Mortality

Ernesto F. L. Amaral

March 25-29, 2019
Population and Society (SOCI 312)

Outline

- Health and mortality transition
- Poston, Bouvier 2017, Chapter 7, pp. 163-214
- Weeks 2015, Chapter 5, pp. 139-188
- Period mortality
- Wachter 2014, Chapter 7, pp. 153-173
- Weeks 2015, Chapter 5, pp. 170-180
- Kintner 2003

Health and mortality transition

 (Weeks 2015, Chapter 5, pp. 139-188)- Defining the health and mortality transition
- Health and mortality changes over time
- Life span and longevity
- Disease and death over the life cycle
- Causes of poor health and death
- Health and mortality inequalities

Morbidity and mortality

- Health, death: two sides of morbidity, mortality
- Morbidity: prevalence of disease in a population
- Mortality: pattern of death
- Health and mortality transition
- Epidemiologic transition (Omran 1971)
- Shift from prevailing poor health (high morbidity) and high death rates (high mortality) primarily from communicable diseases, occurring especially among the young...
- To prevailing good health and low deaths rates from infectious diseases, with most people dying at older ages from degenerative diseases

Death at older ages

- For virtually all of human history, early death was commonplace
- Beginning about 200 years ago, we have been steadily pushing death to older ages
- The survival of more people to ever older ages is a key contribution to the demographic transition
- Most people now survive to advanced ages and die pretty quickly
- The variability by age in mortality is compressed, leading to an increased rectangularization of mortality...

Rectangularization of mortality, United States

Changes over time

- For most of history, life expectancy fluctuated between 20 and 30 years
- About $2 / 3$ of babies survived to their first birthday, and about $1 / 2$ were still alive at age five
- Now it's 99\%
- Around 10% of people made it to age 65 in a premodern society
- Now it's 90\%

Female life expectancy at birth

Health improvements

Period and regions	Life expectancy (females)	\% surviving to age				Births required for ZPG
		1	5	25	65	
Premodern	20	63	47	34	8	6.1
	30	74	61	50	17	4.2
US/Europe, late $18^{\text {th }} /$ early $19^{\text {th }}$	40	82	73	63	29	3.3
Lowest Sub-Saharan	46	89	82	75	34	2.7
World average circa 2015	73	98	98	97	77	2.1
Mexico	78	99	99	98	84	2.1
United States	81	99	99	99	88	2.1
Canada	84	99	99	99	91	2.1
Japan (highest in the world)	86	99	99	99	93	2.1

The Roman era

- Life expectancy in the Roman era is estimated to have been 22 years
- People who reached adulthood were not too likely to reach a very advanced age, although of course some did

The Middle Ages

- The plague (black death) hit Europe in the $14^{\text {th }}$ century, having spread west from Asia
- An estimated $1 / 3$ of the population of Europe may have perished from the disease between 1346 and 1350
- It appears to be the same disease that exists today
- Not really known why it was so fatal back then
- Probably due to generally poor health and few resources to battle the disease

The Columbian exchange

- Columbus and other European explorers took diseases, horses, and guns to the Americas
- Brought back new foods and few new diseases
- One explanation for relative ease with which Spain dominated Latin America after arriving around 1500
- Explorers had immunity to the diseases they brought
- Compared to the devastation the diseases affected indigenous populations

Industrial Revolution, 1760-1840

- Plague and Little Ice Age had receded
- Income improved nutrition, housing, and sanitation
- Life expectancy in Europe and the U.S.: ≈ 40 years
- Was population growth a cause or effect of rising living standards?
- There were as many deaths to children under 5 as there were at 65 and over
- Infectious diseases were still the dominant reasons for death, but their ability to kill was diminishing

$19^{\text {th }}$ century

- Key elements in postponing death
- Belief in the power of human intervention (Western science)
- Improved nutrition: occurred first in Western Europe
- Clean water, toilets, bathing facilities
- Sewerage in cities: sanitation studies in Liverpool
- Small pox vaccinations: Edward Jenner in England
- Validation of germ theory
- Ignaz Semmelweis in Vienna: pioneer of antiseptic procedures
- Joseph Lister in Glasgow: cleanliness principals in surgery
- Louis Pasteur in Paris: formal experiments about germs, \quad diseases

$20^{\text {th }}$ century

- Health as a social movement
- Leading to government-organized universal health care systems in all rich countries except the U.S.
- Antibiotics emerging around WWII
- More vaccinations
- Oral rehydration therapy for infants and adults
- Advanced diagnoses, drugs, and other treatments for degenerative diseases to keep older people alive longer

Improvements in life expectancy

World War II: a turning point

Postponing death

- Two ways to postpone death to the oldest possible ages
- Prevent diseases from occurring or spreading when they do occur (prevention)
- Vaccinations, clean water, sanitation, good nutrition
- No physicians needed
- Curing people of disease when they are sick
- Diagnostic technology, drugs, skilled physicians

Nutrition transition and obesity

- Poor were skinny because only the rich could afford to access enough quantities of food
- Not any more
- Nutrition transition is a worldwide shift toward
- Diet high in fat and processed foods
- Diet low in fiber
- Less exercise
- Increases in degenerative diseases

Life span and longevity

- Life span: oldest age to which human beings can survive
- 122?
- It is almost entirely a biological phenomenon
- Longevity/life expectancy: age at which we actually die
- Expected number of years to be lived, on average, by a particular population at a particular time
- Currently about 71 for all humans
- It has biological and social components
- Populations with high mortality tend to have high morbidity
- This is not a one-to-one relationship
- We may live longer even though not being very healthy

Figure 7.6. Life Expectancy at Birth: World and More developed, Less developed, and Least developed regions, 1950 to 2100

Source: United Nations, 2013d: 16.

Mortality by age

- Humans are like most other animals with respect to the general pattern of death by age
- The very young and the old are most vulnerable
- Young adults are least likely to die
- Risks of death are relatively low
- After the initial year of life, lasting at least until middle age
- Corresponds to reproductive ages
- Beyond middle age
- Mortality increases
- Although at a decelerating rate

Highest death rates, 2011: very young and the old

Mortality by sex (gender)

- Women (sex)
- Have a lower probability of death at every age from the moment of conception'
- Women (gender)
- Unless society intervenes with a lower status for women that gives them less food, less access to health care, less education, lower earnings...

Other mortality differentials

- Urban and rural differentials
- Urban now better than rural
- Neighborhood inequalities
- Slums are bad for your health
- Educational differentials
- Better educated live longer
- Social status differentials
- The rich live longer
- Race and ethnicity differentials
- Being different will be used against you
- Marital status
- Being married is good for your health

Infant mortality

- The infant mortality rate (IMR) is the most common measure of infant death
- It is the number of deaths in a year to children under age 1 per 1,000 babies born in the year
- Declining infant mortality is key to population growth
- Reduction attributable especially to the development of oral rehydration therapy (ORT)
- A solution of salts and sugars taken orally
- Treats diarrhea: A major cause of death in young children
- Developed in labs, tested in the field, especially Bangladesh
- One of its founders still holds a teaching position at Harvard School of Public Health (Dr. Richard Cash)

Infant mortality, 2015

Table 7.4. Countries with the Highest and the Lowest Infant Mortality Rates in the World, 2013

Highest infant mortality rates	Lowest infant mortality rates		
Central African Republic	116	Iceland	1.8
Congo, Dem. Rep.	109	Finland	1.8
Chad	96	Japan	1.9
Angola	96	Singapore	2.0
Guinea-Bissau	94	Estonia	2.1
Sierra Leone	92	Sweden	

Source: Population Reference Bureau, 2014.

Neonatal and postneonatal mortality rates

- The infant mortality rate (IMR) may be thought of as the sum of two rates
- Neonatal mortality rate (NMR)
- Deaths of babies aged 28 days or less per 1,000 live births
- Postneonatal mortality rate (PMR)
- Deaths of babies aged between 29 days and 1 year per 1,000 live births

Neonatal mortality rates and number of neonatal deaths

Region	Neonatal mortality rate (deaths per 1,000 live births)			Number of neonatal deaths (thousands)	
	1990	2013	$\begin{gathered} \text { Decline } \\ \text { (percent) } \\ 1990-2013 \end{gathered}$	1990	2013
Developed regions	8	3	55	118	48
Developing regions	36	22	40	4,554	2,714
Northern Africa	30	13	56	109	53
Sub-Saharan Africa	46	31	32	977	1,066
Latin America and the Caribbean	22	9	58	255	101
Caucasus and Central Asia	26	15	42	51	26
Eastern Asia	25	8	69	784	150
Excluding China	12	8	35	11	7
Southern Asia	51	30	42	1,940	1,086
Excluding India	49	30	39	578	338
South-eastern Asia	27	14	47	321	160
Western Asia	28	14	50	111	67
Oceania	26	21	19	5	6
World	33	20	40	4,672	2,763

Endogenous and exogenous

- Endogenous cause of death in an infant can occur because of genetic issues or conditions associated with fetal development or the birth process
- Exogenous cause of death is due mainly to environmental or external factors, such as infections or accidents

Causes of neonatal deaths

- The main causes of neonatal deaths are endogenous conditions
- Congenital malformations, chromosomal abnormalities, complications of delivery, low birthweight, genetic disorders...
- However, endogenous causes dominate infant mortality mainly in the early days of life, and not for the entire first month of life

Causes of postneonatal deaths

- Postneonatal mortality rate was 18 per 1,000 live births for the world in 2013
- Rate was 2 in developed countries
- Deaths in postneonatal period and in first few years of life are mainly due to exogenous causes
- Infectious disease, accidents, injury
- Improved living standards, better healthcare, and public health programs have greater effects on exogenous causes then on endogenous causes

Stillbirth rate (SBR)

- Stillbirths (miscarriages, fetal deaths)
- A stillbirth is a fetus not born alive and is not registered as a death
- SBR: stillbirths per 1,000 live births plus stillbirths in the year
- Stillbirths are often identified in hospital reports dealing with obstetric procedures
- WHO: interventions can be planned if we know at what point before birth the fetus died
- 2.6 million stillbirths in the world in 2009
- 18.9 stillbirths per 1,000 live births plus stillbirths

Perinatal mortality rate (PeMR)

- PeMR relates to stillbirths and deaths of babies who lived for only seven days or less per 1,000 live births plus stillbirths in the year
- Endogenous causes of mortality in the 1st week after birth are similar to the causes of stillbirths
- PeMR in 2010
- World (47)
- Developed world (10); less developed world (50)
- Czech Republic and Singapore (4); Mauritania (111)
- U.S.: 6.5 in 2006; 6.3 in 2011

Maternal mortality ratio (MMR)

- MMR measures the extent to which mothers die immediately before, during, or after giving birth because of problems associated with the pregnancy or childbirth
- Numerator: number of deaths in a year of women dying as a result of complications of pregnancy, childbirth, and the puerperium (condition of the woman immediately following childbirth)
- Denominator: live births occurring in the year
- Multiplied by 100,000, because it is increasingly rare in developed countries

Examples of maternal deaths

- World
- 529,000 maternal deaths in 2000
- 313,000 maternal deaths in 2015
- Developing regions in 2015
- 99\% of all maternal deaths
- 66\% in sub-Saharan Africa
-21% in southern Asia
- MMR in 2015
- World: 216 per 100,000 live births
- Sierra Leone: 1,360
- Sub-Saharan Africa: 546
- U.S., Iran, Hungary: 21
- Greece, Singapore (3); Estonia (2)

Factors associated with MMR

- Maternal deaths are mostly due to age, parity (number of children), birth spacing
- Younger and older women are more likely, compared to women in their 20s and 30s
- High-parity women are at high risk
- Women with short birth intervals are also at high risk
- Other factors
- Chronic disease and malnutrition, poverty, unwanted pregnancies, inadequate prenatal and obstetric care, lack of access to a hospital

Causes of poor health and death

- Categories of diseases according to the World Health Organization
- Communicable diseases
- Noncommunicable diseases
- Injuries

Communicable diseases

- Bacterial (e.g., tuberculosis)
- Viral (e.g., measles)
- Protozoan (e.g., malaria)
- Maternal conditions
- Lack of prenatal care
- Delivering somewhere besides a hospital
- Seeking an unsafe abortion
- Perinatal conditions
- "Surrounding birth" - just before and just after birth
- Nutritional deficiencies

Cause of death	Broad category of cause	Number of deaths in world 2011 (millions)	Top ten death rates (per 100,000 population), 2011			
			High income countries	Upper middle income countries	Lower middle income countries	Low income countries
Ischemic heart disease	Non-Com.	7.0	119	120	93	47
Stroke	Non-Com.	6.2	69	126	75	56
Lower respiratory infection	Com.	3.2	32	22	60	98
Chronic obstructive pulmonary disease (COPD)	Non-Com.	3.0	32	45	51	
Diarheal diseases	Com.	1.9			47	69
HIV/AIDS	Com.	1.6			24	70
Tranchea bronchus, lung cancers	Non-Com.	1.5	51	28		
Diabetes mellitus	Non-Com.	1.4	21	20	20	
Road injury	Injury	1.3		21	19	
Prematurity	Com.	1.2			27	43
Alzheimer's disease and other dementias	Non-Com.		48			
Colon rectal cancers	Non-Com.		27			
Hypertensive heart disease	Non-Com.		20	18		
Breast cancer	Non-Com.		16			
Malaria	Com.					38
Tuberculosis	Com.				22	32
Protein-energy malnutrition	Com.					32
Birth asphyxia and birth trauma	Com.					30
Liver cancer	Non-Com.			19		
Stomach cancer	Non-Com.			18		
Life expectancy at birth (both sexes)			80	74	66	60

The 10 leading causes of death in the world 2012

Source: World Health Organization. Available at:
http://www.who.int/mediacentre/factsheets/fs310/en/ (accessed April 29, 2016)

Adults and children estimated to be living with HIV, 2013

Eastern Europe \& Central Asia 1.1 million
[980 000-1.3 million]

Middle East \& North Africa

Caribbean 250000
[230 000-280 000]
Latin America 1.6 million
[1.4 million-2.1 million]

230000
[160 000-330 000]

Sub-Saharan Africa 24.7 million
[23.5 million - 26.1 million]

Asia and the Pacific 4.8 million
[4.1 million -5.5 million]

Total: 35.0 million
95\% confidence interval: [33.2 million - 37.2 million]

Top ten causes of death, 2008

Low-income countries

Middle-income countries

High-income countries

"Real causes" of death in low-mortality societies

- Tobacco
- Diet and activity patterns
- Alcohol misuse
- Infectious diseases
- Toxic agents
- Motor vehicles
- Guns
- Sex
- Drugs

Mortality in the United States

- Mortality started dropping gradually
- In response to changes in the socioeconomic conditions and the environment of modernization
- Much of the mortality reduction started to happen before the initiations of any appreciable public health measures
- Life expectancy increased
- 46 for males and 48 for females in 1900
- 76 for males and 81 for females in 2013

Mortality in the United States

- Most improvements happened from 1900 to 1950
- Germ theory: control of infectious and parasitic diseases
- Boiling bottles and milk, washing hands, protecting food from flies, isolating sick children, ventilating rooms, improving water supply, sewage disposal
- Since 1950s, life expectancy improvements is due to prevention and control of chronic diseases
- Heart disease, stroke...

Hispanic paradox

- The Hispanic epidemiological paradox is the empirical finding that Hispanics have death rates of about the same magnitude as, and sometimes lower than, whites
- Also known as the Latino mortality paradox
- These findings are more evident for those of Mexican origin

Life expectancy at birth by race/ethnicity: U.S., 2006-2011

SOURCE: CDC/NCHS, National Vital Statistics System, Mortality.

Explaining the Hispanic paradox

- Data artifacts
- Underreporting of Hispanic-origin identification on death certificates
- Misstatement of age, perhaps overstatement, at the older ages
- Migration effects
- Healthy migrant effect: self-selection of immigrants in better physical and mental health
- Salmon bias: Mexican Americans in poor health return to Mexico at old ages (return migrant effect)
- Cultural effects
- Better dietary practices of Latinos and stronger family obligations and relationships

Racial crossover

- Life expectancy at birth is the lowest for blacks compared with Hispanics and whites
- For most of their lives, blacks have higher death rates than Hispanics and whites
- The situation changes at the very oldest ages
- By late life, death rates for blacks become lower than those for whites, and in some cases lower than those for Hispanics

Life expectancy at ages 70, 80, 90, and 100 by race/ethnicity and sex: United States, 2010

	Hispanics		NH-Whites		NH-Blacks	
Age	Males	Females	Males	Females	Males	Females
70	15.4	18.0	14.2	16.4	12.8	15.7
80	9.0	10.8	8.1	9.6	7.8	9.6
90	4.5	5.4	4.0	4.8	4.4	5.2
100	2.3	2.6	2.0	2.3	2.5	2.8

Explaining the racial crossover

- Age misreporting on death certificates
- Overstatement of age
- But this would only postpone crossover to later ages, not eliminating it
- Population heterogeneity in frailty
- The surviving elderly black population is a more robust group of disadvantaged individuals
- The more frail blacks die before the age of 80 or 90
- This produces a more robust group of blacks that live longer than the majority

Percent distribution of five leading causes of death by age group: United States, 2011

Aged 1-24 years
Number of deaths $=39,213$

Aged 45-64 years
Number of deaths $=505,730$

\square Cancer (32\%)
\square Heart disease (21\%)
\square Accidents (7\%)
\square
Chronic lower respiratory diseases (4\%)

Chronic liver disease and cirrhosis (4\%)
\square All other causes (32\%)

Aged 25-44 years
Number of deaths $=113,341$

Aged 65 and over
Number of deaths $=1,830,553$

Heart disease (26\%)
Cancer (22\%)
Chronic lower respiratory diseases (7\%)
Stroke (6\%)
\square Alzheimer's disease (5\%)
\square All other causes (34\%)

Infant mortality rates by mother's race/ethnicity: United States, 2000-2010

SOURCE: CDCNCHS, National Meal Statistos Syatom.

Long-term impact of mortality transition

Period mortality

(Wachter 2014, Chapter 7, pp. 153-173)
(Weeks 2015, Chapter 5, pp. 170-180) (Kintner 2003)

- Measuring period mortality
- Standardization
- Period life tables
- Model life tables

Measuring period mortality

- Crude death rate (CDR) is the total number of deaths in a year divided by the average total population

$$
C D R=d / p * 1,000
$$

- Age/sex-specific death rate ($n M x$ or $A S D R$)

$$
{ }_{n} M_{x}={ }_{n} d_{x} /{ }_{n} p_{x} * 100,000
$$

Standardization

- Compare crude death rates for different years or regions
- Need to adjust for differences in age structure
- Estimate age-adjusted death rates (AADR) and apply to a standard population

$$
\text { AADR }=\Sigma_{n} w s_{x} *{ }_{n} M_{x}
$$

$-{ }_{n} w s_{x}$: standard weight representing this age group's proportion in the total population
$-{ }_{n} M_{x}$: age-specific death rate

- This formula is the same as Formula 7.4 in the textbook (Poston, Bouvier, 2017: p.171)

Example of standardization (1/4)

Deaths		
Age group	PE	RS
$0-4$	3,777	2,342
$5-9$	244	206
$10-14$	324	297
$15-19$	1,292	846
$20-24$	1,784	1,258
$25-29$	1,723	1,256
$30-34$	1,572	1,351
$35-39$	1,649	1,802
$40-44$	2,056	2,418
$45-49$	2,172	3,331
$50-54$	2,663	4,136
$55-59$	3,037	4,907
$60-64$	3,402	5,631
$65-69$	4,325	7,055
$70-74$	4,651	8,065
$75-79$	5,308	8,661
$80+$	12,219	17,621
Total	52,198	71,183

Population		
Age group	PE	RS
$0-4$	847,364	913,339
$5-9$	850,579	945,206
$10-14$	916,926	970,575
$15-19$	934,602	$1,029,218$
$20-24$	819,853	914,423
$25-29$	685,373	820,035
$30-34$	616,696	837,181
$35-39$	557,721	867,514
$40-44$	461,225	781,380
$45-49$	384,029	667,259
$50-54$	331,372	548,390
$55-59$	263,131	424,619
$60-64$	231,472	351,702
$65-69$	171,950	285,196
$70-74$	139,544	216,227
$75-79$	96,984	137,857
$80+$	104,780	134,881
Total	$8,413,601$	$10,845,002$

Age-specific death rate		
Age group	PE	RS
$0-4$	0.0045	0.0026
$5-9$	0.0003	0.0002
$10-14$	0.0004	0.0003
$15-19$	0.0014	0.0008
$20-24$	0.0022	0.0014
$25-29$	0.0025	0.0015
$30-34$	0.0025	0.0016
$35-39$	0.0030	0.0021
$40-44$	0.0045	0.0031
$45-49$	0.0057	0.0050
$50-54$	0.0080	0.0075
$55-59$	0.0115	0.0116
$60-64$	0.0147	0.0160
$65-69$	0.0252	0.0247
$70-74$	0.0333	0.0373
$75-79$	0.0547	0.0628
$80+$	0.1166	0.1306
CDR (\%o)	6.20	6.56

Source: Brazilian Health Ministry (DATASUS). Data for the states of Pernambuco (PE) and Rio Grande do Sul (RS), 2005.

Example of standardization

(2/4)	Age group	PE population $(\%)$	RS population $(\%)$	Ratio PE / RS
$0-4$	10.07	8.42	1.20	
$5-9$	10.11	8.72	1.16	

Source: Brazilian Health Ministry (DATASUS). Data for the states of Pernambuco (PE) and Rio Grande do Sul (RS), 2005.

Example of standardization (3/4)

- PE has a younger population than RS
- This is causing
$C_{D R}$ PE $<\mathrm{CDR}_{\mathrm{RS}}$

Source: Brazilian Health Ministry (DATASUS). Data for the states of Pernambuco (PE) and Rio Grande do Sul (RS), 2005.

Example of standardization

(4/4)

Age group	PE (standard population)	RS (obsserved rates)	RS (standardized deaths)
$0-4$	847,364	0.0026	2,173
$5-9$	850,579	0.0002	185
$10-14$	916,926	0.0003	281
$15-19$	934,602	0.0008	768
$20-24$	819,853	0.0014	1,128
$25-29$	685,373	0.0015	1,050
$30-34$	616,696	0.0016	995
$35-39$	557,721	0.0021	1,158
$40-44$	461,225	0.0031	1,427
$45-49$	384,029	0.0050	1,917
$50-54$	331,372	0.0075	2,499
$55-59$	263,131	0.0116	3,041
$60-64$	231,472	0.0160	3,706
$65-69$	171,950	0.0247	4,254
$70-74$	139,544	0.0373	5,205
$75-79$	96,984	0.0628	6,093
$80+$	104,780	0.1306	13,689
Total	$8,413,601$		49,569

- $\mathrm{CDR}_{\text {PE original }}$
= 6.20 deaths per 1,000
- $C_{R R S}$ original
= 6.56 deaths per 1,000
- $\mathrm{CDR}_{\text {RS standardized }}$
= 49,569 / 8,413,601
= 5.89 deaths per 1,000

Source: Brazilian Health Ministry (DATASUS). Data for the states of Pernambuco (PE) and Rio Grande do Sul (RS), 2005.

Period life tables

- Estimate overall mortality of population
- Assumption: age-specific rates for the period continue unchanged into the future
- Synthetic cohort: imaginary cohort of new born babies would experience a life table from a specific period
- Life expectancy: average age at death for a hypothetical cohort born in a particular year and being subjected to the risks of death experienced by people of all ages in that year

Life table, U.S. women, 2010

					Of 100,000 people bo	ypothetical rn alive:	Number of	years lived	Expectation of life
Age interval	Number of females in the population	Number of deaths in the population	Age-specific death rates in the interval	Probabilities of death (proportion of persons alive at beginning who die during interval	Number alive at beginning of interval	Number dying during age interval	In the age interval	In this and all subsequent age intervals	Average number of years of live remaining at beginning of age interval
x to $x+n$	${ }_{n} P_{x}$	${ }_{n} D_{x}$	${ }_{n} M_{x}$	${ }_{n} q_{x}$	l_{x}	${ }_{n} d_{x}$	${ }_{n} L_{x}$	T_{x}	e_{x}
Under 1	1,976,387	11,503	0.00582	0.005791	100,000	579	99,508	8,098,622	81.0
1-4	7,905,548	1,976	0.00025	0.000999	99,421	99	397,445	7,999,114	80.5
5-9	9,959,019	1,095	0.00011	0.000550	99,322	55	496,471	7,601,670	76.5
10-14	10,097,332	1,313	0.00013	0.000650	99,267	65	496,173	7,105,199	71.6
15-19	10,736,677	3,436	0.00032	0.001599	99,202	159	495,615	6,609,025	66.6
20-24	10,571,823	4,757	0.00045	0.002247	99,044	223	494,662	6,113,410	61.7
25-29	10,466,258	5,652	0.00054	0.002696	98,821	266	493,440	5,618,747	56.9
30-34	9,965,599	6,876	0.00069	0.003444	98,555	339	491,925	5,125,308	52.0
35-39	10,137,620	10,138	0.00100	0.004988	98,215	490	489,852	4,633,382	47.2
40-44	10,496,987	17,005	0.00162	0.008067	97,725	788	486,656	4,143,531	42.4
45-49	11,499,506	29,094	0.00253	0.012570	96,937	1,219	481,639	3,656,874	37.7
90-94	1,023,979	165,495	0.16162	0.575549	29,621	17,048	105,484	148,164	5.0
95-99	288,981	78,398	0.27129	0.808265	12,573	10,162	37,458	42,680	3.4
$100+$	44,202	20,403	0.46159	1.000000	2,411	2,411	5,222	5,222	2.2

Probability of dying $\left({ }_{n} q_{x}\right)$

- Need to convert age-specific death rates $\left({ }_{n} M_{x}\right)$ to probabilities of dying (${ }_{n} q_{x}$)
- Probability of death relates the number of deaths during any given number of years to the number of people who started out being alive and at risk of dying

$$
{ }_{n} q_{x}=(n)\left({ }_{n} M_{x}\right) / 1+(a)(n)\left({ }_{n} M_{x}\right)
$$

- (a)(n): average years lived per person by people dying in the interval. $a=0.5$ implies that deaths are distributed evenly over an age interval. For $0-1$ age, $a=0.85$. For $1-4$ age, $a=0.60$.
- For last group, $q=1.0$.

Number of deaths $\left({ }_{n} d_{x}\right)$ and alive (I_{x})

- The life table assumes an initial population of 100,000 births (radix), which is subjected to the mortality schedule
- Radix can also be 1
- Number of people dying during age interval $\left({ }_{n} d_{x}\right)$ equals probability of death times number alive at beginning $\left(I_{x}\right)$

$$
{ }_{n} d_{x}=\left({ }_{n} q_{x}\right)\left(l_{x}\right)
$$

- Subtracting those who died in the previous age interval gives the number of people still alive at the beginning of next age interval

$$
I_{x+n}=I_{x}-{ }_{n} d_{x}
$$

Number of years lived $\left({ }_{n} L_{x}\right)$

- Number of years lived $\left({ }_{n} L_{x}\right)$ has to consider that some people die before the end of the age interval
- The lower the death rates, more people will survive through an entire age interval

$$
{ }_{n} L_{x}=n\left(I_{x}-a_{n} d_{x}\right)
$$

- a: usually 0.5 , which implies that deaths are distributed evenly over an age interval. For $0-1$ age, $a=0.85$. For $1-4$ age, $a=0.60$.
- ${ }_{n} L_{x}$ for the oldest, open-age interval

$$
L_{100+}=I_{100} / M_{100}
$$

$-I_{100}$: number of survivors to oldest age

- M_{100} : death rate at the oldest age

Cumulative number of years lived $\left(T_{x}\right)$

- Number of years lived are added up, cumulating from the oldest to the youngest ages
- Total number of years lived in a given age interval and all older age intervals (T_{x})

$$
T_{x}=T_{x+n}+{ }_{n} L_{x}
$$

- At the oldest age, T_{x} equals ${ }_{n} L_{x}$

Life expectancy (e_{x})

- Expectation of life is the average remaining lifetime
- It is the total years remaining to be lived at exact age x
- Division of total number of years lived $\left(T_{x}\right)$ by number of people alive at that exact age $\left(I_{x}\right)$

$$
e_{x}=T_{x} / I_{x}
$$

- This index summarizes the level of mortality prevailing in a given population at a particular time

Probability of surviving $\left(p_{x}\right)$

- Probability of surviving from birth to age x is designated p_{x}

$$
p_{x}=I_{x} / I_{0}
$$

- We can also estimate the probability of surviving from one particular age group to the subsequent age group

Crude death and birth rates

- Crude death rate (CDR) equals total number of deaths $\left(I_{0}\right)$ divided by total population (T_{0})
- Crude birth rate (CBR) equals total number of births $\left(I_{0}\right)$ divided by total population (T_{0})

$$
C D R=C B R=I_{0} / T_{0}=1 /\left(T_{0} / I_{0}\right)=1 / e_{0}
$$

Alternative interpretations

- Synthetic cohort (history of a hypothetical cohort)
- Lifetime mortality experience of a single cohort of newborn babies, who are subject to specific age-specific mortality rates
- Used in public health/mortality studies, calculation of survival rates for estimating population, fertility, net migration...
- Stationary population
- Results from unchanging schedule of age-specific mortality rates and a constant annual number of births/deaths (radix)
- Used in the comparative measurement of mortality and in studies of population structure

Same interpretation

- x to $x+n$
- Period of life between two exact ages
- For instance, 20-25 means the 5-year interval between the $20^{\text {th }}$ and $25^{\text {th }}$ birthdays
- ${ }_{n} q_{x}$
- Proportion of persons in the cohort alive at the beginning of an indicated age interval (x) who will die before reaching the end of that age interval $(x+n)$
- Probability that a person at his/her $x^{\text {th }}$ birthday will die before reaching his/her $\mathrm{x}+\mathrm{n}^{\text {th }}$ birthday
- e_{x} (life expectancy)
- Average remaining lifetime (in years) for a person who survives to the beginning of the indicated age interval

$$
I_{x}
$$

- Synthetic cohort
- Number of persons living at the beginning of the indicated age interval (x) out of the total number of births assumed as the radix of the table
- Stationary population
- Number of persons who reach the beginning of the age interval each year

${ }_{n} \mathrm{~d}_{\mathrm{x}}$

- Synthetic cohort
- Number of persons who would die within the indicated age interval (x to $x+n$) out of the total number of births assumed in the table
- Stationary population
- Number of persons that die each year within the indicated age interval

77

${ }_{n} L_{x}$

- Synthetic cohort
- Number of person-years that would be lived within the indicated age interval (x to $x+n$) by the cohort of 100,000 births assumed
- Stationary population
- Number of persons in the population who at any moment are living within the indicated age interval

T_{x}

- Synthetic cohort
- Total number of person-years that would be lived after the beginning of the indicated age interval by the cohort of 100,000 births assumed
- Stationary population
- Number of persons in the population who at any moment are living within the indicated age interval and all higher age intervals

Interpretation as stationary population

ABRIDGED LIFE TABLE FOR THE FEMALE POPULATION OF THE UNITED STATES: 2007

			He remale pop Of 100,000 born alive Stationary population								
Age group	Width	$\begin{gathered} \text { Population } \\ \mathrm{nPx} \end{gathered}$	Deaths nDx	Age-specific death rates nMx	$\underset{\mathrm{nqx}}{\text { Proportion dying }}$	\# living at beginning of interval	\# dying during interval	In the age interval nLx		In this and following ages $T x$	Average remaining lifetime ex
0	1	1,998,761	12,845	0.0064	0.0064	100,000	641	99,684		8,103,588	81.0
1-4	4	8,109,371	F 2,069	0.0003	0.0010	99,359	101	397,248	\cdots	8,003,904	80.6
5-9	5	9,720,587	1,192	0.0001	0.0006	99,258	61	496,150		7,606,656	76.6
10-14	5	9,918,543	1,370	0.0001	0.0007	99,197	68	495,828		7,110,506	71.7
15-19	5	10,617,178	3,741	0.0004	0.0018	99,129	175	495,242		6,614,678	66.7
20-24	5	10,073,754	4,925	0.0005	0.0024	98,954	242	494,215		6,119,436	61.8
25-29	5	10,122,681	5,824	0.0006	0.0029	98,713	284	492,910		5,625,222	57.0
30-34	5	9,469,789	6,956	0.0007	0.0037	98,429	361	491,314		5,132,312	52.1
35-39	5	10,666,827	11,126	0.0010	0.0052	98,068	510	489,165		4,640,998	47.3
40-44	5	11,155,652	18,375	0.0016	0.0082	97,558	800	485,944		4,151,834	42.6
45-49	5	11,572,428	F 29,834	0.0026	0.0128	96,757	1,240	480,926		3,665,890	37.9
50-54	5	10,709,011	- 40,396	0.0038	0.0187	95,518	1,786	473,463		3,184,963	33.3
55-59	5	9,339,919	F 50,868	0.0054	0.0269	93,732	2,521	462,827		2,711,501	28.9
60-64	5	7,636,068	F 62,624	0.0082	0.0402	91,211	3,670	447,543		2,248,674	24.7
65-69	5	5,725,079	F 74,499	0.0130	0.0631	87,541	5,528	424,827	F	1,801,131	20.6
70-74	5	4,738,379	F 96,395	0.0203	0.0971	82,012	7,962	391,395	F	1,376,304	16.8
75-79	5	4,314,403	- 139,360	0.0323	0.1500	74,050	11,109	343,929	F	984,910	13.3
80-84	5	3,582,388	F 192,519	0.0537	0.2378	62,941	14,970	278,566	\cdots	640,981	10.2
$85+$	---	3,511,395	F 464,781	0.1324	1.0000	47,971	47,971	362,415		362,415	7.6

ABRIDGED LIFE TABLE FOR THE MALE POPULATION OF THE UNITED STATES: 2007
Stationary population

Age group	Width n	$\begin{gathered} \text { Population } \\ \mathrm{nPx} \end{gathered}$	Deaths nDx	Age-specific death rates nMx	$\underset{\text { nqx }}{\text { Proportion dying }}$	\# living at beginning of interval Ix	\# dying during interval	In the age interva nLx		In this and following ages Tx	Average remaining lifetime ex
0	1	2,079,846	16,293	0.0078	0.0078	100,000	780	99,615		7,582,342	75.8
1-4	4	8,507,893	F 2,634	0.0003	0.0012	99,220	123	396,648	$\stackrel{\rightharpoonup}{*}$	7,482,726	75.4
5-9	5	10,095,353	F 1,519	0.0002	0.0008	99,097	75	495,313		7,086,078	71.5
10-14	5	10,484,813	F 2,066	0.0002	0.0010	99,022	98	494,887		6,590,765	66.6
15-19	5	11,252,863	- 9,558	0.0008	0.0042	98,925	419	493,658		6,095,878	61.6
20-24	5	10,828,130	F 15,758	0.0015	0.0073	98,505	714	490,881		5,602,220	56.9
25-29	5	10,489,470	15,107	0.0014	0.0072	97,791	702	487,338		5,111,340	52.3
30-34	5	9,802,132	F 14,685	0.0015	0.0075	97,089	725	483,776		4,624,002	47.6
35-39	5	10,684,227	19,755	0.0018	0.0092	96,364	887	479,777		4,140,226	43.0
40-44	5	11,085,591	30,350	0.0027	0.0136	95,477	1,299	474,390		3,660,450	38.3
45-49	5	11,318,167	47,904	0.0042	0.0210	94,179	1,974	466,332		3,186,060	33.8
50-54	5	10,313,298	66,552	0.0065	0.0318	92,205	2,931	454,237		2,719,728	29.5
55-59	5	8,790,943	81,590	0.0093	0.0454	89,274	4,055	436,954		2,265,491	25.4
60-64	5	6,979,426	92,028	0.0132	0.0640	85,218	5,451	413,393		1,828,537	21.5
65-69	5	5,003,042	F 100,492	0.0201	0.0959	79,767	7,651	380,904		1,415,144	17.7
70-74	5	3,889,104	F 117,852	0.0303	0.1414	72,116	10,196	336,467		1,034,240	14.3
75-79	5	3,192,676	F 149,669	0.0469	0.2107	61,920	13,046	278,295	-	697,773	11.3
80-84	5	2,235,826	F 171,134	0.0765	0.3220	48,874	15,739	205,629	*	419,478	8.6
85+	---	1,606,146	F 248,866	0.1549	1.0000	33,135	33,135	213,850		213,850	6.5

Source: Formulas from Kintner (2003); Population data from 2007 ACS; Death data from CDC ((http://www.cdc.gov/nchs/data/dvs/mortfinal2007_worktable310.pdf).

Population, U.S., 2007

nLx from previous life tables, U.S., 2007

Typical shapes of lifetable functions

Problems with life tables

- We saw life tables based on complete empirical data
- We might experience some issues
- Have partial information to build our life table
- Have data for only some age groups
- Information for some ages may be more reliable than for other ages
- Have ideas about mortality level, but not a full life table to make projections
- We can use model life tables to solve these issues

Model life tables

- A life table constructed from mathematical formulas is called a model life table
- Use mathematical formulas to fill in missing parts
- Have a whole life table from partial information
- Identify suspicious and poor quality data with model expectations
- Supply standard assumptions for projections
- Find regularities for the invention of indirect measures
- Reconstruct rates from historical counts of births and deaths (inverse projection)

References

Hviid A, Hansen JV, Frisch M, Melbye M. 2019. "Measles, mumps, rubella vaccination and autism: A nationwide cohort study." Annals of Internal Medicine, March 5. (http://www.doi.org/10.7326/M18-2101)

Kintner HJ. 2003. "The life table." In: The Methods and Materials of Demography (DA Swanson, JS Siegel, eds.). San Diego: Elsevier Academic Press. Chapter 13 (pp. 301-340).

Poston DL, Bouvier LF. 2017. Population and Society: An Introduction to Demography. New York: Cambridge University Press. 2nd edition. Chapter 7 (pp. 163-214).

Wachter KW. 2014. Essential Demographic Methods. Cambridge: Harvard University Press. Chapter 7 (pp. 153-173).

Weeks JR. 2015. Population: An Introduction to Concepts and Issues.
12th edition. Boston: Cengage Learning. Chapter 5 (pp. 139-188).

