Mortality

Ernesto F. L. Amaral

March 29-April 05, 2022
Population and Society (SOCI 312)
www.ernestoamaral.com

Outline

- Introduction
- Measurement of mortality
- Standardization
- Life table
- Short history of mortality in the world
- Mortality trends and causes of death
- Mortality and Iongevity in the United States
- Infant mortality
- Future course of mortality
- Coronavirus pandemic

Introduction

- The impact of mortality varies significantly according to social and demographic characteristics
- Age
- Sex
- Race/ethnicity
- Social class
- Marital status
- Area of residence
- Levels of development, medical conditions, and a host of other factors influence life expectancy

Changes in causes of death

- There have been major changes over the historical record in the main causes of death
- People used to die mainly of infectious and parasitic diseases
- Today the major causes of death in developed countries are heart disease, cancer, and stroke
- Major causes of death are different in countries with high and low levels of life expectancy

Measurement of mortality

- Quantification of mortality is central to demography
- Measurement of mortality dates back to John Graunt (1620-1674) and his analyses of the "Bills of Mortality"
- Mortality refers to the relative frequency of death in a population

Two concepts of mortality

- Life span
- Numerical age limit of human life
- Maximum recorded age at death
- 122 years and 164 days, lived by the Frenchwoman Jeanne Louise Calment
- Life expectancy
- Average expected number of years of life to be lived by a particular population at a given time

Crude death rate

- Crude death rate (CDR)

$$
C D R=d / p^{*} 1,000
$$

- d: deaths in the year
- p : population at midyear
- Data for the United States for 2013

$$
\begin{gathered}
C D R=2,596,993 / 316,497,531 * 1,000 \\
C D R=8.2
\end{gathered}
$$

- World range of CDR in 2014
- United Arab Emirates (UAE) and Qatar = 1
- Lesotho = 21

CDR and age composition

- When CDRs are compared among countries, differences are sometimes due to differences in age composition
- Previous examples mean that there are 8 times more deaths per 1,000 people in the US than in the UAE
- Why is the CDR of the US eight times higher than of the UAE?
- The main reason is that the UAE is much younger in average age than is the U.S.
- Younger people have lower death rates

Young and old people

- Countries with
- Large proportions of young people
- Small proportions of old people
- Usually have lower CDRs
- Countries with
- Small proportions of young people
- Large proportions of old people
- Usually have higher CDRs

Changing age structure

- If age structure has changed over time
- CDRs should not be used to compare the death experiences of the same population at different points in time
- US CDR did not change much in 54 years
$-C D R_{1960}=9.5$ per 1,000
$-C D R_{2014}=8.2$ per 1,000
- $C D R$ is not capable of capturing the reduction in mortality when the population becomes older
- The US became older between 1960 and 2014
- Median age: 29 in 1960 and 37 in 2014

Crude rate

- $C D R$ is a crude rate, because its denominator comprises the entire population
- However, population members are not equally at risk of experiencing death
- Risk of death varies by age, sex, race/ethnicity, socioeconomic status, and others
- Death rates vary considerably by age...

Age-specific death rates

- Demographers use age-specific death rates as a more precise way to measure mortality
- Age-specific death rate $\left({ }_{n} A S D R_{x}\right.$ or $\left.{ }_{n} M_{x}\right)$

$$
{ }_{n} M_{x}={ }_{n} d_{x} /{ }_{n} p_{x} * 1,000
$$

$-{ }_{n} d_{x}$: deaths to persons aged x to $x+n$
$-{ }_{n} p_{x}$: persons in the population who are aged x to $x+n$
$-n$: width of the age group

- x : initial year of the age group
- For instance, $A S D R$ for age group 15-19 is ${ }_{5} M_{15}$

Age curve of mortality, US, 2007

Source: Minino, et al., 2009: 2.

Standardization

- ${ }_{n} A S D R_{x}$, and not $C D R$, should be used to compare the mortality experiences of countries with different age compositions
- We use standardization to take into account age composition when we compare death rates among different countries
- We can compare crude death rates for different countries or years
- We need to adjust for differences in age structure
- We estimate age-adjusted death rates and apply to a standard population

Mortality and fertility

- We cannot simply add up ${ }_{n} A S D R_{x}$ and multiply by the width of the age interval
- People die just once
- This makes sense for age-specific fertility rates $\left({ }_{n} A S F R_{x}\right)$ and total fertility rates (TFR)

$$
T F R=\sum\left({ }_{n} A S F R_{x} * n\right)
$$

$-n$: width of the age group

- Women can have more than one child

Age standardization

- Young populations tend to have low CDRs
- Old populations tend to have high CDRs
- We estimate a variation of $C D R$ that allows us to account for age composition when comparing death rates among different countries

$$
C D R=\Sigma_{n} A S D R_{x} *\left({ }_{n} P_{x} / P\right) * 1,000
$$

- P: total population
$-{ }_{n} P_{x}$: population in age group x
$-{ }_{n} A S D R_{x}: A S D R$ for people aged x to $x+n$

United States, 2006

Age group	Population	Prop. population	Deaths	Age-specific death rate (ASDR)
$0-1$	$4,147,760$	0.0139	27,126	0.00654
$1-4$	$16,352,320$	0.0548	4,742	0.00029
$5-9$	$20,142,000$	0.0675	2,820	0.00014
$10-14$	$21,454,960$	0.0719	3,862	0.00018
$15-19$	$21,604,160$	0.0724	13,827	0.00064
$20-24$	$20,947,680$	0.0702	19,062	0.00091
$25-29$	$20,022,640$	0.0671	18,020	0.00090
$30-34$	$20,261,360$	0.0679	21,477	0.00106
$35-39$	$21,067,040$	0.0706	32,233	0.00153
$40-44$	$22,857,440$	0.0766	52,801	0.00231
$45-49$	$22,588,880$	0.0757	77,028	0.00341
$50-54$	$20,142,000$	0.0675	99,300	0.00493
$55-59$	$17,158,000$	0.0575	127,312	0.00742
$60-64$	$13,040,080$	0.0437	149,961	0.01150
$65-69$	$10,115,760$	0.0339	180,061	0.01780
$70-74$	$8,474,560$	0.0284	234,830	0.02771
$75-79$	$7,400,320$	0.0248	321,914	0.04350
$80-84$	$5,580,080$	0.0187	388,262	0.06958
$85-89$	$3,192,880$	0.0107	353,005	0.11056
$90-94$	$1,342,800$	0.0045	234,681	0.17477
$95-99$	387,920	0.0013	107,283	0.27656
$100+$	89,520	0.0003	39,292	0.43892
Total	$298,400,000$	$\mathbf{0 . 9 9 9 9}$	$\mathbf{2 , 5 0 8 , 8 9 9}$	$\mathbf{1 . 2 0 1 1 6}$

Venezuela, 2006

Age group	Population	Prop. population	Deaths	Age-specific death rate (ASDR)
$0-1$	487,056	0.0219	7,905	0.01623
$1-4$	$1,779,200$	0.0800	1,139	0.00064
$5-9$	$2,308,512$	0.1038	739	0.00032
$10-14$	$2,275,152$	0.1023	933	0.00041
$15-19$	$2,250,688$	0.1012	3,286	0.00146
$20-24$	$2,057,200$	0.0925	4,896	0.00238
$25-29$	$1,872,608$	0.0842	4,138	0.00221
$30-34$	$1,614,624$	0.0726	3,278	0.00203
$35-39$	$1,530,112$	0.0688	3,290	0.00215
$40-44$	$1,401,120$	0.0630	4,049	0.00289
$45-49$	$1,145,360$	0.0515	4,707	0.00411
$50-54$	971,888	0.0437	5,520	0.00568
$55-59$	769,504	0.0346	5,964	0.00775
$60-64$	558,224	0.0251	6,548	0.01173
$65-69$	400,320	0.0180	7,514	0.01877
$70-74$	302,464	0.0136	8,584	0.02838
$75-79$	215,728	0.0097	9,212	0.04270
$80-84$	117,872	0.0053	8,877	0.07531
$85-89$	53,376	0.0024	6,816	0.12769
$90-94$	15,568	0.0007	3,241	0.20820
$95-99$	2,224	0.0001	724	0.32576
$100+$	2,224	0.0001	1,089	0.48975
Total	$\mathbf{2 2 , 2 4 0 , 0 0 0}$	$\mathbf{0 . 9 9 5 1}$	$\mathbf{1 0 2 , 4 4 9}$	$\mathbf{1 . 3 7 6 5 5}$

Population distribution by country

Age structure

The U.S. has an older population than Venezuela

Age-specific death rates, 2006

Standardize Venezuela's CDR

Standardization Age group	Venezuela (observed rates)	United States (standard prop. population)	Venezuela's rates times U.S. prop. population
0-1	0.01623	0.0139	0.0002
1-4	0.00064	0.0548	0.0000
5-9	0.00032	0.0675	0.0000
10-14	0.00041	0.0719	0.0000
15-19	0.00146	0.0724	0.0001
20-24	0.00238	0.0702	0.0002
25-29	0.00221	0.0671	0.0001
30-34	0.00203	0.0679	0.0001
35-39	0.00215	0.0706	0.0002
40-44	0.00289	0.0766	0.0002
45-49	0.00411	0.0757	0.0003
50-54	0.00568	0.0675	0.0004
55-59	0.00775	0.0575	0.0004
60-64	0.01173	0.0437	0.0005
65-69	0.01877	0.0339	0.0006
70-74	0.02838	0.0284	0.0008
75-79	0.04270	0.0248	0.0011
80-84	0.07531	0.0187	0.0014
85-89	0.12769	0.0107	0.0014
90-94	0.20820	0.0045	0.0009
95-99	0.32576	0.0013	0.0004
100+	0.48975	0.0003	0.0001
Total		0.9999	0.0097
		CDR per 1,000	9.68

Another way... same results...

Standardization Age group	United States (standard population)	Venezuela (observed rates)	Venezuela (standardized deaths)
$0-1$	$4,148,175$	0.0162	67,325
$1-4$	$16,353,955$	0.0006	10,467
$5-9$	$20,144,014$	0.0003	6,446
$10-14$	$21,457,106$	0.0004	8,797
$15-19$	$21,606,321$	0.0015	31,545
$20-24$	$20,949,775$	0.0024	49,860
$25-29$	$20,024,642$	0.0022	44,254
$30-34$	$20,263,386$	0.0020	41,135
$35-39$	$21,069,147$	0.0022	45,299
$40-44$	$22,859,726$	0.0029	66,065
$45-49$	$22,591,139$	0.0041	92,850
$50-54$	$20,144,014$	0.0057	114,418
$55-59$	$17,159,716$	0.0078	132,988
$60-64$	$13,041,384$	0.0117	152,975
$65-69$	$10,116,772$	0.0188	189,892
$70-74$	$8,475,408$	0.0284	240,532
$75-79$	$7,401,060$	0.0427	316,025
$80-84$	$5,580,638$	0.0753	420,278
$85-89$	$3,193,199$	0.1277	407,740
$90-94$	$1,342,934$	0.2082	279,599
$95-99$	387,959	0.3258	126,381
$100+$	89,529	0.4898	43,847
Total	$298,400,000$		$\mathbf{2 , 8 8 8 , 7 1 8}$

Comparing crude death rates

- $C D R_{\text {United States original }}$
$=8.41$ deaths per 1,000
- $C D R_{\text {Venezuela original }}$
$=4.61$ deaths per 1,000
- $C D R_{\text {Venezuela standardized }}$
$=9.68$ deaths per 1,000

Life table

- One of the most important and elegant measures of the mortality experiences of a population is the life table
- It dates back to John Graunt (1620-1674) and his "Bills of Mortality"
- Demographers use the life table to determine life expectancy, not only at birth but at any age

Important information from life table

- Like the total fertility rate (TFR), the life table is a synthetic or hypothetical measure
- It tells us how many years of life, on average, may a person expect to live if the person during his or her lifetime is subjected to the age-specific probabilities of dying of a particular country or population at a given time

Example: United States, 2010

- Let's say that the population of the U.S. in 2010 had a life expectancy of birth of 78.7 years
- This means that if a cohort of persons, throughout the years of their life, were subjected to the ASDRs $\left({ }_{n} M_{x}\right)$ of the total population in the U.S. in 2010
- They would live, on average, 78.7 years

Examples of Life expectancy

- Life expectancy at birth is a primary indicator of quality of life

2013	Life expectancy	
	Male	Female
World	69	73
More developed countries	75	82
Less developed countries (except China)	65	69
Japan	80	86
Lesotho	42	45
Sierra Leone	45	46

Limitations of e_{0}

- We need to be aware of the fact that when considering life expectancy at birth $\left(e_{0}\right)$, infant mortality plays a very important role
- When e_{0} is low, a major reason is their very high infant mortality rate
- When comparing values of life expectancy at birth across countries, we should not think of e_{0} as a modal age at death

Abridged life table

- An abridged life table is calculated for age groups
- Usually for five-year age groups
- Rather than for single-year age groups

Radix and mortality probabilities

- A life table starts with a population (a radix) of 100,000 persons born alive at age 0
- This number is arbitrary, but conventional
- It can also be 1,000 or 1
- From each age to the next, the population is decremented according to age-specific mortality probabilities until all members have died
- The mortality schedule is fixed and does not change over the life of the population

Life table for U.S. population, 2010

Life Table for the Total Population, United States, 2010

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Age range	${ }_{n} q_{x}$	l_{x}	d_{n}	$L_{n} L_{x}$	T_{x}	e_{x}
<1	0.006123	100,000	612	99,465	$7,866,027$	78.7
$1-4$	0.001071	99,388	106	397,294	$7,766,561$	78.1
$5-9$	0.000573	99,281	57	496,250	$7,369,267$	74.2
$10-14$	0.000708	99,224	70	495,989	$6,873,017$	69.3
$15-19$	0.002463	99,154	244	495,240	$6,377,028$	64.3
$20-24$	0.004317	98,910	427	493,529	$5,881,789$	59.5
$25-29$	0.004791	98,483	472	491,249	$5,388,260$	54.7
$30-34$	0.005497	98,011	539	488,744	$4,897,011$	50.0
$35-39$	0.006913	97,472	674	485,753	$4,408,267$	45.2
$40-44$	0.009979	96,798	966	481,758	$3,922,514$	40.5
$45-49$	0.016044	95,833	1,538	475,584	$3,440,756$	35.9
$50-54$	0.024343	94,295	2,295	466,066	$2,965,173$	31.4
$55-59$	0.035106	92,000	3,230	452,347	$2,499,106$	27.2
$60-64$	0.049847	88,770	4,425	433,348	$2,046,759$	23.1
$65-69$	0.074406	84,345	6,276	406,912	$1,613,411$	19.1
$70-74$	0.112315	78,069	8,768	369,612	$1,206,499$	15.5
$75-79$	0.174782	69,301	12,113	317,694	836,886	12.1
$80-84$	0.274384	57,188	15,692	248,038	519,193	9.1
$85-89$	0.430820	41,497	17,878	162,723	271,155	6.5
$90-94$	0.615282	23,619	14,532	79,720	108,432	4.6
$95-99$	0.783397	9,087	7,119	24,670	29,212	3.2
$100+$	1.00000	1,968	1,968	4,542	4,542	2.3

Source: Arias (2014: 62).

Basic life table columns

1. Age intervals of each group
2. ${ }_{n} q_{x}$: probability of dying between age x and age $x+n$
3. I_{x} : number of survivors at each age x
4. ${ }_{n} d_{x}$: number of deaths between age x and age $x+n$
5. n_{n} : number of years lived by all persons who enter the age interval while in the age interval
6. T_{x} : number of years lived by the population in the age interval and in all subsequent intervals
7. e_{x} : remaining life expectancy at each age

1. Age intervals of each group

- Age groups refer to the range of years between two birthdays
- The age group 5-9 refers to the five-year interval between the fifth and the tenth birthdays

2. Probabilities of dying $\left({ }_{n} q_{x}\right)$

- The most basic column of the life time shows probabilities of dying for each age group $\left({ }_{n} q_{x}\right)$
- These are probabilities that persons alive at the beginning of an age interval will die during the interval, before they reach the start of the next age interval

$$
{ }_{n} q_{x}={ }_{n} d_{x} / I_{x}
$$

- For last age group, ${ }_{n} q_{x}=1.0$ because everybody dies

Rates and probabilities

- Difference between mortality rates $\left({ }_{n} M_{x}\right)$ and mortality probabilities $\left({ }_{n} q_{x}\right)$ is the denominator
- ${ }_{n} M_{x}$: denominator is midyear population
- ${ }_{n} q_{x}$: denominator is population alive at the beginning of the age interval

3. Number of survivors $\left(I_{x}\right)$

- Number of people alive at the beginning of the age interval $\left(I_{x}\right)$
- Known as "the little I column"
- It is calculated by subtracting the number of people dying $\left({ }_{n} d_{x}\right)$ from the I_{x} value in the age interval immediately preceding the one being calculated
- Example of U.S. life table in 2010
- Of the 99,224 people alive at the beginning of the age interval 10-14 (I_{10})
- 70 of them die during the age interval $\left({ }_{5} d_{10}\right)$
- Thus, the value of I_{15} is $99,154=99,224-70$

4. Number of deaths $\left({ }_{n} d_{x}\right)$

- Number of people who die during a particular age interval $\left({ }_{n} d_{x}\right)$

$$
{ }_{n} d_{x}=I_{x}{ }^{*}{ }_{n} q_{x}
$$

- For the number of people who die during the age interval of 40-44

$$
\begin{gathered}
{ }_{5} d_{40}={ }_{5} q_{40} * I_{40} \\
{ }_{5} d_{40}=0.009979 * 96,798 \\
{ }_{5} d_{40}=966
\end{gathered}
$$

5. Years lived in age interval $\left({ }_{n} L_{x}\right)$

- Total number of years lived by all persons who enter that age interval while in the age interval $\left({ }_{n} L_{x}\right)$
- Known as "the big L column"
- Example of U.S. life table in 2010
- 98,011 persons are alive at the beginning of age interval 30-34 (I_{30})
- If none of them died during the age interval, they would have lived 490,055 years (98,011 times 5)
- But 539 of them died (${ }_{5} d_{30}$)

Different formulas for ${ }_{n} L_{x}$

- Demographers assume that deaths are roughly distributed during the five-year period for many of the age intervals
- This assumption does not apply to the first few age intervals
- There are several formulas to produce the nLx value for the first few age groups
- At the other age extreme, $100+$ in the life table, another formula is used

6. Years lived in current and

 subsequent age intervals $\left(T_{x}\right)$- Total number of years lived by the population in the age interval and in all subsequent age intervals (T_{χ})
- We sum ${ }_{n} L_{x}$ from the oldest age backwards to get T_{x}

$$
T_{x}=\sum_{i=x}^{w} L_{i}
$$

$-L_{i}$: entry i in the ${ }_{n} L_{x}$ column
$-\sum^{w}$: sum of the ${ }_{n} L_{x}$ column starting at entry x through $\sum_{i=x}$ the last ${ }_{n} L_{x}$ entry (w)

Example of T_{x}

- Example of U.S. life table in 2010

$$
\begin{gathered}
T_{95}={ }_{5} L_{95}+{ }_{\infty} L_{100} \\
T_{95}=24,670+4,542 \\
T_{95}=29,212
\end{gathered}
$$

7. Remaining life expectancy $\left(e_{x}\right)$

- Average number of years of life remaining at the beginning of the age interval $\left(e_{x}\right)$
- It provides life expectancy at any age

$$
e_{x}=T_{x} / I_{x}
$$

- Example of U.S. life table in 2010

$$
\begin{aligned}
e_{0} & =T_{0} / I_{0}=7,866,027 / 100,000=78.7 \\
e_{25} & =T_{25} / I_{25}=5,388,260 / 98,483=54.7
\end{aligned}
$$

- Persons aged 25-29 can expect to live an additional 54.7 years

Average age at death $\left(x+e_{x}\right)$

- e_{x} is the expectation of future life beyond age x
- It is not an average age at death
- We add x and e_{x} to obtain the average age at death for cohort members who survive to age x
- Not all lifetables include $x+e_{x}$
- The $x+e_{x}$ column always go up
- e_{x} does not always go down
- It often goes up after the first few years of life, because babies who survive infancy are no longer subject to the high risks of infancy

Typical shapes of lifetable functions

Stable population

- Alfred Lotka (1880-1949) used life tables in the development of his stable population theory
- If a population that is closed to migration experiences constant schedules of age-specific fertility and mortality rates
- It will develop a constant age distribution
- It will grow at a constant rate, irrespective of its initial age distribution

Stable population theory

- It considers a closed population
- A population in which migration does not occur
- If a population experiences constant age-specific fertility and mortality rates for a long time
- It develops a constant age distribution and grows at a constant rate, irrespective of its initial age distribution
- Demographers sometimes indicate that stable populations forget their past
- Age distribution of a stable population depends on
- The underlying age-specific mortality rates
- The rate of growth

Stationary population

- Stationary population is a stable population in which the birth rate equals the death rate
- This results in no change in the size of the population
- It is also considered in the absence of migration

Births * Life expectancy at birth

Elon Musk @elonmusk • Jan 18
UN projections are utter nonsense. Just multiply last year's births by life expectancy. Given downward trend in birth rate, that is best case unless reversed.
Show this thread

Source: Ilya Kashnitsky, Assistant Professor at the University of Southern Denmark (@ikashnitsky).

Births * Life expectancy at birth

Elon Musk @elonmusk • Jan 18
UN projections are utter nonsense. Just multiply last year's births by life expectancy. Given downward trend in birth rate, that is best case unless reversed.
Show this thread

Births * Life expectancy at birth

Elon Musk @elonmusk• Jan 18

UN projections are utter nonsense. Just multiply last year's births by life expectancy. Given downward trend in birth rate, that is best case unless reversed.
Show this thread

Ilya Kashnitsky @ikashnitsky. Jan 19
Okay. Maybe this is a bit overkill but let's illustrate how this projection method of @elonmusk (in fact, a stationary population assumption) worked with past data using @HMDatabase

Here is just the US 블

Ilya Kashnitsky
@ikashnitsky
If there is just one take-home message from this thread let it be

Life expectancy is a snapshot of the *current* mortality

It's not a projection/forecast of the actual experience of the newborn cohorts

11/
9:14 AM - Mar 5, 2021 - Typefully

Jonas Schöley
@jschoeley
Replying to @ikashnitsky @elonmusk and @HMDatabase
It's true IF we look at world population (0 migration) AND it's stationary (birth rates = death rates since generations) AND mortality remains constant whereas fertility is allowed to decline. Then we reached peak population which can be estimated by $\mathrm{B}^{*} \mathrm{eO}$. Bullshit assumptions.

5:41 AM • Jan 19, $2022 \cdot$ Twitter Web App

Population size under the stationary assumption relative to the actual dynamics

Life table (extra)

- Estimate overall mortality of population
- Assumption: age-specific rates for the period continue unchanged into the future
- Synthetic cohort: imaginary cohort of new born babies would experience a life table from a specific period
- Life expectancy: average age at death for a hypothetical cohort born in a particular year and being subjected to the risks of death experienced by people of all ages in that year

Life table, U.S. women, 2010

					Of 100,000 hypothetical people born alive:		Number of years lived		Expectation of life
Age interval	Number of females in the population	Number of deaths in the population	Age-specific death rates in the interval	Probabilities of death (proportion of persons alive at beginning who die during interval	Number alive at beginning of interval	Number dying during age interval	In the age interval	In this and all subsequent age intervals	Average number of years of live remaining at beginning of age interval
x to $x+n$	${ }_{n} P_{x}$	${ }_{n} D_{x}$	${ }_{n} M_{x}$	${ }_{n} q_{x}$	l_{x}	${ }_{n} d_{x}$	${ }_{n} L_{x}$	T_{x}	e_{x}
Under 1	1,976,387	11,503	0.00582	0.005791	100,000	579	99,508	8,098,622	81.0
1-4	7,905,548	1,976	0.00025	0.000999	99,421	99	397,445	7,999,114	80.5
5-9	9,959,019	1,095	0.00011	0.000550	99,322	55	496,471	7,601,670	76.5
10-14	10,097,332	1,313	0.00013	0.000650	99,267	65	496,173	7,105,199	71.6
15-19	10,736,677	3,436	0.00032	0.001599	99,202	159	495,615	6,609,025	66.6
20-24	10,571,823	4,757	0.00045	0.002247	99,044	223	494,662	6,113,410	61.7
25-29	10,466,258	5,652	0.00054	0.002696	98,821	266	493,440	5,618,747	56.9
30-34	9,965,599	6,876	0.00069	0.003444	98,555	339	491,925	5,125,308	52.0
35-39	10,137,620	10,138	0.00100	0.004988	98,215	490	489,852	4,633,382	47.2
40-44	10,496,987	17,005	0.00162	0.008067	97,725	788	486,656	4,143,531	42.4
45-49	11,499,506	29,094	0.00253	0.012570	96,937	1,219	481,639	3,656,874	37.7
90-94	1,023,979	165,495	0.16162	0.575549	29,621	17,048	105,484	148,164	5.0
95-99	288,981	78,398	0.27129	0.808265	12,573	10,162	37,458	42,680	3.4
$100+$	44,202	20,403	0.46159	1.000000	2,411	2,411	5,222	5,222	2.2

Probability of dying $\left({ }_{n} q_{x}\right)$

- Need to convert age-specific death rates $\left({ }_{n} M_{x}\right)$ to probabilities of dying (${ }_{n} q_{x}$)
- Probability of death relates the number of deaths during any given number of years to the number of people who started out being alive and at risk of dying

$$
{ }_{n} q_{x}=(n)\left({ }_{n} M_{x}\right) / 1+(a)(n)\left({ }_{n} M_{x}\right)
$$

- (a)(n): average years lived per person by people dying in the interval. $a=0.5$ implies that deaths are distributed evenly over an age interval. For $0-1$ age, $a=0.85$. For $1-4$ age, $a=0.60$.
- For last group, $q=1.0$.

Number of deaths $\left({ }_{n} d_{x}\right)$ and alive (I_{x})

- The life table assumes an initial population of 100,000 births (radix), which is subjected to the mortality schedule
- Radix can also be 1
- Number of people dying during age interval $\left({ }_{n} d_{x}\right)$ equals probability of death times number alive at beginning $\left(I_{x}\right)$

$$
{ }_{n} d_{x}=\left({ }_{n} q_{x}\right)\left(l_{x}\right)
$$

- Subtracting those who died in the previous age interval gives the number of people still alive at the beginning of next age interval

$$
I_{x+n}=I_{x}-{ }_{n} d_{x}
$$

Number of years lived $\left({ }_{n} L_{x}\right)$

- Number of years lived $\left({ }_{n} L_{x}\right)$ has to consider that some people die before the end of the age interval
- The lower the death rates, more people will survive through an entire age interval

$$
{ }_{n} L_{x}=n\left(I_{x}-a_{n} d_{x}\right)
$$

- a: usually 0.5 , which implies that deaths are distributed evenly over an age interval. For 0-1 age, $a=0.85$. For $1-4$ age, $a=0.60$
- ${ }_{n} L_{x}$ for the oldest, open-age interval

$$
L_{100+}=I_{100} / M_{100}
$$

$-I_{100}$: number of survivors to oldest age

- M_{100} : death rate at the oldest age

Cumulative number of years lived $\left(T_{x}\right)$

- Number of years lived are added up, cumulating from the oldest to the youngest ages
- Total number of years lived in a given age interval and all older age intervals $\left(T_{x}\right)$

$$
T_{x}=T_{x+n}+{ }_{n} L_{x}
$$

- At the oldest age, T_{x} equals ${ }_{n} L_{x}$

Life expectancy (e_{x})

- Expectation of life is the average remaining lifetime
- It is the total years remaining to be lived at exact age x
- Division of total number of years lived $\left(T_{x}\right)$ by number of people alive at that exact age $\left(I_{x}\right)$

$$
e_{x}=T_{x} / I_{x}
$$

- This index summarizes the level of mortality prevailing in a given population at a particular time

Probability of surviving $\left(p_{x}\right)$

- Probability of surviving from birth to age x is designated p_{x}

$$
p_{x}=I_{x} / I_{0}
$$

- We can also estimate the probability of surviving from one particular age group to the subsequent age group

Crude death and birth rates

- Crude death rate (CDR) equals total number of deaths $\left(I_{0}\right)$ divided by total population (T_{0})
- Crude birth rate (CBR) equals total number of births $\left(I_{0}\right)$ divided by total population (T_{0})

$$
C D R=C B R=I_{0} / T_{0}=1 /\left(T_{0} / I_{0}\right)=1 / e_{0}
$$

Alternative interpretations

- Synthetic cohort (history of a hypothetical cohort)
- Lifetime mortality experience of a single cohort of newborn babies, who are subject to specific age-specific mortality rates
- Used in public health/mortality studies, calculation of survival rates for estimating population, fertility, net migration...
- Stationary population
- Results from unchanging schedule of age-specific mortality rates and a constant annual number of births/deaths (radix)
- Used in the comparative measurement of mortality and in studies of population structure

Same interpretation

- x to $x+n$
- Period of life between two exact ages
- For instance, 20-25 means the 5-year interval between the $20^{\text {th }}$ and $25^{\text {th }}$ birthdays
- ${ }_{n} q_{x}$
- Proportion of persons in the cohort alive at the beginning of an indicated age interval (x) who will die before reaching the end of that age interval $(x+n)$
- Probability that a person at his/her $x^{\text {th }}$ birthday will die before reaching his/her $\mathrm{x}+\mathrm{n}^{\text {th }}$ birthday
- e_{x} (life expectancy)
- Average remaining lifetime (in years) for a person who survives to the beginning of the indicated age interval

$$
I_{x}
$$

- Synthetic cohort
- Number of persons living at the beginning of the indicated age interval (x) out of the total number of births assumed as the radix of the table
- Stationary population
- Number of persons who reach the beginning of the age interval each year

${ }_{n} \mathrm{~d}_{\mathrm{x}}$

- Synthetic cohort
- Number of persons who would die within the indicated age interval (x to $x+n$) out of the total number of births assumed in the table
- Stationary population
- Number of persons that die each year within the indicated age interval

${ }_{n} L_{x}$

- Synthetic cohort
- Number of person-years that would be lived within the indicated age interval (x to $x+n$) by the cohort of 100,000 births assumed
- Stationary population
- Number of persons in the population who at any moment are living within the indicated age interval

T_{x}

- Synthetic cohort
- Total number of person-years that would be lived after the beginning of the indicated age interval by the cohort of 100,000 births assumed
- Stationary population
- Number of persons in the population who at any moment are living within the indicated age interval and all higher age intervals

Interpretation as stationary population

ABRIDGED LIFE TABLE FOR THE FEMALE POPULATION OF THE UNITED STATES: 2007

			He remale pop Of 100,000 born alive Stationary population								
Age group	Width	$\begin{gathered} \text { Population } \\ \mathrm{nPx} \end{gathered}$	Deaths nDx	Age-specific death rates nMx	$\underset{\mathrm{nqx}}{\text { Proportion dying }}$	\# living at beginning of interval	\# dying during interval	In the age interval nLx		In this and following ages $T x$	Average remaining lifetime ex
0	1	1,998,761	12,845	0.0064	0.0064	100,000	641	99,684		8,103,588	81.0
1-4	4	8,109,371	F 2,069	0.0003	0.0010	99,359	101	397,248	\cdots	8,003,904	80.6
5-9	5	9,720,587	1,192	0.0001	0.0006	99,258	61	496,150		7,606,656	76.6
10-14	5	9,918,543	1,370	0.0001	0.0007	99,197	68	495,828		7,110,506	71.7
15-19	5	10,617,178	3,741	0.0004	0.0018	99,129	175	495,242		6,614,678	66.7
20-24	5	10,073,754	4,925	0.0005	0.0024	98,954	242	494,215		6,119,436	61.8
25-29	5	10,122,681	5,824	0.0006	0.0029	98,713	284	492,910		5,625,222	57.0
30-34	5	9,469,789	6,956	0.0007	0.0037	98,429	361	491,314		5,132,312	52.1
35-39	5	10,666,827	11,126	0.0010	0.0052	98,068	510	489,165		4,640,998	47.3
40-44	5	11,155,652	18,375	0.0016	0.0082	97,558	800	485,944		4,151,834	42.6
45-49	5	11,572,428	F 29,834	0.0026	0.0128	96,757	1,240	480,926		3,665,890	37.9
50-54	5	10,709,011	- 40,396	0.0038	0.0187	95,518	1,786	473,463		3,184,963	33.3
55-59	5	9,339,919	F 50,868	0.0054	0.0269	93,732	2,521	462,827		2,711,501	28.9
60-64	5	7,636,068	F 62,624	0.0082	0.0402	91,211	3,670	447,543		2,248,674	24.7
65-69	5	5,725,079	F 74,499	0.0130	0.0631	87,541	5,528	424,827	F	1,801,131	20.6
70-74	5	4,738,379	F 96,395	0.0203	0.0971	82,012	7,962	391,395	F	1,376,304	16.8
75-79	5	4,314,403	- 139,360	0.0323	0.1500	74,050	11,109	343,929	F	984,910	13.3
80-84	5	3,582,388	F 192,519	0.0537	0.2378	62,941	14,970	278,566	\cdots	640,981	10.2
$85+$	---	3,511,395	F 464,781	0.1324	1.0000	47,971	47,971	362,415		362,415	7.6

ABRIDGED LIFE TABLE FOR THE MALE POPULATION OF THE UNITED STATES: 2007
Stationary population

Age group	Width n	$\begin{gathered} \text { Population } \\ \mathrm{nPx} \end{gathered}$	Deaths nDx	Age-specific death rates nMx	$\underset{\text { nqx }}{\text { Proportion dying }}$	\# living at beginning of interval Ix	\# dying during interval	In the age interva nLx		In this and following ages Tx	Average remaining lifetime ex
0	1	2,079,846	16,293	0.0078	0.0078	100,000	780	99,615		7,582,342	75.8
1-4	4	8,507,893	F 2,634	0.0003	0.0012	99,220	123	396,648	$\stackrel{\rightharpoonup}{*}$	7,482,726	75.4
5-9	5	10,095,353	F 1,519	0.0002	0.0008	99,097	75	495,313		7,086,078	71.5
10-14	5	10,484,813	F 2,066	0.0002	0.0010	99,022	98	494,887		6,590,765	66.6
15-19	5	11,252,863	- 9,558	0.0008	0.0042	98,925	419	493,658		6,095,878	61.6
20-24	5	10,828,130	F 15,758	0.0015	0.0073	98,505	714	490,881		5,602,220	56.9
25-29	5	10,489,470	15,107	0.0014	0.0072	97,791	702	487,338		5,111,340	52.3
30-34	5	9,802,132	F 14,685	0.0015	0.0075	97,089	725	483,776		4,624,002	47.6
35-39	5	10,684,227	19,755	0.0018	0.0092	96,364	887	479,777		4,140,226	43.0
40-44	5	11,085,591	30,350	0.0027	0.0136	95,477	1,299	474,390		3,660,450	38.3
45-49	5	11,318,167	47,904	0.0042	0.0210	94,179	1,974	466,332		3,186,060	33.8
50-54	5	10,313,298	66,552	0.0065	0.0318	92,205	2,931	454,237		2,719,728	29.5
55-59	5	8,790,943	81,590	0.0093	0.0454	89,274	4,055	436,954		2,265,491	25.4
60-64	5	6,979,426	92,028	0.0132	0.0640	85,218	5,451	413,393		1,828,537	21.5
65-69	5	5,003,042	F 100,492	0.0201	0.0959	79,767	7,651	380,904		1,415,144	17.7
70-74	5	3,889,104	F 117,852	0.0303	0.1414	72,116	10,196	336,467		1,034,240	14.3
75-79	5	3,192,676	F 149,669	0.0469	0.2107	61,920	13,046	278,295	-	697,773	11.3
80-84	5	2,235,826	F 171,134	0.0765	0.3220	48,874	15,739	205,629	*	419,478	8.6
85+	---	1,606,146	F 248,866	0.1549	1.0000	33,135	33,135	213,850		213,850	6.5

Source: Formulas from Kintner (2003); Population data from 2007 ACS; Death data from CDC ((http://www.cdc.gov/nchs/data/dvs/mortfinal2007_worktable310.pdf).

Population, U.S., 2007

${ }_{n} L_{x}$ from previous life tables, U.S., 2007

Problems with life tables

- We saw life tables based on complete empirical data
- We might experience some issues
- Have partial information to build our life table
- Have data for only some age groups
- Information for some ages may be more reliable than for other ages
- Have ideas about mortality level, but not a full life table to make projections
- We can use model life tables to solve these issues

Model life tables

- A life table constructed from mathematical formulas is called a model life table
- Use mathematical formulas to fill in missing parts
- Have a whole life table from partial information
- Identify suspicious and poor quality data with model expectations
- Supply standard assumptions for projections
- Find regularities for the invention of indirect measures
- Reconstruct rates from historical counts of births and deaths (inverse projection)

Short history of mortality in the world

- Defining the health and mortality transition
- Health and mortality changes over time
- Life span and longevity
- Disease and death over the life cycle
- Causes of poor health and death
- Health and mortality inequalities

Morbidity and mortality

- Health, death: two sides of morbidity, mortality
- Morbidity: prevalence of disease in a population
- Mortality: pattern of death
- Health and mortality transition
- Epidemiologic transition (Omran 1971)
- Shift from prevailing poor health (high morbidity) and high death rates (high mortality) primarily from communicable diseases, occurring especially among the young...
- To prevailing good health and low deaths rates from infectious diseases, with most people dying at older ages from degenerative diseases

Death at older ages

- For virtually all of human history, early death was commonplace
- Beginning about 200 years ago, we have been steadily pushing death to older ages
- The survival of more people to ever older ages is a key contribution to the demographic transition
- Most people now survive to advanced ages and die pretty quickly
- The variability by age in mortality is compressed, leading to an increased rectangularization of mortality...

Rectangularization of mortality, United States

Changes over time

- For most of history, life expectancy fluctuated between 20 and 30 years
- About $2 / 3$ of babies survived to their first birthday, and about $1 / 2$ were still alive at age five
- Now it's 99\%
- Around 10% of people made it to age 65 in a premodern society
- Now it's 90\%

Female life expectancy at birth

Health improvements

Period and regions	Life expectancy (females)	\% surviving to age				Births required for ZPG
		1	5	25	65	
Premodern	20	63	47	34	8	6.1
	30	74	61	50	17	4.2
US/Europe, late $18^{\text {th }} /$ early $19^{\text {th }}$	40	82	73	63	29	3.3
Lowest Sub-Saharan	46	89	82	75	34	2.7
World average circa 2015	73	98	98	97	77	2.1
Mexico	78	99	99	98	84	2.1
United States	81	99	99	99	88	2.1
Canada	84	99	99	99	91	2.1
Japan (highest in the world)	86	99	99	99	93	2.1

The Roman era

- Life expectancy in the Roman era is estimated to have been 22 years
- People who reached adulthood were not too likely to reach a very advanced age, although of course some did

The Middle Ages

- The plague (black death) hit Europe in the $14^{\text {th }}$ century, having spread west from Asia
- An estimated $1 / 3$ of the population of Europe may have perished from the disease between 1346 and 1350
- It appears to be the same disease that exists today
- Not really known why it was so fatal in the past
- Probably due to generally poor health and few resources to battle the disease

The Columbian exchange

- Columbus and other European explorers took diseases, horses, and guns to the Americas
- Brought back new foods and few new diseases
- One explanation for relative ease with which Spain dominated Latin America after arriving around 1500
- Explorers had immunity to the diseases they brought
- Compared to the devastation the diseases affected indigenous populations

Industrial Revolution, 1760-1840

- Plague and Little Ice Age had receded
- Income improved nutrition, housing, and sanitation
- Life expectancy in Europe and the U.S.: ≈ 40 years
- Was population growth a cause or effect of rising living standards?
- There were as many deaths to children under 5 as there were at 65 and over
- Infectious diseases were still the dominant reasons for death, but their ability to kill was diminishing

19th century

- Key elements in postponing death
- Belief in the power of human intervention (Western science)
- Improved nutrition: occurred first in Western Europe
- Clean water, toilets, bathing facilities
- Sewerage in cities: sanitation studies in Liverpool
- Small pox vaccinations: Edward Jenner in England
- Validation of germ theory
- Ignaz Semmelweis in Vienna: pioneer of antiseptic procedures
- Joseph Lister in Glasgow: cleanliness principals in surgery
- Louis Pasteur in Paris: formal experiments about germs,
diseases

$20^{\text {th }}$ century

- Health as a social movement
- Leading to government-organized universal health care systems in all rich countries except the U.S.
- Antibiotics emerging around WWII
- More vaccinations
- Oral rehydration therapy for infants and adults
- Advanced diagnoses, drugs, and other treatments for degenerative diseases to keep older people alive longer

Improvements in life expectancy

World War II: a turning point

Postponing death

- Two ways to postpone death to the oldest possible ages
- Prevent diseases from occurring or spreading when they do occur (prevention)
- Vaccinations, clean water, sanitation, good nutrition
- No physicians needed
- Curing people of disease when they are sick
- Diagnostic technology, drugs, skilled physicians

Nutrition transition and obesity

- Poor were skinny because only the rich could afford to access enough quantities of food
- Not any more
- Nutrition transition is a worldwide shift toward
- Diet high in fat and processed foods
- Diet low in fiber
- Less exercise
- Increases in degenerative diseases

Life span and longevity

- Life span: oldest age to which human beings can survive
- 122 years and 164 days (by 2016)
- It is almost entirely a biological phenomenon
- Longevity/life expectancy: age at which we actually die
- Expected number of years to be lived, on average, by a particular population at a particular time
- Currently about 71 for all humans
- It has biological and social components
- Populations with high mortality tend to have high morbidity
- This is not a one-to-one relationship
- We may live longer even though not being very healthy $\hat{\mathbf{A}}{ }^{\mathbf{M}}$

Mortality by age

- Humans are like most other animals with respect to the general pattern of death by age
- The very young and the old are most vulnerable
- Young adults are least likely to die
- Risks of death are relatively low
- After the initial year of life, lasting at least until middle age
- Corresponds to reproductive ages
- Beyond middle age
- Mortality increases
- Although at a decelerating rate

Highest death rates, 2011: very young and the old

Mortality by sex (gender)

- Women (sex)
- Have a lower probability of death at every age from the moment of conception'
- Women (gender)
- Unless society intervenes with a lower status for women that gives them less food, less access to health care, less education, lower earnings...

Other mortality differentials

- Urban and rural differentials
- Urban now better than rural
- Neighborhood inequalities
- Slums are bad for your health
- Educational differentials
- Better educated live longer
- Social status differentials
- The rich live longer
- Race and ethnicity differentials
- Being different will be used against you
- Marital status
- Being married is good for your health

Mortality trends and causes of death

- Categories of diseases according to the World Health Organization
- Communicable diseases
- Noncommunicable diseases
- Injuries

Communicable diseases

- Bacterial (e.g., tuberculosis)
- Viral (e.g., measles)
- Protozoan (e.g., malaria)
- Maternal conditions
- Lack of prenatal care
- Delivering somewhere besides a hospital
- Seeking an unsafe abortion
- Perinatal conditions
- "Surrounding birth" - just before and just after birth
- Nutritional deficiencies

Cause of death	Broad category of cause	Number of deaths in world 2011 (millions)	Top ten death rates (per 100,000 population), 2011			
			High income countries	Upper middle income countries	Lower middle income countries	Low income countries
Ischemic heart disease	Non-Com.	7.0	119	120	93	47
Stroke	Non-Com.	6.2	69	126	75	56
Lower respiratory infection	Com.	3.2	32	22	60	98
Chronic obstructive pulmonary disease (COPD)	Non-Com.	3.0	32	45	51	
Diarheal diseases	Com.	1.9			47	69
HIVIAIDS	Com.	1.6			24	70
Tranchea bronchus, lung cancers	Non-Com.	1.5	51	28		
Diabetes mellitus	Non-Com.	1.4	21	20	20	
Road injury	Injury	1.3		21	19	
Prematurity	Com.	1.2			27	43
Alzheimer's disease and other dementias	Non-Com.		48			
Colon rectal cancers	Non-Com.		27			
Hypertensive heart disease	Non-Com.		20	18		
Breast cancer	Non-Com.		16			
Malaria	Com.					38
Tuberculosis	Com.				22	32
Protein-energy malnutrition	Com.					32
Birth asphyxia and birth trauma	Com.					30
Liver cancer	Non-Com.			19		
Stomach cancer	Non-Com.			18		
Life expectancy at birth (both sexes)			80	74	66	60

The 10 leading causes of death in the world

 2012

Source: World Health Organization. Available at:
http://www.who.int/mediacentre/factsheets/fs310/en/ (accessed April 29, 2016)

Adults and children estimated to be living with HIV, 2013

Eastern Europe \& Central Asia 1.1 million
[980 000-1.3 million]

North America and Western and Central Europe 2.3 million
[2.0 million - 3.0 million]
Middle East \& North Africa

Caribbean
250000
[230000-280 000]
Latin America
1.6 million
[1.4 million -2.1 million]

230000
[160000-330 000]

Sub-Saharan Africa 24.7 million
[23.5 million - 26.1 million]

Asia and the Pacific 4.8 million
[4.1 million - 5.5 million]

Total: 35.0 million
95\% confidence interval: [33.2 million - 37.2 million]

Top ten causes of death, 2008

Low-income countries

Middle-income countries

High-income countries

159 of 1000

Figure 7.6. Life Expectancy at Birth: World and More developed, Less developed, and Least developed regions, 1950 to 2100

Source: United Nations, 2013d: 16.|

Mortality and longevity in the U.S.

- Mortality started dropping gradually
- In response to changes in the socioeconomic conditions and the environment of modernization
- Much of the mortality reduction started to happen before the initiations of any appreciable public health measures
- Life expectancy increased
- 46 for males and 48 for females in 1900
- 76 for males and 81 for females in 2013

Mortality in the United States

- Most improvements happened from 1900 to 1950
- Germ theory: control of infectious and parasitic diseases
- Boiling bottles and milk, washing hands, protecting food from flies, isolating sick children, ventilating rooms, improving water supply, sewage disposal
- Since 1950s, life expectancy improvements is due to prevention and control of chronic diseases
- Heart disease, stroke...

Hispanic paradox

- The Hispanic epidemiological paradox is the empirical finding that Hispanics have death rates of about the same magnitude as, and sometimes lower than, whites
- Also known as the Latino mortality paradox
- These findings are more evident for those of Mexican origin

Life expectancy at birth by race/ethnicity: U.S., 2006-2011

SOURCE: CDC/NCHS, National Vital Statistics System, Mortality.

Explaining the Hispanic paradox

- Data artifacts
- Underreporting of Hispanic-origin identification on death certificates
- Misstatement of age, perhaps overstatement, at the older ages
- Migration effects
- Healthy migrant effect: self-selection of immigrants in better physical and mental health
- Salmon bias: Mexican Americans in poor health return to Mexico at old ages (return migrant effect)
- Cultural effects
- Better dietary practices of Latinos and stronger family obligations and relationships

Racial crossover

- Life expectancy at birth is the lowest for blacks compared with Hispanics and whites
- For most of their lives, blacks have higher death rates than Hispanics and whites
- The situation changes at the very oldest ages
- By late life, death rates for blacks become lower than those for whites, and in some cases lower than those for Hispanics

Life expectancy at ages 70, 80, 90, and 100 by race/ethnicity and sex: United States, 2010

	Hispanics Age		Males	Females	NH-Whites	
Males	Females	NH-Blacks				
Males	Females					
70	15.4	18.0	14.2	16.4	12.8	15.7
80	9.0	10.8	8.1	9.6	7.8	9.6
90	4.5	5.4	4.0	4.8	4.4	5.2
100	2.3	2.6	2.0	2.3	2.5	2.8

Explaining the racial crossover

- Age misreporting on death certificates
- Overstatement of age
- But this would only postpone crossover to later ages, not eliminating it
- Population heterogeneity in frailty
- The surviving elderly black population is a more robust group of disadvantaged individuals
- The more frail blacks die before the age of 80 or 90
- This produces a more robust group of blacks that live longer than the majority

Percent distribution of five leading causes of death by age group: United States, 2011

Aged 1-24 years
Number of deaths $=39,213$

Aged 45-64 years
Number of deaths $=505,730$

\square Cancer (32\%)
\square Heart disease (21\%)
\square Accidents (7\%)

Chronic lower respiratory diseases (4\%) Chronic liver disease and cirrhosis (4\%)All other causes (32\%)

Aged 25-44 years
Number of deaths $=113,341$

Aged 65 and over
Number of deaths $=1,830,553$

Heart disease (26\%)
Cancer (22\%)
Chronic lower respiratory diseases (7\%)
Stroke (6\%)
\square Alzheimer's disease (5\%)
\square All other causes (34\%)

Infant mortality

- The infant mortality rate (IMR) is the most common measure of infant death
- It is the number of deaths in a year to children under age 1 per 1,000 babies born in the year
- Declining infant mortality is key to population growth
- Reduction attributable especially to the development of oral rehydration therapy (ORT)
- A solution of salts and sugars taken orally
- Treats diarrhea: A major cause of death in young children
- Developed in labs, tested in the field, especially Bangladesh
- One of its founders still holds a teaching position at Harvard School of Public Health (Dr. Richard Cash)

Infant mortality, 2015

Table 7.4. Countries with the Highest and the Lowest Infant Mortality Rates in the World, 2013

Highest infant mortality rates			
Central African Republic	116	Iceland	1.8
Congo, Dem. Rep.	109	Finland	1.8
Chad	96	Japan	1.9
Angola	96	Singapore	2.0
Guinea-Bissau	94	Estonia	2.1
Sierra Leone	92	Sweden	2.3

Source: Population Reference Bureau, 2014.

Infant mortality rate in select countries and US race-ethnic groups

Deaths per 1,000 live births. Data for 2018 or 2019 for countries, 2017 for US race-ethnic groups. Except Hispanic, race-ethnic groups are non-Hispanic. PN Cohen chart from OECD and NCHS data.

Infant mortality rates by mother's race/ethnicity: United States, 2000-2010

Neonatal and postneonatal mortality rates

- The infant mortality rate (IMR) may be thought of as the sum of two rates
- Neonatal mortality rate (NMR)
- Deaths of babies aged 28 days or less per 1,000 live births
- Postneonatal mortality rate (PMR)
- Deaths of babies aged between 29 days and 1 year per 1,000 live births

Neonatal mortality rates and number of neonatal deaths

Region	Neonatal mortality rate (deaths per 1,000 live births)			Number of neonatal deaths (thousands)	
	1990	2013	$\begin{gathered} \text { Decline } \\ \text { (percent) } \\ 1990-2013 \end{gathered}$	1990	2013
Developed regions	8	3	55	118	48
Developing regions	36	22	40	4,554	2,714
Northern Africa	30	13	56	109	53
Sub-Saharan Africa	46	31	32	977	1,066
Latin America and the Caribbean	22	9	58	255	101
Caucasus and Central Asia	26	15	42	51	26
Eastern Asia	25	8	69	784	150
Excluding China	12	8	35	11	7
Southern Asia	51	30	42	1,940	1,086
Excluding India	49	30	39	578	338
South-eastern Asia	27	14	47	321	160
Western Asia	28	14	50	111	67
Oceania	26	21	19	5	6
World	33	20	40	4,672	2,763

Endogenous and exogenous

- Endogenous cause of death in an infant can occur because of genetic issues or conditions associated with fetal development or the birth process
- Exogenous cause of death is due mainly to environmental or external factors, such as infections or accidents

Causes of neonatal deaths

- The main causes of neonatal deaths are endogenous conditions
- Congenital malformations, chromosomal abnormalities, complications of delivery, low birthweight, genetic disorders...
- However, endogenous causes dominate infant mortality mainly in the early days of life, and not for the entire first month of life

Causes of postneonatal deaths

- Postneonatal mortality rate was 18 per 1,000 live births for the world in 2013
- Rate was 2 in developed countries
- Deaths in postneonatal period and in first few years of life are mainly due to exogenous causes
- Infectious disease, accidents, injury
- Improved living standards, better healthcare, and public health programs have greater effects on exogenous causes than on endogenous causes

Stillbirth rate (SBR)

- Stillbirths (miscarriages, fetal deaths)
- A stillbirth is a fetus not born alive and is not registered as a death
- SBR: stillbirths per 1,000 live births plus stillbirths in the year
- Stillbirths are often identified in hospital reports dealing with obstetric procedures
- WHO: interventions can be planned if we know at what point before birth the fetus died
- 2.6 million stillbirths in the world in 2009
- 18.9 stillbirths per 1,000 live births plus stillbirths

Perinatal mortality rate (PeMR)

- PeMR relates to stillbirths and deaths of babies who lived for only seven days or less per 1,000 live births plus stillbirths in the year
- Endogenous causes of mortality in the 1st week after birth are similar to the causes of stillbirths
- PeMR in 2010
- World (47)
- Developed world (10); less developed world (50)
- Czech Republic and Singapore (4); Mauritania (111)
- U.S.: 6.5 in 2006; 6.3 in 2011

Maternal mortality ratio (MMR)

- MMR measures the extent to which mothers die immediately before, during, or after giving birth because of problems associated with the pregnancy or childbirth
- Numerator: number of deaths in a year of women dying as a result of complications of pregnancy, childbirth, and the puerperium (condition of the woman immediately following childbirth)
- Denominator: live births occurring in the year
- Multiplied by 100,000, because it is increasingly rare in developed countries

Examples of maternal deaths

- World
- 529,000 maternal deaths in 2000
- 313,000 maternal deaths in 2015
- Developing regions in 2015
- 99\% of all maternal deaths
- 66\% in sub-Saharan Africa
-21% in southern Asia
- MMR in 2015
- World: 216 per 100,000 live births
- Sierra Leone: 1,360
- Sub-Saharan Africa: 546
- U.S., Iran, Hungary: 21
- Greece, Singapore (3); Estonia (2)

Factors associated with MMR

- Maternal deaths are mostly due to age, parity (number of children), birth spacing
- Younger and older women are more likely, compared to women in their 20s and 30s
- High-parity women are at high risk
- Women with short birth intervals are also at high risk
- Other factors
- Chronic disease and malnutrition, poverty, unwanted pregnancies, inadequate prenatal and obstetric care, lack of access to a hospital

Future course of mortality

- Is it likely that mortality rates will continue to fall resulting in even higher levels of life expectancy than those attained by developed countries?
- There are two positions
- One argues for a limit
- The other argues against one
- Poston argues against a fixed biological maximum life expectancy (more optimistic view)

Mortality reversals

- Modern medical and public health techniques will surely bring about further reductions in mortality from the major causes
- However, there is evidence since the early 1980s of mortality reversals
- First in Eastern Europe
- Later in sub-Saharan Africa

Eastern Europe

- What is causing mortality reversals in Eastern Europe?
- Possible factors include
- Lack of preventative health programs
- Inadequate quality of medical services
- Smoking and alcohol abuse
- General neglect of individual health
- These were caused by
- Lack of life choices under the former communist regimes
- Unemployment, relative deprivation, and inability to cope with economic challenges of the capitalist regime

Sub-Saharan Africa

- The AIDS epidemic has halted or reversed gains in life expectancy in many of the sub-Saharan African countries

Degenerative diseases

- Degenerative diseases are the major causes of death in the developed world
- Future improvements in the treatment of these diseases is likely
- However, eliminating a specific degenerative disease would result in small increases to life expectancy because these diseases occur to older individuals
- Eliminating heart disease would raise life expectancy in the U.S. by 5 years, and eliminating cancer would raise it by 3 years

Important question

- The important question is not "will life expectancy increase?"
- The important question is "by how much will life expectancy increase?"

Coronavirus pandemic, August 24, 2020

\#	Country, Other	Total Cases	New Cases	Total Deaths \downarrow 㟁	New Deaths	Total Recovered	Active Cases	Serious, Critical	Tot Cases/ 1M pop	Deaths/ 1M pop	Total Tests	Tests/ 1M pop	Population 11
	World	23,809,061	+6,189	817,005	+431	16,358,235	6,633,821	61,715	3,054	104.8			
1	USA	5,915,630		181,114		3,217,981	2,516,535	16,483	17,856	547	76,883,479	232,071	331,293,410
2	Brazil	3,627,217		115,451		2,778,709	733,057	8,318	17,046	543	14,144,344	66,473	212,784,888
3	Mexico	563,705	+3,541	60,800	+320	389,124	113,781	3,346	4,365	471	1,263,835	9,787	129,132,739
4	India	3,164,881		58,546		2,403,101	703,234	8,944	2,290	42	35,902,137	25,978	1,382,011,722
5	UK	326,614		41,433		N/A	N/A	72	4,807	610	15,177,265	223,394	67,939,531
6	Italy	260,298		35,441		205,662	19,195	65	4,306	586	8,053,551	133,231	60,448,212
7	France	244,854		30,528		85,199	129,127	399	3,750	468	6,000,000	91,890	65,295,389
8	$\underline{\text { Spain }}$	420,809		28,872		N/A	N/A	658	9,000	617	8,517,446	182,162	46,757,536
9	Peru	600,438		27,813		407,301	165,324	1,525	18,174	842	3,006,993	91,014	33,038,913
10	Iran	361,150		20,776		311,365	29,009	3,848	4,292	247	3,062,422	36,392	84,150,494
11	Colombia	551,696		17,612		384,171	149,913	1,493	10,825	346	2,508,972	49,231	50,962,919
12	Russia	961,493		16,448		773,095	171,950	2,300	6,588	113	34,600,000	237,077	145,943,991
13	South Africa	611,450		13,159		516,494	81,797	539	10,291	221	3,564,065	59,983	59,418,339
14	Chile	399,568		10,916		372,464	16,188	1,014	20,875	570	2,231,463	116,583	19,140,575
15	Belgium	82,092	+156	9,996	+4	18,242	53,854	89	7,079	862	2,144,563	184,921	11,597,214
16	Germany.	236,117		9,336		209,600	17,181	245	2,817	111	10,197,366	121,652	83,824,401
17	Canada	125,647		9,083		111,694	4,870	62	3,325	240	5,169,166	136,782	37,791,278
18	Argentina	350,867		7,366		256,789	86,712	1,960	7,753	163	1,105,878	24,435	45,257,261
19	Indonesia	155,412		6,759		111,060	37,593		567	25	2,056,166	7,506	273,950,524
20	Iraq	207,985		6,519		150,389	51,077	661	5,154	162	1,457,665	36,125	40,350,522

Coronavirus pandemic, January 19, 2021

\#	Country, Other	Total Cases	New Cases	Total Deaths I_{F}	New Deaths	Total Recovered	Active Cases	Serious, Critical	Tot Cases/ 1M pop	Deaths/ 1M pop	Total Tests	Tests/ 1M pop	Population $1 \uparrow$
	World	96,237,790	+232,850	2,055,893	+6,897	68,851,713	25,330,184	111,938	12,346	263.8			
1	USA	24,644,355	+17,914	408,858	+235	14,557,408	9,678,089	28,543	74,214	1,231	287,821,421	866,745	332,071,530
2	Brazil	8,523,635	+11,397	210,404	+76	7,452,047	861,184	8,318	39,944	986	28,600,000	134,026	213,390,822
3	India	10,596,107	+13,460	152,743	+150	10,244,677	198,687	8,944	7,637	110	187,802,827	135,358	1,387,456,647
4	Mexico	1,649,502	+8,074	141,248	+544	1,237,321	270,933	5,359	12,720	1,089	4,139,021	31,918	129,676,467
5	UK	3,466,849	+33,355	91,470	+1,610	1,546,575	1,828,804	3,916	50,921	1,344	65,263,737	958,598	68,082,466
6	Italy	2,400,598	+10,497	83,157	+603	1,781,917	535,524	2,487	39,737	1,376	29,619,436	490,285	60,412,645
7	France	2,914,725		70,686		210,200	2,633,839	2,813	44,600	1,082	40,217,159	615,381	65,353,232
8	Russia	3,612,800	+21,734	66,623	+586	3,002,026	544,151	2,300	24,750	456	97,300,000	666,580	145,969,038
9	Iran	1,342,134	+5,917	56,973	+87	1,131,883	153,278	4,272	15,868	674	8,634,553	102,085	84,582,271
10	Spain	2,336,451		53,769		N/A	N/A	3,287	49,962	1,150	30,165,217	645,041	46,764,785
11	Colombia	1,923,132		49,004		1,754,222	119,906	3,482	37,575	957	9,188,440	179,530	51,180,617
12	Germany	2,062,450	+3,136	48,505	+400	1,716,200	297,745	5,074	24,573	578	36,353,196	433,128	83,931,720
13	Argentina	1,807,428		45,832		1,594,768	166,828	3,564	39,790	1,009	5,592,646	123,122	45,423,669
14	Peru	1,068,802		38,931		984,726	45,145	1,670	32,170	1,172	5,901,809	177,640	33,223,435
15	South Africa	1,346,936		37,449		1,117,452	192,035	546	22,555	627	7,653,371	128,157	59,718,648
16	Poland	1,443,804	+4,835	33,698	+291	1,197,034	213,072	1,582	38,172	891	8,143,530	215,302	37,823,686
17	Indonesia	927,380	+10,365	26,590	+308	753,948	146,842		3,371	97	8,433,961	30,657	275,111,495
18	Turkey	2,392,963		24,161		2,270,769	98,033	2,183	28,207	285	27,523,423	324,426	84,837,235
19	Ukraine	1,167,655	+3,939	21,046	+177	886,248	260,361	177	26,788	483	5,983,122	137,265	43,588,032
20	Belgium	679,771	+932	20,472	+37	46,959	612,340	352	58,513	1,762	7,620,430	655,948	11,617,426

Coronavirus pandemic, August 31, 2021

\#	Country, Other	Total Cases	New Cases It	Total Deaths \downarrow F	New Deaths \qquad	Total Recovered	New Recovered	Active Cases	Serious, Critical	Tot Cases/ 1M pop	Deaths/ 1M pop	Total Tests	Tests/ 1M pop	Population $1 \uparrow$
	World	218,171,757	+278,500	4,527,970	+4,700	195,040,717	+304,214	18,603,070	113,811	27,989	580.9			
1	USA	39,953,651	+6,943	656,482	+89	30,945,115	+650	8,352,054	25,541	119,888	1,970	582,550,800	1,748,051	333,257,237
2	Brazil	20,752,281		579,643		19,692,898		479,740	8,318	96,831	2,705	56,897,224	265,485	214,314,149
3	India	32,808,018	+40,198	438,962	+370	31,982,180	+29,967	386,876	8,944	23,506	314	521,541,098	373,663	1,395,753,675
4	Mexico	3,341,264	+5,564	258,491	+326	2,686,568	+16,627	396,205	4,798	25,603	1,981	9,723,416	74,506	130,505,007
5	Peru	2,149,591		198,263		N/A	N/A	N/A	1,333	64,158	5,917	16,733,426	499,437	33,504,611
6	Russia	6,918,965	+17,813	183,224	+795	6,181,054	+18,624	554,687	2,300	47,388	1,255	178,700,000	1,223,912	146,007,206
7	Indonesia	4,089,801	+10,534	133,023	+532	3,760,497	+16,781	196,281		14,771	480	32,216,075	116,354	276,880,593
8	UK	6,757,650		132,485		5,427,062		1,198,103	982	98,940	1,940	266,714,771	3,905,032	68,300,272
9	Italy	4,534,499		129,146		4,263,960		141,393	548	75,126	2,140	83,728,076	1,387,181	60,358,447
10	Colombia	4,907,264		124,883		4,737,467		44,914	8,155	95,264	2,424	24,121,717	468,271	51,512,348
11	France	6,746,283		114,308		6,225,201		406,774	2,270	103,089	1,747	124,769,146	1,906,579	65,441,374
12	Argentina	5,178,889		111,607		4,869,104		198,178	2,713	113,380	2,443	22,017,526	482,024	45,677,243
13	Iran	4,992,063	+31,319	107,794	+643	4,205,927	+30,522	678,342	7,879	58,565	1,265	28,213,229	330,985	85,240,218
14	Germany	3,950,247	+3,231	92,682	+11	3,738,000	+6,100	119,565	1,096	46,973	1,102	68,329,706	812,527	84,095,254
15	Spain	4,847,298		84,146		4,338,145		425,007	1,685	103,628	1,799	60,618,810	1,295,943	46,775,830
16	South Africa	2,770,575		81,830		2,533,956		154,789	546	46,041	1,360	16,426,011	272,965	60,176,262
17	Poland	2,888,670	+285	75,345	+5	2,657,084	+30	156,241	60	76,423	1,993	19,778,356	523,259	37,798,415
18	Turkey.	6,366,438		56,458		5,823,111		486,869	633	74,555	661	76,140,298	891,652	85,392,352
19	Ukraine	2,286,296	+1,356	53,789	+51	2,207,940	+1,257	24,567	177	52,646	1,239	11,980,323	275,866	43,428,075
20	Chile	1,638,675	+345	36,937	+14	1,595,747	+577	5,991	687	84,876	1,913	20,276,691	1,050,240	19,306,720

Coronavirus pandemic, January 17, 2022

\#	Country, Other	Total Cases	New Cases \qquad	Total Deaths	New Deaths \qquad	Total Recovered	New Recovered	Active Cases	Serious, Critical	Tot Cases/ 1M pop	Deaths/ 1M pop	Total Tests	Tests/ 1M pop	Population $1 \uparrow$
	World	331,459,057	+138,304	5,563,652	+219	269,090,164	+64,428	56,805,241	97,247	42,523	713.8			
1	USA	67,631,191		874,321		43,165,667		23,591,203	25,869	202,490	2,618	862,458,737	2,582,225	333,998,303
2	Brazil	23,083,297		621,261		21,710,831		751,205	8,318	107,419	2,891	63,776,166	296,783	214,891,229
3	India	37,618,271		486,784		35,394,882		1,736,605	8,944	26,852	347	705,411,425	503,527	1,400,939,318
4	Russia	10,834,260		321,990		9,878,371		633,899	2,300	74,191	2,205	246,800,000	1,690,051	146,031,061
5	Mexico	4,385,415	+17,101	301,469	+59	3,478,130	+34,246	605,816	4,798	33,471	2,301	13,163,932	100,471	131,022,844
6	Peru	2,606,126		203,464		N/A	N/A	N/A	1,038	77,378	6,041	23,289,858	691,497	33,680,346
7	UK	15,305,410		152,075		11,497,602		3,655,733	746	223,644	2,222	434,073,111	6,342,723	68,436,401
8	Indonesia	4,272,421		144,174		4,119,472		8,775		15,369	519	67,715,434	243,593	277,986,279
9	Italy	8,790,302		141,391		6,093,633		2,555,278	1,717	145,717	2,344	156,338,495	2,591,622	60,324,574
10	Iran	6,224,196		132,095		6,066,819		25,282	1,313	72,669	1,542	42,908,102	500,962	85,651,435
11	Colombia	5,568,068		131,130		5,258,204		178,734	342	107,659	2,535	31,171,683	602,704	51,719,680
12	France	14,274,528		127,263		9,198,995		4,948,270	3,895	217,943	1,943	211,520,605	3,229,497	65,496,464
13	Argentina	7,197,323		118,231		6,193,473		885,619	2,099	157,024	2,579	30,753,911	670,959	45,835,727
14	Germany	8,045,348		116,411		7,000,000		928,937	3,212	95,553	1,383	89,622,218	1,064,429	84,197,463
15	Poland	4,323,482		102,309		3,800,051		421,122	1,519	114,430	2,708	28,591,765	756,744	37,782,620
16	Ukraine	3,759,530		98,361		3,556,162		105,007	177	86,769	2,270	17,182,817	396,574	43,328,102
17	South Africa	3,560,921		93,451		3,375,859		91,611	546	58,895	1,546	21,815,463	360,811	60,462,270
18	Spain	8,424,503		90,993		5,331,175		3,002,335	2,251	180,077	1,945	66,213,858	1,415,348	46,782,734
19	Turkey	10,522,099		84,920		9,737,610		699,569	1,128	122,722	990	125,433,490	1,462,964	85,739,301
20	Romania	1,911,546		59,257		1,776,122		76,167	485	100,399	3,112	17,974,573	944,065	19,039,551

Coronavirus pandemic, March 29, 2022

\#	Country, Other	Total Cases	New Cases \qquad	Total Deaths	New Deaths \qquad	Total Recovered	New Recovered	Active Cases	Serious, Critical	Tot Cases/ 1M pop	Deaths/ 1M pop	Total Tests	Tests/ 1M pop	Population $1 \uparrow$
	World	484,149,715	+825,872	6,153,482	+1,827	418,238,579	+562,422	59,757,654	58,264	62,112	789.4			
1	USA	81,658,973		1,004,244		64,683,169		15,971,560	2,270	244,218	3,003	979,700,827	2,930,000	334,368,837
2	Brazil	29,852,341		659,012		28,550,311		643,018	8,318	138,732	3,063	63,776,166	296,386	215,179,769
3	India	43,021,982		521,098		42,485,534		15,350	8,944	30,653	371	787,355,354	560,981	1,403,532,139
4	Russia	17,803,503	+19,660	368,025	+339	16,737,206	+47,229	698,272	2,300	121,906	2,520	273,400,000	1,872,052	146,042,988
5	Mexico	5,651,553	+657	322,761	+11	4,950,686	+1,775	378,106	4,798	43,049	2,459	15,527,815	118,279	131,281,762
6	Peru	3,545,628		212,157		N/A	N/A	N/A	492	104,999	6,283	28,614,628	847,384	33,768,214
7	UK	20,905,515		164,671		18,903,733		1,837,111	302	305,170	2,404	500,714,605	7,309,226	68,504,466
8	Italy	14,396,283		158,877		12,983,350		1,254,056	487	238,714	2,634	199,235,675	3,303,656	60,307,637
9	Indonesia	6,005,646	+3,895	154,882	+108	5,735,055	+10,092	115,709	2,771	21,561	556	91,760,483	329,435	278,539,122
10	France	25,059,028		141,821		23,023,051		1,894,156	1,486	382,440	2,164	254,106,036	3,878,060	65,524,008
11	Iran	7,156,746	+2,743	140,109	+46	6,863,298	+4,526	153,339	1,477	83,357	1,632	48,991,010	570,611	85,857,043
12	Colombia	6,083,939		139,585		5,917,027		27,327	342	117,398	2,693	33,853,193	653,242	51,823,346
13	Germany	20,634,572	+169,500	129,360	+254	16,092,900	+219,500	4,412,312	2,494	244,925	1,535	104,701,826	1,242,773	84,248,567
14	Argentina	9,028,730		127,943		8,852,314		48,473	550	196,640	2,787	35,298,948	768,790	45,914,969
15	Poland	5,952,200	+6,608	114,939	+110	5,304,270	+10,772	532,991	336	157,571	3,043	35,534,904	940,706	37,774,722
16	Ukraine	4,959,082		107,861		N/A	N/A	N/A	177	114,586	2,492	19,521,252	451,065	43,278,115
17	Spain	11,451,676		102,392		10,755,608		593,676	510	244,766	2,189	471,036,328	10,067,851	46,786,186
18	South Africa	3,713,833		99,970		3,600,227		13,636	546	61,279	1,650	23,757,304	392,001	60,605,275
19	Turkey	14,815,041		97,861		14,475,383		241,797	975	172,443	1,139	152,938,450	1,780,160	85,912,775
20	Romania	2,847,015	+4,276	64,958	+44	2,606,660		175,397	398	149,724	3,416	22,028,806	1,158,488	19,015,141

New cases (linear), United States, 03/29/2022 Daily new confirmed COVID-19 cases
7-day rolling average. Due to limited testing, the number of confirmed cases is lower than the true number of infections.

New deaths (linear), United States, 03/29/2022

Daily new confirmed COVID-19 deaths

Due to varying protocols and challenges in the attribution of the cause of death, the number of confirmed deaths may not accurately represent the true number of deaths caused by COVID-19.

United States, 03/29/2022

Daily new confirmed COVID-19 cases \& deaths per million people

7-day rolling average. Limited testing and challenges in the attribution of cause of death means the cases and deaths counts may not be accurate.

United States

Fully vaccinated, United States, 03/29/2022

Share of people who completed the initial COVID-19 vaccination protocol
Total number of people who received all doses prescribed by the initial vaccination protocol, divided by the total population of the country.

United States

Percent fully vaccinated, by demographic

characteristics. September 1-13

PN Cohen figure from US Census Bureau Household Pulse Survey data,
Sep 1-13, 2021 (Week 37)

Understanding Coronavirus in America

Likelihood of getting COVID-19 vaccine, by education

College degree

No college degree

Findings are based on 6,231 participants who responded between January 20, 2021 and February 16, 2021. Margin of sampling error is
$+/-1$ percentage point for all U.S. residents, and $+/-2$ percentage points for educational attainment subgroups. "College degree"
includes bachelor's degree or higher. More information at covid19pulse.usc. edu

COVID-19 deaths per 100,000 population, by race/ethnicity and age, U.S.

Deaths from CDC data as of September 30. Black, Asian, and White are non-Hispanic. Population denominators from the 2018 ACS via IPUMS.org. White denominators are for single-race respondents; others include multiple-race. PN Cohen analysis.

Annual flu deaths (2010-2020) and COVID-19 deaths (2020), United States

United States

Percent teleworking in August 2021 because of the coronavirus pandemic

United States

Remote Work in the Pandemic, by Occupation
Persons teleworking because of the pandemic, as share of employed

United States

Percent of workers in occupations suitable for telework
By industry average hourly wage

[^0]
Coronavirus pandemic data

- Coronavirus COVID-19 Global Cases

Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)
https://coronavirus.jhu.edu/map.html

- COVID-19 Coronavirus Pandemic

Worldometer
https://www.worldometers.info/coronavirus/

- Coronavirus Pandemic (COVID-19)

Our World in Data
https://ourworldindata.org/coronavirus

- COVID Community Vulnerability Map

Jvion - Prescriptive Analytics for Preventable Harm
https://covid19.jvion.com/

- Coronavirus Deaths by U.S. State and Country Over Time: Daily Tracking

Josh Katz, Margot Sanger-Katz
https://www.nytimes.com/interactive/2020/03/21/upshot/coronavirus-deaths-by-country.html?action=click\&auth=login-
email\&login=email\&module=Top\%20Stories\&pgtype=Homepage

Coronavirus and demography

- Resources about demography and COVID-19

Population Europe
https://population-europe.eu/news/demography-coronavirus

- A demographer's view of the coronavirus pandemic

Isaac Chotiner
March 13, 2020
https://www.newyorker.com/news/q-and-a/a-demographers-view-of-the-coronavirus-pandemic

- Coronavirus: Why it's so deadly in Italy

Andreas Backhaus
March 13, 2020
https://medium.com/@andreasbackhausab/coronavirus-why-its-so-deadly-in-italy-c4200a15a7bf

- Demographic science aids in understanding the spread and fatality rates of COVID-19
Jennifer Beam Dowd, Valentina Rotondi, Liliana Andriano, David M. Brazel, Per Block, Xuejie Ding, Yan Liu, Melinda C. Mills March 14, 2020
https://osf.io/fd4rh/?view only=c2f00dfe3677493faa421fc2ea38e295\&fbclid=IwAR15NPHaq Ha9yK3uDDNOFhdAZmnfMLfdqgrHaL7ql|f3jBYu8 CA 9gcEq
- Students could be undercounted in the census as coronavirus closes colleges here's why that matters
Dudley L. Poston, Jr.
March 23, 2020
https://theconversation.com/students-could-be-undercounted-in-the-census-as-coronavirus-closes-colleges-heres-why-that-matters-13388

Coronavirus and sex

- Sex, gender and COVID-19

Global Health 5050
http://globalhealth5050.org/covid19/

- Sex, gender and COVID-19: Disaggregated data and health disparities

BMJ Global Health Blogs
March 24, 2020
https://blogs.bmj.com/bmigh/2020/03/24/sex-gender-and-covid-19-disaggregated-data-and-health-disparities/

- Here's why the coronavirus may be killing more men than women. The US should take note
Katie Polglase, Gianluca Mezzofiore, Max Foster
March 24, 2020
https://www.cnn.com/2020/03/24/health/coronavirus-gender-mortality-int//index.html

161

Coronavirus and politics

- The Real Pandemic Danger Is Social Collapse

Branko Milanovic
March 19, 2020
https://www.foreignaffairs.com/articles/2020-03-19/real-pandemic-danger-social-
collapse?utm medium=social\&utm source=twitter cta\&utm campaign=cta share buttons

- Coronavirus Could Overwhelm U.S. Without Urgent Action, Estimates Say

James Glanz, Lauren Leatherby, Matthew Bloch, Mitch Smith, Larry Buchanan, Jin Wu, Nicholas Bogel-Burroughs
March 20, 2020
https://www.nytimes.com/interactive/2020/03/20/us/coronavirus-model-us-outbreak.html?action=click\&module=Spotlight\&pgtype=Homepage

- Before Virus Outbreak, a Cascade of Warnings Went Unheeded

David E. Sanger, Eric Lipton, Eileen Sullivan, Michael Crowley
March 22, 2020
https://www.nytimes.com/2020/03/19/us/politics/trump-coronavirus-outbreak.html

- Sisi and Erdogan Are Accomplices of the Coronavirus

Steven A. Cook
March 17, 2020
https://foreignpolicy.com/2020/03/17/sisi-and-erdogan-are-partners-with-the-coronavirus/

- How South Korea Flattened the Curve

Max Fisher, Choe Sang-Hun
March 23, 2020
https://www.nytimes.com/2020/03/23/world/asia/coronavirus-south-korea-flatten-
curve.html?action=click\&module=Top\%20Stories\&pgtype=Homepage

References

Hviid A, Hansen JV, Frisch M, Melbye M. 2019. "Measles, mumps, rubella vaccination and autism: A nationwide cohort study." Annals of Internal Medicine, March 5. (http://www.doi.org/10.7326/M18-2101)

Poston DL, Bouvier LF. 2017. Population and Society: An Introduction to Demography. New York: Cambridge University Press. 2nd edition. Chapter 7 (pp. 163-214).

Weeks JR. 2015. Population: An Introduction to Concepts and Issues. 12th edition. Boston: Cengage Learning. Chapter 5 (pp. 139-188).

[^0]: Linear fit weighted by industry size. PN Cohen figure from 2019 Bureau of Labor Statistics data.

