Lecture 07: Measures of central tendency

Ernesto F. L. Amaral

September 21, 2017
Advanced Methods of Social Research (SOCI 420)

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 3 (pp. 66–90).

Chapter learning objectives

- Explain the purposes of measures of central tendency and interpret the information they convey
- Calculate, explain, compare, and contrast the mode, median, and mean
- Explain the mathematical characteristics of the mean
- Select an appropriate measure of central tendency according to level of measurement and skew

Measures of central tendency

- Univariate descriptive statistics
 - Summarize information about the most typical, central, or common score of a variable
- Mode, median, and mean are different statistics and have same value only in certain situations
 - Mode: most common score
 - Median: score of the middle case
 - Mean: average score
- They vary in terms of
 - Level-of-measurement considerations
 - How they define central tendency

Mode

The most common score

Can be used with variables at all three levels of measurement

Most often used with nominal-level variables

Finding the mode

Count the number of times each score occurred

The score that occurs most often is the mode

- If the variable is presented in a frequency distribution, the mode is the largest category
- If the variable is presented in a line chart, the mode is the highest peak

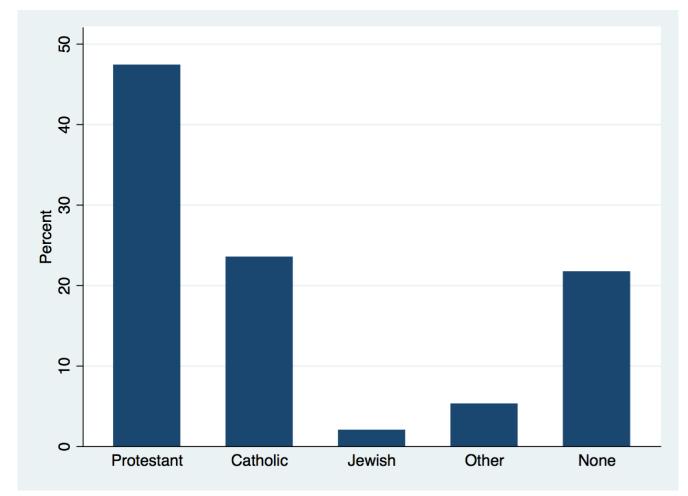
Example of mode

Top ten U.S. cities visited by overseas travelers, 2010

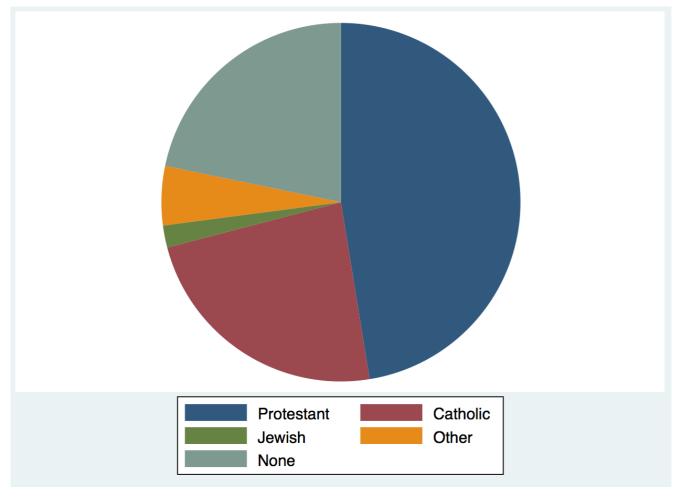
City	Number of visitors
Boston	1,186,000
Chicago	1,134,000
Las Vegas	2,425,000
Los Angeles	3,348,000
Miami	3,111,000
New York City	8,462,000
Oahu / Honolulu	1,634,000
Orlando	2,750,000
San Francisco	2,636,000
Washington, D.C.	1,740,000

Source: Healey 2015, p.67.

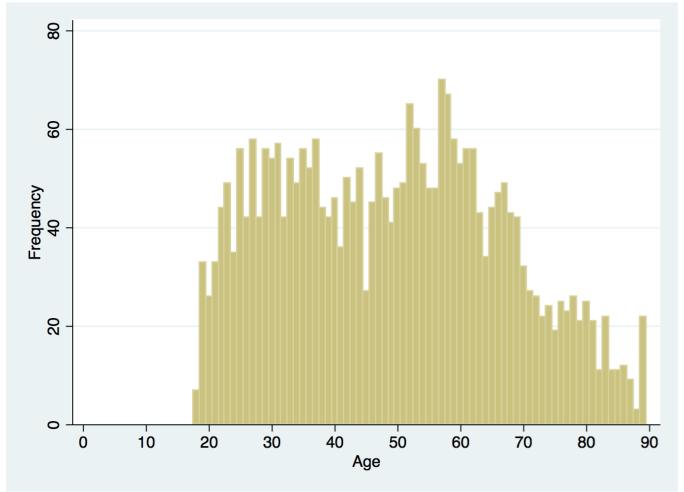
Religious preference, U.S. adult population, 2016



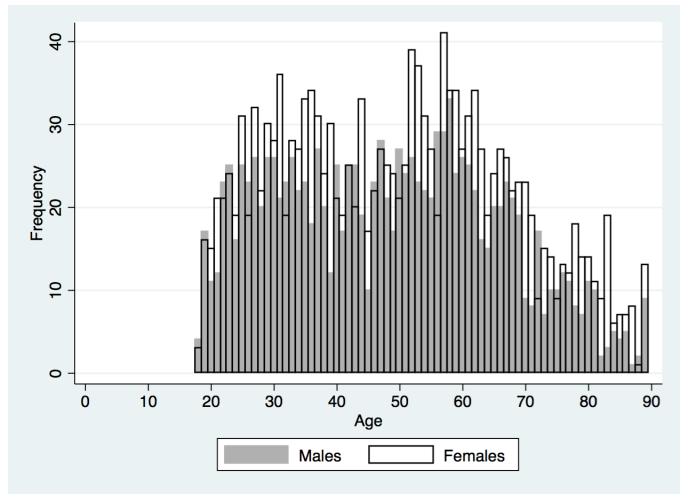
Religious preference, U.S. adult population, 2016



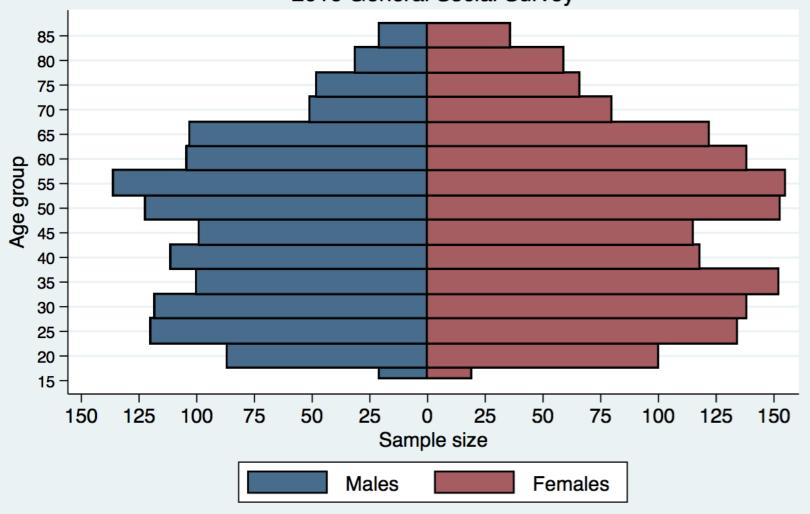
Age distribution, U.S. adult population, 2016



Age distribution by sex, U.S. adult population, 2016



Age-sex structure, United States 2016 General Social Survey



Limitations of mode

- Some distributions have no mode
- Some distributions have multiple modes

Distributions of scores on two tests

Score (% correct)	Test A Frequency of scores	Test B Frequency of scores
97	14	22
91	14	3
90	14	4
86	14	22
77	14	3
60	14	22
55	14	22
Total	98	98

Source: Healey 2015, p.68.

Limitations of mode

 The mode of an ordinal or interval-ratio level variable may not be central to the whole distribution

A distribution of test sc	Α	distrib	ution	of to	est s	cores
---------------------------	---	---------	-------	-------	-------	-------

Score (% correct)	Frequency
93	8
68	3
67	4
66	2
62	7
Total	24

Source: Healey 2015, p.68.

Median

 The median (Md) is the exact center of distribution of scores

The score of the middle case

 It can be used with ordinal-level or interval-ratiolevel variables

It cannot be used for nominal-level variables

Finding the median

- Arrange the cases from low to high
 - Or from high to low
- Locate the middle case
- If the number of cases (N) is odd
 - The median is the score of the middle case
- If the number of cases (N) is even
 - The median is the average of the scores of the two middle cases

Example of median

Finding the median with seven cases (*N* is odd)

Case	Score	
A	10	
В	10	
С	8	
D	7	← Median = <i>Md</i>
Е	5	
F	4	
G	2	

Source: Healey 2015, p.69.

Example of median

Finding the median with eight cases (N is even)

Case	Score	
Α	10	
В	10	
С	8	
D	7	
		← Median = <i>Md</i> = (7+5) / 2 = 6
E	5	
F	4	
G	2	
Н	1	

Source: Healey 2015, p.69.

Other measures of position

- Percentiles
 - Point below which a specific percentage of cases fall
- Deciles
 - Divides distribution into tenths (10, 20, 30, ..., 90)
- Quartiles
 - Divides distribution into quarters (25, 50, 75)
- The median falls at the 50th percentile or the 5th decile or the 2nd quartile

Manual calculation

- Arrange scores in order from low to high
- Multiply the number of cases (N) by the proportional value of the percentile
 - For example: the 75th percentile would be 0.75
- The resultant value marks the order number of the case that falls at the percentile

Examples of manual calculation

- In a sample of 70 test grades we want to find the 4th decile (or 40th percentile)
 - $-70 \times 0.40 = 28$
 - The 28th case is the 40th percentile
- In a sample of 70 test grades we want to find the 3rd quartile (or 75th percentile)
 - $-70 \times 0.75 = 52.5$, rounding to 53
 - The 53rd case is the 75th percentile

Example: 2016 GSS in Stata

• 75% of the population is younger than 60 years sum age [aweight=wtssall], d

age of respondent

	Percentiles	Smallest		
1%	19	18		
5%	21	18		
10%	24	18	0bs	2,857
25%	33	18	Sum of Wgt.	2,855.4791
50%	47		Mean	47.56141
		Largest	Std. Dev.	17.58891
75%	60	89		
90%	72	89	Variance	309.3698
95%	78	89	Skewness	.2328772
99%	86	89	Kurtosis	2.161393

Example: 2016 GSS in Stata

 The "centile" command allows us to estimate any percentile, but weights are not allowed centile age, centile (37)

37% of the sample is younger than 41 years

Conf. Interval]	[95% Conf.	Centile 	Percentile	Obs	Variable
40 42	40	41	37	2,857	age

Mean

- The average score
- Requires variables measured at the interval-ratio level, but is often used with ordinal-level variables
- Cannot be used for nominal-level variables
- The mean (arithmetic average) is by far the most commonly used measure of central tendency

Finding the mean

- Add all of the scores and then divide by the number of scores (N)
- The mathematical formula for the mean is

$$\bar{X} = \frac{\sum (X_i)}{N}$$

where \overline{X} = the mean $\Sigma(X_i)$ = the summation of the scores N = the number of cases

Examples of mean, 2016 GSS

Mean income by sex

table sex [aweight=wtssall], c(mean conrinc)

Sex	Mean income
Male	41,282.78
Female	28,109.34
Overall	34,649.30

Mean income by race/ethnicity

table raceeth [aweight=wtssall], c(mean conrinc)

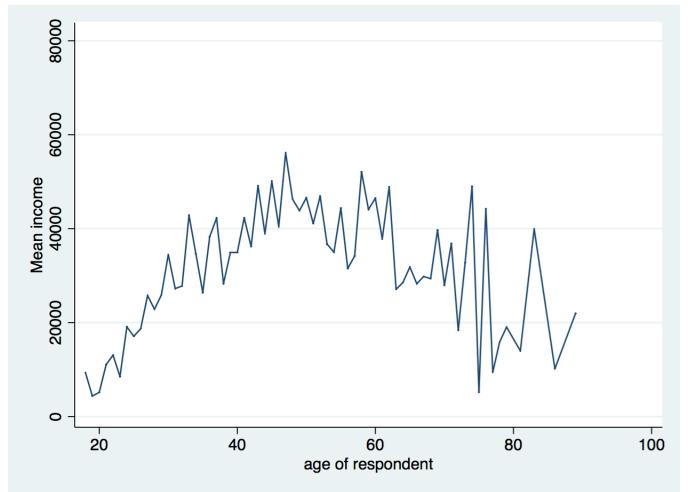
Race/ethnicity	Mean income
Non-Hispanic white	38,845.62
Non-Hispanic black	23,243.04
Hispanic	23,128.92
Other	50,156.35
Overall	34,649.30

Mean income by age-group

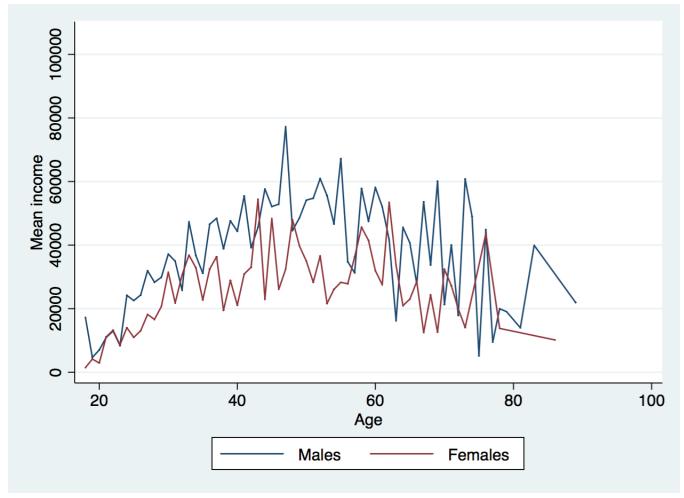
table agegr1 [aweight=wtssall], c(mean conrinc)

Age group	Mean income
18–24	11,214.16
25–44	32,863.93
45–64	42,552.21
65–89	30,848.29
Overall	34,649.30

Mean income by age, U.S. adult population, 2016



Mean income by age and sex, U.S. adult population, 2016



Three characteristics of the mean

- Mean balances all the scores in a distribution
 - All scores cancel out around the mean

$$\sum (X_i - \bar{X}) = 0$$

 Mean minimizes the variation of the scores, "least squares principle"

$$\sum (X_i - \bar{X})^2 = minimum$$

- Mean is affected by all scores
 - All scores are used in the calculation of the mean
 - It can be misleading if the distribution has "outliers" A

Mean balances all the scores

A demonstration showing that all scores cancel out around the mean

X_i	$X_i - \overline{X}$
65	65 - 78 = -13
73	73 - 78 = -5
77	77 – 78 = –1
85	85 - 78 = 7
90	90 - 78 = 12
$\sum_{i} (X_i) = 390$ $\overline{X} = 390 / 5 = 78$	$\sum (X_i - \overline{X}) = 0$

Source: Healey 2015, p.74.

Mean minimizes variation

- A demonstration showing that the mean is the point of minimized variation
 - If we performed these operations with any number other than the mean (e.g., 77), the result would be a sum greater than 388

X_i	$X_i - \overline{X}$	$(X_i - \overline{X})^2$	$(X_i - 77)^2$
65	65 – 78 = –13	$(-13)^2 = 169$	$(65-77)^2 = (-12)^2 = 144$
73	73 - 78 = -5	$(-5)^2 = 25$	$(73 - 77)^2 = (-4)^2 = 16$
77	77 – 78 = –1	$(-1)^2 = 1$	$(77 - 77)^2 = (0)^2 = 0$
85	85 - 78 = 7	$(7)^2 = 49$	$(85 - 77)^2 = (8)^2 = 64$
90	90 - 78 = 12	$(12)^2 = 144$	$(90 - 77)^2 = (13)^2 = 169$
$\sum (X_i) = 390$	$\sum (X_i - \overline{X}) = 0$	$\sum (X_i - \overline{X})^2 = 388$	$\sum (X_i - 77)^2 = 393$
\overline{X} = 78			

Source: Healey 2015, p.75.

Mean is affected by all scores

 A demonstration showing that the mean is affected by every score

Scores	Measures of central tendency	Scores	Measures of central tendency	Scores	Measures of central tendency
15	Mean = 25	15	Mean = 718	0	Mean = 22
20		20		20	
25	Median = 25	25	Median = 25	25	Median = 25
30		30		30	
35		3500		35	

Source: Healey 2015, p.76.

Mean is affected by all scores

- Strength
- The mean uses all the available information from the variable

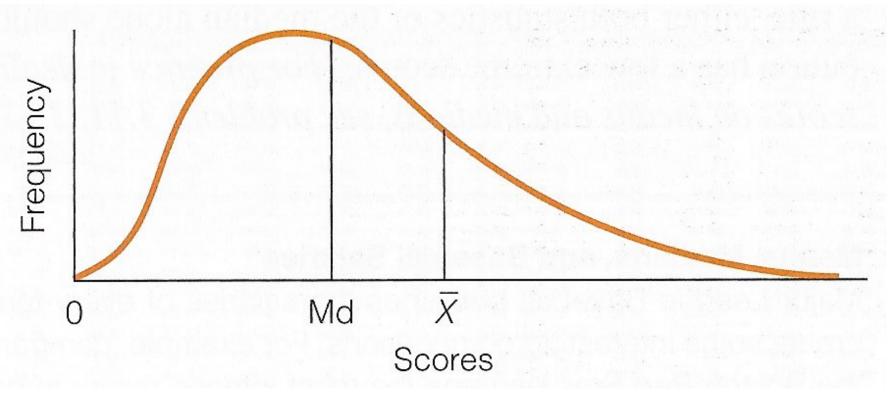
- Weaknesses
- The mean is affected by every score
- If there are some very high or low scores
 - Extreme scores: "outliers"
 - The mean may be misleading
 - This is the case of skewed distributions

Skewed distributions

- When a distribution has a few very high or low scores, the mean will be pulled in the direction of the extreme scores
- For a positive skew
 - The mean will be greater than the median
- For a negative skew
 - The mean will be less than the median
- When an interval-ratio-level variable has a pronounced skew, the median may be the more trustworthy measure of central tendency

Positively skewed distribution

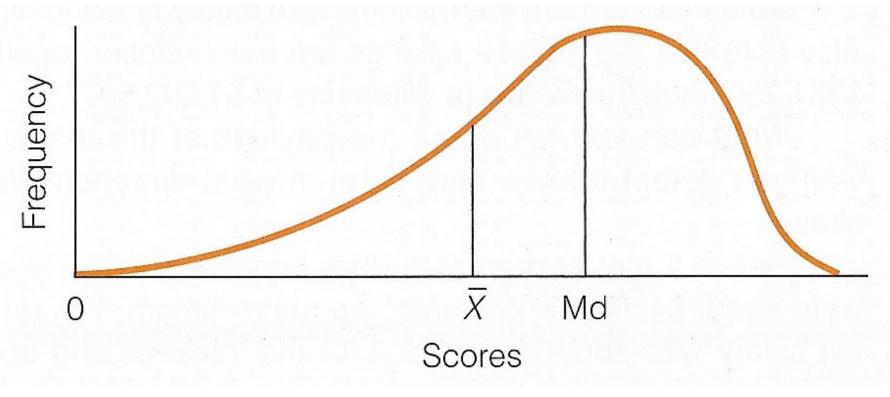
The mean is greater in value than the median



Source: Healey 2015, p.77.

Negatively skewed distribution

The mean is less than the median



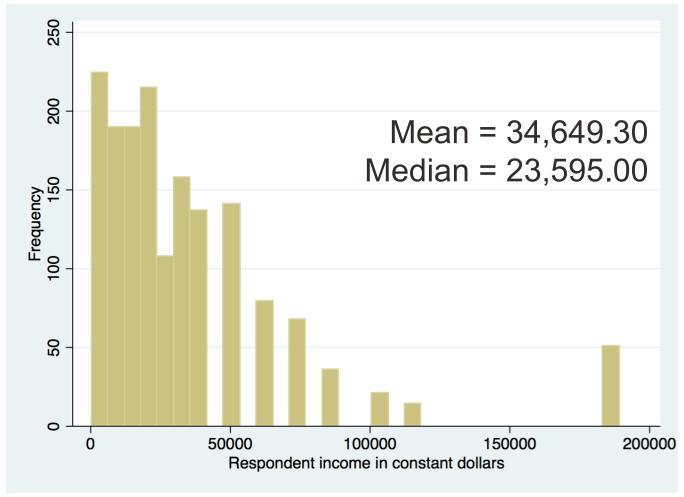
Source: Healey 2015, p.77.

Symmetrical distribution

The mean and median are equal



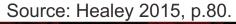
Income distribution, U.S. adult population, 2016



Level of measurement

- Relationship between level of measurement and measures of central tendency
 - YES: most appropriate measure for each level
 - Yes: measure is also permitted
 - Yes (?): mean is often used with ordinal-level variables, but this practice violates level-ofmeasurement guidelines
 - No: cannot be computed for that level

Measure	Level of measurement			
of central tendency	Nominal	Ordinal	Interval-ratio	
Mode	YES	Yes	Yes	
Median	No	YES	Yes	
Mean	No	Yes (?)	YES	



Summary to choose measure

Use the mode when:	1. The variable is measured at the nominal level.		
	2. You want a quick and easy measure for ordinal- and interval-ratio-level variables.		
	3. You want to report the most common score.		
Use the median when:	1. The variable is measured at the ordinal level.		
	2. An interval-ratio variable is badly skewed.		
	You want to report the central score. The median always lies at the exact center of the distribution.		
Use the mean when:	1. The variable is measured at the interval-ratio level (except when the variable is badly skewed).		
	2. You want to report the typical score. The mean is the statistics that exactly balances all of the scores.		
	You anticipate additional statistical analysis		
Source: Healey 2015, p.81.	ĀM		

