Introduction

Ernesto F. L. Amaral

August 27, 2019 Demographic Methods (SOCI 320)

Outline

- Definition of demography
- Demographic equation
- Demographic transition
- Age-sex structure

Definition of demography

- The scientific study of human population
- The term was coined by the Belgian statistician Achille Guillard in his 1855 book
 - Éléments de Statistique Humaine ou Démographie Comparée

Demography is destiny

- This phrase is attributed to the French mathematician and philosopher, Auguste Comte (1798–1857)
 - He is known as the "father of sociology"
 - Demography shapes the world, even if it does not determine it
 - Population change is an underlying component of almost everything happening in the world today, and therefore in the future as well

John Graunt (1620–1674)

- English statistician
 - Considered to be the founder of demography
 - Analyzed vital statistics of the London population
 - Studied the bills of mortality (weekly statistics of deaths) in early modern London
 - More specifically, studied death records that had been kept by London parishes since 1532
- Noticed certain regularities in death phenomena
 - Published in the book "Natural and Political Observations Made upon the Bills of Mortality" (1662)

Graunt's substantive contributions

- Recognized phenomenon of rural-urban migration
 - Urban death rate exceeded rural death rate
- Population was divided almost evenly by sex
 Male birth rate was higher than female birth rate
 - Less females are born than males
 - Male death rate was higher than female death rate
 - Females live longer than males
- Presented mortality in terms of survivorship

 He was the first to attempt to construct a life table..

Graunt's life table

Age	Number surviving	Age	Number surviving
0	100	46	10
6	64	56	6
16	40	66	3
26	25	76	1
36	16	86	0

Graunt's methodological contributions

- Paid attention to quality of data
- Exhibited a healthy skepticism
- Questioned the validity and reliability of data

Poston's definition

 Demography is the scientific study of the size, composition, and spatial distribution of human populations

 It investigates changes in population size, composition, and distribution, resulting from fertility, mortality, and migration

Concerns of demography

- Population size
- Population growth or decline
- Population processes/components
- Population distribution
- Population structure
- Population characteristics

Primary demographic questions

- How large (or small) is the population?
- How is the population composed, in terms of age, sex, race, marital status, and so forth?
 - What are the characteristics of the population?
- How is the population distributed spatially?

Populations are not randomly distributed in space

How population changes happen over time?

Answers to these questions

- These demographic questions are answered in terms of the three demographic processes (components of demographic change)
 - Fertility
 - Mortality
 - Migration

Cohort

- Cohort is a group of people who experience similar social circumstances
- People born during the same period who experience similar circumstances throughout their lives
 - Lucky Few: from around 1929 through 1945
 - Baby boomers: between around 1946 and 1964
 - Baby bust cohort (Gen. X): from mid-1960s to early 1980s
 - Millennials (Gen. Y): born in the 1980s and 1990s (or up to early 2000s)
 - Gen. Z: start around mid-1990s (or mid-2000s)

Demographic equation

- Population size can change only through the processes of fertility, mortality, and migration
- Two ways of entering a population

 Being born or moving into it
- Two ways of leaving a population
 Dying or moving out of it
- Population can only change by way of a limited, countable number of events

Basic demographic equation

 $P_{t+1} = P_t + B_{t \text{ to } t+1} - D_{t \text{ to } t+1} + I_{t \text{ to } t+1} - E_{t \text{ to } t+1}$

- $-P_{t+1}$: population at time *t*+1
- $-P_t$: population at time t
- $-B_{t to t+1}$: births between times *t* and *t*+1
- $-D_{t to t+1}$: deaths between times *t* and *t*+1
- $I_{t to t+1}$: immigrants (or in-migrants) to the population between times *t* and *t*+1
- $-E_{t to t+1}$: emigrants (or out-migrants) from the population between times *t* and *t+1*

Components of equation

- $P_{t+1} = P_t + B_{t \text{ to } t+1} D_{t \text{ to } t+1} + I_{t \text{ to } t+1} E_{t \text{ to } t+1}$
- Natural increase: $B_{t to t+1} > D_{t to t+1}$
- Natural decrease: B_{t to t+1} < D_{t to t+1}
 Negative natural increase

Migration components of equation

- $I_{t \ to \ t+1} E_{t \ to \ t+1}$
 - Net international migration
 - Immigration minus emigration
 - Net internal migration
 - In-migration minus out-migration

•
$$I_{t \text{ to } t+1} < E_{t \text{ to } t+1}$$

- Negative net international migration (sending countries)
- Negative net internal migration (net out-migration)
- $I_{t \text{ to } t+1} > E_{t \text{ to } t+1}$
 - Positive net international migration (receiving countries)
 - Positive net internal migration (net in-migration)

Demographic transition

The author Max Roser licensed this visualisation under a CC BY-SA license. You are welcome to share but please refer to its source where you find more information: http://www.OurWorldInData.org/data/population-growth-vital-statistics/world-population-growth

The Classic Stages of Demographic Transitions

Population storm

Year	Population in billions	Annual rate of growth	Annual increase in millions
1804	1	0.4	4
1927	2	1.1	22
1960	3	1.3	52
1974	4	2.0	75
1987	5	1.6	82
2000	6	1.4	77
2011	7	1.2	80
2024	8	0.9	73
2040	9	0.7	59
2061	10	0.4	38

Source: U.S. Census Bureau, International Data Base, June 2011 Update.

World population growth rates

The greatest demographic change in human history

SOURCES: CARL HAUB, POPULATION REFERENCE BUREAU (PRB), 2010; U.N. POPULATION DIVISION (UNPD), 2011

SOURCE: UNPD, 2011

World's population exploded in size

©2016 Cengage Learning. All Rights Reserved.

Population of the world according to different projections and variants, 1950–2100

Population size in billions

Continent	2013	2050	2100
America	1	1	1
Europe	1	1	1
Africa	1	2	4
Asia	4	5	5
Total	7	9	11

Population size in billions

Age group	2013	2024	2050	2100
75+				1
60–74	1	1	1	2
45–59	1	1	2	2
30–44	1	2	2	2
15–29	2	2	2	2
0–14	2	2	2	2
Total	7	8	9	11

Population growth

• The world's population will continue to increase for the rest of our lives

 Virtually all of it will take place in cities of developing countries

Population increase 2015–2050

Projected Population Increase

Population decline

2015 to 2050

Percentage population increase 2015–2050

21 - 62

63 - 121

122 - 260

©2016 Cengage Learning. All Rights Reserved.

Geographic distribution of world's population, 2015

10 most populous countries, millions

	Country	2015		Country	2050
1	China	1,402	1	India	1,620
2	India	1,282	2	China	1,385
3	United States	325	3	Nigeria	404
4	Indonesia	256	4	United States	401
5	Brazil	204	5	Indonesia	321
6	Pakistan	188	6	Pakistan	271
7	Nigeria	183	7	Brazil	231
8	Bangladesh	160	8	Bangladesh	202
9	Russia	142	9	Ethiopia	188
10	Japan	127	10	Philippines	157

Source: Poston, Bouvier, 2017.

The past is a foreign country (1/3)

Indicators	1910	2010
World population (billions)	1.8	6.9
U.S. population (millions)	92	309
U.S. percent of world total	5.1%	4.5%
U.S. life expectancy	52	81
U.S. children per woman	3.5	1.9

The past is a foreign country (2/3)

U.S. indicators	1910	2010
Immigrants from Italy (1900–1909); (2000–2010)	1.2 million	28,000
Immigrants from Mexico (1900–1910); (2000–2010)	123,000	1.7 million (legal immigrants)
% Foreign-born	14.7%	12.9%
% Urban	46%	81%

The past is a foreign country (3/3)

U.S. indicators	1910	2010
Number of passenger cars	450,000	190 million
% Population under 15	32.1%	19.8%
% Population 65+	4.3%	13.0%
Average persons per household	4.4	2.6
% High school graduates	~10%	87%

Age-sex structure

- The most important characteristics that tell us about population structure are age and sex
- They are known as the demographic characteristics
- Age and sex are tied in with the three demographic processes
 - Fertility, mortality, migration

Fertility varies by age and sex

- Fertility (actual production of children)
 - More males are born than females
 - Normal sex ratio at birth (SRB): around 105 boys per 100 girls
- Fecundity (ability to produce children)
 - Females: between ages of around 15 and 49
 - Males: between ages of around 15 and 79

Age-specific fertility rates, United States

Source: United Nations, World Population Prospects 2017 https://esa.un.org/unpd/wpp/Download/Standard/Population/ (medium variant).

Mortality varies by age and sex

- Females have lower death rates than males at every age of life
- Death rates are high in the first year of life and then drop to very low levels
 - In modern populations, death rates do not reach the level of the first year of life for another 50–60 years
- Cause-specific mortality is often age related

Age-specific mortality rates, 2011

Migration varies by age and sex

- Sex is related to distance of migration
 - Long-distance migration tended to favor males
 - Short-distance migration tended to favor females
 - With increases in gender equity, migration of females and males tend to be similar
- Internal migration has highest rates among young adults

Age-specific migration rates, United States, 2011–2012

©2016 Cengage Learning. All Rights Reserved.

Population structure by age and sex, India, 2010–2050

Population structure by age and sex, China, 2010–2050

Population structure by age and sex, European Union, 2010–2050

Population structure by age and sex, United States, 2010–2050

References

Poston DL, Bouvier LF. 2017. Population and Society: An Introduction to Demography. New York: Cambridge University Press. 2nd edition. Chapters 1 (pp. 3–16) and 12 (pp. 332–347).

Weeks JR. 2015. Population: An Introduction to Concepts and Issues. Boston: Cengage Learning. 12th edition. Chapters 1 (pp. 1–24), 2 (pp. 25–57).

