

Ernesto F. L. Amaral

September 19–26, 2019 Demographic Methods (SOCI 320)

TEXAS A&M

Cohort mortality

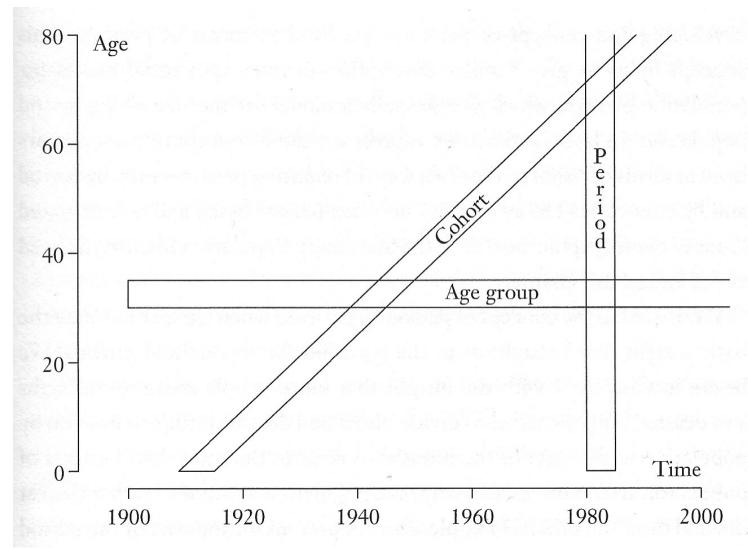
- Cohort survival by analogy
- Probabilities of dying
- Columns of the cohort life table
 - King Edward's children
 - From $_{n}L_{x}$ to e_{x}
 - The radix
- Annuities and insurance
- Mortality of the 1300s and 2000s

Cohort survival by analogy

- Analyze lifelines and the deaths that occur in the diagonal stripe on the Lexis diagram that represents a particular <u>cohort's</u> experience
 - Understand measures of survival and probabilities of dying as a function of age for the cohort

- We could also analyze the rectangle on a Lexis diagram that represents some <u>period</u>
 - We would consider the lifelines that cross the rectangle and the deaths that fall inside it

Lexis diagram



Source: Wachter 2014, p. 33.

Why start with cohort measures?

- The period measure is more complicated
 - People at risk of dying at different ages are different people
- For the experience of a cohort over time
 - People at risk of dying at different ages are the same people
- Cohort measures are conceptually simpler than period measures, so we begin with them

Disadvantage

- Disadvantage of cohorts measures is being out of date
- To have complete measures of cohort mortality for all ages, we have to wait until all members of the cohort have died
 - Rates for young ages refer to the distant past
- The most recent cohorts with complete mortality data are those born around 1900
- Measures of period mortality are more complicated, but they use more recent data

Basic cohort measures

- The basic measures of cohort mortality are elementary
 - Take the model for exponential population growth
 - Apply it to a closed population consisting of the members of a single cohort
 - Change the symbols in the equations, but keep the equations themselves

Why is it a closed population?

- If our population consists of a single cohort
 - No one else enters the population after the cohort is born
 - Babies born to cohort members belong to later cohorts, not to their parents' cohort
 - For this cohort, the only changes in population size come from deaths to members of the population
- Measures from chapter 1 reappear with new names in an analogy between populations and cohorts...

Population Growth

Cohort Mortality

Time *t*

Population size K(t)

Multiplier A = 1 - D/K

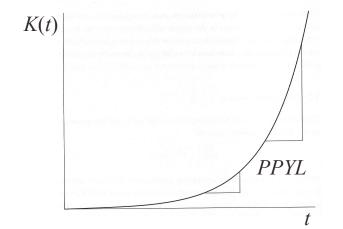
Growth Rate *R*

Area under K(t), PPYL

Crude rate *d* (function of *t*)

Initial population K(0)

Population deaths D



Age x

Cohort survivors ℓ_x

Survival probability 1 - q = 1 - d / l

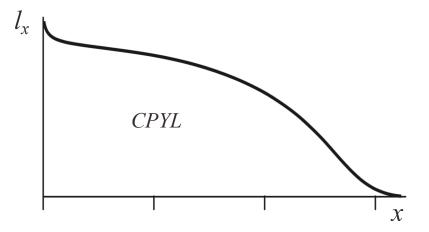
Hazard rate *h* (with minus sign)

Area under ℓ_x , CPYL, L

Age-specific rates m

Initial cohort size l_0 (radix)

Cohort deaths d



Note: A = 1 + (B - D)/K. But for a cohort, after age zero, births don't happen anymore.

Multiplication process

- The same process of multiplication for population growth happens for cohort mortality
 - It is not the mortality rates (m) that multiply
 - It is not the probabilities of dying (q)
 - It is the probabilities of surviving (1-q)
- Age x is the subscript on the cohort survivors: I_x
 - Time t is used for population size: $K(t) = K_t$
- The notation is different but the idea is the same

Multiplicative rules

Multiplicative rule for population growth

$$K(t + n) = A K(t)$$

Multiplicative rule for cohort survivorship

$$I_{x+n} = (1 - {}_{n}q_{x}) I_{x}$$

- Subscript *n* specifies the length of the interval
- nqx: probability of dying within an interval of length n
 that starts at age x and ends at age x+n
- $-I_{x+n}$: members who survive to age x+n

More notations

nq_x: probability of dying between ages x and x+n among cohort members alive at age x

$$_{n}q_{x} = _{n}d_{x} / I_{x}$$

• 1 – $_nq_x$: probability of surviving from age x to age x+n among cohort members alive at age x

$$1 - {}_nq_x = I_{x+n} / I_x$$

- nd_x: cohort deaths between ages x and x+n
- _nL_x: cohort person-years lived in this interval
- I_x : cohort members alive at age x are split in two
 - $-nd_x$: members who die before age x+n
 - $-I_{x+n} = I_x {}_n d_x$: members who survive to age x+n

Some more notations

- In the expression $_{n}q_{x}$ the left subscript gives the width of the age interval and the right subscript gives the starting age
- $_{10}q_{20}$: probability of dying between 20 and 30
 - Not between 10 and 20
 - Do not confuse $_nq_x$ with n multiplied by q_x
 - If you want to multiply n by I_x , use this notation: $(n)(I_x)$
- $_{10}q_{20}$ goes from 20.00000 to 29.99999
 - "The interval from 20 to 30" (including exact age 20, excluding exact age 30)
 - Some authors call it "the interval from 20 to 29"

- A cohort born in 1984 reached age 18 in 2002 and 1,767,644 were alive at their 18th birthday
 - Only 724 of them died before age 19
- Probability of dying

$$_{1}q_{18} = _{1}d_{18} / I_{18} = 724 / 1,767,644 = 0.000410$$

Probability of surviving

$$1 - {}_{1}q_{18} = 1 - 0.000410 = 0.999590$$
 $I_{19} / I_{18} = 1,766,920 / 1,767,644 = 0.999590$

Hazard rates

- Hazard rates can express the pace of death within cohorts
- Hazard rate is the counterpart of population growth rate
 - We measure population growth with slopes of logarithms of population size
 - We can measure cohort losses with slopes of logarithms of numbers of survivors
- We insert a minus sign to make the hazard rate into a positive number
 - Because cohorts decrease as they age
 - i.e., cohorts grow smaller, not larger, as they age

Hazard rate formula

- The hazard rate for a cohort is minus the slope of the logarithm of the number of cohort survivors as a function of age
- Expressing hazard rate (h_x) in the interval starting at age x (omitting any subscript for n)

$$h_{x} = -\frac{1}{n} \log \left(\frac{l_{x+n}}{l_{x}} \right) \qquad R = \frac{1}{n} \log \left(\frac{K_{t+n}}{K_{t}} \right)$$

 Formula for cohort survivorship resemble formula for exponential population growth

$$l_{x+n} = l_x e^{-nh_x} = l_x e^{-h_x n}$$
$$K_{t+n} = K_t e^{Rn}$$

- The cohort of boys born in the United States in 1980 started out with 1,853,616 members
 - 1,836,853 of them survived to their first birthday

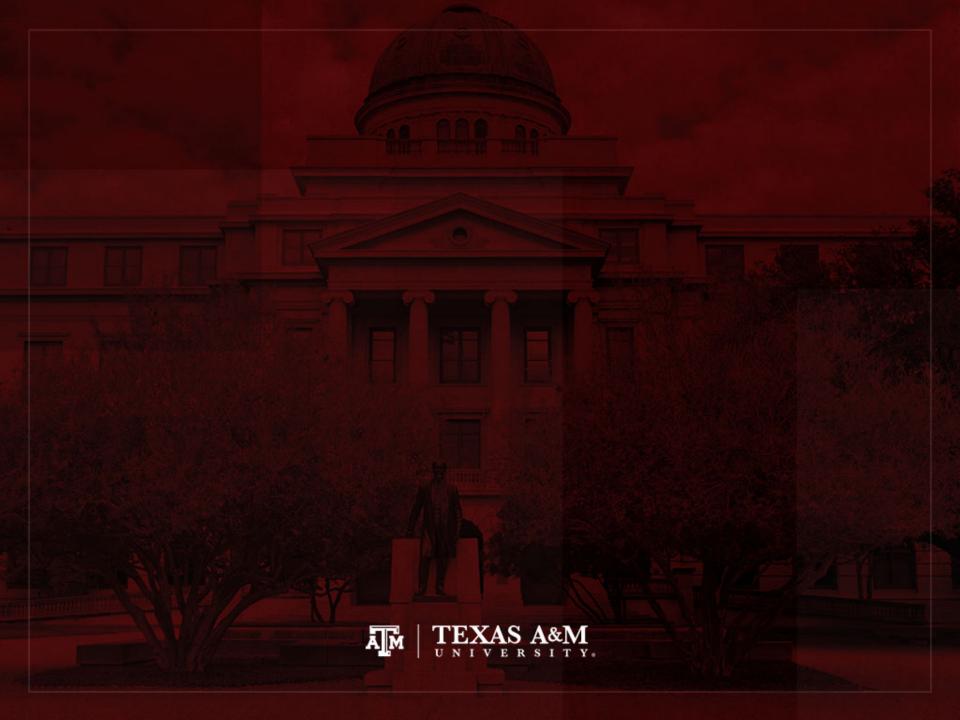
$$h_{x} = -\frac{1}{n} \log \left(\frac{l_{x+n}}{l_{x}} \right)$$

$$h_{x} = -\frac{1}{1} \log \left(\frac{1,836,853}{1,853,616} \right)$$

$$h_{x} = -\log(0.990957)$$

$$h_{x} = -(-0.009084)$$

$$h_{x} = 0.009084$$



Probabilities of dying

- A hazard rate is a rate like R, whereas _nq_x is a probability
- The word "probability" suggests a random process
- Randomness refers in principle to a randomly selected member of our cohort
- The occurrence of death appears partly random and partly determined by causes
 - These causes are partly random and partly determined by prior causes

$_{n}q_{x}$ -conversions

- Problems that involve working out _nq_x values for different x and n are called "_nq_x-conversions"
- Demographers frequently find themselves with data for one set of age intervals when they need answers for different intervals
 - They may have data for 1-year-wide intervals and need answers for 5-year-wide intervals
 - They may have data for 15-year intervals and need answers for 5-year intervals
 - They may have tables for ages 25 and 30 and need to know how many women survive to a mean age of childbearing of, for example, 27.89 years

Applying multiplication to I_x

- From our analogy with population growth, we go from I_x to I_{x+n} by multiplication
- We go from I_{65} to I_{85} by multiplying by $1 {}_{20}q_{65}$

$$I_{85} = (1 - {}_{20}q_{65})I_{65}$$

• We go from I_{85} to I_{100} by multiplying by $1 - {}_{15}q_{85}$

$$I_{100} = (1 - {}_{15}q_{85}) I_{85}$$

• We go from I_{65} to I_{100} by multiplying by the product $(1 - {}_{20}q_{65})(1 - {}_{15}q_{85})$

$$I_{100} = (1 - {}_{20}q_{65})(1 - {}_{15}q_{85})I_{65}$$

Survival probabilities multiply

- While we are interested in q, we work with 1 q
- We do not multiply the $_nq_x$ values
 - To die, you can die in the first year or in the second year or in the third year, and so on
 - You only do it once
 - There is no multiplication
- We multiply the $1 {}_{n}q_{x}$ values
 - To survive 10 years you must survive the first year and survive the second year and survive the third year, and so on
 - These "ands" mean multiplication

Basic assumption

- We need an assumption when we do not have direct data for short intervals of interest, such as 1-year-wide intervals
- We need an assumption when we only have data for wider intervals, such as 5-year-wide intervals
- We assume the probability of dying is constant within each interval where we have no further information

Applying assumption

- If we do not know $_1q_{20}$ or $_1q_{21}$ but we do know $_2q_{20}$
- We assume that the probability of dying is constant between ages 20 and 22

$$_{1}q_{20} = _{1}q_{21} = q$$

- Then $(1 q)^2$ has to equal $1 {}_2q_{20}$
- More generally, for y between x and x+n-1

$$(1 - {}_{1}q_{y})^{n} = 1 - {}_{n}q_{x}$$

$$1 - {}_{1}q_{y} = (1 - {}_{n}q_{x})^{1/n}$$

$${}_{1}q_{y} = 1 - (1 - {}_{n}q_{x})^{1/n}$$

For the cohort of U.S. women born in 1980

$$_2q_{20} = 0.000837$$

Calculate ₁q₂₀

$$_{1}q_{y} = 1 - (1 - _{n}q_{x})^{1/n}$$
 $_{1}q_{20} = 1 - (1 - _{2}q_{20})^{1/2} = 1 - (1 - 0.000837)^{1/2}$
 $_{1}q_{20} = 1 - (0.999163)^{1/2} = 1 - 0.999581$
 $_{1}q_{20} = 0.000419$

Calculate ₁q₂₀

$$_{1}q_{y} = 1 - (1 - _{n}q_{x})^{1/n}$$
 $_{1}q_{20} = 1 - (1 - _{5}q_{20})^{1/5} = 1 - (1 - 0.032545)^{1/5}$
 $_{1}q_{20} = 1 - (0.967455)^{1/5} = 1 - 0.993405$
 $_{1}q_{20} = 0.006595$

- Suppose we know that $_5q_{80} = 0.274248$
 - We want to find the probability of dying each year which would, if constant, account for the observed 5year mortality and survivorship
- Calculate ₁q₈₀

$$_{1}q_{y} = 1 - (1 - _{n}q_{x})^{1/n}$$
 $_{1}q_{80} = 1 - (1 - _{5}q_{80})^{1/5} = 1 - (1 - 0.274248)^{1/5}$
 $_{1}q_{80} = 1 - (0.725752)^{1/5} = 1 - 0.937902$
 $_{1}q_{80} = 0.062098$

- More elaborate conversion problems arise
- We might have values from a forecast of survival for the U.S. cohort of women born in 1980

$$I_{65} = 0.915449$$
; $I_{75} = 0.799403$; $_{35}q_{65} = 0.930201$

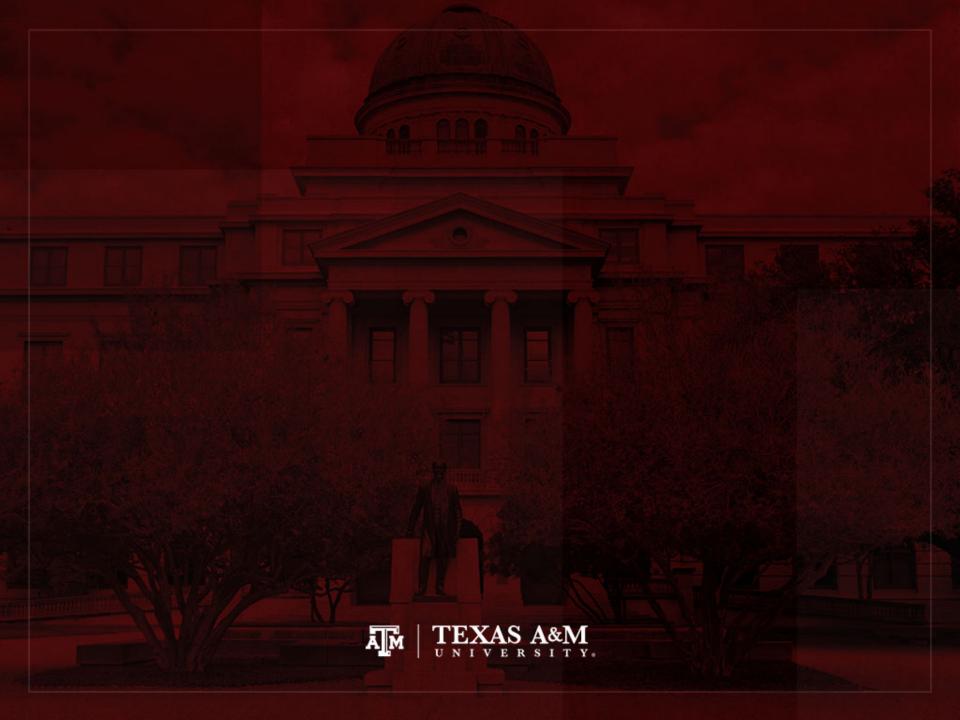
• We might want the probability of surviving from 70 to 100: I_{100} / I_{70}

$$\frac{l_{100}}{l_{70}} = 1 - {}_{30}q_{70} = \frac{\frac{l_{100}}{l_{65}}}{\frac{l_{70}}{l_{65}}} = \frac{1 - {}_{35}q_{65}}{1 - {}_{5}q_{65}} = \frac{1 - 0.930201}{(1 - {}_{10}q_{65})^{5/10}} = \frac{0.069799}{(1 - {}_{10}q_{65})^{1/2}} = \frac{0.069799}{(l_{75}/l_{65})^{1/2}}$$

$$\frac{l_{100}}{l_{70}} = \frac{0.069799}{(0.799403)^{\frac{1}{2}}} = \frac{0.069799}{(0.873236)^{\frac{1}{2}}} = \frac{0.069799}{0.934471} = 0.074694$$

Use the Lexis diagram

- The best way to solve complicated conversion problems is to begin by drawing a diagonal line on a Lexis diagram
 - Mark off each age for which there is information about survivorship at that age
 - Mark off ages which are the endpoints of intervals over which there is information about mortality within the interval
 - Between each marked age, assume a constant probability of dying, and apply the conversion formulas

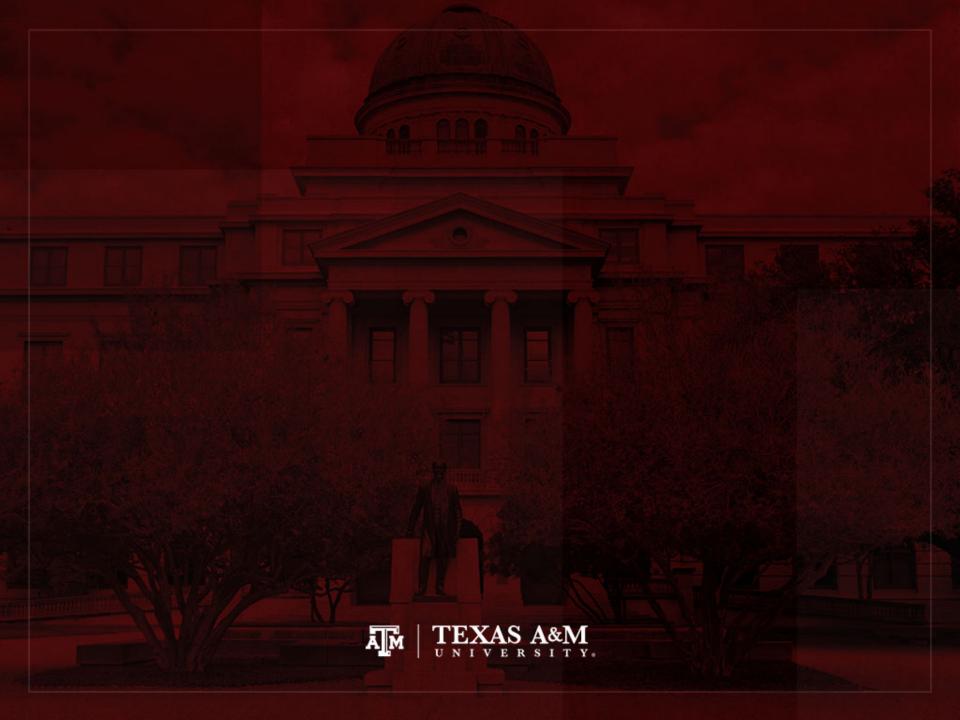


Columns of the cohort life table

- Lifetable is a table with I_x and $_nq_x$ as columns with a set of other measures of mortality
- Columns and their names and symbols are fixed by tradition
 - This is customary since the 1600s
 - Each column is a function of age, so the columns of the lifetable are sometimes called "lifetable functions"
- Rows correspond to age groups

Information in lifetable columns

- All the main columns of the lifetable contain the same information from a mathematical point of view
 - With some standard assumptions any column can be computed from any other
- But they present information from different perspectives for use in different applications
 - Survivors
 - Deaths
 - Average life remaining



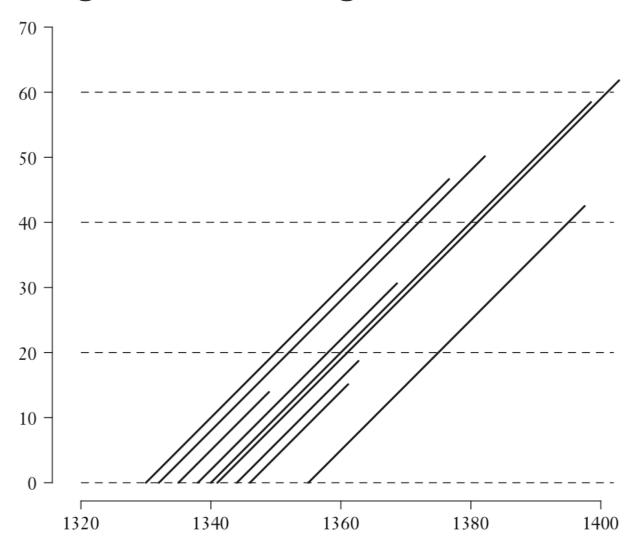
King Edward's children

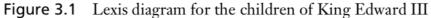
 King Edward III of England was born in 1312 and reigned from 1337 to 1377

Table 3.2	Children	of King	Edward	III of	England
		0			0

1330–1376	Edward, The Black Prince
1332-1382	Isabel
1335–1348	Joan
1336–?	William of Hatfield (died young)
1338–1368	Lionel of Antwerp, Duke of Clarence
1340–1398	John of Gaunt, Duke of Lancaster
1341-1402	Edmund Langley, Duke of York
1342-1342	Blanche
1344–1362	Mary
1346–1361	Margaret
1355–1397	Thomas of Woodstock, Duke of Gloucester

Lexis diagram for King Edward's children





Constructing a cohort life table

- Generally, lifetables are constructed with 1-year or 5-year intervals
 - A complete life table provides life table functions in single years of age
 - Lifetables in which functions are given for age groups are called "abridged lifetables" in older works
- Usually, for lifetables with 5-year-wide intervals
 - The first age group is a 1-year-wide interval (0–1)
 - The second age group is a 4-year-wide interval (1–5)

Start of age group (x) and width (n)

- Lifetables begin with a column labeled x
 - Starting age for the age group
- The next column has the width n of the age group
 - The difference between the value of x for this row and the value for the next age group found in the next row
- The last age group is called the "open-ended age interval" since it has no maximum age
 - Symbol for infinity (∞) is used for the length of this interval
 - We don't set any upper limit of our own

Number of survivors (I_x)

• The survivorship column I_x leads off the datadriven entries of the cohort lifetable

$$I_{x+n} = I_x \left(1 - {}_n q_x \right)$$

- The first-row entry (I_0) is the radix, the initial size of the cohort at birth
 - The choice of radix is up to us
 - A lifetable can be built up from any radix, an actual size or a convenient size

Graph of I_x as a function of x

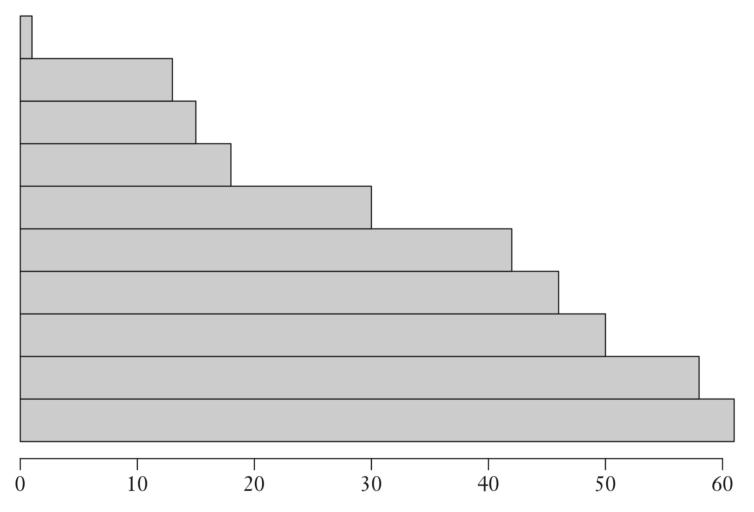
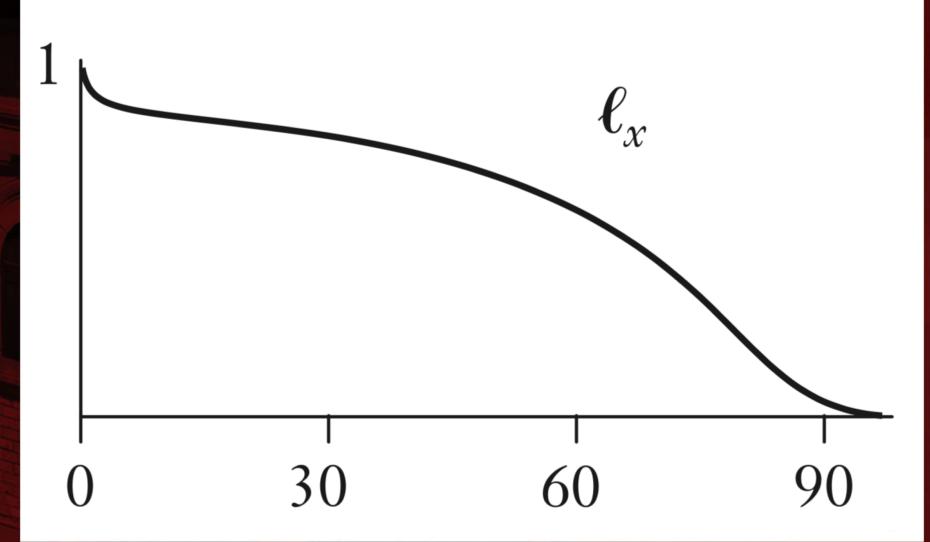


Figure 3.2 Lifespans and ℓ_x

Continuous function for I_x

- The previous plot for a large population has lots of very thin bars
- We often draw a smooth curve through the midpoints of the right-hand sides of the bars
 - Instead of taking steps down, I_x becomes a continuous function
- Demographers often draw the bars with different colors for the portions of each person's life spent in and out of some activity
 - Rearing children, being married, free from disability



Probability of dying (nq_x)

- The column which follows I_x in the lifetable contains the probability of dying in the interval given that one is alive at the start
- This is the $_nq_x$ measure

$$_{n}q_{x} = 1 - (I_{x+n} / I_{x})$$

- For our example
 - In the first age group, $_{n}q_{x} = 1 9/10 = 0.100$
 - In the second age group, $_nq_x = 1 6/9 = 0.333$

Number of deaths (nd_x)

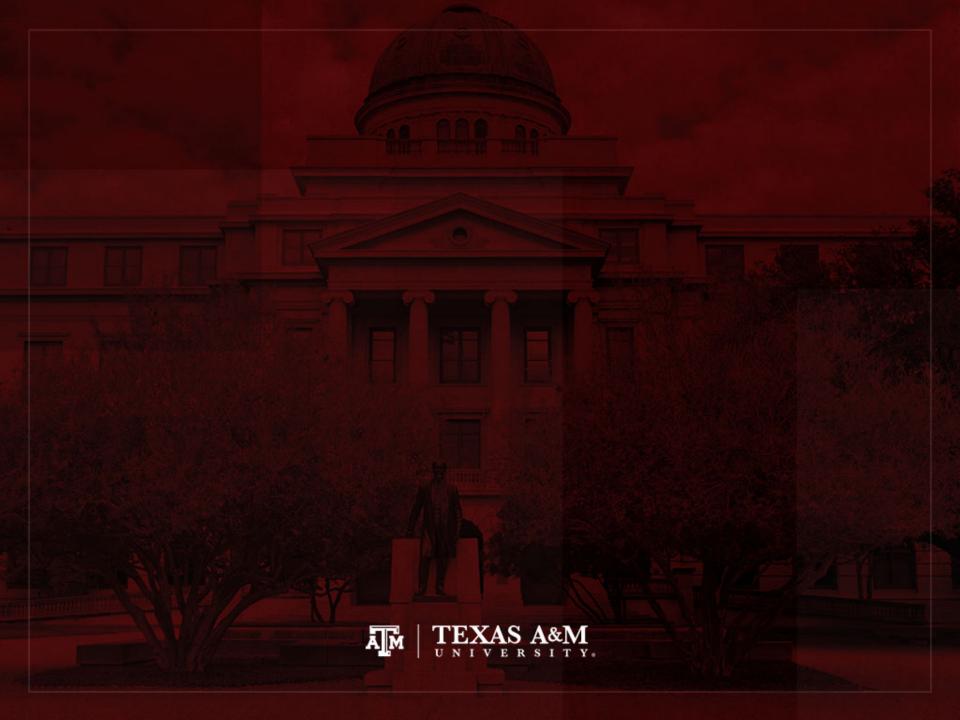
 We go on to insert a column which gives deaths between ages x and x + n

$$_{n}d_{x}=I_{x}-I_{x+n}$$

 This column counts the lifelines that end in each age interval on the Lexis diagram

Table 3.3 Five columns of King Edward's family lifetable

X	n	ℓ_x	$_{n}q_{x}$	$_{n}d_{x}$
0	10	10	0.100	1
10	10	9	0.333	3
20	20	6	0.167	1
40	20	5	0.800	4
60	∞	1	1.000	1



From $_{n}L_{x}$ to e_{x}

- The remaining columns of the lifetable relate to cohort person-years lived (CPYL)
- In order to calculate person-years, we need $_na_x$
- na_x tells us how many years within an interval people live on average if they die in the interval
- This quantity is about half the width of the interval (n/2)

Cohort person-years lived $({}_{n}L_{x})$

- With $_na_x$, we can calculate cohort person-years lived between ages x and x+n ($_nL_x$)
 - Also called "big L"
 - Think of "L" standing for life
- Big L is one of the four most important columns with
 - $-I_x$, "little I"
 - $-nq_x$
 - $-e_x$

Formula of $_{n}L_{x}$

- The value of ${}_{n}L_{x}$ is made up of two contributions
 - Those who survive the whole interval (I_{x+n}) contribute a full n years to ${}_{n}L_{x}$
 - Those who die during the interval $\binom{n}{n}d_x$ contribute on average $\binom{n}{n}a_x$ years
- Our formula adds these two contributions

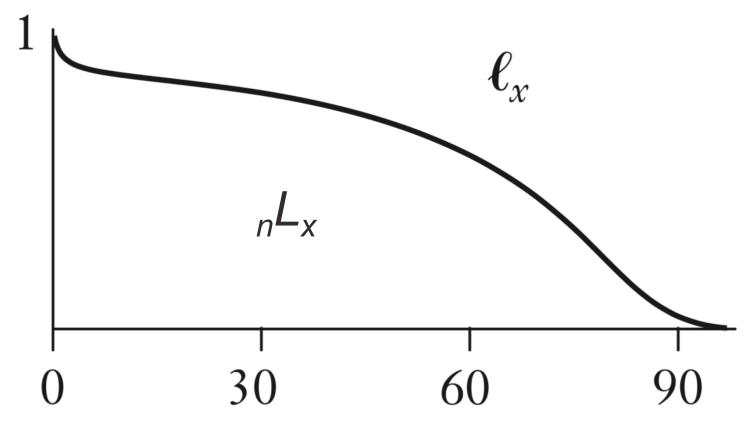
$$_{n}L_{x} = (n) (I_{x+n}) + (_{n}a_{x}) (_{n}d_{x})$$

• We usually have $_na_x=n/2$, then formula simplifies

$$_{n}L_{x}\approx (n/2)(I_{x}+I_{x+n})$$

$_{n}L_{x}$ as the area under the I_{x} curve

• With a smooth curve of I_x , we can calculate ${}_nL_x$ as the area under the I_x curve between x and x+n



Death rate $(_n m_x)$

- For the lifetable death rate $({}_{n}m_{x})$, we divide cohort deaths $({}_{n}d_{x})$ by cohort person-years lived $({}_{n}L_{x})$
- The column $_n m_x$ is the age-specific counterpart of the crude death rate (CDR)
- $_nm_x$ is a rate, measured per unit of time
- The lifetable death rate measured over a very short interval starting at x is very close to the hazard rate

Remaining person-years of life (T_x)

 We can obtain person-years of life remaining for cohort members who reach age x (T_x)

 We simply add up all person-years to be lived beyond age x

• T_x is easiest to compute by filling the whole ${}_{n}L_x$ column and cumulating sums from the bottom up

$$T_X = {}_{n}L_X + {}_{n}L_{X+n} + {}_{n}L_{X+2n} + \dots$$

Remaining life expectancy (e_x)

- The main use of T_x is for computing the expectation of further life beyond age x (e_x)
- The T_x person-years will be lived by the I_x
 members of the cohort who reach age x
 - So e_x is given by the formula

$$e_x = T_x / I_x$$

 The expectation of life at age zero (at birth) is often called the life expectancy (e₀)

Average age at death $(x + e_x)$

- e_x is the expectation of future life beyond age x
 - It is not an average age at death
- We add x and e_x to obtain the average age at death for cohort members who survive to age x
 - Not all lifetables include $x + e_x$
 - The $x + e_x$ column always go up
- e_x does not always go down
 - It often goes up after the first few years of life, because babies who survive infancy are no longer subject to the high risks of infancy

Index of lifespan

- Expectation of life at birth (e₀) is often taken as an index of overall mortality
 - However, it gives a poor idea of lifespan
 - Because it is heavily affected by infant mortality
 - *IMR* can be high in some countries

• A better index of lifespan is $10 + e_{10}$

 Table 3.4
 Right-hand columns of a lifetable

х	$_{n}a_{x}$	$_{n}L_{x}$	$_{n}m_{_{X}}$	T_{x}	e_{x}	$x + e_x$
0	0.50	90.5	0.011	334	33.4	33.4
10	5.33	76.0	0.039	243	27.0	37.0
20	10.00	110.0	0.009	167	27.8	47.8
40	9.00	56.0	0.071	57	11.4	51.4
60	1.00	1.0	1.000	1	1.0	61.0

Full cohort life table for King Edward's children

x	n	ℓ_x	$_{n}q_{x}$	$_{n}d_{x}$	$_{n}a_{x}$	$_{n}L_{x}$	$_{n}m_{x}$	T_{x}	e_{x}	$x + e_x$
0	10	10	0.100	1	0.50	90.5	0.011	334	33.4	33.4
10	10	9	0.333	3	5.33	76.0	0.039	243	27.0	37.0
20	20	6	0.167	1	10.00	110.0	0.009	167	27.8	47.8
40	20	5	0.800	4	9.00	56.0	0.071	57	11.4	51.4
60	∞	1	1.000	1	1.00	1.0	1.000	1	1.0	61.0

Shapes of lifetable functions

- Different lifetable functions express the same basic information from different points of view
- Demographers often have to
 - Start with entries for some column and work out entries for another
 - Start with bits and pieces of data from a few columns and solve for some missing piece of information
- Each lifetable function has a characteristic shape...

Typical shapes of lifetable functions

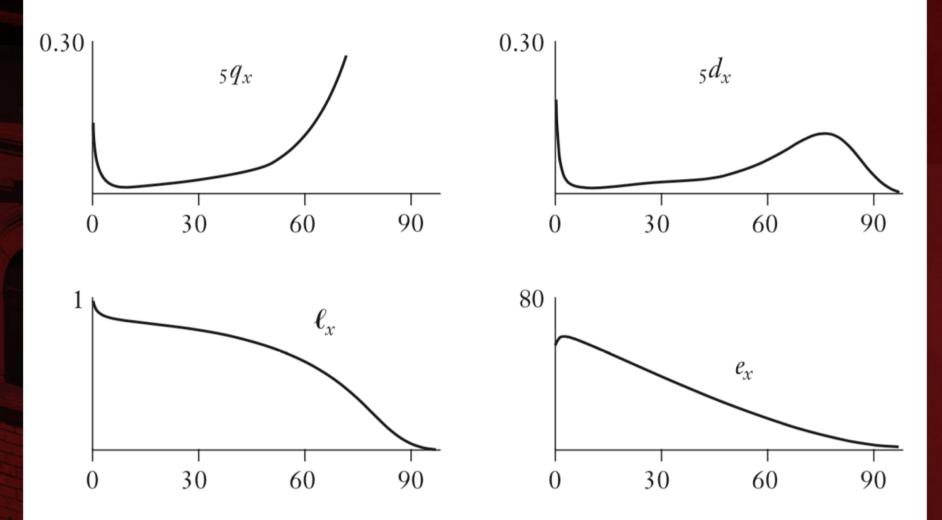


Figure 3.3 Typical shapes of lifetable functions

Cohort lifetable formulas

	١		1	
\vdash	Ω r	m	ודר	1
Τ,	$\mathbf{O}\mathbf{I}$	m	uі	a

$$_{n}q_{x}=1-(\ell_{x+n}/\ell_{x})$$

$$_{n}d_{x}=\ell_{x}-\ell_{x+n}$$

$$_{n}L_{x} = (n)(\ell_{x+n}) + (_{n}a_{x})(_{n}d_{x})$$

$$_{n}m_{x}=_{n}d_{x}/_{n}L_{x}$$

$$T_x = \sum_{x=n}^{\infty} L_a$$

$$e_x = T_x/\ell_x$$

Name

Probability of dying

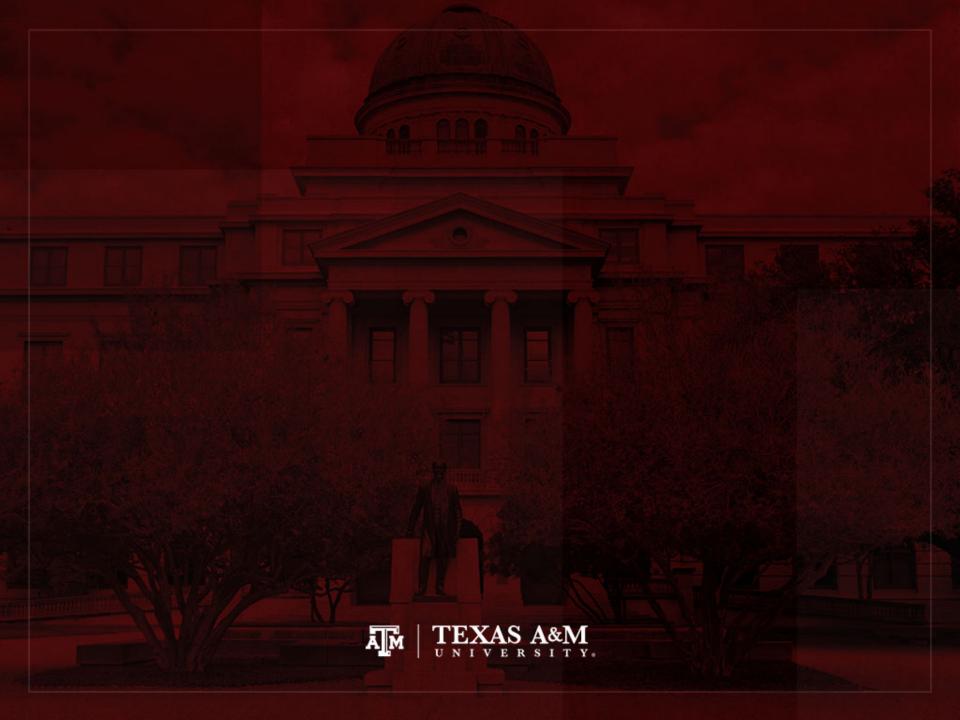
Cohort deaths

Person-years lived

Lifetable death rate

Remaining person-years

Expectation of life



The radix (I_0)

- The radix (I_0) indicates the cohort's initial size
 - In Latin, it means "root"

- It does <u>not</u> have to be the size of an actual cohort
 - An initial size of 1,000 or 100,000 or 1 is easier
 - With I_0 =1, I_x is the expected proportion of the cohort surviving to age x
 - Demographers choose a radix to suit their tastes

Interpreting lifetable

- The lifetable is used to follow a cohort through life
 - $-l_0$ is seen as a random sample of the actual cohort
 - Survival of the sample mirrors survival for the whole cohort
- Conceptually, it is good to picture an actual group of people (whole cohort or sample)
 - Starting with I_0 members and living out their lives
 - Surviving
 - Aging
 - Dying

Changing the radix

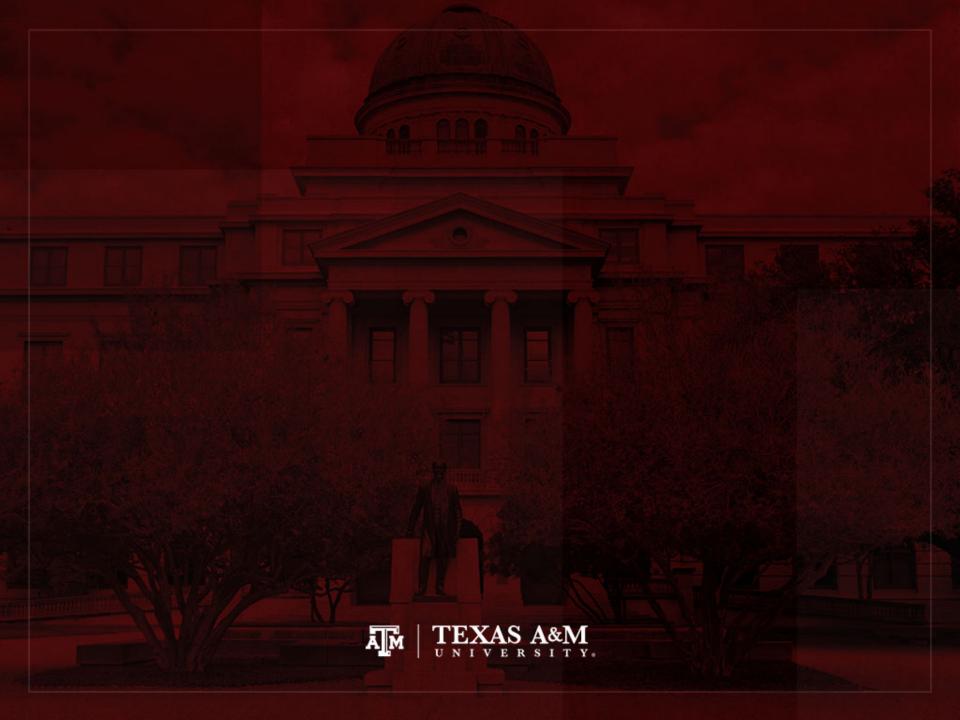
- Some quantities alter and others remain the same when changing the radix
- Quantities that change (absolute numbers)
 - $-I_X$
 - ${}_{n}L_{x}$
 - nd_x
- Quantities that do not change (indicators)
 - ${}_{n}q_{x}$
 - ${}_{n}m_{x}$
 - $-e_{x}$

Combining lifetables

- Because men and women die at different rates,
 we usually construct separated lifetables by sex
 - Sometimes, we want a lifetable for everyone
 - We do not average $_{n}q_{x}$ or $_{n}m_{x}$, we work with I_{x}
 - Let f_{fab} be the fraction female at birth in the cohort
 - Assume that single-sex lifetables have the same radix

$$l_x^c = (f_{fab})l_x^{female} + (1 - f_{fab})l_x^{male}$$

- $-l_{x}^{c}$: "c" stands for "combined sex"
- $-(f_{fab})I_0$ baby girls
- $-(1-f_{fab})I_0$ baby boys



Annuities and insurance

- Annuities and insurance are social institutions that become familiar usually after school or college when starting a job or a family
- Earliest applications of lifetable methods in the 1600s and 1700s were to annuities
- Idea of a steady income (e.g., after retirement)
 - You buy a policy from an annuity company for a single payment (P)
 - The company agrees to pay you an annual benefit (B) for as long as you live

Annuities

- The purpose of buying an annuity is to share risk
 - You pay now and collect benefits as long as you live
 - If you die soon, the company wins
 - If you live long, the company loses
- The company sets the purchase price to break even or come out ahead
 - Examples here deal with "actuarially fair rates", where profit is zero
 - In practice, a margin for profit is added
 - The purchase price ought to depend on the age of the buyer

Annuities and lifetable

- To derive formulas connecting P and B, we imagine all I_x members of a cohort buying annuities at some age x
 - Some members live long
 - Other members don't live as long

- Over the first n years after purchase
 - Cohort members live a total of ${}_{n}L_{x}$ person-years
 - Each one receiving a benefit B each year, for $B(_nL_x)$ in benefits overall

Formula for annuities

Over all future ages, total benefits amount to

$$B_{n}L_{x} + B_{n}L_{x+n} + B_{n}L_{x+2n} + B_{n}L_{x+3n} ... = B_{x}T_{x}$$

• The total purchase amount equals price per person (P) times the number of buyers (I_x)

$$P(I_X)$$

Equating purchase to benefits implies

$$PI_{x} = BT_{x}$$

 $P = BT_{x}/I_{x}$
 $P = Be_{x}$

Need to consider interests

 If an annuity with a benefit \$10,000 a year purchased at age 20 could cost a lot

$$-$$
 If $e_{20} = 50$ years

$$P = B e_{x}$$
 $P = 10,000 * 50$
 $P = 500,000$

- Companies don't charge so much, because
 - They invest money and earn interest while it is waiting to pay future benefits
 - Time elapses between purchase and receipt of benefits

Considering interests

- To consider interest, imagine the company opening a separate bank account for each future n-year period
 - It invests money for early benefits in short-term investments
 - It invests money for distant future in long-term investments
- We calculate annuity price by estimating how much money the company must put into each account at the start
 - In order to have enough money to pay benefits from that account when the time comes

Interests for different accounts

- For the first account, the company has to deposit enough money to pay out benefits $B({}_{n}L_{x})$ on average half-way through the first period
 - This leaves on average about n/2 years for money to grow through compound interest
 - At compound interest, 1 dollar grows to $(1 + i)^{n/2}$ dollars in n/2 years with interest rate i
 - So the company needs to deposit $B_n L_x / (1 + i)^{n/2}$
- For the next account, money can earn interest for an average on n+n/2 years, so the deposit equals

$$B_n L_{x+n} / (1 + i)^{n+n/2}$$

• When the cohort reaches age y, the deposit is

$$B_{n}L_{y}/(1+i)^{y-x+n/2}$$

General formula with interests

The company needs to deposit for all accounts

$$\frac{B_n L_x}{(1+i)^{n/2}} + \frac{B_n L_{x+n}}{(1+i)^{n+n/2}} + \frac{B_n L_{x+2n}}{(1+i)^{2n+n/2}} + \cdots$$

- Lifetables with an open-ended interval starting at a top age xmax introduce a specificity
 - The rule is to replace n/2 with e_{xmax}

$$(1+i)^{n+e_{xmax}}$$

- People alive at the start of the interval will live about e_{xmax} further years

Example with King Edward's children

x	n	ℓ_x	$_{n}q_{x}$	$_{n}d_{x}$	$_{n}a_{x}$	$_{n}L_{x}$	$_{n}m_{x}$	T_{x}	e_{x}	$x + e_x$
0	10	10	0.100	1	0.50	90.5	0.011	334	33.4	33.4
10	10	9	0.333	3	5.33	76.0	0.039	243	27.0	37.0
20	20	6	0.167	1	10.00	110.0	0.009	167	27.8	47.8
40	20	5	0.800	4	9.00	56.0	0.071	57	11.4	51.4
60	∞	1	1.000	1	1.00	1.0	1.000	1	1.0	61.0

 Table 3.2 Children of King Edward III of England

1330–1376	Edward, The Black Prince
1332-1382	Isabel
1335-1348	Joan
1336–?	William of Hatfield (died young)
1338-1368	Lionel of Antwerp, Duke of Clarence
1340-1398	John of Gaunt, Duke of Lancaster
1341-1402	Edmund Langley, Duke of York
1342-1342	Blanche
1344–1362	Mary
1346–1361	Margaret
1355–1397	Thomas of Woodstock, Duke of Gloucester

Example

- Suppose King Edward III had bought annuities with a benefit of £100 a year for all five of his surviving children when they were age 40
 - Interest per year = 10% = 0.1

$$- {}_{20}L_{40} = 56$$
; $n = 20$

$$- _{\infty}L_{60} = 1$$
; $e_{xmax} = 1$

$$\frac{B_n L_x}{(1+i)^{n/2}} + \frac{B_n L_{x+n}}{(1+i)^{n+e_{xmax}}} = \frac{B_{20} L_{40}}{(1+0.1)^{20/2}} + \frac{B_{\infty} L_{60}}{(1+0.1)^{20+1}} =$$

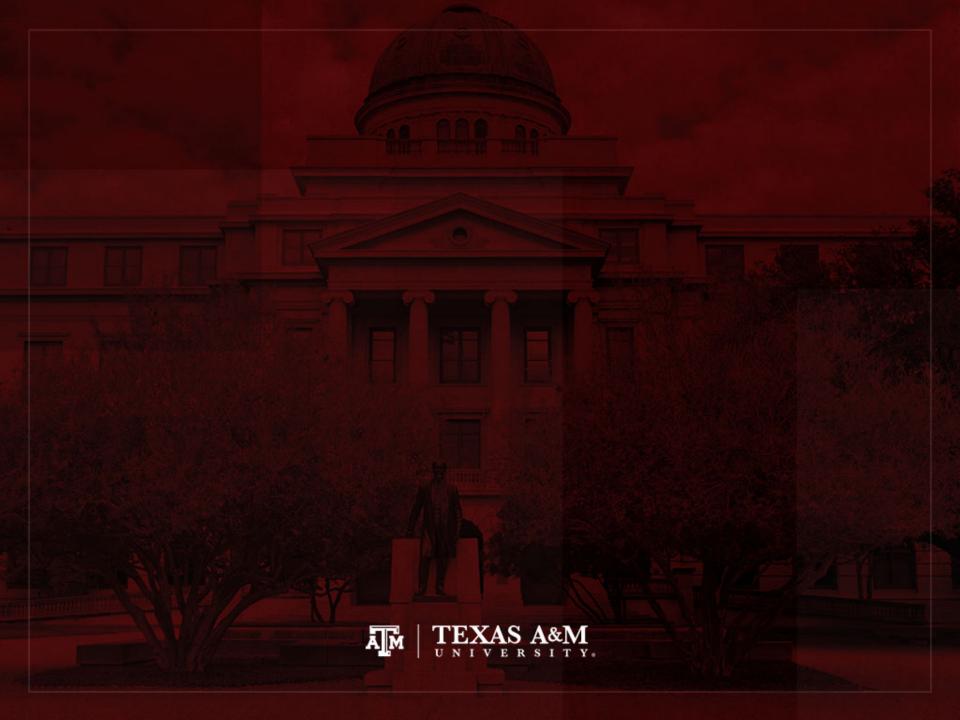
$$\frac{100 * 56}{(1.1)^{10}} + \frac{100 * 1}{(1.1)^{21}} = 2,159 + 13 = 2,172$$

Insurance policies

- Insurance policies resemble annuities
 - But the company promises to pay an amount once when you die, not year by year when you are living
 - The purchase price (P) is paid at the start
 - All formulas are the same as for annuities
 - Except that death to cohort members $({}_{n}d_{x})$ take the place of person-years lived $({}_{n}L_{x})$
- Today companies usually sell term insurance, where the benefit is paid only to cohort members who die in the next year $\binom{1}{d_x}$

Variations

- Annuities may be purchased at age x and start paying benefits only at some later age z
 - This implies that the sum over terms $_{n}L_{y}$ only starts at y=z
- Buyers may have a mix of ages
 - Each age can be treated separately and results added together
- All these calculations require skills with lifetables



Mortality of the 1300s and 2000s

- The lifetable for Edward III's children is informative of mortality in England in the 1300s
 - Even with small sample of unusual people
 - Two anomalies of the data
 - Low level of infant deaths (underregistered)
 - Abbreviated life course after age 60
 - But it shows early female mortality (medieval time)

 It is interesting to think about changes between the 1300s and 2000s...

Changes in infant and old mortality

- Infant and child mortality has dropped dramatically over the last hundred years
 - Death of a baby has become an unusual event
- Life expectancies (affected by infant mortality) are no guide to maximum attained ages
 - Edward III's children lifetable: e_0 = 33.4
 - Edmund Langley lived past 60 (but this was rare)
- Today large numbers of people live active lives into their late 80s and 90s
 - It changes attitudes about what it means to be old

References

Wachter KW. 2014. Essential Demographic Methods. Cambridge: Harvard University Press. Chapter 3 (pp. 48–78).

