Age pyramids

Ernesto F. L. Amaral

November 7, 2019
Demographic Methods (SOCI 320)

Age pyramids

- There is theory to deal with age structure
- It accounts for the relative numbers of young and old men and women in a population
- Basic idea is to obtain formulas for how a population will be theoretically distributed by age
- If population has been closed to migration
- If its birth and death rates have been unchanging for a long time

Actual \neq Theoretical

- The actual age distribution of the population naturally differs from the theoretical age distribution
- Deviations are explained by
- Events of migration
- Changes in rates in the prior history of the population

General and special features

- The age distribution of each population has
- General features
- Which it shares with populations with the same vital rates
- Special features
- Which are derived from its own particular history

Graphical diagrams

- Age pyramid, age distribution, age structure
- They represent the distribution of the population by age and sex
- They are made up of a pair of bar graphs, one for men and one for women, turned on their sides and joined
- The vertical axis corresponds to age
- The young are toward the bottom, the elderly toward the top
- The open-ended age group at the very top is sometimes drawn with a triangle instead of bars
- For each age group
- The bar coming off the axis to the right represents the number of women in that age group
- The bar to the left the number of men

Idealized age pyramids

- Examples of idealized stable pyramids that occur in closed populations with unchanging vital rates
- Tall and slender
- It is a case for a long-lived population with near zero growth
- Quite pyramidal in shape
- It is a case for a population with heavy mortality and rapid growth

Tall and slender

Quite pyramidal in shape

Figure 10.1 Examples of stable age pyramids

Observed age pyramids

- Examples of observed age pyramids
- France in 1960
- It shares overall shape with the low-growth sable case
- But notches among 20 and 40 years of age due to low births during World Wars I and II
- Mauritius in 1963
- It shares overall shape with high-growth stable case
- But indentations at working ages hint at changes around 1945 from increasing growth
- Gains against infant mortality

France, 1960

Mauritius, 1963

Figure 10.2 Examples of observed age pyramids

Idealized \neq Observed

- Stable theory captures general features well
- Observable differences from stable shapes due to each nation's own history
- Changing rates
- Movements across borders

Stable population

- Stable population is any population produced by age-specific rates of fertility and mortality constant over a long period of time
- Its age pyramid is determined uniquely by its lifetable and its long-term growth rate
- Proportions in each age group in a stable population do not change over time
- Numbers in each age group may change over time
- Population may be growing or declining in size
- It depends on what the growth rate happens to be

Stable \neq Stationary

- Stable population
- Rates stay the same
- Population size may change
- Stationary population
- Rates and population size remain the same
- Growth rate is zero
- It is a special case of a stable population
- It satisfies the extra condition of having zero population growth (ZPG)

Little more on stationary

- We can imagine complicated cases in which agespecific rates are changing in ways that cancel each other out
- So that population size remains the same
- Sometimes such a population is called stationary
- But we reserve the word stationary for cases with
- Unchanging rates
- Unchanging size

Stable population theory

- Stable population theory is the mathematical analysis of stable age pyramids
- It is a theory that goes back to the work of Leonhard Euler in 1760
- It was extensively developed by
- Alfred Lotka in the early 1900s
- Nathan Keyfitz and Ansley Coale in the last halfcentury

References

Wachter KW. 2014. Essential Demographic Methods. Cambridge: Harvard University Press. Chapter 10 (pp. 218-249).

