

Periods and cohorts

Ernesto F. L. Amaral

April 5, 2016

References:

 Wachter KW. 2014. Essential Demographic Methods. Cambridge: Harvard University Press. Chapters 2 (pp. 30–47), 7 (pp. 153–173).
Fleurence RL, Hollenbeak CS. 2007. "Rates and probabilities in economic modelling: Transformation, translation and appropriate application." Pharmacoeconomics, 25(1): 3–6.

Periods and cohorts

(Wachter 2014, Chapter 2, pp. 30–47) (Fleurence, Hollenbeak 2007)

- Lexis diagrams
- Period person-years lived
- Crude rate model
- Infant mortality rate
- Person-years and areas
- Cohort person-years lived
- Stationary population identity

Exponential population growth model

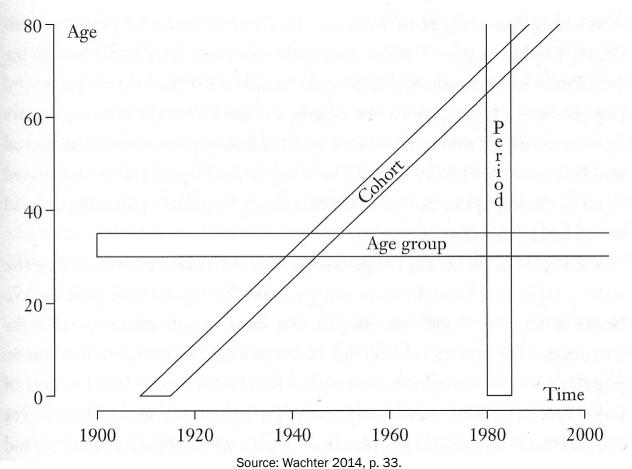
- The exponential model treats all people as if they were alike
 - No mention to age
 - However, people are aging in the population
- Time enters demography in two ways
 - Chronological time: calendar dates, same for everyone
 - Personal time: age for each set of people who share same birthdate

Lexis diagram

- Lexis diagram provides relationships between chronological time t (horizontal) and age x (vertical)
- Each person has a lifeline on a Lexis diagram
 - Starting at $(t_b, 0)$, where t_b is the person's birthdate and 0 is the person's age at birth
- Line goes up to the right with a slope equal to 1
 - People age one year in one year
- Lifeline goes up until time and age of the person's death

Lexis diagram 80-Age 40 -Time

Source: Wachter 2014, p. 31.


Exploring Lexis diagram

- To find population size
 - Draw vertical line upward from the time point
 - Count how many lifelines cross vertical line
- To find how many people survive to some age
 - Draw horizontal line across at the height corresponding to that age
 - Count how many lifelines cross that horizontal line
- Immigrants start at age and time of immigration

Cohort

- Group of people sharing the same birthdate
- Group of individuals followed simultaneously through time and age
- Their lifelines run diagonally up the Lexis diagram together
- In a cohort, time and age go up together
- A cohort shares experiences

Age, period, cohort

8

Exponential growth

- For the equation for exponential growth
 - We divided births and deaths during an interval by population at the start of the interval

$$K(1) = K(0) \left(1 + \frac{B(0)}{K(0)} - \frac{D(0)}{K(0)} \right)$$

- Why not population at the end or in the middle?
 - People who are present during part of the period can also have babies or become corpses
 - More people present for more time in the denominator generate higher exposure ("risk") to births and deaths

Period person-years lived (PPYL)

- Person-years is the sum of each individual's time at risk of experiencing an event (e.g. birth, death, migration)
 - For those who do not experience event, person-years is the sum of time until end of period
 - For those who experience event, it is the time until the event
- PPYL take into account that people are present during part of the period (fraction of years)
 - Each full year that a person is present in a period, he/she contributes one "person-year" to the total of PPYL
 - Each day a person is present in the population, he/she contributes 1 person-day, or 1/365 person-year, to PPYL

Calculating person-years

- Whenever we know the population sizes on each day over the period of a year
 - We can add up the person-years day by day
 - Take the number of people present on the first day times 1/365 of a person-year for each of them
 - Add up all contributions for following days
 - When our subintervals are small enough, our sum is virtually equal to the area under the curve of population as a function of time during the period

Approximation for PPYL

- When sequence of population sizes throughout a period are unknown
 - Take the population in the middle of the period and multiply by the length of the period
 - E.g., for 2005–2015, we take the mid-period count of 308.745 million in the U.S. from 2010 Census and multiply by 10 years to obtain 3,087 million person-years in the period
 - Or take the average of the starting and ending populations and multiply by the length of the period

Rates (Fleurence, Hollenbeak 2007)

- Rates are an instantaneous measure that range from zero to infinity
- Rates describe the number of occurrences of an event for a given number of individuals per unit of time
- Incidence rate describes the number of new cases of an event during a given time period over the total person-years of observation
- **<u>Numerator</u>**: number of events (e.g. births, deaths, migrations)
- <u>Denominator</u>: number of "person-years of exposure to risk" experienced by a population during a certain time period
- The denominator is the number of person-years
- Time is included directly in the denominator
- Rates take into account the time spent at risk

Probabilities (Fleurence, Hollenbeak 2007)

- Probabilities describe the likelihood that an event will occur for a single individual in a given time period and range from 0 to 1
- Does not include time in the denominator
- Divides the number of events by the total number of people at risk in the relevant time frame
- Conversion between rates and probabilities:

probability: $p = 1 - e^{-rt}$

rate:
$$r = -1/t * ln(1-p)$$

Ratios

- Describe a relationship between two numbers indicating how many times the first number contains the second
- Compares the size of one number to the size of another number
- Denominator is not at "risk" of moving to the numerator
- Examples
 - Total dependency ratio = population of children (0–14) plus elderly population (65+) divided by working-age population (15–64)
 - Sex ratio = population of males divided by population of females

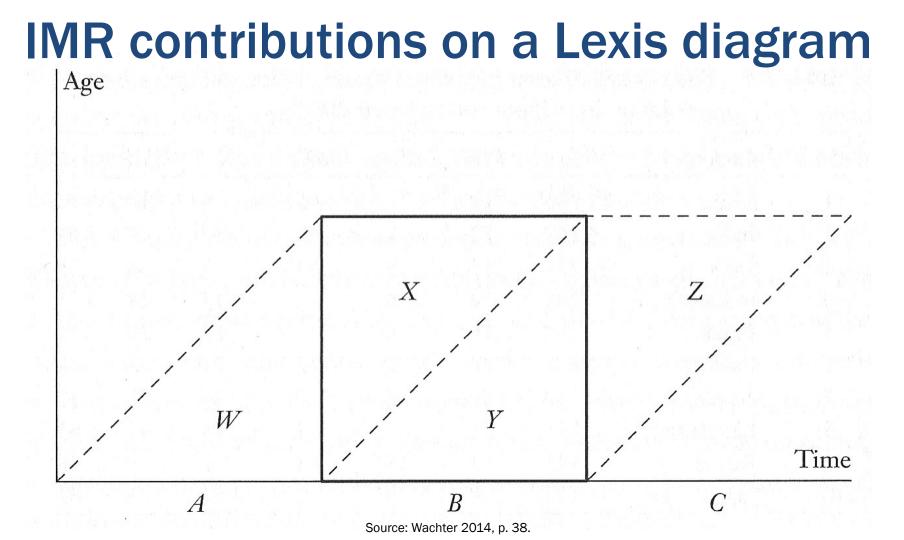
CBR and **CDR**

- Crude Birth Rate (CBR or *b*)
 - Number of births to members of the population in the period divided by the total period person-years lived
- Crude Death Rate (CDR or *d*)
 - Number of deaths to members of the population in the period divided by the total period-years lived

Crude rate model

- Imagine a population
 - In which each person, each instant, is subject to constant independent risks of dying and having a baby
 - *b*: expected numbers of births per person per year
 - *d*: expected number of deaths per person per year
- Assumptions
 - Closed population
 - Homogeneous risks among people
 - No measurement of change over time inside the period

Growth rate


- Expected size of population has exponential growth
 - Growth rate = R = b d
- Most actual populations are not closed and risks are not homogeneous over time
 - Need a measure of Crude Net Migration Rate (MIG)
 - Crude Growth Rate (CGR) = CBR CDR + MIG

Most populous countries, 2012

Rank	Country	Pop. (million)	CBR (‰)	CDR (‰)	MIG (‰)	R (‰)	IMR (‰)	e ₀
1	China	1,350	12	7	-0	5	17	73
2	India	1,260	22	7	-0	16	47	65
3	USA	314	13	8	+3	9	6	78
4	Indonesia	245	19	6	-1	12	29	71
5	Brazil	194	16	6	-0	11	20	73
6	Pakistan	188	28	8	-2	21	64	63
7	Nigeria	170	40	14	0	24	77	47
8	Bangladesh	153	23	6	-3	14	43	65
9	Russia	143	12	15	+2	-1	8	68
10	Japan	128	9	9	0	0	3	83
	World	7,017	20	8	0	12	46	69

Infant mortality rate (IMR)

- $IMR = rac{the number of deaths under age 1 in the period}{the number of live births in the period}$
- IMR is a period measure
- It uses current information from vital registration
- It can be computed for countries without reliable census or other source for a count of the population at risk by age
- Infants borne by teenagers and by older mothers are at higher risk

Understanding previous figure

- Any lifeline which ends within the square
 - Contributes a death to the numerator of the IMR

- Any lifeline that starts on the base of the square
 - Contributes a birth to the denominator of the IMR

Still on previous figure

 Babies born outside the period in the preceding year (A) may die as infants during the period (X)

- Counted in the numerator, but not in denominator

- Babies born during the period (B) may die after the end of the period (Z)
 - Counted in the denominator, but not in numerator
- Usually mismatched terms balance each other
 - IMR is close to the probability of dying before age 1

Period ≠ **Cohort**

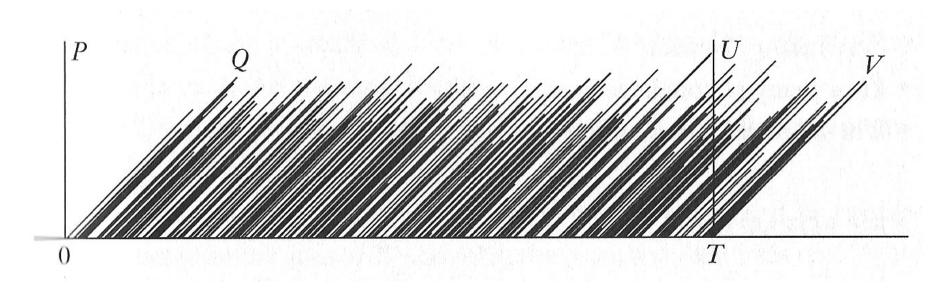
- Period deaths and period person-years lived
 - Come from deaths and lifelines in the square (X, Y)
 - Dividing these deaths by person-years gives a period age-specific mortality rate (*M*)
- Cohort deaths and cohort person-years lived
 - Come from deaths and lifelines in parallelogram (Y, Z)
 - Dividing these deaths by person-years gives a cohort age-specific mortality rate (*m*)

Person-years and areas

 PPYL in the period between time 0 and time T is the area under the curve K(t) between 0 and T

$$PPYL = \int_0^T K(t)dt$$

When growth is constant (exactly exponential)
PPYL = K(0)(e^{RT} – 1) / R = (K(T) – K(0)) / R
Growth Rate = R = CBR – CDR


Cohort person-years lived (CPYL)

- We get CPYL when we add up all person-years lived by all members of the cohort
 - Instead of counting people from a rectangle of the Lexis diagram, we consider a parallelogram
- If we divide by the total number of members of the cohort (counted at birth)
 - We get expectation of life at birth (e_0)
 - Average number of person-years lived in their whole lifetimes by members of the cohort

Stationary population identity

- Stable population
 - Demographic rates are unchanging
 - Size might be growing, constant or declining
- Stationary population
 - Numbers are unchanging
 - Total population is the same from year to year (B=D)
 - # births is constant = B = Population * CBR = Kb
 - # deaths is constant = D = Population * CDR = Kd
- PPYL \approx CPYL, so we have: $KT = Kbe_0T$
- Stationary population identity: $1 = b e_0$ when R=0

Lexis diagram for a stationary population

