

Ernesto F. L. Amaral

September 19–26, 2018 Population and Society (SOCI 312)

TEXAS A&M

Outline

- Introduction
- Conceptualization and measurement of fertility
- Proximate determinants of fertility
- World fertility trends and patterns
- Fertility changes in the United States
- Adolescent fertility
- Nonmarital fertility
- Childlessness
- Male fertility

Introduction

 Intercourse, conception, and fertility are all influenced by social and cultural factors

- Several types of fertility analysis
 - Cross-sectional (period) perspective: based on a particular point or period of time
 - Cohort analysis: based on fertility patterns of a group (cohort)
 of women who go through childbearing years at the same time
 - Micro analysis: fertility analysis of persons
 - Macro analysis: fertility analysis of groups, e.g., countries

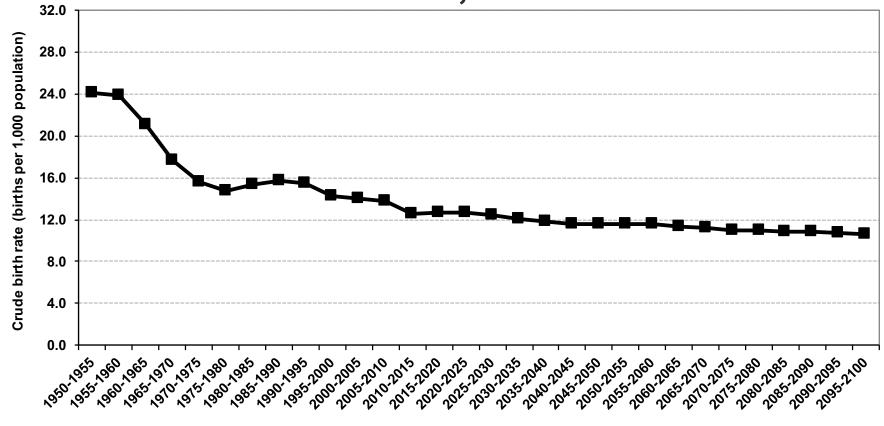
Conceptualization and measurement of fertility

- Fertility: actual production of male and female births
- Reproduction: actual production of female births
- Fecundity: biological capability of producing live births
- Childbearing years
 - Women in age group 15–49: these are the main ages when women are able to give birth
 - Sometimes the age group of 15–44 is used, especially in developed countries, because so few births occur to women ages 45–49

Fertility terms

- Fertility: actual production of births
- Infertility: childlessness either voluntary or involuntary
- Fecundity: ability to reproduce
 - Subfecund: definitely sterile, probably sterile, semifecund, and fecundity indeterminate
- Infecundity: sterility
- Menarche: beginning of the female reproductive period (first menstrual flow)
- Menopause: end of reproductive period (termination of menstruation)
- Postpartum: period of infecundability following a pregnancy; a function of the duration and intensity of lactation

Crude birth rate (CBR)


Cross-sectional

 The number of births occurring in a population in a year per 1,000 persons

CBR = number of births/midyear population*1,000

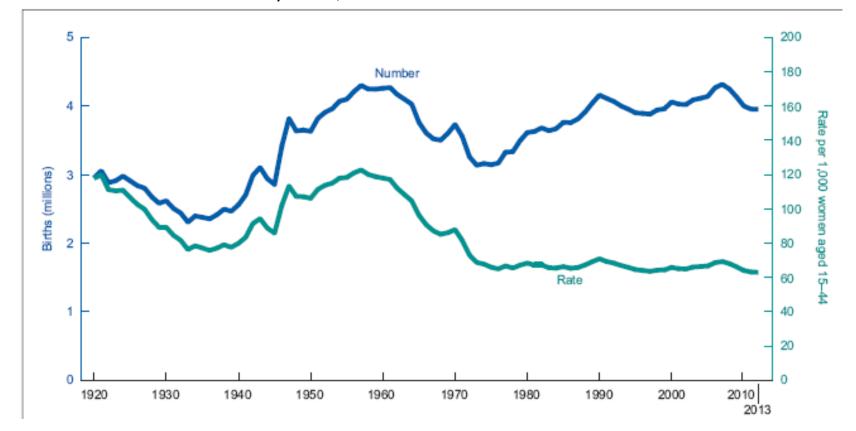
Crude birth rates, United States, 1950–2100

Year

Source: United Nations, World Population Prospects 2017 https://esa.un.org/unpd/wpp/Download/Standard/Population/ (medium variant).

General fertility rate (GFR)

Cross-sectional


GFR = number of births/midyear female population age 15–49*1,000

GFR = CBR*4.5, if data for CBR are only available

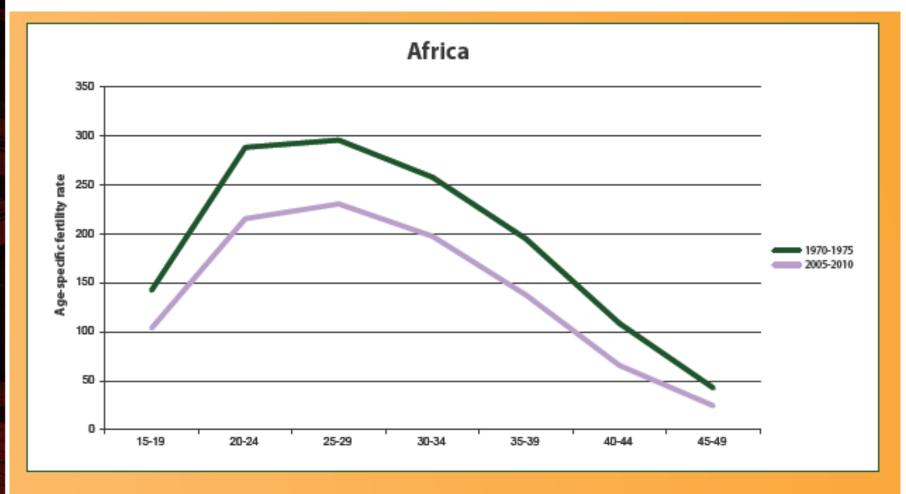
Live births and GFR

Live Births and General Fertility Rates,* 1920 to 2013

^{*}The denominator of the General Fertility Rates is women aged 15-44. Source: Martin, Hamilton, and Osterman, 2015: 3.

Age-specific fertility rates (ASFR)

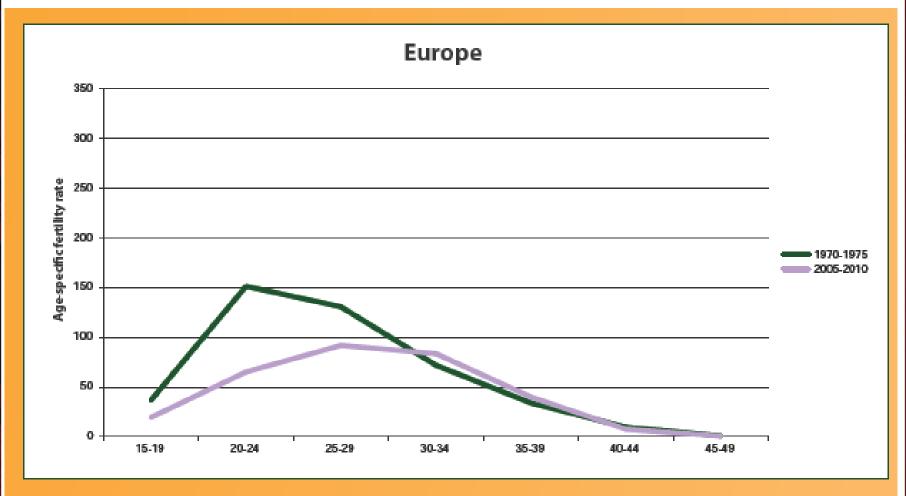
- Births rates of women according to their ages
- Usually calculated for women in each of the seven 5-year age groups
 - 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49
 - Sometimes 35 single-year age groups are used


 $ASFR_{x \text{ to } x+n} = births_{x \text{ to } x+n} / females_{x \text{ to } x+n} * 1,000$

 Age curve of fertility: the seven plotted ASFRs usually have an inverted U shape

ASFR

Age-specific Fertility Rates, Africa, 1970-75 and 2005-10



Source: United Nations, 2014a.

ASFR

Age-specific Fertility Rates, Europe, 1970-75 and 2005-10

Source: United Nations, 2014a.

Total fertility rate (TFR)

- The most popular measure of fertility
- Mostly cross-sectional, but also calculated for cohorts
- Definition
 - Number of births that a hypothetical group of 1,000 women would produce during their reproductive years
 - Between the ages of 15 and 49


$$TFR = \sum (ASFR_{x \text{ to } x+n} * i)$$

- -i = width of the age group, usually 5
- TFR can be divided by 1,000 to obtain the average number of births to a single woman

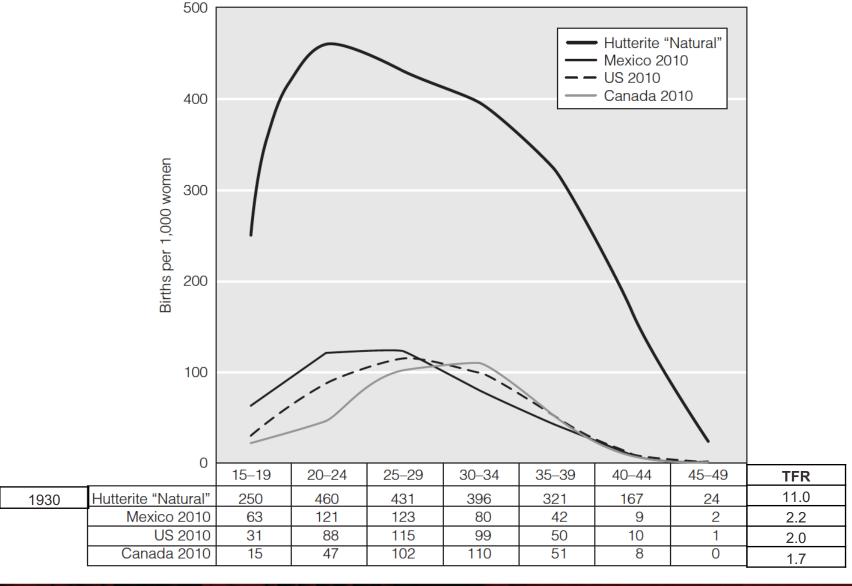
TFR

Total fertility rates, United States, 1911 to 2011.

Source: Mather, 2012 (reprinted with permission of the Population Reference Bureau).

Approximation for TFR

- TFR = CBR * 4.5 * 30 = GFR * 30
 - When only CBR or GFR data are available


 Period TFRs are preferred over cohort TFRs due to their currency

Natural fertility

- Natural fertility (Henry 1961, Coale and Trussell 1974)
 - Level of reproduction in the absence of deliberate fertility control
 - Closer to 6 or 7 live births per woman
 - 25% of completed fertility is due to genetics (same as mortality)
- Hutterites had 11 children per woman (1930s)
 - Ethnoreligious group formed in the early 16th century
 - Early age at marriage, good diet, good medical care, regularly engage in intercourse without contraception or abortion
 - Nowadays, almost all live in South Dakota, North Dakota, Montana, and Western Canada

Age-specific fertility rates

Gross reproduction rate (GRR)

- Similar to TFR, but it includes female births only
 - Based on the concept of population replacement

$$GRR = \sum (ASFR_{x \text{ to } x+n}^f * i)$$

- ASFR^f: female births per women in age group
- -i = width of the age group, usually 5

- The constant 0.488 is based on the sex ratio at birth of most countries
- SRB = $105 \rightarrow 1-[105/(105+100)] = 1-0.512 = 0.488$
- If SRB ≠ 105, another constant should be used

Net reproduction rate (NRR)

- It considers the factor of mortality among mothers from the time of births of their daughters
 - Based on the concept of population replacement

NRR =
$$\sum (ASFR_{x \text{ to } x+n}^f * L_x/5l_0 * i)$$

NRR = $\sum (ASFR_{x \text{ to } x+n} * 0.488 * L_x/5l_0 * i)$

- ASFR^f: female births per women in age group
- Lx: total number of person-years lived in age group
- I_0 : number of people at age 0
- Lx / 5l₀: proportion of people who survive from age 0 to the midpoint of each of the seven age intervals
- -i = width of the age group, usually 5

Mean length of a generation

 Mean length of a generation is the mean age of mothers, giving birth to live daughters, with current age-specific fertility and mortality rates

Mean length of a generation = $\sum (ASFR_{x \text{ to } x+n}^f * L_x/5l_0 * i * mid-point of age group) / NRR$

- ASFR^f: female births per women in age group
- Lx / 5l₀: proportion of people who survive from age 0 to the midpoint of each of the seven age intervals
- -i = width of the age group, usually 5

Intermediate variables

- Intermediate variables proposed by Kingsley Davis and Judith Blake (1956)
 - Behavioral and biological variables directly influencing fertility
 - Other social, economic, cultural, and environmental factors influence fertility by operating through the intermediate variables
- They identified a set of 11 intermediate variables, which directly affect fertility and are grouped into three factors
 - Intercourse: amount of intercourse is affected by the proportion of persons who marry, length of time married, and frequency of sexual intercourse while married
 - Conception: probability of conception is affected by contraception and by voluntary or involuntary infecundity
 - Gestation/parturition: probability of a birth depends on the likelihood of miscarriage and abortion

Proximate determinants

- Proximate determinants of fertility proposed by John Bongaarts (1978, 1982)
 - Operationalized proximate determinants of fertility to incorporate them into quantitative reproductive models
 - Designed to facilitate quantitative specification of variables
 - One of the most useful frameworks for studying fertility
- Seven proximate determinants
 - Marriage and marital disruption
 - Contraceptive use and effectiveness
 - Prevalence of induced abortion
 - Duration of postparturm infecundability
 - Waiting time to conception
 - Risk of intrauterine mortality
 - Onset of permanent sterility

Indices

- Indices of the first four proximate determinants for women in their reproductive years
- Indices range from 0 (the greatest inhibiting effect on fertility) to 1 (no inhibiting effect)
 - Marriage-pattern index (Cm): 1 when all women are married and
 0 when none are married
 - Contraception index (Cc): 1 when no contraception is used and 0 when all women are using effective contraceptives
 - Abortion index (Ca): 1 when there is no induced abortion and 0 when every pregnancy is aborted
 - Postpartum-infecundability index (Ci): 1 when no women are in the period of postpartum infecundability and 0 when all women are

Stover

- Stover's (1998) modifications and extensions to the Bongaarts model to consider demographic realities of modern societies
- Use sexual activity instead of marriage as the indicator of exposure to pregnancy
- Extend the sterility index to measure infecundity from all causes
- Revise the contraception index to consider the fact that users of sterilization could become infecund before the age of 49
- Change the estimate of total fecundity

Variables

 Three major kinds of variables operate through proximate determinants in predicting fertility

Family planning variables

Socioeconomic variables

Attitudinal variables

World fertility trends and patterns

- High-fertility countries with TFRs higher than 3.2
 - Mostly sub-Saharan African countries
 - Gradual decreases expected in a couple of decades

- Low-fertility countries with TFRs of 2.0 or less
 - European, Asian, Latin American, and Caribbean countries
 - Slight increases expected in the lowest-low fertility rates in next two decades
 - Some of the previous decline was a result of postponement of fertility (tempo effect)

Low levels of fertility

- Billari, Kohler (2004)
- "Low" fertility: TFRs between 2.1 and 1.6
 - 43 countries in 2013
- "Very low" fertility: TFRs between 1.5 and 1.3
 - 27 countries in 2013
- "Lowest low" fertility: with TFRs under 1.3
 - 9 countries in 2013, including South Korea, Taiwan,
 Poland, Portugal, Singapore, Hong Kong, and Macao

Depopulation

- Depopulation is the decline in population size
 - Projected to occur in most countries in 50–100 years
- No population growth in Europe in 2014
 - Rate of natural increase (RNI) of 0.0%
- Examples of countries with zero or negative RNI
 - − Bulgaria, Serbia: RNI = −0.5%
 - Latvia, Lithuania, Hungary, Ukraine: RNI = –0.4%
 - Germany: RNI = -0.2%
 - Italy: RNI = -0.1%
 - Russia: RNI = 0.0%
 - Depopulation in Russia expected from 143.7 million (2014) to 134.1 million (2050)

Replacement-level fertility

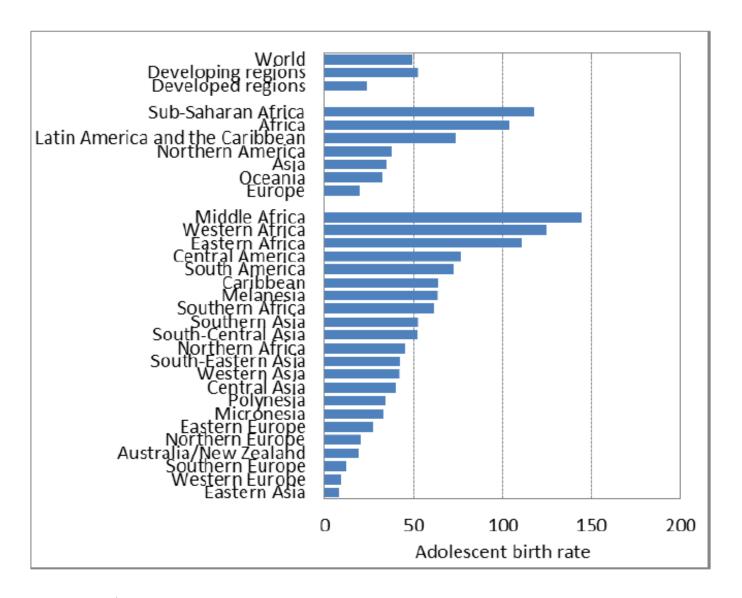
- TFRs at or near replacement of 2.1 are needed for a population to remain stable
 - In 2013, 79 countries with TFRs at or lower than the replacement level of 2.1
- Some countries with low TFRs do not experience depopulation
 - There are still large numbers of women in childbearing years due to past high fertility
- Lower rates of fertility in African countries, as well as lower rates of mortality and immigration
 - This trend will be responsible for depopulation even in some African countries in the next 50 years or so

Implications of low fertility

- Fertility decline: birth cohorts become smaller
- This pattern and increases in life expectancy lead to aging of a population
 - Larger proportion of the population that is older than age 65
 - Smaller proportion in working ages
- Between 2005 and 2050 (United Nations, 2005)
 - Old-age dependency ratio will double in developed countries from 22.6 to 44.4 percent
 - Healthcare and pension programs not well equipped to handle large increases of elderly population

Fertility changes in the U.S.

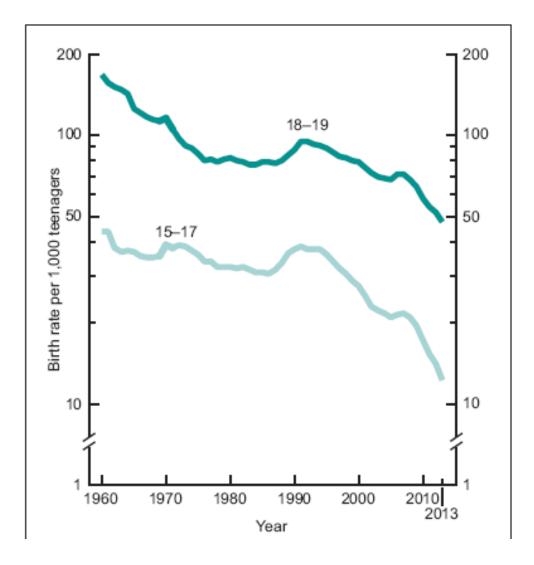
- Rapid decrease of TFR from 7 to under 4 between 1800 and 1900
- Early 20th century: sustained fertility decline
 - Rapid economic transition, industrialization, and urbanization
- Declining TFR to be just above or below 2
 - Since the peak at 3.7 in the late 1950s
- RNI of 0.4% in 2014
 - The highest RNI of any of the developed countries
- Aging population as a whole

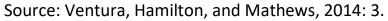


Adolescent fertility

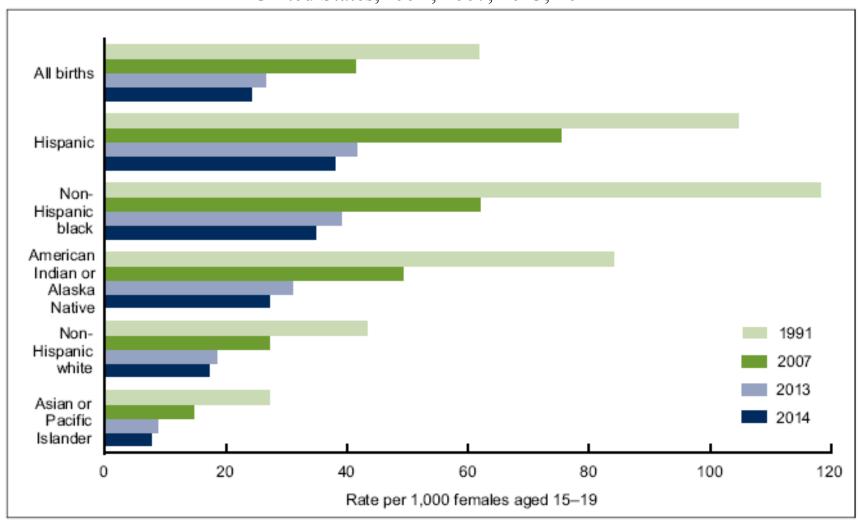
- ASFR for women aged 15–19
- Potential impacts of early childbearing on women
 - Ending up having more births
 - Premature end to schooling
 - Loses in economic potential
 - Poor health expected for their children
- Adolescent fertility rate (2005–2010)
 - World: 48.9 per 1,000
 - Developed countries: 23.6
 - Switzerland (4.5), United States (39.7), Bulgaria (42.1)
 - Developing countries: 52.7
 - North Korea (0.6), Niger (209.6)

Adolescent Birth Rates by Development Groups, Regions and Subregions of the World, 2005-2010

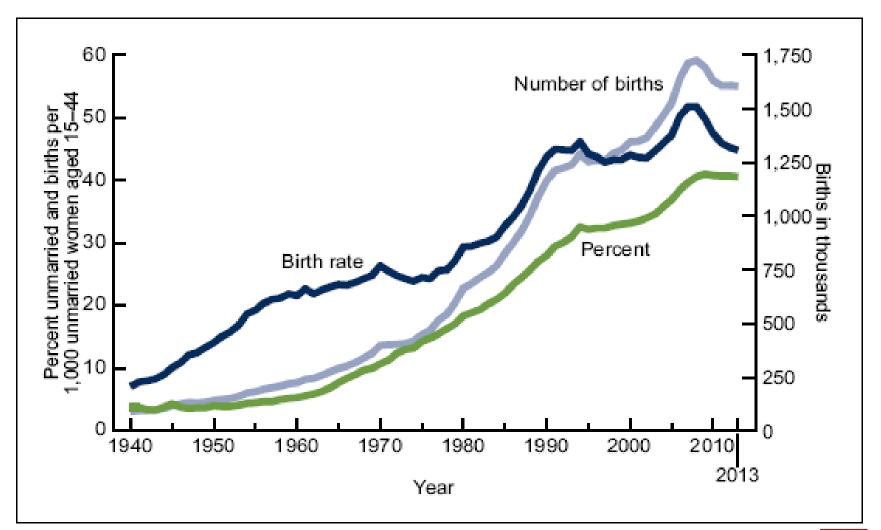



U.S. adolescent fertility

- Downward trend since 1940, possibly due to increases in contraception use
- Among teenagers, significant increase in the percentage of births to unmarried teenagers
 - 14% (1940) to 89% (2013)
- Fertility of younger teenagers (15–17) and older teenagers (18–19) in 2013
 - 12.3 per 1,000 and 47.3 per 1,000, respectively
- Differentials by race/ethnicity (2014)
 - Asian and Pacific Islander (7.7 per 1,000)
 - Hispanics (38 per 1,000)


Birth rates for Teenagers (aged 15–17 and aged 18–19): United States, 1960–2013

Birth Rates for Teenagers (aged 15–19), By Race and Hispanic Origin: United States, 1991, 2007, 2013, 2014

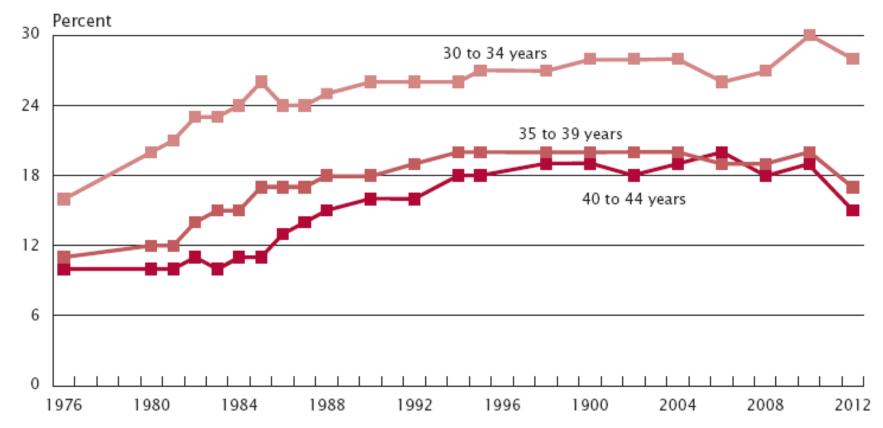


Source: Martin, Hamilton, and Osterman, 2015.

Nonmarital fertility

- Fertility of women who are not married, widowed, or divorced
 - Used to be called "illegitimate fertility"
- Marital status of the mother
 - Marker of financial, social, and emotional resources
- In 2013, 41% of nonmarital births out of the total number of all births
 - Gradual increase since the 1940s when it was very low (4%)
- Differentials by race/ethnic groups
 - Asians: the lowest, 17% of all Asian births
 - Blacks: the highest, 71% of all Black births
- Nonmarital births also include births to women in cohabiting unions and unmarried women not cohabiting

Number of Births, Birth Rate, and Percentage of Births to Unmarried Women, United States, 1940-2013



Childlessness

- Women having no children voluntarily or involuntarily
- Voluntary childlessness almost nonexistent between the 1950s and 1960s
- Increasing childlessness in the U.S. since the 1970s
- Mainly due to voluntary childlessness
- Attitudes and norms toward childlessness becoming more positive overall with changes in gender norms

Percentage Rates of Childlessness for Women Aged 30 to 44, United States, 1976-2012

Source: Monte and Ellis, 2014: 7

Male fertility

- Rarely examined in fertility studies
- Reasons for the exclusion of males from fertility studies
 - Biological: a wider range of childbearing years (ages 15–79) for males; theoretically no limitation of the number of children males can have
 - Methodological: less data available for males than for females (i.e. father's data often missing on birthregistration certificates)
 - Sociological: males often regarded as breadwinners, with little involvement in fertility except for impregnating women

Importance of male fertility

- Greater variance contributed by the male sex than the female sex to the next generation
 - Most females reproduce, some males don't, other males have large number of offspring
- Marriage as a fertility determinant
 - Male fertility is likely to be influenced by their marital and employment status
 - Married and employed men usually have higher number of children ever born
- Different patterns of male fertility
 - Age-specific fertility beginning a little later and stopping much later than that of females
 - Male TFRs higher than female TFRs especially in countries with male and female TFRs higher than 2.2

Male and female patterns

- Different cohabitation and marriage patterns
 - Higher tendency of women to cohabit, among those who previously lived alone, are foreign-born, and live in fragmented families, compared to men
 - Stronger negative effects of educational attainment on fertility among women, compared to men
 - Unemployment is related to men's postponement of marriage
 - Stronger religion effect among women than men
- Much-needed incorporation of gender studies into demography
 - Fertility and parenting involving both men and women

References

Poston DL, Bouvier LF. 2017. Population and Society: An Introduction to Demography. New York: Cambridge University Press. 2nd edition. Chapter 4 (pp. 59–94).

Wachter KW. 2014. Essential Demographic Methods. Cambridge: Harvard University Press. Chapter 6 (pp. 125–152).

Weeks JR. 2015. Population: An Introduction to Concepts and Issues. Boston: Cengage Learning. 12th edition. Chapter 6 (pp. 189–250).

