only influenced by period?

When age-specific rates are influenced only by period, the age-specific rates are
parallel for all periods. The period effects are represented by parallel lines.
Fig.3.6.

> #age-specific rates are only influence by period
> step <- 2
> change_p <- matrix( rep(seq(1,11*step,step),10),10,11, byrow=T )
> change_p
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Figure 3.5: Four rate plots for data with no period and cohort effect. Top left: Age on x axis,
the rates corresponding to same period are connected by lines. Top right: Age on x axis, the
rates corresponding to same cohorts are connected by lines. Bottom left: Period on x axis,
the rates corresponding to same age groups are connected by lines. Bottom right: Cohort on
x axis, the rates corresponding to same age groups are connected by lines.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] 1 3 5 7 9 11 13 15 17 19 21
[2,] 1 3 5 7 9 11 13 15 17 19 21
[3,] 1 3 5 7 9 11 13 15 17 19 21
[4,] 1 3 5 7 9 11 13 15 17 19 21
[5,] 1 3 5 7 9 11 13 15 17 19 21
[6,] 1 3 5 7 9 11 13 15 17 19 21
[7,] 1 3 5 7 9 11 13 15 17 19 21
[8,] 1 3 5 7 9 11 13 15 17 19 21
[9,] 1 3 5 7 9 11 13 15 17 19 21
[10,] 1 3 5 7 9 11 13 15 17 19 21

> R_table_p <- R_table_no_change + change_p
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> colnames( R_table_p ) <- colnames( R_table )
> rownames( R_table_p ) <- rownames( R_table )
> R_table_p

1943 1948 1953 1958 1963 1968 1973 1978
40 12.52661 14.52661 16.52661 18.52661 20.52661 22.52661 24.52661 26.52661
45 22.69523 24.69523 26.69523 28.69523 30.69523 32.69523 34.69523 36.69523
50 37.55159 39.55159 41.55159 43.55159 45.55159 47.55159 49.55159 51.55159
55 56.41213 58.41213 60.41213 62.41213 64.41213 66.41213 68.41213 70.41213
60 53.83098 55.83098 57.83098 59.83098 61.83098 63.83098 65.83098 67.83098
65 43.89750 45.89750 47.89750 49.89750 51.89750 53.89750 55.89750 57.89750
70 48.80721 50.80721 52.80721 54.80721 56.80721 58.80721 60.80721 62.80721
75 39.54096 41.54096 43.54096 45.54096 47.54096 49.54096 51.54096 53.54096
80 30.50774 32.50774 34.50774 36.50774 38.50774 40.50774 42.50774 44.50774
85 29.39046 31.39046 33.39046 35.39046 37.39046 39.39046 41.39046 43.39046

1983 1988 1993
40 28.52661 30.52661 32.52661
45 38.69523 40.69523 42.69523
50 53.55159 55.55159 57.55159
55 72.41213 74.41213 76.41213
60 69.83098 71.83098 73.83098
65 59.89750 61.89750 63.89750
70 64.80721 66.80721 68.80721
75 55.54096 57.54096 59.54096
80 46.50774 48.50774 50.50774
85 45.39046 47.39046 49.39046

> par( mfrow=c(2,2) )
> rateplot( R_table_p, log.ax="" )

(c) age-specific rates were only influenced by cohort?

The situation when age-specific rates are influenced only by cohort is
demonstrated at Fig.3.7

> #age-specific rates are only influence by cohort
> nr <- nrow( R_table )
> nc <- 10
> p <- c( rep(NA,nc ), R_table[,1] )
> np <- length( p )
> R_table_c <- cbind(p[(np-nr+1):np],p[(np-nr):(np-1)],p[(np-nr-1):(np-2)],
+ p[(np-nr-2):(np-3)],p[(np-nr-3):(np-4)],p[(np-nr-4):(np-5)],
+ p[(np-nr-5):(np-6)],p[(np-nr-6):(np-7)],p[(np-nr-7):(np-8)],
+ p[(np-nr-8):(np-9)],p[(np-nr-9):(np-10)]
+ )
> colnames( R_table_c ) <- colnames( R_table )
> rownames( R_table_c ) <- rownames( R_table )
> R_table_c

1943 1948 1953 1958 1963 1968 1973 1978
40 11.52661 NA NA NA NA NA NA NA
45 21.69523 11.52661 NA NA NA NA NA NA
50 36.55159 21.69523 11.52661 NA NA NA NA NA
55 55.41213 36.55159 21.69523 11.52661 NA NA NA NA
60 52.83098 55.41213 36.55159 21.69523 11.52661 NA NA NA
65 42.89750 52.83098 55.41213 36.55159 21.69523 11.52661 NA NA
70 47.80721 42.89750 52.83098 55.41213 36.55159 21.69523 11.52661 NA
75 38.54096 47.80721 42.89750 52.83098 55.41213 36.55159 21.69523 11.52661
80 29.50774 38.54096 47.80721 42.89750 52.83098 55.41213 36.55159 21.69523
85 28.39046 29.50774 38.54096 47.80721 42.89750 52.83098 55.41213 36.55159

1983 1988 1993
40 NA NA NA
45 NA NA NA
50 NA NA NA
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Figure 3.6: Four rate plots for data with an effect of period. Top left: Age on x axis, the
rates corresponding to same period are connected by lines. Top right: Age on x axis, the
rates corresponding to same cohorts are connected by lines. Bottom left: Period on x axis,
the rates corresponding to same age groups are connected by lines. Bottom right: Cohort on
x axis, the rates corresponding to same age groups are connected by lines.

55 NA NA NA
60 NA NA NA
65 NA NA NA
70 NA NA NA
75 NA NA NA
80 11.52661 NA NA
85 21.69523 11.52661 NA

> par( mfrow=c(2,2) )
> rateplot( R_table_c, log.ax="" )
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Figure 3.7: Four rate plots for data with an effect of cohort. Top left: Age on x axis, the
rates corresponding to same period are connected by lines. Top right: Age on x axis, the
rates corresponding to same cohorts are connected by lines. Bottom left: Period on x axis,
the rates corresponding to same age groups are connected by lines. Bottom right: Cohort on
x axis, the rates corresponding to same age groups are connected by lines.
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3.5 Rates and survival

1. Consider the following data:

1-4 Year of birth Year of death Age at death

1994 1995

1994 2,900 500 0
1993 120 130 1
1992 50 60 2
1991 45 55 3
1990 40 40 4

(a) Represent these data in a Lexis diagram.

Calendar time
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Figure 3.8: Deaths in age classes 0–4 for the birth cohorts 1990–94, and in age class 0 for
the cohorts 1991 and 1992. Fictitious data.
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The given data are shown in the Lexis-diagram in figure 3.8(left). Note that the
deaths given are only for one age class for each cohort, so there is no period with
complete death count.

(b) On the basis of these data, can you calculate the age-specific death rate for
two-year-olds (1m2) in 1994? If you can, do it. If you cannot, explain what
additional information you would need.

In order to be able to do so one would need the total number of deaths among
all two-year olds in 1994. But only the deaths in the 1992 cohort are known, not
those in the 1991 cohort. Further one would need to know the risk time in the
age-class in 1994. This could be estimated as the average of the number of
2-years olds at the beginning and end of 1994 if these numbers were available. If
the number of one-year olds at the beginning of 1994 and the number of
three-year olds at the end of 1994 were available a more sophisticated estimate
of the risk time would be available.

(c) On the basis of these data, can you calculate the probability of surviving from
age 2 to age 3 (1q2) in for the cohort born in 1992?

If you can, do it. If you cannot, explain what additional information you would
need.

It is not possible to compute the probability of surviving from age 2 to age 3 in
the 1992 cohort, because the number in this cohort that reach the age of 2 is not
known. This number would be the denominator in the fraction estimating the
probability where the numerator would be the number of deaths, 50 + 60 = 110.

2. Consider the following data:

• Live births during 1991: 142,000

• Number of infants born in 1991 who did not survive until the end of 1991: 2,900

• Number of infants born in 1991 who survived to the end of 1991, but did not
reach their first birthday: 500

• Live births during 1992: 138,000

• Number of infants born in 1992 who did not survive until the end of 1992: 2,600

• Number of infants born in 1992 who survived to the end of 1992, but did not
reach their first birthday: 450

(a) The data are represented on a Lexis diagram at figure 3.8 (right).

(b) Calculate the infant mortality rate (IMR) for 1992 under the assumption that
you were only able to observe events occurring in 1992, and that you did not
know the birth dates of infants dying during that year.

The infant mortality rate given that we only observe events during 1992, would
have to be computed on the assumption that birth rates were constant, i.e. the
number of births in 1991 and 1992 were the same. We would then observe the
one-year survival probability to be (500 + 2600)/138000 = 0.02246377, and
hence the IMR to be − log(1− 0.02246377) = 0.22720.
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Figure 3.9: Deaths in the cohorts 1991 and 1992. Fictitious data.

Alternatively we could argue that out of the initial 138000, 3100 dies, so a fair
bet on the risk time is 138000− 3100/2 = 136450, so the rate is estimated as
3100/136450 = 0.022719

(c) Same as above, except that now you do know the birth dates of infants dying
during 1992.

If we know the birth date of those dying during 1992 we get extra information
that enables us to produce a better estimate of the risk time. If we assume that
births occur uniformly over the year, the 138000− 2600 = 135400 survivors of
the 1992 cohort contribute on average 1/2 person-year. Assuming the 2600
deaths occur uniformly over the triangle, these will contribute 1/3 person-year
each1. By the same token the 500 deaths in the upper triangle also contribute
1/3 person year each. In order to get the contribution from those surviving
through the upper triangle we must again invoke the assumption of constancy of

1
∫ p=1

p=0

∫ a=p

a=0
2a da dp =

∫ p=1

p=0
a2 dp = 1/3
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birth and death rates and assume that 135400 0-year olds are alive at the
beginning of 1992, so 134900 survive, contributiong 134900/2 person years. Thus
the total risk time is:

135400/2 + 2600/3 + 134900/2 + 500/3 = 136183.3

giving an estimate of the infant mortality rate of 3100/136183.3 = 0.022763.

(d) Assume all data are known: Calculate the IMR.

If we assume all numbers are known, the last calculation must be updated with
the correct number of 0-year olds at the beginning of 1992,
142000− 2900 = 139100, giving 138600 survivors in the upper triangle:

135400/2 + 2600/3 + 138600/2 + 500/3 = 138033.3

giving an estimate of the infant mortality rate of 3100/138033.3 = 0.022458.

Thus we see that the annual variation in birth rates far outweighs the differenecs
between the various methodological approaches.

(e) What is the IMR for the 1992 birth cohort?

For the 1992 birth cohort we have two ways of proceeding:

• 2600 + 450 = 3050 out of 138000 die, thus the one-year survival probability
is 3050/138000 = 0.022101 and hence the infant mortality rate
− log(1− 0.022101) = 0.022349.

• The person-years can be calculated using the same arguments as above:

(138000− 2600)/2 + 2600/3 + (138000− 2600− 450)/2 + 450/3 = 136191.7

so the rate is estimated as 3050/136191.7 = 0.022395.



Age-Period-Cohort models 3.6 Age-period model 59

3.6 Age-period model

The following exercise is aimed at familiarizing you with the parametrization of the
age-period model. It will give you the opportunity explore how to extract and and plot
parameter estimates from models.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> head(lung)

A P D Y
1 40 1943 80 694046.5
2 40 1948 81 754769.5
3 40 1953 73 769440.7
4 40 1958 99 749264.5
5 40 1963 82 757240.0
6 40 1968 97 709558.5

> attach( lung )

The following object(s) are masked from 'ltri':

D, Y
The following object(s) are masked from 'lung (position 5)':

A, D, P, Y
The following object(s) are masked from 'lung (position 6)':

A, D, P, Y
The following object(s) are masked from 'lung (position 7)':

A, D, P, Y

> table( A )

A
40 45 50 55 60 65 70 75 80 85
11 11 11 11 11 11 11 11 11 11

> table( P )

P
1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993
10 10 10 10 10 10 10 10 10 10 10

The tables here shows the extent of the data aling the age and period axes, whereas
the next table shows the persons years. It is more conveniently rescaled to
person-millenia, rounded to one decimal:

> round( tapply( Y, list(A,P), sum )/1000, 1 )
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1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993
40 694.0 754.8 769.4 749.3 757.2 709.6 695.2 756.3 941.4 1026.5 753.0
45 622.3 676.7 738.3 754.4 737.4 747.1 698.0 681.1 741.6 924.4 821.4
50 539.0 600.5 653.9 715.8 733.6 717.7 724.9 675.4 659.5 719.7 700.9
55 471.0 512.3 571.3 622.4 681.1 699.1 683.2 686.9 640.8 626.5 544.1
60 403.2 435.1 474.2 528.1 573.2 627.0 644.1 627.5 630.4 590.7 463.1
65 328.7 357.7 386.1 419.6 463.3 501.0 548.4 564.2 548.6 553.4 421.5
70 230.1 269.2 294.8 317.4 341.3 373.6 404.3 442.9 458.8 449.0 365.9
75 140.1 166.6 195.7 214.9 228.8 245.9 268.4 290.2 319.2 336.5 262.9
80 67.8 80.6 98.6 116.1 125.7 136.6 150.1 163.4 175.8 196.5 168.0
85 24.7 28.5 34.3 42.1 49.3 56.0 63.7 71.2 77.6 85.4 74.6

2. We fit a Poisson model with effects of age (A) and period (P) as class variables:

> ap.1 <- glm( D ~ factor(A) + factor(P) + offset(log(Y)),
+ family=poisson, data=lung )
> summary( ap.1 )

Call:
glm(formula = D ~ factor(A) + factor(P) + offset(log(Y)), family = poisson,

data = lung)

Deviance Residuals:
Min 1Q Median 3Q Max

-10.400 -3.728 -0.984 3.685 11.203

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.34235 0.04192 -246.71 <2e-16
factor(A)45 0.95258 0.03673 25.93 <2e-16
factor(A)50 1.78237 0.03383 52.69 <2e-16
factor(A)55 2.41412 0.03265 73.94 <2e-16
factor(A)60 2.86259 0.03216 89.01 <2e-16
factor(A)65 3.15159 0.03201 98.47 <2e-16
factor(A)70 3.31784 0.03209 103.40 <2e-16
factor(A)75 3.30980 0.03261 101.50 <2e-16
factor(A)80 3.17640 0.03423 92.81 <2e-16
factor(A)85 2.90983 0.04024 72.32 <2e-16
factor(P)1948 0.39206 0.03629 10.80 <2e-16
factor(P)1953 0.67592 0.03404 19.86 <2e-16
factor(P)1958 1.01434 0.03226 31.44 <2e-16
factor(P)1963 1.26666 0.03130 40.47 <2e-16
factor(P)1968 1.48717 0.03067 48.49 <2e-16
factor(P)1973 1.59239 0.03039 52.40 <2e-16
factor(P)1978 1.67994 0.03020 55.62 <2e-16
factor(P)1983 1.69902 0.03015 56.35 <2e-16
factor(P)1988 1.59958 0.03028 52.83 <2e-16
factor(P)1993 1.52558 0.03078 49.57 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 71776.2 on 109 degrees of freedom
Residual deviance: 2723.5 on 90 degrees of freedom
AIC: 3620.5

Number of Fisher Scoring iterations: 5

The parameters in this model are: intercept: the log-rate in the refence category,
which in this model is the first age-category (40: 40–44 years), and the first period
(1943: 1943–47), — namely the ones not mentioned in the output from the model.
All other parameters are log-rate-ratios relative to this reference category.
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3. The same model is now fitted without intercept:

> ap.0 <- glm( D ~ -1 + factor(A) + factor(P) + offset(log(Y)),
+ family=poisson, data=lung )
> summary( ap.0 )

Call:
glm(formula = D ~ -1 + factor(A) + factor(P) + offset(log(Y)),

family = poisson, data = lung)

Deviance Residuals:
Min 1Q Median 3Q Max

-10.400 -3.728 -0.984 3.685 11.203

Coefficients:
Estimate Std. Error z value Pr(>|z|)

factor(A)40 -10.34235 0.04192 -246.71 <2e-16
factor(A)45 -9.38977 0.03454 -271.89 <2e-16
factor(A)50 -8.55998 0.03145 -272.17 <2e-16
factor(A)55 -7.92822 0.03020 -262.48 <2e-16
factor(A)60 -7.47976 0.02970 -251.83 <2e-16
factor(A)65 -7.19075 0.02956 -243.26 <2e-16
factor(A)70 -7.02451 0.02970 -236.53 <2e-16
factor(A)75 -7.03255 0.03031 -232.05 <2e-16
factor(A)80 -7.16595 0.03209 -223.33 <2e-16
factor(A)85 -7.43252 0.03847 -193.22 <2e-16
factor(P)1948 0.39206 0.03629 10.80 <2e-16
factor(P)1953 0.67592 0.03404 19.86 <2e-16
factor(P)1958 1.01434 0.03226 31.44 <2e-16
factor(P)1963 1.26666 0.03130 40.47 <2e-16
factor(P)1968 1.48717 0.03067 48.49 <2e-16
factor(P)1973 1.59239 0.03039 52.40 <2e-16
factor(P)1978 1.67994 0.03020 55.62 <2e-16
factor(P)1983 1.69902 0.03015 56.35 <2e-16
factor(P)1988 1.59958 0.03028 52.83 <2e-16
factor(P)1993 1.52558 0.03078 49.57 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.0037e+08 on 110 degrees of freedom
Residual deviance: 2.7235e+03 on 90 degrees of freedom
AIC: 3620.5

Number of Fisher Scoring iterations: 5

The age-parameters now refer to log-rates as estimated in the reference period, 1943.

4. Now we fit the same model, using the period 1968–72 as the reference period, by
using the relevel command for factors to make 1968 the first level:

> ap.2 <- glm( D ~ factor(A) - 1 + relevel(factor(P),"1968") + offset(log(Y)),
+ family=poisson, data=lung )

5. Extract the parameters from the model, by doing:

> ( ap.cf <- summary( ap.2 )$coef )

Estimate Std. Error z value Pr(>|z|)
factor(A)40 -8.85517346 0.03267181 -271.034040 0.000000e+00
factor(A)45 -7.90259321 0.02232327 -354.007042 0.000000e+00
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factor(A)50 -7.07280223 0.01707967 -414.106430 0.000000e+00
factor(A)55 -6.44104968 0.01455119 -442.647633 0.000000e+00
factor(A)60 -5.99258631 0.01342462 -446.387795 0.000000e+00
factor(A)65 -5.70357953 0.01312796 -434.460586 0.000000e+00
factor(A)70 -5.53733722 0.01337568 -413.985515 0.000000e+00
factor(A)75 -5.54537497 0.01462008 -379.298646 0.000000e+00
factor(A)80 -5.67877130 0.01794833 -316.395572 0.000000e+00
factor(A)85 -5.94534410 0.02775505 -214.207677 0.000000e+00
relevel(factor(P), "1968")1943 -1.48717439 0.03066768 -48.493215 0.000000e+00
relevel(factor(P), "1968")1948 -1.09511737 0.02481363 -44.133706 0.000000e+00
relevel(factor(P), "1968")1953 -0.81125051 0.02137233 -37.957983 0.000000e+00
relevel(factor(P), "1968")1958 -0.47283820 0.01841692 -25.674120 2.274664e-145
relevel(factor(P), "1968")1963 -0.22051337 0.01667114 -13.227249 6.108232e-40
relevel(factor(P), "1968")1973 0.10521650 0.01487968 7.071155 1.536496e-12
relevel(factor(P), "1968")1978 0.19276119 0.01449332 13.300001 2.314659e-40
relevel(factor(P), "1968")1983 0.21184343 0.01438727 14.724363 4.496857e-49
relevel(factor(P), "1968")1988 0.11240928 0.01465483 7.670458 1.713837e-14
relevel(factor(P), "1968")1993 0.03840264 0.01565559 2.452966 1.416836e-02

6. We plot the estimated age-specific incidence rates, we need the first 10 parameters,
with their standard errors:

> age.cf <- ap.cf[1:10,1:2]

This means that we take rows 1–10 and columns 1–2. The corresponding age classes
are 40, . . . , 85. The midpoints of these age-classes are 2.5 years higher. The ages can
be generated in R by saying seq(40,85,5)+2.5. So we can make the plot in
increasing detail:

> par( mfrow=c(1,3) )
> am <- seq(40,85,5)+2.5
> plot( am, age.cf[,1] )
> plot( am, exp(age.cf[,1]), log="y" )
> plot( am, exp(age.cf[,1]), type="l", log="y" )
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Figure 3.10: Three versions of the plot of the age-specific rates.

If we want to put confidence limits on we just take ±1.96× s.e. on the log-scale. And
the s.e.s are in column 2 of age.cf. Lines are added to a plot by the command
lines, or all is made in one go using matplot
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> matplot( am, cbind( exp(age.cf[,1]),
+ exp(age.cf[,1]-1.96*age.cf[,2]),
+ exp(age.cf[,1]+1.96*age.cf[,2]) ),
+ type="l", log="y", lwd=c(3,1,1), lty=1, col="black" )

The specification of lty= and col= is necessary in matplot, because these otherwise
cycles through linetypes and colours, whcih is not desired here.

7. Now for the rate-ratio-parameters, take the rest of the coefficients:

> ( RR.cf <- ap.cf[11:20,1:2] )

Estimate Std. Error
relevel(factor(P), "1968")1943 -1.48717439 0.03066768
relevel(factor(P), "1968")1948 -1.09511737 0.02481363
relevel(factor(P), "1968")1953 -0.81125051 0.02137233
relevel(factor(P), "1968")1958 -0.47283820 0.01841692
relevel(factor(P), "1968")1963 -0.22051337 0.01667114
relevel(factor(P), "1968")1973 0.10521650 0.01487968
relevel(factor(P), "1968")1978 0.19276119 0.01449332
relevel(factor(P), "1968")1983 0.21184343 0.01438727
relevel(factor(P), "1968")1988 0.11240928 0.01465483
relevel(factor(P), "1968")1993 0.03840264 0.01565559

But the reference group is missing, so we must stick two 0s in the correct place. We
use the command rbind (row-bind):

> RR.cf <- rbind( RR.cf[1:5,], c(0,0), RR.cf[6:10,] )
> RR.cf

Estimate Std. Error
relevel(factor(P), "1968")1943 -1.48717439 0.03066768
relevel(factor(P), "1968")1948 -1.09511737 0.02481363
relevel(factor(P), "1968")1953 -0.81125051 0.02137233
relevel(factor(P), "1968")1958 -0.47283820 0.01841692
relevel(factor(P), "1968")1963 -0.22051337 0.01667114

0.00000000 0.00000000
relevel(factor(P), "1968")1973 0.10521650 0.01487968
relevel(factor(P), "1968")1978 0.19276119 0.01449332
relevel(factor(P), "1968")1983 0.21184343 0.01438727
relevel(factor(P), "1968")1988 0.11240928 0.01465483
relevel(factor(P), "1968")1993 0.03840264 0.01565559

Now we have the same situation as for the age-specific rates, and can plot the relative
risks (relative to 1968) in precisely the same way as for the age-specific rates:

> matplot( as.numeric(levels(factor(P)))+2.5,
+ cbind( exp(RR.cf[,1]),
+ exp(RR.cf[,1]-1.96*RR.cf[,2]),
+ exp(RR.cf[,1]+1.96*RR.cf[,2]) ),
+ type="l", log="y", lwd=c(3,1,1), lty=1, col="black" )

These rate-ratios are presented beside the corresponding age-specific rates.

8. The relevant parameters may also be extracted directly from the model without
intercept, using the function ci.lin which allows selection of a subset of the
parameters either by using numbers in the sequence or using character strings
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Figure 3.11: Age-specific rates and rate-ratios relative to the period 1968–72.

through grep. Linear functions of selected parameter are computed using a contrast
matrix, which is multiplied to the selected parameters.

If we want log-rates in the reference period (the first level of factor(P) are the
age-parameters. The log-rates in the period labelled 1968 are these plus the period
estimate from 1968, so to illustrate the workings of the subsetting we select the
relevant parameters and just disply these.

> ci.lin( ap.0, subset=c("A","1968") )

Estimate StdErr z P 2.5% 97.5%
factor(A)40 -10.342348 0.04192098 -246.71054 0 -10.424511 -10.260184
factor(A)45 -9.389768 0.03453519 -271.88982 0 -9.457455 -9.322080
factor(A)50 -8.559977 0.03145070 -272.17123 0 -8.621619 -8.498334
factor(A)55 -7.928224 0.03020492 -262.48125 0 -7.987425 -7.869024
factor(A)60 -7.479761 0.02970184 -251.82817 0 -7.537975 -7.421546
factor(A)65 -7.190754 0.02956000 -243.25964 0 -7.248690 -7.132817
factor(A)70 -7.024512 0.02969777 -236.53331 0 -7.082718 -6.966305
factor(A)75 -7.032549 0.03030666 -232.04631 0 -7.091949 -6.973149
factor(A)80 -7.165946 0.03208700 -223.32863 0 -7.228835 -7.103056
factor(A)85 -7.432518 0.03846618 -193.22216 0 -7.507911 -7.357126
factor(P)1968 1.487174 0.03066768 48.49322 0 1.427067 1.547282

Since we often need rates as the exponentila of the parameters, there is a Exp=

argument that gives these too (with c.i.):

> ci.lin( ap.0, subset=c("A","1968"), Exp=TRUE )

Estimate StdErr z P exp(Est.) 2.5%
factor(A)40 -10.342348 0.04192098 -246.71054 0 3.223854e-05 2.969561e-05
factor(A)45 -9.389768 0.03453519 -271.88982 0 8.357488e-05 7.810509e-05
factor(A)50 -8.559977 0.03145070 -272.17123 0 1.916238e-04 1.801683e-04
factor(A)55 -7.928224 0.03020492 -262.48125 0 3.604259e-04 3.397078e-04
factor(A)60 -7.479761 0.02970184 -251.82817 0 5.643925e-04 5.324747e-04
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factor(A)65 -7.190754 0.02956000 -243.25964 0 7.535208e-04 7.111050e-04
factor(A)70 -7.024512 0.02969777 -236.53331 0 8.898020e-04 8.394882e-04
factor(A)75 -7.032549 0.03030666 -232.04631 0 8.826786e-04 8.317744e-04
factor(A)80 -7.165946 0.03208700 -223.32863 0 7.724481e-04 7.253654e-04
factor(A)85 -7.432518 0.03846618 -193.22216 0 5.916955e-04 5.487263e-04
factor(P)1968 1.487174 0.03066768 48.49322 0 4.424576e+00 4.166460e+00

97.5%
factor(A)40 3.499924e-05
factor(A)45 8.942772e-05
factor(A)50 2.038076e-04
factor(A)55 3.824076e-04
factor(A)60 5.982235e-04
factor(A)65 7.984666e-04
factor(A)70 9.431313e-04
factor(A)75 9.366982e-04
factor(A)80 8.225870e-04
factor(A)85 6.380294e-04
factor(P)1968 4.698682e+00

To get the linear combination of parameters we want we construct the contrast matrix
needed to provide the estimates if premultiplied to the selected subset of parameters.

> ( cm.A <- cbind( diag( nlevels( factor(A) ) ), 1 ) )

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] 1 0 0 0 0 0 0 0 0 0 1
[2,] 0 1 0 0 0 0 0 0 0 0 1
[3,] 0 0 1 0 0 0 0 0 0 0 1
[4,] 0 0 0 1 0 0 0 0 0 0 1
[5,] 0 0 0 0 1 0 0 0 0 0 1
[6,] 0 0 0 0 0 1 0 0 0 0 1
[7,] 0 0 0 0 0 0 1 0 0 0 1
[8,] 0 0 0 0 0 0 0 1 0 0 1
[9,] 0 0 0 0 0 0 0 0 1 0 1
[10,] 0 0 0 0 0 0 0 0 0 1 1

Using the argument ctr.mat= in ci.lin to produce the rates in period 1968 we can
plot them on a log-scale (note we select only the columns with rates and ci.s:

> arates <- ci.lin( ap.0, subset=c("A","1968"), ctr.mat=cm.A, Exp=TRUE )[,5:7]
> matplot( as.numeric( levels( factor(A) ) )+2.5, arates,
+ log="y", type="l", lwd=c(3,1,1), col="black", lty=1 )

The rates extracted this way is in the left panel of figure 3.12.

9. Using the same machinery to extract the rate-ratios relative to 1968, we construct the
contrast matrix to extract the difference between the RRs with the first period as
reference and the RR at 1968; this is the differnece between two metrices: The first
one is the one that extracts the rate-ratios with a prefixed 0:

> cm.P <- rbind(0,diag( nlevels(factor(P))-1 ) )
> cm.P

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 1 0 0 0 0 0 0 0 0 0
[3,] 0 1 0 0 0 0 0 0 0 0
[4,] 0 0 1 0 0 0 0 0 0 0
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[5,] 0 0 0 1 0 0 0 0 0 0
[6,] 0 0 0 0 1 0 0 0 0 0
[7,] 0 0 0 0 0 1 0 0 0 0
[8,] 0 0 0 0 0 0 1 0 0 0
[9,] 0 0 0 0 0 0 0 1 0 0
[10,] 0 0 0 0 0 0 0 0 1 0
[11,] 0 0 0 0 0 0 0 0 0 1

The second is the matrix with 1s in the column corresponding to 1968.

> cm.Pref <- cm.P * 0
> wh.col <- grep( "1968", levels(factor(P)) ) - 1
> cm.Pref[,wh.col] <- 1
> cm.Pref

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 1 0 0 0 0 0
[2,] 0 0 0 0 1 0 0 0 0 0
[3,] 0 0 0 0 1 0 0 0 0 0
[4,] 0 0 0 0 1 0 0 0 0 0
[5,] 0 0 0 0 1 0 0 0 0 0
[6,] 0 0 0 0 1 0 0 0 0 0
[7,] 0 0 0 0 1 0 0 0 0 0
[8,] 0 0 0 0 1 0 0 0 0 0
[9,] 0 0 0 0 1 0 0 0 0 0
[10,] 0 0 0 0 1 0 0 0 0 0
[11,] 0 0 0 0 1 0 0 0 0 0

The contrast matrix to use is the difference between these two, and can therefore be
directly plotted:

> cm.P - cm.Pref

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 -1 0 0 0 0 0
[2,] 1 0 0 0 -1 0 0 0 0 0
[3,] 0 1 0 0 -1 0 0 0 0 0
[4,] 0 0 1 0 -1 0 0 0 0 0
[5,] 0 0 0 1 -1 0 0 0 0 0
[6,] 0 0 0 0 0 0 0 0 0 0
[7,] 0 0 0 0 -1 1 0 0 0 0
[8,] 0 0 0 0 -1 0 1 0 0 0
[9,] 0 0 0 0 -1 0 0 1 0 0
[10,] 0 0 0 0 -1 0 0 0 1 0
[11,] 0 0 0 0 -1 0 0 0 0 1

> RR0 <- ci.lin( ap.0, subset="P", ctr.mat=cm.P-cm.Pref, Exp=TRUE )[,5:7]
> matplot( as.numeric(levels(factor(P)))+2.5, RR0,
+ type="l", log="y", lwd=c(3,1,1), lty=1, col="black" )

These RRs are plotted alongside the estimated rates in figure 3.12.

10. The estimates are saved along with the computed mipoints:

> age.pt <- as.numeric(levels(factor(A)))+2.5
> RR.pt <- as.numeric(levels(factor(P)))+2.5
> save( age.pt, arates,
+ RR.pt, RR0, file="../data/age-per-est.Rdata" )
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Figure 3.12: Age-specific rates and rate-ratios relative to the period 1968–72, extracted using
ci.lin.

11. If we want to plot the rates and the rate ratios beside each other, and make sure that
the physical extent of the units on both the x-axis and the y-axis are the same, we
first determine the relative extent of the x-axes for the two plots:

> alim <- range( A ) + c(0,5)
> plim <- range( P ) + c(0,5)

We then use these to determine the relative width of the two panels, using the
layout function, and subsequenty adjust the y-axis of the RR-plot to the same
physical extent as the rate axis (note that the par("usr") returns the log10 of the
limits for logaritmic axes):

> # Compute limits explicitly
> rlim <- range(arates*10^5)*c(1/1.05,1.05)
> RRlim <- 10^(log10(rlim)-ceiling(mean(log10(rlim))))
> # Determin reltive width of plots
> layout( rbind( c(1,2) ), widths=c(diff(alim),diff(plim)) )
> # No space on the sides of the plots, only outer space
> par( mar=c(4,0,1,0), oma=c(0,4,0,4), mgp=c(3,1,0)/1.5, las=1 )
> matplot( as.numeric(levels(factor(A)))+2.5, arates*10^5,
+ type="l", lwd=c(3,1,1), lty=1, col="black",
+ log="y", xaxs="i", xlim=alim, xlab="Age", ylim=rlim )
> mtext( "Male lung cancer per 100,000", las=0, side=2, outer=T, line=2.5 )
> matplot( as.numeric(levels(factor(P)))+2.5, RR0,
+ type="l", lwd=c(3,1,1), lty=1, col="black",
+ log="y", xlab="Period of follow-up", xlim=plim, yaxt="n", ylim=RRlim, ylab="" )
> abline( h=1 )
> points( 1968+2.5, 1, pch=1, lwd=3 )
> axis( side=4 )
> mtext( "Rate ratio", side=4, outer=T, las=0, line=2.5 )

The resulting plot is in figure 3.15
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Figure 3.13: Age-specific rates and rate-ratios relative to the period 1968–72, extracted using
ci.lin, and plotted with scales with physically equal scaling.
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3.7 Age-cohort model

This exercise is parallel to the exercise on the age-period model.

1. First we read the data in the file lung5-M.txt and create the cohort variable:

> library(Epi)
> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung$C <- lung$P - lung$A
> attach( lung )

The following object(s) are masked from 'lung (position 3)':

A, D, P, Y
The following object(s) are masked from 'ltri':

D, Y
The following object(s) are masked from 'lung (position 6)':

A, D, P, Y
The following object(s) are masked from 'lung (position 7)':

A, D, P, Y
The following object(s) are masked from 'lung (position 8)':

A, D, P, Y

> table( C )

C
1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933

1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5
1938 1943 1948 1953

4 3 2 1

It is clear from these tables that the data layout is by age and period, since the outer
cohorts are more scarcely represented.

2. We fit a Poisson model with effects of age (A) and cohort (C) as class variables:

> ac.1 <- glm( D ~ factor(A) + factor(C) + offset(log(Y)),
+ family=poisson, data=lung )
> summary( ac.1 )

Call:
glm(formula = D ~ factor(A) + factor(C) + offset(log(Y)), family = poisson,

data = lung)

Deviance Residuals:
Min 1Q Median 3Q Max

-7.2822 -2.0274 0.3573 2.0545 5.2834

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.83501 0.38038 -31.114 < 2e-16
factor(A)45 0.96843 0.03800 25.487 < 2e-16
factor(A)50 1.83467 0.03591 51.087 < 2e-16
factor(A)55 2.51168 0.03508 71.595 < 2e-16
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factor(A)60 3.02924 0.03476 87.147 < 2e-16
factor(A)65 3.40740 0.03471 98.156 < 2e-16
factor(A)70 3.67325 0.03487 105.335 < 2e-16
factor(A)75 3.78630 0.03545 106.819 < 2e-16
factor(A)80 3.78402 0.03704 102.165 < 2e-16
factor(A)85 3.66814 0.04280 85.703 < 2e-16
factor(C)1863 0.01046 0.42031 0.025 0.980152
factor(C)1868 0.51345 0.38845 1.322 0.186240
factor(C)1873 0.82684 0.38231 2.163 0.030560
factor(C)1878 1.05336 0.38054 2.768 0.005639
factor(C)1883 1.41904 0.37972 3.737 0.000186
factor(C)1888 1.91197 0.37927 5.041 4.63e-07
factor(C)1893 2.28073 0.37909 6.016 1.78e-09
factor(C)1898 2.55794 0.37900 6.749 1.49e-11
factor(C)1903 2.76315 0.37895 7.292 3.06e-13
factor(C)1908 2.83415 0.37894 7.479 7.48e-14
factor(C)1913 2.81410 0.37901 7.425 1.13e-13
factor(C)1918 2.86228 0.37902 7.552 4.30e-14
factor(C)1923 2.91551 0.37906 7.691 1.45e-14
factor(C)1928 2.86546 0.37917 7.557 4.12e-14
factor(C)1933 2.86314 0.37936 7.547 4.44e-14
factor(C)1938 2.72290 0.37983 7.169 7.57e-13
factor(C)1943 2.68759 0.38066 7.060 1.66e-12
factor(C)1948 2.85099 0.38263 7.451 9.27e-14
factor(C)1953 2.81411 0.39456 7.132 9.87e-13

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 71776.18 on 109 degrees of freedom
Residual deviance: 829.63 on 81 degrees of freedom
AIC: 1744.7

Number of Fisher Scoring iterations: 4

The parameters in this model are: intercept: the log-rate in the reference category
for age (40:40–44), in the reference cohort which in this model is the first cohort
(1858 = 1943− 85 which comprises persons born 5 years on either side of this, i.e. in
the years 1853–1862 — but not all persons born in this interval). Note however that
there are no observations in the dataset in this category; it is actually a prediction
purely outside the dataset. The rest of the parameters are log-rate-ratios relative to
this category.

3. We now fit the model without intercept,

4. and with 1908 as the reference:

> ac.2 <- glm( D ~ factor(A) - 1 + relevel(factor(C),"1908") + offset(log(Y)),
+ family=poisson, data=lung )

The age-parameters now represent the estimated age-specific log-incidence rates from
the 1908 cohort.

5. The range of birth dates represented in the cohort 1908 is from 1.1.1903–31.12.1912.
Only those born on 1.1.1908 are not represented in any other cohort. Hence the name
“synthetic” cohort.

6. We now extract the age-specific incidence rates with 95% c.i.s from the model using
ci.lin:
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> age.cf <- ci.lin( ac.2, subset="A", Exp=TRUE)[,5:7]
> matplot( as.numeric(levels(factor(A)))+2.5, age.cf,
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )

7. Similarly we extract the cohort-specific rate-ratio parameters, but we recall that the
1908 cohort is missing from the estimates:

> RR.cf <- ci.lin( ac.2, subset="C", Exp=TRUE )[,5:7]
> wh <- grep( "1908", levels(factor(C)) ) - 1
> RR.cf <- rbind( RR.cf[1:wh,], c(1,1,1), RR.cf[-(1:wh),] )
> RR.cf

exp(Est.) 2.5% 97.5%
relevel(factor(C), "1908")1858 0.05876855 0.02796331 0.12350977
relevel(factor(C), "1908")1863 0.05938629 0.04146987 0.08504321
relevel(factor(C), "1908")1868 0.09820451 0.08277938 0.11650395
relevel(factor(C), "1908")1873 0.13435012 0.12110391 0.14904520
relevel(factor(C), "1908")1878 0.16850582 0.15647290 0.18146408
relevel(factor(C), "1908")1883 0.24290000 0.22987080 0.25666770
relevel(factor(C), "1908")1888 0.39765267 0.38150319 0.41448578
relevel(factor(C), "1908")1893 0.57498146 0.55558344 0.59505676
relevel(factor(C), "1908")1898 0.75865134 0.73613440 0.78185703
relevel(factor(C), "1908")1903 0.93146302 0.90603144 0.95760844

1.00000000 1.00000000 1.00000000
relevel(factor(C), "1908")1913 0.98015018 0.95413843 1.00687107
relevel(factor(C), "1908")1918 1.02853256 1.00032662 1.05753381
relevel(factor(C), "1908")1923 1.08476601 1.05335624 1.11711238
relevel(factor(C), "1908")1928 1.03180855 0.99700213 1.06783011
relevel(factor(C), "1908")1933 1.02941676 0.98736788 1.07325636
relevel(factor(C), "1908")1938 0.89472043 0.84629736 0.94591416
relevel(factor(C), "1908")1943 0.86367228 0.80177907 0.93034332
relevel(factor(C), "1908")1948 1.01698726 0.91442192 1.13105675
relevel(factor(C), "1908")1953 0.98016430 0.78931406 1.21716072

> matplot( as.numeric(levels(factor(C))), RR.cf,
+ type="l", log="y", lwd=c(3,1,1), lty=1, col="black" )

We could of course do as in the previous exercise and combine the two plots in one
which is properly scales on both axes:

> alim <- range( A ) + c(0,5)
> clim <- range( C ) + c(-2.5,2.5)
> # Compute limits explicitly
> rlim <- range(age.cf*10^5)*c(1/1.05,1.05)
> RRlim <- 10^(log10(rlim)-ceiling(mean(log10(rlim)))) / 2
> # Determine relative width of plots
> layout( rbind( c(1,2) ), widths=c(diff(alim),diff(clim)) )
> # No space on the sides of the plots, only outer space
> par( mar=c(4,0,1,0), oma=c(0,4,0,4), mgp=c(3,1,0)/1.5, las=1 )
> matplot( as.numeric(levels(factor(A)))+2.5, age.cf*10^5,
+ type="l", lwd=c(3,1,1), lty=1, col="black",
+ log="y", xaxs="i", xlim=alim, xlab="Age", ylim=rlim )
> mtext( "Male lung cancer per 100,000", las=0, side=2, outer=T, line=2.5 )
> matplot( as.numeric(levels(factor(C))), RR.cf,
+ type="l", lwd=c(3,1,1), lty=1, col="black",
+ log="y", xlab="Date of birth", xlim=clim, yaxt="n", ylim=RRlim, ylab="" )
> abline( h=1 )
> points( 1908, 1, pch=1, lwd=3 )
> axis( side=4 )
> mtext( "Rate ratio", side=4, outer=T, las=0, line=2.5 )
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Figure 3.14: Age-specific rates and rate-ratios relative to the cohort 1908.

The resulting plot is in figure ??
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Figure 3.15: Age-specific rates and rate-ratios relative to the period 1968–72, extracted from
the age-cohort model. Note the axes with physically equal scaling.

8. Now we load the estimates from the age-period model, and plot the estimated
age-specific rates from the two models on top of each other. First
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> load( file = "../data/age-per-est.Rdata" )
> matplot( as.numeric(levels(factor(A)))+2.5, age.cf,
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> matlines( age.pt, arates,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
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Figure 3.16: Age-specific rates from the age-cohort model (black) and from the age-period
model (blue).

The difference between the curves in figure 3.16, comes from the fact that the rates
are increasing by time. The estimates from the age-cohort model refer to rates in a
“true” cohort, whereas those from the age-period model refers to cross-sectional rates,
where successively older persons are from successively older cohorts (i.e. where rates
were lower overall).
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3.8 Age-drift model

This exercise is aimed at introducing the age-drift model and make you familiar with the
two different ways of parametrizing this model. Like the two previous exercises it is based
on the male lung cancer data.

1. First we read the data in the file lung5-M.txt and create the cohort variable:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung$C <- lung$P - lung$A
> attach( lung )

The following object(s) are masked from 'lung (position 3)':

A, C, D, P, Y
The following object(s) are masked from 'lung (position 4)':

A, D, P, Y
The following object(s) are masked from 'ltri':

D, Y
The following object(s) are masked from 'lung (position 7)':

A, D, P, Y
The following object(s) are masked from 'lung (position 8)':

A, D, P, Y
The following object(s) are masked from 'lung (position 9)':

A, D, P, Y

> table( C )

C
1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933

1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5
1938 1943 1948 1953

4 3 2 1

2.

3. We fit the model to have age-parameters that refer to the period 1968–72. The
midpoint of this period is 1970.5, but the periods are coded by their left endpoint, so
we need to enter the value which makes the period 1968–72 appear as 0 in the
modelling, in this case 1968:

> mp <- glm( D ~ -1 + factor(A) + I(P-1968) + offset( log(Y) ),
+ family=poisson, data=lung )
> ci.lin( mp )[,1:2]

Estimate StdErr
factor(A)40 -9.1092495 0.0309971546
factor(A)45 -8.1595330 0.0198594053
factor(A)50 -7.3156964 0.0137336273
factor(A)55 -6.6687226 0.0104960856
factor(A)60 -6.2145792 0.0088754237
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factor(A)65 -5.9283121 0.0083366244
factor(A)70 -5.7664159 0.0086843126
factor(A)75 -5.7777950 0.0104827785
factor(A)80 -5.9141170 0.0147900073
factor(A)85 -6.1787946 0.0258301029
I(P - 1968) 0.0233067 0.0002569689

The parameters now represent the log-rates in each of the age-classes in the period
1968–72. The period-parameter is the the annual change in log-rates.

However it would be more natural to have the coding of the age and period variables
by the midpoint of the intervals, so we would do:

> lung <- transform( lung, A=A+2.5, P=P+2.5 )
> mp <- glm( D ~ -1 + factor(A) + I(P-1970.5) + offset( log(Y) ),
+ family=poisson, data=lung )
> ci.lin( mp )[,1:2]

Estimate StdErr
factor(A)42.5 -9.1092495 0.0309971546
factor(A)47.5 -8.1595330 0.0198594053
factor(A)52.5 -7.3156964 0.0137336273
factor(A)57.5 -6.6687226 0.0104960856
factor(A)62.5 -6.2145792 0.0088754237
factor(A)67.5 -5.9283121 0.0083366244
factor(A)72.5 -5.7664159 0.0086843126
factor(A)77.5 -5.7777950 0.0104827785
factor(A)82.5 -5.9141170 0.0147900073
factor(A)87.5 -6.1787946 0.0258301029
I(P - 1970.5) 0.0233067 0.0002569689

4. We now fit the same model, but with cohort as the continuous variable, centered
around 1908:

> mc <- glm( D ~ -1 + factor(A) + I(C-1908) + offset( log(Y) ),
+ family=poisson, data=lung )
> ci.lin( mc )[,1:2]

Estimate StdErr
factor(A)42.5 -9.5753836 0.0317010811
factor(A)47.5 -8.5091336 0.0205578133
factor(A)52.5 -7.5487634 0.0142616192
factor(A)57.5 -6.7852561 0.0107586856
factor(A)62.5 -6.2145792 0.0088754237
factor(A)67.5 -5.8117785 0.0081553406
factor(A)72.5 -5.5333488 0.0084736086
factor(A)77.5 -5.4281945 0.0104021596
factor(A)82.5 -5.4479829 0.0148625870
factor(A)87.5 -5.5961271 0.0259850279
I(C - 1908) 0.0233067 0.0002569689

5. We see that the estimated slope (the drift!) is exactly the same as in the
period-model, but the age-estimates are not.

Moreover the two are really the same model just parametrized differently; the
residual deviances are the same:
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> c( summary( mp )$deviance,
+ summary( mc )$deviance )

[1] 6417.381 6417.381

6. If we write how the cohort model is parametrized we have:

log(λap) = αa + β(c− 1908)

= αa + β(p− a− 1908)

= [αa + β(62.5− a)] + β(p− 1970.5)

The expression in the square brackets are the age-parameters in the age-period
model. Hence, the age parameters are linked by a simple linear relation, which is
easily verified empirically:

> ap <- ci.lin( mp )[1:10,1]
> ac <- ci.lin( mc )[1:10,1]
> c.sl <- ci.lin( mc )[11,1]
> a.pt <- seq(40,85,5)
> cbind( ap, ac + c.sl*(62.5-a.pt) )

ap
factor(A)42.5 -9.109250 -9.050983
factor(A)47.5 -8.159533 -8.101266
factor(A)52.5 -7.315696 -7.257430
factor(A)57.5 -6.668723 -6.610456
factor(A)62.5 -6.214579 -6.156312
factor(A)67.5 -5.928312 -5.870045
factor(A)72.5 -5.766416 -5.708149
factor(A)77.5 -5.777795 -5.719528
factor(A)82.5 -5.914117 -5.855850
factor(A)87.5 -6.178795 -6.120528

7. > matplot( a.pt + 2.5, cbind( ci.lin( mp, subset="A", Exp=TRUE )[,5:7],
+ ci.lin( mc, subset="A", Exp=TRUE )[,5:7] ) * 10^5,
+ log="y", xlab="Age", ylab="Lung cancer incidence rates / 100,000",
+ type="l", lty=1, lwd=c(3,1,1), col=rep(gray(c(0.2,0.7)),each=3) )

8. The relative risks are from the model:

log(λap) = αp + δ(p− 1970.5)

Therefore, with an x-variable: (1943,. . . ,1993) + 2.5, the relative risk will be:

RR = δ̂ × x

and the upper and lower confidence bands:

RR = (δ̂ ± 1.96× s.e.(δ))× x

We can find the estimated RRs with confidence intervals using a suitable 1-column
contrast matrix. We of course need a separate one for period and cohort since these
cover different time-spans:
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> p.pt <- seq(min(P),max(P),,10)+2.5
> c.pt <- seq(min(C),max(C),,10)
> ctr.p <- cbind( p.pt - 1970.5 )
> ctr.c <- cbind( c.pt - 1908 )
> matplot( c.pt, ci.lin( mc, subset="C", ctr.mat=ctr.c, Exp=TRUE )[,5:7],
+ log="y", xlab="Calendar time", ylab="Rate ratio", xlim=c(1850,2000),
+ type="l", lty=1, lwd=c(3,1,1), col=gray(0.2) )
> matlines( p.pt, ci.lin( mp, subset="P", ctr.mat=ctr.p, Exp=TRUE )[,5:7],
+ type="l", lty=1, lwd=c(3,1,1), col=gray(0.7) )
> abline(h=1)
> points( c(1908,1970.5), c(1,1), pch=16 )

The effect of time (the drift) is the same for the two parametrizations, but the
age-specific rates refer either to cross-sectional rates (period drift) or longitudinal
rates (cohort drift).

50 60 70 80

10
20

50
10

0
20

0
50

0

Age

Lu
ng

 c
an

ce
r 

in
ci

de
nc

e 
ra

te
s 

/ 1
00

,0
00

1850 1900 1950 2000

0.
5

1.
0

2.
0

Calendar time

R
at

e 
ra

tio

● ●

Figure 3.17: Age-specific rates from the age-drift model (left) and the rate-ratios as estimated
under the two different parametrizations.
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3.9 Age-period-cohort model

We will need the results from the age-period, the age-cohort and the age-drift models in
this exercise so we briefly fit these models after we have read data.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> str( lung )

'data.frame': 110 obs. of 4 variables:
$ A: int 40 40 40 40 40 40 40 40 40 40 ...
$ P: int 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 ...
$ D: int 80 81 73 99 82 97 86 90 116 149 ...
$ Y: num 694047 754770 769441 749265 757240 ...

> m.AP <- glm( D ~ factor(A) + factor(P) + offset( log(Y) ),
+ family=poisson, data=lung )
> m.AC <- glm( D ~ factor(A) + factor(P-A) + offset( log(Y) ),
+ family=poisson, data=lung )
> m.Ad <- glm( D ~ factor(A) + P + offset( log(Y) ),
+ family=poisson, data=lung )

2. We then fit the age-period-cohort model. Note that there is no such variable as the
cohort in the dataset; we have to compute this as P −A. This is best done on the fly
instead of cluttering up the data frame with another variable. In the same go we fit
the simplest model with age alone:

> m.APC <- glm( D ~ factor(A) + factor(P) + factor(P-A) + offset( log(Y) ),
+ family=poisson, data=lung )
> m.A <- glm( D ~ factor(A) + offset( log(Y) ),
+ family=poisson, data=lung )

3. We can use anova.glm to test the different models in a sequence that gives all the
valid comparisons:

> anova( m.A, m.Ad, m.AP, m.APC, m.AC, m.Ad, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ factor(A) + offset(log(Y))
Model 2: D ~ factor(A) + P + offset(log(Y))
Model 3: D ~ factor(A) + factor(P) + offset(log(Y))
Model 4: D ~ factor(A) + factor(P) + factor(P - A) + offset(log(Y))
Model 5: D ~ factor(A) + factor(P - A) + offset(log(Y))
Model 6: D ~ factor(A) + P + offset(log(Y))
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 100 15103.0
2 99 6417.4 1 8685.6 < 2.2e-16
3 90 2723.5 9 3693.9 < 2.2e-16
4 72 208.5 18 2514.9 < 2.2e-16
5 81 829.6 -9 -621.1 < 2.2e-16
6 99 6417.4 -18 -5587.8 < 2.2e-16

The successive test refer to:
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(a) linear effect of period/cohort

(b) non-linear effect of period

(c) non-linear effect of cohort (in the presence of period)

(d) non-linear effect of period (in the presence of cohort)

(e) non-linear effect of cohort

Clearly, with the large amounts of data that we are dealing with, all of the tests are
strongly significant, but comparing the likelihood ratio statistics there is some
indication that the period curvature (non-linear component) is stronger than the
cohort one.

4. When we want to fit models where some of the factor levels are merged or sorted as
the first one, we use the Relevel function to do this (remember to read the help page
for Relevel):

> lung$Pr <- Relevel( factor(lung$P), list("first & last"=c("1943","1993") ) )
> lung$Cr <- Relevel( factor(lung$P-lung$A), "1908" )

We of course check that the results of these operations are as we would like them to
be:

> with( lung, table(P,Pr) )

Pr
P first & last 1948 1953 1958 1963 1968 1973 1978 1983 1988
1943 10 0 0 0 0 0 0 0 0 0
1948 0 10 0 0 0 0 0 0 0 0
1953 0 0 10 0 0 0 0 0 0 0
1958 0 0 0 10 0 0 0 0 0 0
1963 0 0 0 0 10 0 0 0 0 0
1968 0 0 0 0 0 10 0 0 0 0
1973 0 0 0 0 0 0 10 0 0 0
1978 0 0 0 0 0 0 0 10 0 0
1983 0 0 0 0 0 0 0 0 10 0
1988 0 0 0 0 0 0 0 0 0 10
1993 10 0 0 0 0 0 0 0 0 0

> with( lung, table(P-A,Cr) )

Cr
1908 1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1913 1918 1923

1858 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1863 0 0 2 0 0 0 0 0 0 0 0 0 0 0
1868 0 0 0 3 0 0 0 0 0 0 0 0 0 0
1873 0 0 0 0 4 0 0 0 0 0 0 0 0 0
1878 0 0 0 0 0 5 0 0 0 0 0 0 0 0
1883 0 0 0 0 0 0 6 0 0 0 0 0 0 0
1888 0 0 0 0 0 0 0 7 0 0 0 0 0 0
1893 0 0 0 0 0 0 0 0 8 0 0 0 0 0
1898 0 0 0 0 0 0 0 0 0 9 0 0 0 0
1903 0 0 0 0 0 0 0 0 0 0 10 0 0 0
1908 10 0 0 0 0 0 0 0 0 0 0 0 0 0
1913 0 0 0 0 0 0 0 0 0 0 0 9 0 0
1918 0 0 0 0 0 0 0 0 0 0 0 0 8 0
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1923 0 0 0 0 0 0 0 0 0 0 0 0 0 7
1928 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1933 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1938 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1943 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1948 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1953 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cr
1928 1933 1938 1943 1948 1953

1858 0 0 0 0 0 0
1863 0 0 0 0 0 0
1868 0 0 0 0 0 0
1873 0 0 0 0 0 0
1878 0 0 0 0 0 0
1883 0 0 0 0 0 0
1888 0 0 0 0 0 0
1893 0 0 0 0 0 0
1898 0 0 0 0 0 0
1903 0 0 0 0 0 0
1908 0 0 0 0 0 0
1913 0 0 0 0 0 0
1918 0 0 0 0 0 0
1923 0 0 0 0 0 0
1928 6 0 0 0 0 0
1933 0 5 0 0 0 0
1938 0 0 4 0 0 0
1943 0 0 0 3 0 0
1948 0 0 0 0 2 0
1953 0 0 0 0 0 1

5. We can now fit the models with these factors:

> m.APC1 <- glm( D ~ -1 + factor(A) + factor(Pr) + factor(Cr) + offset( log(Y) ),
+ family=poisson, data=lung )
> m.APC1$coef

factor(A)40 factor(A)45 factor(A)50 factor(A)55 factor(A)60
-9.328701115 -8.334529816 -7.454972743 -6.769070541 -6.241541847
factor(A)65 factor(A)70 factor(A)75 factor(A)80 factor(A)85
-5.849698430 -5.568204628 -5.440013453 -5.424818364 -5.526811866

factor(Pr)1948 factor(Pr)1953 factor(Pr)1958 factor(Pr)1963 factor(Pr)1968
0.095424116 0.104770778 0.200248212 0.249105289 0.311058535

factor(Pr)1973 factor(Pr)1978 factor(Pr)1983 factor(Pr)1988 factor(Cr)1858
0.295910526 0.294440825 0.249025339 0.103123244 -2.640060438

factor(Cr)1863 factor(Cr)1868 factor(Cr)1873 factor(Cr)1878 factor(Cr)1883
-2.646673834 -2.149730193 -1.850593043 -1.645272902 -1.310031751

factor(Cr)1888 factor(Cr)1893 factor(Cr)1898 factor(Cr)1903 factor(Cr)1913
-0.853337885 -0.520887869 -0.272223872 -0.079090672 0.005457283

factor(Cr)1918 factor(Cr)1923 factor(Cr)1928 factor(Cr)1933 factor(Cr)1938
0.088513857 0.179650494 0.165997726 0.197699170 0.089012570

factor(Cr)1943 factor(Cr)1948 factor(Cr)1953
0.086044048 0.293382042 0.307806293

The age-coefficients are log-rates (where the rates are in units person-year−1, the
cohort parameters are log-rate-ratios relative to a trend from the first to the last
period.

6. We can use ci.lin to extract the parameters with confidence limits from this model:
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> A.eff <- ci.lin( m.APC1, subset="A", Exp=TRUE )[,5:7]
> P.eff <- rbind( c(1,1,1),
+ ci.lin( m.APC1, subset="P", Exp=TRUE )[,5:7],
+ c(1,1,1) )
> C.ref <- match( "1908", levels( with(lung,factor(P-A)) ) )
> C.eff <- rbind( c(1,1,1),
+ ci.lin( m.APC1, subset="C",
+ Exp=TRUE )[,5:7] )[c(2:C.ref,1,C.ref:(nlevels(lung$Cr)-1)),]

In order to plot these we need the time points on the respective scales:

> A.pt <- sort( unique( lung$A ) ) + 2.5
> P.pt <- sort( unique( lung$P ) ) + 2.5
> C.pt <- sort( unique( lung$P-lung$A ) )

Then we can plot the estimated effects

> par( mfrow=c(1,3), las=2 )
> matplot( A.pt, A.eff,
+ xlab="Age", ylab="Rates",
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> matplot( P.pt, P.eff,
+ xlab="Period", ylab="RR",
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1 )
> matplot( C.pt, C.eff,
+ xlab="Cohort", ylab="RR",
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1 )

50 60 70 80

1e−04

2e−04

5e−04

1e−03

2e−03

5e−03

Age

R
at

es

19
50

19
60

19
70

19
80

19
90

1.0

1.1

1.2

1.3

1.4

Period

R
R

18
60

18
80

19
00

19
20

19
40

0.05

0.10

0.20

0.50

1.00

Cohort

R
R

Figure 3.18: Estimates of the age-period-cohort model estimates — raw as they are.

This is is not a particularly informative plot, as the scales are all different — the
rates are between 10−4 and 5× 10−3, whereas the cohort RRs are between 0.05 and
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slightly more than 1. So if we rescale the rate to rates per 1000, and then demand
that all display have y-axis from 0.05 to 5, we get comparable displays:

> par( mfrow=c(1,3), las=2 )
> matplot( A.pt, A.eff*1000,
+ xlab="Age", ylab="Rates", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> matplot( P.pt, P.eff,
+ xlab="Period", ylab="RR", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1 )
> matplot( C.pt, C.eff,
+ xlab="Cohort", ylab="RR", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1 )
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Figure 3.19: Estimates of the age-period-cohort model estimates, scaled displays.

The parameters in this model represent age-specific rates, that approximates the
rates in the 1980 cohort (as predicted. . . ), cohort RRs relative to this cohort, and
finally period ”residual” RRs.

But note an explicit decision has been made as to how the period residuals are
defined; namely as the deviations from the line between the periods 1943 and 1993.

7. We now fit the model with two cohorts aliased and one period as fixpoint. To decide
which of the cohort to alias (and define as the first level of the factor) we tabulate no
of observations and no of cases

> with( lung, table(P-A) )

1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933
1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5
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1938 1943 1948 1953
4 3 2 1

> with( lung, tapply(D,list(P-A),sum) )

1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918
7 30 134 371 752 1436 2822 4668 6934 9305 10873 10468 9438

1923 1928 1933 1938 1943 1948 1953
8010 5040 3036 1536 827 400 91

Rater arbitrarily we decide on 1878 and 1933; the numbers of these in the cohort
numbers are computed by:

> C.ref.pos <- with( lung, match( c("1878","1933"), levels( factor(P-A) ) ) )
> P.ref.pos <- with( lung, match( "1973", levels( factor(P) ) ) )

> lung$Cx <- Relevel( factor(lung$P-lung$A), list("first-last"=c("1878","1933") ) )
> lung$Px <- Relevel( factor(lung$P), "1973" )

With these definitions we can now fit the model with the alternative parametrization:

> m.APC2 <- glm( D ~ -1 + factor(A) + factor(Px) + factor(Cx) + offset( log(Y) ),
+ family=poisson, data=lung )
> m.APC2$coef

factor(A)40 factor(A)45 factor(A)50 factor(A)55 factor(A)60
-8.83509142 -8.00846304 -7.29644888 -6.77808959 -6.41810381
factor(A)65 factor(A)70 factor(A)75 factor(A)80 factor(A)85
-6.19380331 -6.07985243 -6.11920417 -6.27155199 -6.54108841

factor(Px)1943 factor(Px)1948 factor(Px)1953 factor(Px)1958 factor(Px)1963
-1.30116802 -1.03820099 -0.86131141 -0.59829106 -0.38189107

factor(Px)1968 factor(Px)1978 factor(Px)1983 factor(Px)1988 factor(Px)1993
-0.15239491 0.16607322 0.28820064 0.30984147 0.37426114

factor(Cx)1858 factor(Cx)1863 factor(Cx)1868 factor(Cx)1873 factor(Cx)1883
-0.32461587 -0.49877219 -0.16937146 -0.03777722 0.16769824

factor(Cx)1888 factor(Cx)1893 factor(Cx)1898 factor(Cx)1903 factor(Cx)1908
0.45684919 0.62175629 0.70287737 0.72846765 0.64001541

factor(Cx)1913 factor(Cx)1918 factor(Cx)1923 factor(Cx)1928 factor(Cx)1938
0.47792978 0.39344343 0.31703715 0.13584147 -0.27622952

factor(Cx)1943 factor(Cx)1948 factor(Cx)1953
-0.44674095 -0.40694587 -0.56006454

We note that it is only the parametrization that differs; the fitted model is the same:

> summary( m.APC )$deviance

[1] 208.5476

> summary( m.APC1 )$deviance

[1] 208.5476

> summary( m.APC2 )$deviance
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[1] 208.5476

8. We use the same points for the age, period and cohort as before, but now extract the
parameters in a slightly different way:

> A.Eff <- ci.lin( m.APC2, subset="A", Exp=TRUE )[,5:7]
> P.Eff <- ci.lin( m.APC2, subset="P", Exp=TRUE )[,5:7]
> nP <- nrow(P.Eff)
> P.Eff <- rbind( P.Eff[1:(P.ref.pos-1),],c(1,1,1),P.Eff[P.ref.pos:nP,])
> C.Eff <- ci.lin( m.APC2, subset="C",Exp=TRUE )[,5:7]
> nC <- nrow(C.Eff)
> C.Eff <- rbind(C.Eff[1:(C.ref.pos[1]-1),],
+ c(1,1,1),
+ C.Eff[(C.ref.pos[1]):(C.ref.pos[2]-2),],
+ c(1,1,1),
+ C.Eff[(C.ref.pos[2]-1):nC,] )

We can now plot the two sets of parameters in the same plots:

> par( mfrow=c(1,3), las=2 )
> matplot( A.pt, cbind(A.eff,A.Eff)*1000,
+ xlab="Age", ylab="Rates", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col=rep(c("black","blue"),each=3) )
> matplot( P.pt, cbind(P.eff,P.Eff),
+ xlab="Period", ylab="RR", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col=rep(c("black","blue"),each=3) )
> abline( h=1 )
> matplot( C.pt, cbind(C.eff,C.Eff),
+ xlab="Cohort", ylab="RR", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col=rep(c("black","blue"),each=3) )
> abline( h=1 )

It is clear from the estimates that very different displays can be obtained from
different parametrizations. So something more interpretable may be needed. . .
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Figure 3.20: Estimates of the age-period-cohort model estimates, from the two different
parametrizations.
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3.10 Age-period-cohort model for triangles

1. First we read the Danish male lung cancer data tabulated by age period and birth
cohort, lung5-Mc.txt and list the first few lines of the dataset. We also define the
synthetic cohorts as P5-A5:

> library( Epi )
> ltri <- read.table( "../data/lung5-Mc.txt", header=T )
> head( ltri )

A5 P5 C5 D Y up Ax Px Cx
1 40 1943 1898 52 336233.8 1 43.33333 1944.667 1901.333
2 40 1943 1903 28 357812.7 0 41.66667 1946.333 1904.667
3 40 1948 1903 51 363783.7 1 43.33333 1949.667 1906.333
4 40 1948 1908 30 390985.8 0 41.66667 1951.333 1909.667
5 40 1953 1908 50 391925.3 1 43.33333 1954.667 1911.333
6 40 1953 1913 23 377515.3 0 41.66667 1956.333 1914.667

> ltri$S5 <- ltri$P5 - ltri$A5

2. Make a Lexis diagram showing the subdivision of the follow-data. You will explore
the function Lexis.diagram.

As an esoteric exercise we can plot the number of cases in each of the triangles:

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> Lexis.diagram( age=30+c(0,65), date=1938+c(0,65), coh.grid=TRUE )
> with( ltri, text( Px, Ax, paste(D), cex=0.8, font=2 ) )
> box()

3. Use the variables A5 and P5 to fit a traditional age-period-cohort model with
synthetic cohort defined by S5=P5-A5:

> ms <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( ms )$df

[1] 38 182 39

How many parameters does this model have?

4. Now we fit the model with the “real” cohort:

> mc <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(C5) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mc )$df

[1] 40 180 40

You see that the number of parameters is now as you would expect with three factors
with numbers of levels 10 (A5), 11 (P5) and 21 (C5), namely
1 + 10 + 11 + 21− 3 = 40, as you see from the output.
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Figure 3.21: Lexis diagram showing the extent of the data.

5. Plot the parameter estimates from the two models on top of each other, with
confidence intervals. Remember to put the right scales on the plots.

> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(ltri$A5)) )
> p.pt <- as.numeric( levels(factor(ltri$P5)) )
> s.pt <- as.numeric( levels(factor(ltri$S5)) )
> c.pt <- as.numeric( levels(factor(ltri$C5)) )
> matplot( a.pt, ci.lin( ms, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Age", ylab="Rates", log="y" )
> matlines( a.pt, ci.lin( mc, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( ms, subset="P5",Exp=TRUE )[,5:7] ),
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+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Period", ylab="RR", log="y" )
> matlines( p.pt, rbind( c(1,1,1), ci.lin( mc, subset="P5",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
> matplot( s.pt, rbind(c(1,1,1),ci.lin( ms, subset="S5", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Cohort", ylab="RR", log="y" )
> matlines( c.pt, rbind(c(1,1,1),ci.lin( mc, subset="C5", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
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Figure 3.22: Estimates from.

It is seen that the confidence bands are much wider for the age and cohort effects but
narrower for the period effects.

6. Now fit the model using the proper midpoints of the triangles as factor levels. How
many parameters does this model have?

> mt <- glm( D ~ -1 + factor(Ax) + factor(Px) + factor(Cx) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mt )$df

[1] 76 144 80

7. Plot the parameters from this model in three panels as for the previous two models.
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> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(ltri$Ax)) )
> p.pt <- as.numeric( levels(factor(ltri$Px)) )
> c.pt <- as.numeric( levels(factor(ltri$Cx)) )
> matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Age", ylab="Rates", log="y" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Period", ylab="RR", log="y" )
> matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Cohort", ylab="RR", log="y" )
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Figure 3.23: Estimates from.

We see that the parameters clearly do not convey a reasonable picture of the effects;
som severe indeterminacy has crept in.

8. What is the residual deviance of this model?

> summary( mt )$deviance

[1] 284.7269

9. The dataset also has a variable up, which indicates whether the observation comes
from an upper or lower triangle. Try to tabulate it against P5-A5-C5.
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> with( ltri, table( up, P5-A5-C5 ) )

up 0 5
0 110 0
1 0 110

10. Fit an age-period cohort model separately for the subset of the dataset from the
upper triangles and from the lowere triangles. What is the residual deviance from
each of these models and what is the sum of these. Compare to the model using the
proper midpoints as factor levels.

> m.up <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=subset(ltri,up==1) )
> summary( m.up )$deviance

[1] 150.2703

> m.lo <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=subset(ltri,up==0) )
> summary( m.lo )$deviance

[1] 134.4566

> summary( m.lo )$deviance + summary( m.up )$deviance

[1] 284.7269

> summary( mt )$deviance

[1] 284.7269

11. Next, repeat the plots of the parameters from the model using the proper midpoints
as factor levels, but now super-posing the estimates (in different color) from each of
the two models just fitted. What goes on?

> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(ltri$Ax)) )
> p.pt <- as.numeric( levels(factor(ltri$Px)) )
> c.pt <- as.numeric( levels(factor(ltri$Cx)) )
> a5.pt <- as.numeric( levels(factor(ltri$A5)) )
> p5.pt <- as.numeric( levels(factor(ltri$P5)) )
> s5.pt <- as.numeric( levels(factor(ltri$S5)) )
> matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Age", ylab="Rates", log="y" )
> matpoints( a5.pt, ci.lin( m.up, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ pch=c(16,3,3), col="blue" )
> matpoints( a5.pt, ci.lin( m.lo, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ pch=c(16,3,3), col="red" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Period", ylab="RR", log="y" )
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> matpoints( p5.pt[-1], ci.lin( m.up, subset="P5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="blue" )
> matpoints( p5.pt[-1], ci.lin( m.lo, subset="P5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="red" )
> matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Cohort", ylab="RR", log="y" )
> matpoints( s5.pt[-1], ci.lin( m.up, subset="S5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="blue" )
> matpoints( s5.pt[-1], ci.lin( m.lo, subset="S5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="red" )
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Figure 3.24: Estimates from.

The model fitted with the “correct” factor levels is actually two different models. This
is because observations in upper triangles are modelled by one set of the parameters,
and those in lower triangel by another set of parameters.

Because of the ordering of the levels, the parametrization is different, but that is all.

There is no way out of the squeeze, except by resorting to parametric models for the
actual underlying scales, abandoning the factor modelling, and by that also the
ridiculous inherent assumption of echangeability of factor levels.

12. We now load the splines package and fit a model using the correct midpoints of the
triangles as quantitative variables in restricted cubic splines, using the function ns:

> library( splines )
> mspl <- glm( D ~ -1 + ns(Ax,df=7,intercept=T)
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+ + ns(Px,df=6,intercept=F)
+ + ns(Cx,df=6,intercept=F) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mspl )

Call:
glm(formula = D ~ -1 + ns(Ax, df = 7, intercept = T) + ns(Px,

df = 6, intercept = F) + ns(Cx, df = 6, intercept = F) +
offset(log(Y)), family = poisson, data = ltri)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.7276 -0.8869 -0.0122 0.9328 3.4738

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

ns(Ax, df = 7, intercept = T)1 -8.08248 0.09584 -84.329 < 2e-16
ns(Ax, df = 7, intercept = T)2 -8.81421 0.11261 -78.271 < 2e-16
ns(Ax, df = 7, intercept = T)3 -8.20301 0.11520 -71.209 < 2e-16
ns(Ax, df = 7, intercept = T)4 -7.90599 0.11814 -66.921 < 2e-16
ns(Ax, df = 7, intercept = T)5 -3.98298 0.08558 -46.540 < 2e-16
ns(Ax, df = 7, intercept = T)6 -21.35542 0.24841 -85.967 < 2e-16
ns(Ax, df = 7, intercept = T)7 0.70588 0.05540 12.741 < 2e-16
ns(Px, df = 6, intercept = F)1 0.59989 0.03777 15.883 < 2e-16
ns(Px, df = 6, intercept = F)2 0.94029 0.04319 21.771 < 2e-16
ns(Px, df = 6, intercept = F)3 1.18582 0.04354 27.237 < 2e-16
ns(Px, df = 6, intercept = F)4 1.22421 0.04204 29.122 < 2e-16
ns(Px, df = 6, intercept = F)5 1.46929 0.08247 17.816 < 2e-16
ns(Px, df = 6, intercept = F)6 1.07376 0.04202 25.555 < 2e-16
ns(Cx, df = 6, intercept = F)1 1.57834 0.10334 15.273 < 2e-16
ns(Cx, df = 6, intercept = F)2 1.60219 0.11202 14.303 < 2e-16
ns(Cx, df = 6, intercept = F)3 1.37407 0.10178 13.500 < 2e-16
ns(Cx, df = 6, intercept = F)4 1.03167 0.07211 14.306 < 2e-16
ns(Cx, df = 6, intercept = F)5 1.19310 0.21716 5.494 3.93e-08
ns(Cx, df = 6, intercept = F)6 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.0037e+08 on 220 degrees of freedom
Residual deviance: 4.3344e+02 on 202 degrees of freedom
AIC: 2026.7

Number of Fisher Scoring iterations: 4

> summary( mt )$deviance - summary( mspl )$deviance

[1] -148.7082

> summary( mt )$df - summary( mspl )$df

[1] 58 -58 61

13. How do the deviances compare?

14. Make a prediction of the terms, using predict.glm using the argument
type="terms" and se.fit=TRUE. Remember to look up the help page for
predict.glm.
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> pspl <- predict( mspl, type="terms", se.fit=TRUE )
> str(pspl)

List of 3
$ fit : num [1:220, 1:3] -10.8 -11.1 -10.8 -11.1 -10.8 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:220] "1" "2" "3" "4" ...
.. ..$ : chr [1:3] "ns(Ax, df = 7, intercept = T)" "ns(Px, df = 6, intercept = F)" "ns(Cx, df = 6, intercept = F)"
..- attr(*, "constant")= num 0
$ se.fit : num [1:220, 1:3] 0.107 0.109 0.107 0.109 0.107 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:220] "1" "2" "3" "4" ...
.. ..$ : chr [1:3] "ns(Ax, df = 7, intercept = T)" "ns(Px, df = 6, intercept = F)" "ns(Cx, df = 6, intercept = F)"
$ residual.scale: num 1

> a.ord <- order( ltri$Ax )
> p.ord <- order( ltri$Px )
> c.ord <- order( ltri$Cx )
> par( mfrow=c(1,3) )
> matplot( ltri$Ax[a.ord], exp(cbind( pspl$fit[,1], pspl$se.fit[,1] )[a.ord,] %*% ci.mat())*10^5,
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.2),
+ xlab="Age", ylab="Rates", log="y" )
> matplot( ltri$Px[p.ord], exp(cbind( pspl$fit[,2], pspl$se.fit[,2] )[p.ord,] %*% ci.mat()),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.2),
+ xlab="Period", ylab="RR", log="y" )
> matplot( ltri$Cx[c.ord], exp(cbind( pspl$fit[,3], pspl$se.fit[,3] )[c.ord,] %*% ci.mat()),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.2),
+ xlab="Cohort", ylab="RR", log="y" )
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Figure 3.25: Estimates from.
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3.11 Using apc.fit etc.

This exercise introduces the functions for fitting and plotting the results from
age-period-cohort models: apc.fit apc.plot apc.lines and apc.frame.

1. We first read the testis cancer data and collapse the cases over the histological
subtypes:

> th <- read.table( "../data/testis-hist.txt", header=T )
> str( th )

'data.frame': 29160 obs. of 9 variables:
$ a : int 0 0 0 0 0 0 1 1 1 1 ...
$ p : int 1943 1943 1943 1943 1943 1943 1943 1943 1943 1943 ...
$ c : int 1942 1942 1942 1943 1943 1943 1941 1941 1941 1942 ...
$ y : num 18853 18853 18853 20797 20797 ...
$ age : num 0.667 0.667 0.667 0.333 0.333 ...
$ diag : num 1943 1943 1943 1944 1944 ...
$ birth: num 1943 1943 1943 1943 1943 ...
$ hist : int 1 2 3 1 2 3 1 2 3 1 ...
$ d : int 0 1 0 0 0 0 0 0 0 0 ...

Knowing the names of the variables in the dataset, we can now collapse over the
histological subtypes. There is no need to tabulate by cohort as well, because even for
the triangular data the relationship c = p− a holds. For aesthetic reasons we get rid
of the variable we do not need:

> tc <- aggregate( th[,c("age","diag","d","y")], list(A=th$age,P=th$diag), sum )
> str( tc )

'data.frame': 9720 obs. of 6 variables:
$ A : num 0.667 1.667 2.667 3.667 4.667 ...
$ P : num 1943 1943 1943 1943 1943 ...
$ age : num 2 5 8 11 14 ...
$ diag: num 5830 5830 5830 5830 5830 ...
$ d : int 1 0 0 0 0 0 0 0 0 0 ...
$ y : num 56559 51319 49931 49083 48376 ...

> names( tc ) <- toupper( names(tc) )
> tc <- tc[,c("A","P","D","Y")]

Now the original data had three subtypes of testis cancer, so while it is OK to sum
the number of cases (D), the amount of risk time has been aggregated erroneously, so
we must divide by 3:

> tc$Y <- tc$Y/3
> tc$C <- tc$P - tc$A
> str( tc )

'data.frame': 9720 obs. of 5 variables:
$ A: num 0.667 1.667 2.667 3.667 4.667 ...
$ P: num 1943 1943 1943 1943 1943 ...
$ D: int 1 0 0 0 0 0 0 0 0 0 ...
$ Y: num 18853 17106 16644 16361 16125 ...
$ C: num 1943 1942 1941 1940 1939 ...
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> head( tc )

A P D Y C
1 0.6666667 1943.333 1 18853.00 1942.667
2 1.6666667 1943.333 0 17106.33 1941.667
3 2.6666667 1943.333 0 16643.50 1940.667
4 3.6666667 1943.333 0 16361.00 1939.667
5 4.6666667 1943.333 0 16125.17 1938.667
6 5.6666667 1943.333 0 15728.50 1937.667

2. If we want to present the rates in 5-year age and period classes from age 15 to age 59
using rateplot, we must make a table as input to the rateplot function. Note that in
this case we aggregate across subsets of the Lexis diagram and not as above within,
and hence we must use the sum both for events and risk time:

> par( mfrow=c(2,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> rateplot(
+ with( subset( tc, A>15 & A<60 ),
+ tapply( D, list(floor(A/5)*5+2.5,
+ floor((P-1943)/5)*5+1945.5), sum ) /
+ tapply( Y, list(floor(A/5)*5+2.5,
+ floor((P-1943)/5)*5+1945.5), sum ) * 10^5 ),
+ col=topo.colors(12) )

3. We now fit an age-period-cohort model to the data using the machinery implemented
in apc.fit. The function returns a fitted model and a parametrization, hence we
must choose how to parametrize it, in this case "ACP" with all the drift included in
the cohort effect and the reference cohort being 1918.

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,10), parm="ACP", ref.c=1918 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 4849 6513.1
Age-drift 4848 5313.6 1 1199.46 < 2.2e-16
Age-Cohort 4839 5244.4 9 69.24 2.147e-11
Age-Period-Cohort 4830 5193.9 9 50.51 8.633e-08
Age-Period 4839 5290.5 -9 -96.60 < 2.2e-16
Age-drift 4848 5313.6 -9 -23.15 0.005867

It is seen that the period effect is weaker (deviance=50.5) than the cohort effect
(deviance=96.6), although still formally strongly significant.

4. We can plot the estimates using the apc.plot function:

> apc.plot( tapc, ci=TRUE )

cp.offset RR.fac
1823.33333 0.00001

5. Now explore in more depth the cohort effect by increasing the number of parameters
used for it:
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Figure 3.26: Age-specific rates for testis cancer in Denmark.

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
+ parm="ACP", ref.c=1918, scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 4849 6513.1
Age-drift 4848 5313.6 1 1199.46 < 2.2e-16
Age-Cohort 4829 5233.1 19 80.57 1.484e-09
Age-Period-Cohort 4820 5182.6 9 50.46 8.811e-08
Age-Period 4839 5290.5 -19 -107.88 1.955e-14
Age-drift 4848 5313.6 -9 -23.15 0.005867

> fp <- apc.plot( tapc, ci=TRUE )

6. We now explore the effect of using the residual method instead, and over-plot the
estimates from this method on the existing plot2:

2Unfortunately there is a fatal bug in apc.fit when fitting the period residuals to the age-cohort model
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Figure 3.27: The default plot for the fit of an Age-Period-Cohort model for testis cancer in
Denmark. 10 parameters for all effects.

> tac.p <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
+ parm="AC-P", ref.c=1918, scale=10^5 )

[1] "Sequential modelling Poisson with log(Y) offset : ( AC-P ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 4849 6513.1
Age-drift 4848 5313.6 1 1199.46 < 2.2e-16
Age-Cohort 4829 5233.1 19 80.57 1.484e-09
Age-Period-Cohort 4820 5182.6 9 50.46 8.811e-08
Age-Period 4839 5290.5 -19 -107.88 1.955e-14
Age-drift 4848 5313.6 -9 -23.15 0.005867

> fp <- apc.plot( tapc, ci=TRUE )
> apc.lines( tac.p, ci=TRUE, col="red", frame.par=fp )

7. The standard display is not very pretty — it gives an overview, but certainly not
anything worth publishing, hence a bit of handwork is needed. We can use the
apc.frame for this, and create a nicer plot of the estimates from the residual model:

— it does not crash but simply fit a totally meaningless model. There is a fix for this in the version 1.0.11
of the Epi package which is available at the course homepage
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Figure 3.28: The default plot for the fit of an AGe-Period-Cohort model for testis cancer in
Denmark. 20 parameters for the cohort effect, 10 for age and period.

> par( mar=c(3,4,1,4), mgp=c(3,1,0)/1.7, las=1 )
> fp <- apc.frame( a.lab=seq(20,60,10),
+ a.tic=seq(10,60,5),
+ cp.lab=seq(1900,2000,20),
+ cp.tic=seq(1885,2000,5),
+ r.lab=c(c(1,2,5)/10,1,2,5,10),
+ r.tic=c(1:9/10,1:10),
+ gap=8,
+ rr.ref=1)
> apc.lines( tapc, ci=TRUE, col="blue", frame.par=fp )
> apc.lines( tac.p, ci=TRUE, col="red", frame.par=fp )

8. We now try to use period as the primary timescale, and add this to the plot as well:

> tap.c <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
+ parm="AP-C", ref.p=1950, scale=10^5 )

[1] "Sequential modelling Poisson with log(Y) offset : ( AP-C ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 4849 6513.1
Age-drift 4848 5313.6 1 1199.46 < 2.2e-16
Age-Cohort 4829 5233.1 19 80.57 1.484e-09
Age-Period-Cohort 4820 5182.6 9 50.46 8.811e-08
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Figure 3.29: Comparing the ML-method with the residual method for the Danish testis cancer
cases.

Age-Period 4839 5290.5 -19 -107.88 1.955e-14
Age-drift 4848 5313.6 -9 -23.15 0.005867

> apc.lines( tap.c, ci=TRUE, col=c("black","gray","black"), frame.par=fp )

From the black (and gray) curves in figure 3.30, the dips in incidence rates for the
generations born during the world wars is quite remarkable, but it also seen that the
shift to a period-primary model shifts the age-specific rates to peak at a slightly
earlier age, 30 instead of 35.

The former figure is an indication of the age-distribution of next years cases (when
multiplied by the population distribution . . . ), whereas the latter is a reasonable
statement about the natural history of the disease; men are at increasing risk until
age 35, and there after it decreases.
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Figure 3.30: Comparing the ML-method with the residual method for the Danish testis cancer
cases. Additionally, the parametrization of the residual method for the age-period model is
shown.
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3.12 Histological subtypes of testis cancer

1. First we load the data, restrict to two main types, and to the relevant age-range, and
for convenience also rename the variables:

> library( Epi )
> source("C:/stat/r/bxc/library.sources/Epi/pkg/R/apc.fit.R")
> th <- read.table( "../data/testis-hist.txt", header=T )
> str( th )

'data.frame': 29160 obs. of 9 variables:
$ a : int 0 0 0 0 0 0 1 1 1 1 ...
$ p : int 1943 1943 1943 1943 1943 1943 1943 1943 1943 1943 ...
$ c : int 1942 1942 1942 1943 1943 1943 1941 1941 1941 1942 ...
$ y : num 18853 18853 18853 20797 20797 ...
$ age : num 0.667 0.667 0.667 0.333 0.333 ...
$ diag : num 1943 1943 1943 1944 1944 ...
$ birth: num 1943 1943 1943 1943 1943 ...
$ hist : int 1 2 3 1 2 3 1 2 3 1 ...
$ d : int 0 1 0 0 0 0 0 0 0 0 ...

2. Then we restrict the data set to the main types and the relevant age-range. For
convenience we also rename the relevant variables.

> th <- subset( th, hist != 3 & age>15 & age<65 )
> names(th)[match(c("age","diag","d","y"),names(th))] <- c("A","P","D","Y")
> th <- transform( th, hist=factor(hist,labels=c("Seminoma","non-Semi")) )
> str( th )

'data.frame': 10800 obs. of 9 variables:
$ a : int 15 15 15 15 16 16 16 16 17 17 ...
$ p : int 1943 1943 1943 1943 1943 1943 1943 1943 1943 1943 ...
$ c : int 1927 1927 1928 1928 1926 1926 1927 1927 1925 1925 ...
$ Y : num 15684 15684 15504 15504 16017 ...
$ A : num 15.7 15.7 15.3 15.3 16.7 ...
$ P : num 1943 1943 1944 1944 1943 ...
$ birth: num 1928 1928 1928 1928 1927 ...
$ hist : Factor w/ 2 levels "Seminoma","non-Semi": 1 2 1 2 1 2 1 2 1 2 ...
$ D : int 0 0 0 0 0 0 0 0 0 0 ...

> head( th )

a p c Y A P birth hist D
91 15 1943 1927 15683.67 15.66667 1943.333 1927.667 Seminoma 0
92 15 1943 1927 15683.67 15.66667 1943.333 1927.667 non-Semi 0
94 15 1943 1928 15504.33 15.33333 1943.667 1928.333 Seminoma 0
95 15 1943 1928 15504.33 15.33333 1943.667 1928.333 non-Semi 0
97 16 1943 1926 16017.00 16.66667 1943.333 1926.667 Seminoma 0
98 16 1943 1926 16017.00 16.66667 1943.333 1926.667 non-Semi 0

Finally we also make a quick overview over the number of cases and person-years.
Note that the person-years are identical between the different histological types:

> with( th, addmargins( tapply(D,list(floor(A/5)*5,hist),sum) ) )
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Seminoma non-Semi Sum
15 28 268 296
20 194 727 921
25 572 848 1420
30 902 634 1536
35 908 401 1309
40 692 266 958
45 475 161 636
50 343 85 428
55 215 72 287
60 132 32 164
Sum 4461 3494 7955

> with( th, addmargins( tapply(Y,list(floor(A/5)*5,hist),sum) ) )

Seminoma non-Semi Sum
15 9866173 9866173 19732345
20 9782823 9782823 19565646
25 9561920 9561920 19123840
30 9263680 9263680 18527360
35 8954294 8954294 17908589
40 8606038 8606038 17212076
45 8139267 8139267 16278533
50 7443401 7443401 14886802
55 6740090 6740090 13480180
60 5997263 5997263 11994526
Sum 84354949 84354949 168709897

3.12.1 The age-incidence crossover

This is a little extra, paraphrasing the age-incidence cross-over that has been
discussed in the article: “Age-Related Crossover in Breast Cancer Incidence Rates
Between Black and White Ethnic Groups” by William F. Anderson , Philip S.
Rosenberg , Idan Menashe , Aya Mitani & Ruth M. Pfeiffer, JNCI, 100, 24,
December 17, 2008.

To see what it is all about, we fit APC-models separately for seminoma and
non-seminoma, using different parametrizations. We also compute the age-specific
rate-ratio between seminoma and non-seminoma and see when they cross. To this
end we first define a small function that takes effects from two apc objects as input,
and return the rate-ratios in the shape of a similar object.

> rr <- function( one, two )
+ {
+ one[,-1] <- log(one[,-1] )
+ two[,-1] <- log(two[,-1] )
+ sd.dif <- sqrt( ((one[,4]-one[,3])/3.92)^2 +
+ ((two[,4]-two[,3])/3.92)^2 )
+ rat <- one
+ rat[,-1] <- exp( cbind( one[,2]-two[,2], sd.dif ) %*%
+ rbind( c(1,1,1), 1.96*c(0,-1,1) ) )
+ rat
+ }
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Then we fit APC-models separately for the seminomas and non-seminomas, using two
different parametrizations for each — the only difference being the reference point for
the cohort; either 1945 or 1920.

> library( Epi )
> sem.1945 <- apc.fit( subset(th,hist=="Seminoma"),
+ ref.c=1945,
+ npar=c(8,5,15), scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 5391 5650.4
Age-drift 5390 5047.2 1 603.19 < 2.2e-16
Age-Cohort 5376 5001.4 14 45.80 3.019e-05
Age-Period-Cohort 5372 4980.3 4 21.05 0.0003094
Age-Period 5386 5037.0 -14 -56.63 4.525e-07
Age-drift 5390 5047.2 -4 -10.22 0.0368942

> n.s.1945 <- apc.fit( subset(th,hist=="non-Semi"),
+ ref.c=1945,
+ npar=c(8,5,15), scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 5391 5201.6
Age-drift 5390 4500.4 1 701.21 < 2.2e-16
Age-Cohort 5376 4447.5 14 52.85 2.021e-06
Age-Period-Cohort 5372 4359.6 4 87.96 < 2.2e-16
Age-Period 5386 4425.9 -14 -66.36 8.750e-09
Age-drift 5390 4500.4 -4 -74.45 2.601e-15

> sem.1920 <- apc.fit( subset(th,hist=="Seminoma"),
+ ref.c=1920,
+ npar=c(8,5,15), scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 5391 5650.4
Age-drift 5390 5047.2 1 603.19 < 2.2e-16
Age-Cohort 5376 5001.4 14 45.80 3.019e-05
Age-Period-Cohort 5372 4980.3 4 21.05 0.0003094
Age-Period 5386 5037.0 -14 -56.63 4.525e-07
Age-drift 5390 5047.2 -4 -10.22 0.0368942

> n.s.1920 <- apc.fit( subset(th,hist=="non-Semi"),
+ ref.c=1920,
+ npar=c(8,5,15), scale=10^5 )
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[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 5391 5201.6
Age-drift 5390 4500.4 1 701.21 < 2.2e-16
Age-Cohort 5376 4447.5 14 52.85 2.021e-06
Age-Period-Cohort 5372 4359.6 4 87.96 < 2.2e-16
Age-Period 5386 4425.9 -14 -66.36 8.750e-09
Age-drift 5390 4500.4 -4 -74.45 2.601e-15

We can now use these objects to compute the RR of the estimated age- period- and
cohort-effects:

> rrA.1945 <- rr( sem.1945$Age, n.s.1945$Age )
> rrA.1920 <- rr( sem.1920$Age, n.s.1920$Age )
> rrP.1945 <- rr( sem.1945$Per, n.s.1945$Per )
> rrP.1920 <- rr( sem.1920$Per, n.s.1920$Per )
> rrC.1945 <- rr( sem.1945$Coh, n.s.1945$Coh )
> rrC.1920 <- rr( sem.1920$Coh, n.s.1920$Coh )

We can now make a plot with the two subtypes plotted in different colors and and
the two parametrizations plotted by different line types. We note that since we have
chosen the period effects to be 0 on avearge with 0 slope, they are identical for the
two parametrizations.

> apc.frame( r.lab=c(c( 5,10)/100,
+ c(2,5,10)/10,
+ c(2,5,10,15)),
+ r.tic=c(c(5:10)/100,
+ c(2:10)/10,
+ c(2:10)),
+ rr.ref=1,
+ a.lab=seq(10,70,20),
+ a.tic=1:7*10,
+ cp.lab=seq(1880,2000,20),
+ cp.tic=188:200*10,
+ gap=5 )
> apc.lines(sem.1945,col="blue",lwd=2)
> apc.lines(n.s.1945,col="red" ,lwd=2)
> apc.lines(sem.1920,col="blue",lty="12",lwd=4)
> apc.lines(n.s.1920,col="red" ,lty="12",lwd=4)

> apc.frame( r.lab=c(c( 5,10)/100,
+ c(2,5,10)/10,
+ c(2,5,10,15)),
+ r.tic=c(c(5:10)/100,
+ c(2:10)/10,
+ c(2:10)),
+ rr.ref=1,
+ a.lab=seq(20,60,20),
+ a.tic=1:7*10,
+ cp.lab=seq(1880,2000,20),
+ cp.tic=188:200*10,
+ gap=5 )
> lines( rrA.1945[,1], rrA.1945[,2], lwd=2 )
> lines( rrA.1920[,1], rrA.1920[,2], lwd=2, lty="22" )
> pc.lines( rrP.1945[,1], rrP.1945[,2], lwd=2, col=gray(0.5) )
> pc.lines( rrP.1920[,1], rrP.1920[,2], lwd=2, col=gray(0.5), lty="22" )
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> pc.lines( rrC.1945[,1], rrC.1945[,2], lwd=2 )
> pc.lines( rrC.1920[,1], rrC.1920[,2], lwd=2, lty="22" )
> abline(h=1)

It is seen that the two age-specific rate-ratios are 1 at different ages, although they
are derived from the same model(s). The differance (on the log scale) of the
age-specific RRs is the opposite of the difference of the cohort RRs.

The reason is that if the rates of seminoma and non-seminoma both follow an
APC-model (different parameters, of course), then the RR between the two will also
follow an APC-model. And you will have to make exactly the same decisions for the
rate-ratios as for any of the two separate models. The example illustrated that the
restriction on the period-effect to be 0 on average with 0 slope carries over to the RR.
Hence, it might be more productive to constrain both the cohort and the period effects
to be 0 on average, and take out the drift as a separate parameter for each subtype.

> sem.dr <- apc.fit( subset(th,hist=="Seminoma"),
+ parm="AdCP", #ref.c=1930,
+ npar=c(8,5,15), scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ADCP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 5391 5650.4
Age-drift 5390 5047.2 1 603.19 < 2.2e-16
Age-Cohort 5376 5001.4 14 45.80 3.019e-05
Age-Period-Cohort 5372 4980.3 4 21.05 0.0003094
Age-Period 5386 5037.0 -14 -56.63 4.525e-07
Age-drift 5390 5047.2 -4 -10.22 0.0368942
No reference period given:
Reference period for age-effects is chosen as
the median date of birth for persons with event: 1951.667

> n.s.dr <- apc.fit( subset(th,hist=="non-Semi"),
+ parm="AdCP", #ref.c=1930,
+ npar=c(8,5,15), scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ADCP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 5391 5201.6
Age-drift 5390 4500.4 1 701.21 < 2.2e-16
Age-Cohort 5376 4447.5 14 52.85 2.021e-06
Age-Period-Cohort 5372 4359.6 4 87.96 < 2.2e-16
Age-Period 5386 4425.9 -14 -66.36 8.750e-09
Age-drift 5390 4500.4 -4 -74.45 2.601e-15
No reference period given:
Reference period for age-effects is chosen as
the median date of birth for persons with event: 1946.667

Using parm="AdCP" gives estimates of cohort and period effects that are constrained
this way, and of age-effects referring to a cohort as given by the ref.c. Note that it is
necessary to fix a reference cohort (or period) if we want age-specific rates estimated.
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We can then formally test whether the drift parameter is the same for the two
histological subtypes by computing the ratio of the drifts with a c.i. If we look at the
drift component of the apc.fit object:

> str( sem.dr$Drift )

num [1:2, 1:3] 1.03 1.02 1.02 1.02 1.03 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:2] "APC" "A-d"
..$ : chr [1:3] "exp(Est.)" "2.5%" "97.5%"

we see that it is a 2×3 matrix. The function rr we defined takes two 4-column
matrices as input, so this is what se will supply:

> round( ( rbind( sem.dr$Drift,
+ n.s.dr$Drift ) - 1 )*100, 2 )

exp(Est.) 2.5% 97.5%
APC 2.51 2.30 2.72
A-d 2.47 2.26 2.67
APC 3.04 2.78 3.30
A-d 3.09 2.84 3.33

> round( ( rr( cbind(0,sem.dr$Drift),
+ cbind(0,n.s.dr$Drift) ) - 1 )*100, 2 )

exp(Est.) 2.5% 97.5%
APC -100 -0.51 -0.83 -0.18
A-d -100 -0.60 -0.91 -0.29

We see that the drift for seminoma is 2.5% per year, but for non-seminoma about 3%
per year. And that the difference is 0.5% witha confidence interval of of about
(0.2–0.9)%/year.

Thus we see that there are indeed different drifts between the two subtypes.

We can then separately look at whether the shapes of the RRs by cohort and period
are the same. By looking at the confidence interval for the ratios of the cohort and
period effects we can assess wheter they are the same. A formal test can be made by
fitting a joint model.

> rrA <- rr( sem.dr$Age, n.s.dr$Age )
> rrP <- rr( sem.dr$Per, n.s.dr$Per )
> rrC <- rr( sem.dr$Coh, n.s.dr$Coh )
> apc.frame( r.lab=c(c( 5,10)/100,
+ c(2,5,10)/10,
+ c(2,5,10,15)),
+ r.tic=c(c(5:10)/100,
+ c(2:10)/10,
+ c(2:10)),
+ rr.ref=1,
+ a.lab=seq(20,60,20),
+ a.tic=1:7*10,
+ cp.lab=seq(1880,2000,20),
+ cp.tic=188:200*10,
+ gap=5 )
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> matlines( rrA[,1], rrA[,-1], lwd=c(3,1,1), lty=1, col="blue" )
> pc.matlines( rrP[,1], rrP[,-1], lwd=c(3,1,1), lty=c("12","36","36"), col="blue" )
> pc.matlines( rrC[,1], rrC[,-1], lwd=c(3,1,1), lty=1, col="blue" )
> abline(h=1)

Hence the concept of the age-incidence cross-over is only well defined if you are
prepared to make assumptions about identity of cohort and period affects at certain
timepoints (such as for example all timepoints).
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Figure 3.31: Estimated age-, period- and cohort-effects for Seminoma (blue) and non-
Seminoma (red), using either 1920 or 1945 as the reference cohort. The black lines in
the lower plot are the RRs between the effcts for Seminoma versus non-seminoma.
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Figure 3.32: Estimated ratios of age-, period- and cohort-effects for Seminoma versus non-
Seminoma, using either 1930 as the reference cohort.
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3.13 Lung cancer: the sex difference

The following exercise is aimed at investigating the effect of age, period and cohort on the
lung cancer incidence for both sexes using one complex age-period-cohort model. First, we
will use 5-year triangular data to xxxx and build separate models for males and females.
Further the complex model will be built for 1-year triangular data.

1. First we read 1-year triangular data from data set apc-Lung.txt

> lung <- read.table( "../data/apc-Lung.txt", header=T )
> head( lung)

sex A P C D Y
1 1 0 1943 1942 0 19546.2
2 1 0 1943 1943 0 20796.5
3 1 0 1944 1943 0 20681.3
4 1 0 1944 1944 0 22478.5
5 1 0 1945 1944 0 22369.2
6 1 0 1945 1945 0 23885.0

2. The variables A, P and C are the left endpoints of the tabulation intervals, so the
value of the variable P-A-C is 0 for lower triangles and 1 for upper triangles in the
Lexis diagram. This can the be used to compute the correct values of the mean age
and period (and cohort) in the dataset.

> lung <- transform( lung, up = P-A-C, At = A, Pt = P, Ct = C )
> lung <- transform( lung, A = At + 1/3 + up/3,
+ P = Pt + 2/3 - up/3 )
> lung <- transform( lung, C = P - A )
> head( lung )

sex A P C D Y up At Pt Ct
1 1 0.6666667 1943.333 1942.667 0 19546.2 1 0 1943 1942
2 1 0.3333333 1943.667 1943.333 0 20796.5 0 0 1943 1943
3 1 0.6666667 1944.333 1943.667 0 20681.3 1 0 1944 1943
4 1 0.3333333 1944.667 1944.333 0 22478.5 0 0 1944 1944
5 1 0.6666667 1945.333 1944.667 0 22369.2 1 0 1945 1944
6 1 0.3333333 1945.667 1945.333 0 23885.0 0 0 1945 1945

A bit of care is required with the transform function; each of the assignments is
made in the original data frame given as the first argument, hence it is not possible
compute the correct C using the computed values of A and P, so it has to be done in
two steps as above. Or by explicitly defining as: C = Pt+2/3-up/3 - (At+1/3+up/3)

3. We can make an overview of the rates if we can produce a table of the rates in a
suitable form. This can be done by grouping on the fly and tabulating by sex too:

> lrate <- with( subset( lung, A>40 & A<90 ),
+ tapply( D, list(sex,
+ floor(A/5)*5+2.5,
+ floor((P-1943)/5)*5+1943+2.5),
+ sum ) /
+ tapply( Y, list(sex,
+ floor(A/5)*5+2.5,
+ floor((P-1943)/5)*5+1943+2.5),
+ sum ) * 10^5 )
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With this three-way table we can plot the rates for males and females in one go,
using the same scale for the axes among men and women; as seen in the figure ??:

> par( mfrow=c(2,4), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> rateplot( lrate[1,,], col="blue", ylim=range(lrate,na.rm=T) )
> rateplot( lrate[2,,], col="red" , ylim=range(lrate,na.rm=T) )
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Figure 3.33: Empirical rates of lung cancer in 5×5 age-period squares of the Lexis diagram
for men (blue) and women (red).

4. The models are easily fitted separately using the subset function on the data frame:

> apc.m <- apc.fit( subset(lung,sex==1 & A>40), npar=c(8,8,15), ref.c=1930, scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 6091 23484.6
Age-drift 6090 16697.6 1 6787.0 < 2.2e-16
Age-Cohort 6076 8239.8 14 8457.8 < 2.2e-16
Age-Period-Cohort 6069 7451.5 7 788.3 < 2.2e-16
Age-Period 6083 10719.6 -14 -3268.0 < 2.2e-16
Age-drift 6090 16697.6 -7 -5978.1 < 2.2e-16

> apc.f <- apc.fit( subset(lung,sex==2 & A>40), npar=c(8,8,15), ref.c=1930, scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 6091 24291.8
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Age-drift 6090 8458.4 1 15833.4 < 2.2e-16
Age-Cohort 6076 7535.0 14 923.3 < 2.2e-16
Age-Period-Cohort 6069 7045.8 7 489.2 < 2.2e-16
Age-Period 6083 7953.5 -14 -907.7 < 2.2e-16
Age-drift 6090 8458.4 -7 -504.9 < 2.2e-16

The default is to allocate the drift with the cohort and leave the period effect flat
with an average of 0 (on the log-scale).

We can plot the the results separately and then judging from the displays find out
what display is required for a sensible common plot

> apc.plot( apc.m, col="blue" )

cp.offset RR.fac
1753.333 100.000

> apc.plot( apc.f, col="red" )

cp.offset RR.fac
1753.333 100.000
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Figure 3.34: Initial sketch plots for the male and the female rates of lung cancer incidence
in Denmark.
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Now we can set up a plotting frame for the apc-plot of both set of estimated effects in
one frame:

> r.lab <- c(6,c(1,2,5)*10,c(1,2,5)*100)
> rr.ref <- 200
> r.tic <- c(5:9,1:9*10,1:6*100)
> par( las=1, mar=c(4,3,1,4), mgp=c(3,1,0)/1.6 )
> apc.frame( a.lab = seq(40,90,20),
+ cp.lab = seq(1880,2000,20),
+ r.lab = c(6,c(1,2,5)*10,c(1,2,5)*100),
+ rr.lab = r.lab / rr.ref,
+ rr.ref = rr.ref,
+ a.tic = seq(35,90,5),
+ cp.tic = seq(1855,2005,5),
+ r.tic = r.tic,
+ rr.tic = r.tic / rr.ref,
+ tic.fac = 1.3,
+ a.txt = "Age",
+ cp.txt = "Calendar time",
+ r.txt = "Lung cancer rate per 100,000 person-years",
+ rr.txt = "Rate ratio",
+ ref.line = TRUE,
+ gap = 13,
+ col.grid = gray(0.85),
+ sides = c(1,2,4) )
> apc.lines( apc.m, col="blue", ci=T )
> apc.lines( apc.f, col="red" , ci=T )
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Figure 3.35: Male and the female lung cancer incidence rates in Denmark.

5. The ratios of the rates also follows an age-period-cohort model:

log
(
λM(a.p)/λF (a, p)

)
= log

(
λM(a.p)

)
− log

(
λF (a, p)

)
=

(
fM(a)− fF (a)

)
+(

gM(p)− gF (p)
)
+(

hM(c)− hF (c)
)
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so for the rate-ratios we have exactly the same identification problems, but we can for
a start just compute the ratios of the effects with confidence intervals.

Note that since we constrained the cohort effects to be 0 for the 1930 cohort
(ref.c=1930), the difference between cohort effects for men and women will also be 0
in 1930. And moreover, since the mean and slope of the period effects are 0 for both
sexes too, this will also be the case for the difference; so the APC-model induced for
the sex-ratio will have the same constraints as the ones for the two sexes.

To derive the RRs from the estimated effects from the two independent sets of data it
is easier to devise a small function that takes two sets of estimated rates/RRs with
c.i.s and returns the ratio with c.i.s:

> rr <-
+ function( one, two )
+ {
+ one[,-1] <- log(one[,-1] )
+ two[,-1] <- log(two[,-1] )
+ sd.dif <- sqrt( ((one[,4]-one[,3])/3.92)^2 +
+ ((two[,4]-two[,3])/3.92)^2 )
+ rat <- one
+ rat[,-1] <- exp( cbind( one[,2]-two[,2], sd.dif ) %*%
+ rbind( c(1,1,1), 1.96*c(0,-1,1) ) )
+ rat
+ }
> rr.Age <- rr( apc.m$Age, apc.f$Age )
> rr.Per <- rr( apc.m$Per, apc.f$Per )
> rr.Coh <- rr( apc.m$Coh, apc.f$Coh )

In order to plot these in an apc-frame, we can just fake an apc-object, and

In order to get a reasonable apc-frame we compute the ranges of the RRs:

> ( RRr <- range( rbind(rr.Age[,-1],
+ rr.Per[,-1],
+ rr.Coh[,-1]) ) )

[1] 0.2275226 4.5934355

So we can now use these to devise a frame which stretches from 0.2 to 5. But we will
also need an apc object with the rate-ratios in, in order to use apc.lines to plot
them simply. This is most easily done by copying one of the other objects and
replacing the estimates with the RR estimates:

> apc.mf <- apc.m
> apc.mf$Age <- rr.Age
> apc.mf$Per <- rr.Per
> apc.mf$Coh <- rr.Coh

So now we can plot first the fame and then put in the RRs:

> par( las=1, mar=c(4,3,1,2), mgp=c(3,1,0)/1.6 )
> apc.frame( a.lab = seq(40,90,20),
+ cp.lab = seq(1880,2000,20),
+ r.lab = c(0.2,0.5,1,2,5),
+ rr.ref = 1,
+ a.tic = seq(35,90,5),
+ cp.tic = seq(1855,2005,5),
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+ r.tic = c(2:9/10,1:5),
+ tic.fac = 1.3,
+ a.txt = "Age",
+ cp.txt = "Calendar time",
+ r.txt = "M/F Rate ratio of lung cancer",
+ rr.txt = "",
+ ref.line = TRUE,
+ gap = 13,
+ col.grid = gray(0.85),
+ sides = c(1,2,4) )
> abline( h=1 )
> apc.lines( apc.mf, col="black", ci=T )

Note that we put in a reference line using abline(h=1), because the ref.line=TRUE

argument to apc.frame only produces a reference line on the calendar time part of
the plot, and we want one at the age-range too, since we are plotting RRs for all
three effects.
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Figure 3.36: M/F rate-ratio of lung cancer in Denmark.

6. In order to explicitly fix the knots we just use those from the male apc object, then
we can construct the design matrices for the effects by first constructing the full
ranks and then de-trending them using the detrend function:

> A.kn <- apc.m$Knots$Age
> nk.A <- length(A.kn)
> MA <- ns( lung$A, knots=A.kn[-c(1,nk.A)], Bo=A.kn[c(1,nk.A)], intercept=TRUE )
> P.kn <- apc.m$Knots$Per
> nk.P <- length(P.kn)
> MP <- ns( lung$P, knots=P.kn[-c(1,nk.P)], Bo=P.kn[c(1,nk.P)], intercept=TRUE )
> MP <- detrend( MP, lung$P )
> C.kn <- apc.m$Knots$Coh
> nk.C <- length(C.kn)
> MC <- ns( lung$C, knots=C.kn[-c(1,nk.C)], Bo=C.kn[c(1,nk.C)], intercept=TRUE )
> MC <- detrend( MC, lung$C )
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With these matrices we can now fit the models we want; the model with
sex-interaction on all three variables and the one where we assume identical 2nd
order period-effects:

> lung$sex <- factor(lung$sex,labels=c("M","F"))
> m.int <- glm( D ~ -1 + MA:sex + MP:sex + MC:sex + I(C-1930):sex +
+ offset( log(Y) ), family=poisson, data=lung )

7. We can check if any of the second-order terms are identical between males and
females by removing the interaction with sex. This will however only work for the
period and the cohort effect, because the intercept and linear effect of age is included
with the age-effect and removing the interaction there would be tantamount to
testing whether the absolute levels and the (first order) shape were the same.

So we start by checking whether the period and age-effects have the same
second-order properties (i.e. same shape):

> m.per <- update( m.int, . ~ . - MP:sex + MP )
> m.coh <- update( m.int, . ~ . - MC:sex + MC )
> anova( m.coh, m.int, m.per, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ MC + MA:sex + sex:MP + sex:I(C - 1930) + offset(log(Y)) -
1

Model 2: D ~ -1 + MA:sex + MP:sex + MC:sex + I(C - 1930):sex + offset(log(Y))
Model 3: D ~ MP + MA:sex + sex:MC + sex:I(C - 1930) + offset(log(Y)) -

1
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 21912 19298
2 21898 17702 14 1596.41 < 2.2e-16
3 21905 17741 -7 -39.53 1.551e-06

Although both effects are significant there is a much smaller deviance for the period
effect, so we can assume that the period-effects have the same shape.

As goes for the age-effect we can test the same hypothesis, but we want to test a
slightly stronger hypothesis, namely that the actual slope with age is the same too, so
when we update the model we include the main effect of sex, but not the interaction
with sex and age; or rather we make successive tests for this:

> m.age <- update( m.int, . ~ . - MA:sex + MA + sex + sex:A )
> m.aln <- update( m.age, . ~ . - sex:A )
> anova( m.int, m.age, m.aln, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ -1 + MA:sex + MP:sex + MC:sex + I(C - 1930):sex + offset(log(Y))
Model 2: D ~ MA + sex + sex:MP + sex:MC + sex:I(C - 1930) + sex:A + offset(log(Y)) -

1
Model 3: D ~ MA + sex + sex:MP + sex:MC + sex:I(C - 1930) + offset(log(Y)) -

1
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 21898 17702
2 21905 17828 -7 -126.05 < 2.2e-16
3 21906 17980 -1 -152.31 < 2.2e-16
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We see that there quite strong evidence against the hypothesis that the age-effects
have the same shape and even stronger that they should have the same “slopes”, i.e.
first-order shapes too.

8. Thus it seems that a relevant description of the relationship of lung cancer rates
between males and females in Denmark is that they follow an age-cohort model. This
model is already fitted, but in order to facilitate extraction of the parameters we refit
it with a parametrization of the linear cohort effect that gives the difference of these,
so it is easier to use a contrast matrix to get it out. Note that we for the convenience
of extraction of the interaction effects we have included the intercept in the model —
otherwise the parametrization of the MA:sex intercept goes wrong:

> m.RR <- glm( D ~ -1 + MA + MP + cbind(MC,C-1930) +
+ MA:sex + cbind(MC,C-1930):sex,
+ offset = log(Y), family=poisson, data=lung )
> pr.RR <- predict( m.RR, type="terms", se.fit=TRUE )
> str( pr.RR )

List of 3
$ fit : num [1:21960, 1:5] -19.2 -19.3 -19.2 -19.3 -19.2 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:21960] "1" "2" "3" "4" ...
.. ..$ : chr [1:5] "MA" "MP" "cbind(MC, C - 1930)" "MA:sex" ...
..- attr(*, "constant")= num 0
$ se.fit : num [1:21960, 1:5] 0.2 0.202 0.2 0.202 0.2 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:21960] "1" "2" "3" "4" ...
.. ..$ : chr [1:5] "MA" "MP" "cbind(MC, C - 1930)" "MA:sex" ...
$ residual.scale: num 1

> dimnames( pr.RR$fit )[[2]]

[1] "MA" "MP"
[3] "cbind(MC, C - 1930)" "MA:sex"
[5] "cbind(MC, C - 1930):sex"

The last two terms are those that we are interested in, so we can just extract the
predicted values. But these will have the length (and order!) of the dataset, so we
start by finding a set of units, au, that correspond to the age-range, and a set of
units, cu, that correspond to the cohort-range:

> # Unique ages and cohort
> au <- match( sort(unique(lung$A)), lung$A)
> cu <- match( sort(unique(lung$C)), lung$C)

For these units we derive the the log-RR between males and females. But note the
parametrization of the model:

> ci.lin( m.RR )[,1:2]

Estimate StdErr
MA1 -7.21184242 0.039278152
MA2 -8.08145974 0.043182265
MA3 -7.33099512 0.041001010
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MA4 -6.60381218 0.037987482
MA5 -6.13880170 0.039562297
MA6 -5.82290340 0.042126710
MA7 -1.72088499 0.047846709
MA8 -18.09640227 0.063316849
MA9 2.30499820 0.059756390
MP1 0.10827219 0.049404918
MP2 0.10260831 0.032019958
MP3 0.32310677 0.028810851
MP4 0.32645515 0.023198006
MP5 0.41312194 0.020168940
MP6 0.27309113 0.016803986
MP7 0.13836189 0.019608294
cbind(MC, C - 1930)1 0.71791859 0.327592915
cbind(MC, C - 1930)2 0.66033274 0.172683104
cbind(MC, C - 1930)3 1.16904096 0.181045320
cbind(MC, C - 1930)4 1.33910476 0.156723003
cbind(MC, C - 1930)5 1.43686491 0.149892987
cbind(MC, C - 1930)6 1.48495612 0.137580736
cbind(MC, C - 1930)7 1.44886126 0.129669306
cbind(MC, C - 1930)8 1.30077523 0.120154655
cbind(MC, C - 1930)9 1.09812832 0.111591752
cbind(MC, C - 1930)10 1.18256915 0.102543914
cbind(MC, C - 1930)11 1.02561295 0.093009913
cbind(MC, C - 1930)12 0.92349756 0.083325812
cbind(MC, C - 1930)13 0.61436104 0.071174697
cbind(MC, C - 1930)14 0.10135116 0.082587284
cbind(MC, C - 1930) 0.01788978 0.001223638
MA1:sexM 0.50905349 0.052105228
MA2:sexM 0.78982716 0.055224755
MA3:sexM 0.86364361 0.052242904
MA4:sexM 0.71199907 0.048385070
MA5:sexM 0.67210342 0.049838961
MA6:sexM 0.50591196 0.052540778
MA7:sexM 0.17353539 0.057877532
MA8:sexM 1.08939249 0.085641749
MA9:sexM -0.33485476 0.073865114
MA1:sexF 0.00000000 0.000000000
MA2:sexF 0.00000000 0.000000000
MA3:sexF 0.00000000 0.000000000
MA4:sexF 0.00000000 0.000000000
MA5:sexF 0.00000000 0.000000000
MA6:sexF 0.00000000 0.000000000
MA7:sexF 0.00000000 0.000000000
MA8:sexF 0.00000000 0.000000000
MA9:sexF 0.00000000 0.000000000
cbind(MC, C - 1930)1:sexF -0.79742472 0.517925418
cbind(MC, C - 1930)2:sexF -0.80025807 0.262084327
cbind(MC, C - 1930)3:sexF -1.25013659 0.281868730
cbind(MC, C - 1930)4:sexF -1.50379040 0.240565444
cbind(MC, C - 1930)5:sexF -1.71855190 0.231728787
cbind(MC, C - 1930)6:sexF -1.63091804 0.210931581
cbind(MC, C - 1930)7:sexF -1.70960335 0.199134769
cbind(MC, C - 1930)8:sexF -1.31953083 0.183511102
cbind(MC, C - 1930)9:sexF -1.25697574 0.169771629
cbind(MC, C - 1930)10:sexF -0.87500607 0.155408521
cbind(MC, C - 1930)11:sexF -0.79344905 0.140627089
cbind(MC, C - 1930)12:sexF -0.26166566 0.125326653
cbind(MC, C - 1930)13:sexF -0.16358266 0.106376124
cbind(MC, C - 1930)14:sexF 0.13178763 0.121329183
cbind(MC, C - 1930):sexF 0.01936598 0.001775846
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This indicates that we need to extract not any old unique set of units with cohort
values; they must be among the units corresponding to males for the age-effect and to
females for the cohort effect::

> au <- match( sort(unique(lung$A)), lung$A[lung$sex=="M"])
> cu <- match( sort(unique(lung$C)), lung$C[lung$sex=="F"])

but then we must remember to take this into account when we extract the estimated
terms. Note that once we select the columns, we only have a vector left, from which
we select the units au resp. cu:

> A.term <- exp( cbind(pr.RR$fit [lung$sex=="M","MA:sex"][au],
+ pr.RR$se.fit[lung$sex=="M","MA:sex"][au]) %*% ci.mat() )
> C.term <- exp(-cbind(pr.RR$fit [lung$sex=="F","cbind(MC, C - 1930):sex"][cu],
+ pr.RR$se.fit[lung$sex=="F","cbind(MC, C - 1930):sex"][cu]) %*% ci.mat() )

Another way is directly to reconstruct the age and the period effects by taking the
unique rows of the cohort and age-design matrices and multiply on the parameters of
the interaction terms in order to get the log-RRs:

> # Unique ages and cohort
> au <- match( sort(unique(lung$A)), lung$A)
> cu <- match( sort(unique(lung$C)), lung$C)
> # Corresponding subsets of the design matrices
> A.ctr <- MA[au,]
> C.ctr <- cbind( MC[cu,], (lung$C-1930)[cu] )
> # Parameter names
> parnam <- names( coef(m.RR) )
> # Have we found the age-parameters we want?
> a.par <- intersect( grep("MA",parnam), grep("sexM",parnam) )
> parnam[a.par]

[1] "MA1:sexM" "MA2:sexM" "MA3:sexM" "MA4:sexM" "MA5:sexM" "MA6:sexM" "MA7:sexM"
[8] "MA8:sexM" "MA9:sexM"

> # Have we found the cohort-parameters we want?
> c.par <- c( grep("MC",parnam), grep("I",parnam) )
> c.par <- intersect( c.par, grep("sex",parnam) )
> parnam[c.par]

[1] "cbind(MC, C - 1930)1:sexF" "cbind(MC, C - 1930)2:sexF"
[3] "cbind(MC, C - 1930)3:sexF" "cbind(MC, C - 1930)4:sexF"
[5] "cbind(MC, C - 1930)5:sexF" "cbind(MC, C - 1930)6:sexF"
[7] "cbind(MC, C - 1930)7:sexF" "cbind(MC, C - 1930)8:sexF"
[9] "cbind(MC, C - 1930)9:sexF" "cbind(MC, C - 1930)10:sexF"
[11] "cbind(MC, C - 1930)11:sexF" "cbind(MC, C - 1930)12:sexF"
[13] "cbind(MC, C - 1930)13:sexF" "cbind(MC, C - 1930)14:sexF"
[15] "cbind(MC, C - 1930):sexF"

> # Then we can extract effects, the parametrization for the cohort
> # effect is for F/M, hence we use -C.ctr
> A.eff <- ci.lin( m.RR, subset=a.par, ctr.mat= A.ctr, Exp=TRUE )[,5:7]
> C.eff <- ci.lin( m.RR, subset=c.par, ctr.mat=-C.ctr, Exp=TRUE )[,5:7]

These effects can now be plotted side by side, with the results of the two different
approaches on top of each other:
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> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( lung$A[au], A.eff,
+ log="y", ylim=c(0.5,5),
+ type="l", lty=1, col="black", lwd=c(3,1,1) )
> matlines( lung$A[au], A.term, lty=2, col="red", lwd=c(3,1,1) )
> abline(h=1)
> matplot( lung$C[cu], C.eff,
+ log="y", ylim=c(0.5,5),
+ type="l", lty=1, col="black", lwd=c(3,1,1) )
> matlines( lung$C[cu], C.term, lty=2, col="red", lwd=c(3,1,1) )
> abline(h=1)
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Figure 3.37: Comparing the M/F rate-ratio between the approach using predict.glm and
the approach using explicit extraction of parameters.

Now these effects could also be superposed on those from the separate APC-models:

> par( las=1, mar=c(4,3,1,2), mgp=c(3,1,0)/1.6 )
> apc.frame( a.lab = seq(40,90,20),
+ cp.lab = seq(1880,2000,20),
+ r.lab = c(0.5,1,2,5),
+ rr.ref = 1,
+ a.tic = seq(35,90,5),
+ cp.tic = seq(1855,2005,5),
+ r.tic = c(4:9/10,1:6),
+ tic.fac = 1.3,
+ a.txt = "Age",
+ cp.txt = "Calendar time",
+ r.txt = "M/F Rate ratio of lung cancer",
+ rr.txt = "",
+ ref.line = TRUE,
+ gap = 13,
+ col.grid = gray(0.85),
+ sides = c(1,2,4) )
> abline( h=1 )
> apc.lines( apc.mf, col="black", ci=F, lwd=2 )
> matlines( lung$A[au], A.eff, lwd=c(1,1,1), lty=1, col="blue" )
> pc.matlines( lung$C[cu], C.eff, lwd=c(1,1,1), lty=1, col="blue" )

3.13.0.0.1 A note on the reference point A short glance at figure 3.38 shows
that we have not got what we wanted; the cohort RR is not centered at 1930. We
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Figure 3.38: Comparing the M/F rate-ratio between the simple approach and the approach
using an explicit model.

have not done anything to achieve this; the choice of the reference point requires a bit
extra work when we have splines in the model, because splines do not provide an
explicit reference we can extract.

The trick is to take the cohort design matrix (as generated by ns()) and subtract a
matrix where all rows are identical, corresponding to ns(1930,...). In this case it is
quite straightforward, because we fit an APC-model to females and then add RRs for
males which are just an age-effect and a cohort effect centered at 1930. So we just
reparametrize the model with two new matrices for the RRs. We define the
interaction matrices as matrices for the age and cohort effects, but where all rows
corresponding to females are 0. The trick is to use the column-major storage of
elements in matrices. When we use the * operator on matrices they are treated as
vectors, and since the vector (lung$sex=="M") is shorter this is recycled, so that
precisely all rows in MA and MC corresponding to women are set to 0:

> maleA <- ns( lung$A, knots=A.kn[-c(1,nk.A)], Bo=A.kn[c(1,nk.A)], intercept=TRUE ) *
+ (lung$sex=="M")
> maleC <- ( ns( lung$C, knots=C.kn[-c(1,nk.C)], Bo=C.kn[c(1,nk.C)] ) -
+ ns( rep(1930,nrow(lung)), knots=C.kn[-c(1,nk.C)], Bo=C.kn[c(1,nk.C)] ) ) *
+ (lung$sex=="M")

To get the estimated RRs we define the contrast matrices similarly:

> A.pt <- 40:90
> C.pt <- 1860:1960
> ctr.A <- ns( A.pt , knots=A.kn[-c(1,nk.A)], Bo=A.kn[c(1,nk.A)],
+ intercept=TRUE )
> ctr.C <- ns( C.pt , knots=C.kn[-c(1,nk.C)], Bo=C.kn[c(1,nk.C)] ) -
+ ns( rep(1930,length(C.pt)), knots=C.kn[-c(1,nk.C)], Bo=C.kn[c(1,nk.C)] )
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Hence we can now just use these two matrices in the specification of the model and
then extract the parameters corresponding to them, to get the desired effects:

> M.RR <- glm( D ~ -1 + MA + MP + cbind(MC,C-1930) +
+ maleA + maleC,
+ offset = log(Y), family=poisson, data=lung )
> A.eff <- ci.lin( M.RR, subset="maleA", ctr.mat=ctr.A, E=T )[,5:7]
> C.eff <- ci.lin( M.RR, subset="maleC", ctr.mat=ctr.C, E=T )[,5:7]

> par( las=1, mar=c(4,3,1,2), mgp=c(3,1,0)/1.6 )
> apc.frame( a.lab = seq(40,90,20),
+ cp.lab = seq(1880,2000,20),
+ r.lab = c(0.5,1,2,5),
+ rr.ref = 1,
+ a.tic = seq(35,90,5),
+ cp.tic = seq(1855,2005,5),
+ r.tic = c(4:9/10,1:6),
+ tic.fac = 1.3,
+ a.txt = "Age",
+ cp.txt = "Calendar time",
+ r.txt = "M/F Rate ratio of lung cancer",
+ rr.txt = "",
+ ref.line = TRUE,
+ gap = 13,
+ col.grid = gray(0.85),
+ sides = c(1,2,4) )
> abline( h=1 )
> apc.lines( apc.mf, col="black", ci=TRUE, lwd=c(2,1,1) )
> matlines( A.pt, A.eff, lwd=c(3,1,1), lty=1, col="blue" )
> pc.matlines( C.pt, C.eff, lwd=c(3,1,1), lty=1, col="blue" )

In figure 3.39 we now have the estimated M/F RRs in blue from a model where we
assume that the calendar time effect is identical for men and women. Is is clear that
men have higher incidence rates than women, particularly in ages around 50, but also
that major generational effects is at stake — men were increasing rates of lung cancer
relative to women until birth cohorts around 1900, then a major catch-up has been
made by women. The cohorts in the 1950s have a M/F RR of 0.6 relative to the 1930
cohort, which is the one used for the age-specific RRs. The age-specific RRs are all
below 1.75; and so since 1.75× 0.6 = 1.05, we can conclude that with the exception of
ages just around 50, women in the generations born after 1950 have higher lung
cancer rates than men from the same generations.
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Figure 3.39: Comparing the M/F rate-ratio between the simple approach and the approach
using an explicit model.
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3.14 Prediction of breast cancer rates

1. First we read the data and take an overview:

> breast <- read.table("../data/breast.txt", header=T )
> str( breast )

'data.frame': 10980 obs. of 5 variables:
$ A: int 0 0 0 0 0 0 0 0 0 0 ...
$ P: int 1943 1943 1944 1944 1945 1945 1946 1946 1947 1947 ...
$ C: int 1942 1943 1943 1944 1944 1945 1945 1946 1946 1947 ...
$ D: int 0 0 0 0 0 0 0 0 0 0 ...
$ Y: num 18649 19947 19854 21265 21236 ...

> summary( breast )

A P C D Y
Min. : 0.0 Min. :1943 Min. :1853 Min. : 0.00 Min. : 385.2
1st Qu.:22.0 1st Qu.:1958 1st Qu.:1905 1st Qu.: 0.00 1st Qu.:11059.5
Median :44.5 Median :1973 Median :1928 Median : 9.00 Median :14538.3
Mean :44.5 Mean :1973 Mean :1928 Mean :12.11 Mean :13555.2
3rd Qu.:67.0 3rd Qu.:1988 3rd Qu.:1951 3rd Qu.:21.00 3rd Qu.:17767.2
Max. :89.0 Max. :2003 Max. :2003 Max. :69.00 Max. :22549.0

2. We now replace A, P and C with the correct triangle means; recall that the upper
triangles are characterized by the cohort being from the previous year, i.e. that
p− a− c = 1.

> breast <- transform( breast, up = P-A-C )
> breast <- transform( breast, A = A+1/3+up/3,
+ P = P+2/3-up/3,
+ C = C+1/3+up/3 )
> with( breast, summary( P-A-C ) )

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.274e-13 2.274e-13 2.274e-13 2.274e-13 2.274e-13 2.274e-13

> head( breast )

A P C D Y up
1 0.6666667 1943.333 1942.667 0 18648.83 1
2 0.3333333 1943.667 1943.333 0 19946.50 0
3 0.6666667 1944.333 1943.667 0 19853.67 1
4 0.3333333 1944.667 1944.333 0 21265.00 0
5 0.6666667 1945.333 1944.667 0 21235.67 1
6 0.3333333 1945.667 1945.333 0 22407.00 0

3. In order to use ratetab we must produce a matrix classified by age and period in
suitable intervals. This can be done choosing a tabulation interval length and then
using this in producing the tables. This approach enables a simple way of
experimenting with the length. Figure 3.40 shows the results.
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> par( mfrow=c(2,2), mar=c(3,3,0,0), oma=c(0,0,1,1), mgp=c(3,1,0)/1.6 )
> ti <- 6
> with( subset( breast, A>30 ),
+ rateplot( tapply( D, list(floor(A/ti)*5+ti/2,
+ floor((P-1943)/ti)*5+1943+ti/2), sum ) /
+ tapply( Y, list(floor(A/ti)*ti+ti/2,
+ floor((P-1943)/ti)*ti+1943+ti/2), sum ) * 10^5,
+ col=heat.colors(12) ) )
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Figure 3.40: Danish breast cancer rates in 6-year age and period intervals.

4. We use apc.fit to fit a model with age, period and cohort effects as natural splines
(the default), and the apc.plot to plot the estimated effects:

> m1 <- apc.fit( subset( breast, A>30 ), npar=c(10,7,15), ref.c=1920, scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
Age 7309 16264.9
Age-drift 7308 10198.5 1 6066.3 < 2.2e-16
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Age-Cohort 7294 9119.7 14 1078.8 < 2.2e-16
Age-Period-Cohort 7288 9018.1 6 101.7 < 2.2e-16
Age-Period 7302 10092.2 -14 -1074.1 < 2.2e-16
Age-drift 7308 10198.5 -6 -106.3 < 2.2e-16

> apc.plot( m1 )
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Figure 3.41: Estimates of age- period- and cohort effects plotted the default way — crap!

The plot (figure ??) is rather crappy, so we fine-tune the details by defining them
explicit in apc.frame. This piece of code is made by copying the definition of all
parameters from the help page and successively filling them in with suitable values:

> par( las=1, mar=c(3,4,1,4), mgp=c(3,1,0)/1.5 )
> fp <- apc.frame( a.lab = seq(30,90,10),
+ cp.lab = seq(1860,2005,20),
+ r.lab = c(c(1,2,5)*10,c(1,2,5)*100),
+ # rr.lab = r.lab / rr.ref,
+ rr.ref = 100,
+ a.tic = seq(30,90,5),
+ cp.tic = seq(1855,2005,5),
+ r.tic = c(9,1:9*10,1:5*100),
+ # rr.tic = r.tic / rr.ref,
+ tic.fac = 1.3,
+ a.txt = "Age",
+ cp.txt = "Calendar time",
+ r.txt = "Rate per 100,000 person-years",
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+ rr.txt = "Rate ratio",
+ gap = 8,
+ col.grid = gray(0.85),
+ sides = c(1,2,4) )
> apc.lines( m1, frame.par=fp, ci=T, col="red" )
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Figure 3.42: Estimates of age- period- and cohort effects plotted after fine tuning the display
using apc.frame

5. First we define the prediction points and the anchor points on the period scale:

> P.pt <- 2000 + 0:20
> P.rf <- 2000 - c(30,0)

Then we compute the estimated period effect on the log-RR scale at the anchor
points, and use these values for creating the prediction at 2020 (P.pt).

> Pp <- approx( m1$Per[,1], log(m1$Per[,2]), P.rf )$y
> P.eff <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt-P.rf[2])

The same thing is done on the cohort scale:

> C.pt <- 1970 + 0:20
> C.rf <- 1970 - c(30,0)
> Cp <- approx( m1$Coh[,1], log(m1$Coh[,2]), C.rf )$y
> C.eff <- Cp[2] + (Cp[2]-Cp[1])/diff(C.rf)*(C.pt-C.rf[2])

Finally, these are added to the plot of the effects, after we have re-drawn the frame
with a calendar-time axis extending to 2020 (remember that the P.eff and the
C.eff are log-RRs, and hence we need to take the exp before plotting):
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> par( las=1, mar=c(3,4,1,4), mgp=c(3,1,0)/1.5 )
> fp <- apc.frame( a.lab = seq(30,90,10),
+ cp.lab = seq(1860,2020,20),
+ r.lab = c(c(1,2,5)*10,c(1,2,5)*100),
+ # rr.lab = r.lab / rr.ref,
+ rr.ref = 100,
+ a.tic = seq(30,90,5),
+ cp.tic = seq(1855,2020,5),
+ r.tic = c(9,1:9*10,1:5*100),
+ # rr.tic = r.tic / rr.ref,
+ tic.fac = 1.3,
+ a.txt = "Age",
+ cp.txt = "Calendar time",
+ r.txt = "Rate per 100,000 person-years",
+ rr.txt = "Rate ratio",
+ gap = 8,
+ col.grid = gray(0.85),
+ sides = c(1,2,4) )
> apc.lines( m1, frame.par=fp, ci=T, col="red", lwd=c(3,1,1) )
> lines( P.pt-fp[1], exp(P.eff)*fp[2], col=gray(0.0), lty="11", lwd=2 )
> lines( C.pt-fp[1], exp(C.eff)*fp[2], col=gray(0.0), lty="11", lwd=2 )
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Figure 3.43: Estimates of age- period- and cohort effects with the linear extension of the
period and cohort effects used for prediction of future rates.

6. The fitted model gives an age-effect, a period effect and a cohort effect; the apc

object contains representations of these three effects as matrices with the age-values
and the estimated effects (with c.i.s) at these values and similarly for the period and
cohort effects.

Prediction of the future rates will be based on extrapolations of the period and the
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cohort effects. These must be linear in the sense that a linear function of the
underlying scale affects the prediction linearly.

Therefore we can make these extrapolations using the estimated effects, by simply
applying an appropriate linear function to the estimated values.

In this case we use an extrapolation through the period point 2000, and a point 30
years prior to this, and a cohort point 1970 and a point 30 year prior to this.

Cross-sectional rates: The first task is the prediction of cross-sectional age-specific
rates in 2020.

First we extract the estimated age-specific rates, and define the prediction point and
the anchor points:

> A.pt <- m1$Age[,1]
> P.pt <- 2020
> P.rf <- 2000 - c(30,0)

The period effect only need one point as we are predicting the cross-sectional rates in
2020. Then we compute the estimated period effect on the log-RR scale at the anchor
points, and use these values for creating the prediction at 2020 (P.pt)

> Pp <- approx( m1$Per[,1], log(m1$Per[,2]), P.rf )$y
> P.eff <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt-P.rf[2])

For the cohort effect we need to compute it at all cohorts represented in 2020. First
we compute the cohorts needed, set up a vector for the effects and then the reference
points:

> C.pt <- P.pt - A.pt
> C.rf <- 1970 - c(30,0)
> C.eff <- numeric( length(C.pt) )

Then we can fill in the estimated cohort effects by interpolation for those cohorts that
are before 1970:

> C.eff[C.pt<C.rf[2]] <- approx( m1$Coh[,1], log(m1$Coh[,2]), C.pt[C.pt<C.rf[2]] )$y

Subsequently we get the log-RRs for the two anchor points and use these for
prediction of the cohorts after 1970:

> Cp <- approx( m1$Coh[,1], log(m1$Coh[,2]), C.rf )$y
> C.eff[C.pt>=C.rf[2]] <- Cp[2] + (Cp[2]-Cp[1])/diff(C.rf)*(C.pt[C.pt>C.rf[2]]-C.rf[2])

Finally, we can assemble the effects contributing to each of the ages represented, to
give the predicted age-specific rates in 2020:

> A.per.2020 <- exp( log(m1$Age[,2]) + P.eff + C.eff )

Longitudinal rates: We can now apply a similar machinery to predict the
age-specific rates for the 1950 cohort. The difference is now that the cohort effect is
the same for all the points, whereas the period effects differ.
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> # Cohort point needed --- simple because the cohort is inside the data already
> C.pt <- 1960
> C.eff <- approx( m1$Coh[,1], log(m1$Coh[,2]), C.pt )$y
> # Period points needed
> P.pt <- C.pt + A.pt
> P.rf <- 2000 - c(30,0)
> # Where to put the period effects
> P.eff <- numeric( length(P.pt) )
> P.eff[P.pt<P.rf[2]] <- approx( m1$Per[,1], log(m1$Per[,2]), P.pt[P.pt<P.rf[2]] )$y
> # Nowe we use the points from the interpolation
> Pp <- approx( m1$Per[,1], log(m1$Per[,2]), P.rf )$y
> P.eff[P.pt>=P.rf[2]] <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt[P.pt>=P.rf[2]]-P.rf[2])
> # Note that the prediction of the log RRs are made based on the estimated RRs
> # that refer to the predicted age-specific rates.
> A.coh.1960 <- exp( log(m1$Age[,2]) + P.eff + C.eff )

Finally, we can plot the two predictions and the age-effect from the model, see figure
3.44

> matplot( A.pt, cbind( m1$Age[,2], A.coh.1960, A.per.2020 ),
+ type="l", lty=1, lwd=2, col=c("red","blue","black"),
+ log="y", xlab="Age", ylab="Predicted rates per 100,000" )
> abline( v=seq(30,90, 5), h=outer(1:9,1:3,function(x,y) x*10^y), col=gray(0.9) )
> abline( v=seq(30,90,10), h=outer(c(1,2,5),1:3,function(x,y) x*10^y), col=gray(0.8) )
> matlines( A.pt, cbind( m1$Age[,2], A.coh.1960, A.per.2020 ),
+ type="l", lty=1, lwd=5, col=c("red","blue","black") )
> box()

It is clear from the plot in figure 3.44 that the prediction of the cohort rates in the
1960 cohort are approximately proportional to the estimated age-effect. They are
actually not, but the prediction of the period effects are almost constant, so the
disturbance from the period effect over the lifespan of the 1960 cohort is minimal,
and not visually detectable in the graph.
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Figure 3.44: Predicted age-specific breast cancer rates at 2020 (black) and in the 1950 cohort
(blue) and the estimated age-effects.
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