# Lecture 08: Measures of dispersion

## **Ernesto F. L. Amaral**

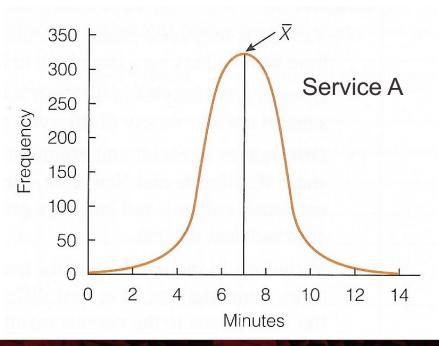
September 26, 2017
Advanced Methods of Social Research (SOCI 420)

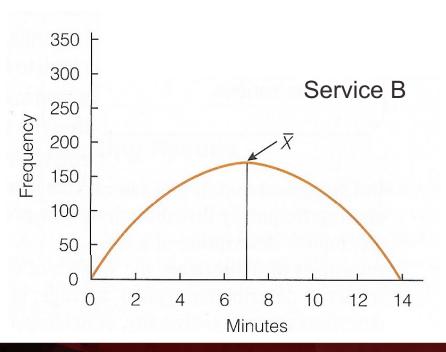
Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 4 (pp. 91–121).



# Chapter learning objectives

- Explain the purpose of measures of dispersion
- Compute and interpret these measures
  - Range (R), interquartile range (Q or IQR)
  - Standard deviation (s), variance ( $s^2$ )
- Select an appropriate measure of dispersion and correctly calculate and interpret the statistic
- Describe and explain the mathematical characteristics of the standard deviation
- Analyze a boxplot





## Concept of dispersion

- Dispersion refers to the variety, diversity, or amount of variation among scores
- The greater the dispersion of a variable, the greater the range of scores and the greater the differences between scores
- Examples
  - Typically, a large city will have more diversity than a small town
  - Some states (California, New York) are more racially diverse than others (Maine, Iowa)

## Ambulance assistance

- Examples below have similar means
  - 7.4 minutes for service A and 7.6 minutes for service B
- Service A is more consistent in its response
  - Less dispersion than service B





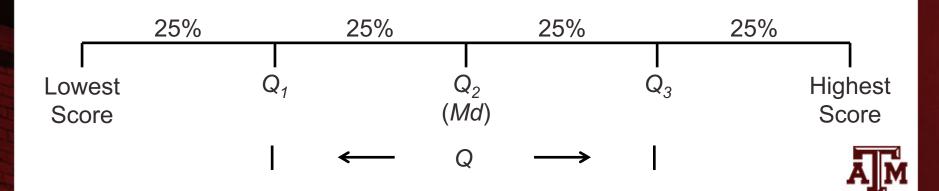
# Range (R)

- Range indicates the distance between the highest and lowest scores in a distribution
- Range (R) = Highest Score Lowest Score
- Quick and easy indication of variability
- Can be used with ordinal-level or interval-ratiolevel variables
- Why can't the range be used with variables measured at the nominal level?
  - For these variables, use frequency distributions to analyze dispersion



## Limitations of range

Range is based on only two scores


- It is distorted by atypically high or low scores
  - Influenced by outliers

 No information about variation between high and low scores



# Interquartile range (Q or IQR)

- A type of range measure
  - Considers only the middle 50% of the cases in a distribution
- Avoids some of the problems of the range by focusing on just the middle 50% of scores
  - Avoids the influence of outliers



# Limitation of interquartile range

The interquartile range is based on only two scores

- It fails to yield any information from all of the other scores
  - Based only on  $Q_1$  and  $Q_3$



## Birth rates for 40 nations, 2012

(number of births per 1000 population)

| Rank         | Nation     | Birth rate | Rank       | Nation         | Birth rate |
|--------------|------------|------------|------------|----------------|------------|
| 40 (highest) | Niger      | 46         | 20         | Libya          | 23         |
| 39           | Uganda     | 45         | 19         | India          | 22         |
| 38           | Malawi     | 43         | 18         | Venezuela      | 21         |
| 37           | Angola     | 42         | 17         | Mexico         | 20         |
| 36           | Mozambique | 42         | 16         | Colombia       | 19         |
| 35           | Tanzania   | 41         | 15         | Kuwait         | 18         |
| 34           | Nigeria    | 40         | 14         | Vietnam        | 17         |
| 33           | Guinea     | 39         | 13         | Ireland        | 16         |
| 32           | Senegal    | 38         | 12         | Chile          | 15         |
| 31           | Togo       | 36         | 11         | Australia      | 14         |
| 30           | Kenya      | 35         | 10         | United States  | 13         |
| 29           | Ethiopia   | 34         | 9          | United Kingdom | 13         |
| 28           | Rwanda     | 33         | 8          | Russia         | 13         |
| 27           | Ghana      | 32         | 7          | France         | 13         |
| 26           | Guatemala  | 29         | 6          | China          | 12         |
| 25           | Pakistan   | 28         | 5          | Canada         | 11         |
| 24           | Haiti      | 27         | 4          | Spain          | 10         |
| 26           | Cambodia   | 26         | 3          | Japan          | 9          |
| 22           | Egypt      | 25         | 2          | Italy          | 9          |
| 21           | Syria      | 24         | 1 (lowest) | Germany        | 8          |

## Examples of R and IQR

Range = Highest score – Lowest score = 46 – 8 = 38

- Interquartile range (IQR)
  - Locate  $Q_3$  (75th percentile) and  $Q_1$  (25th percentile)
  - $Q_3$ : 0.75 x 40 = 30th case
    - Kenya is the 30th case with a birth rate of 35
  - $Q_1$ : 0.25 x 40 = 10th case
    - United States is the 10th case with a birth rate of 13
  - Difference of these values is interquartile range
    - IQR = Q3 Q1 = 35 13 = 22



## Standard deviation

- The most important and widely used measure of dispersion
  - It should be used with interval-ratio-level variables,
     but is often used with ordinal-level variables
- Good measure of dispersion
  - Uses all scores in the distribution
  - Describes the average or typical deviation of the scores
  - Increases in value as the distribution of scores becomes more diverse



# Interpreting standard deviation

 It is an index of variability that increases in value as the distribution becomes more variable

It allows us to compare distributions

- It can be interpreted in terms of normal deviation
  - We will discuss on Chapter 5



## Formulas

- Standard deviation and variance are based on the distance between each score and the mean
- Formula for variance

$$s^2 = \frac{\sum (X_i - \bar{X})^2}{N}$$

Formula for standard deviation

$$s = \sqrt{\frac{\sum (X_i - \bar{X})^2}{N}}$$



# Step-by-step calculation of s

- Subtract mean from each score:  $(X_i \bar{X})$
- Square the deviations:  $(X_i \bar{X})^2$
- Sum the squared deviations:  $\sum (X_i \bar{X})^2$
- Divide the sum of squared deviations by N:

$$\frac{\sum (X_i - \bar{X})^2}{N}$$

Square root brings value back to original unit:

$$\sqrt{\frac{\sum (X_i - \bar{X})^2}{N}}$$



|              | THE PARTY OF THE P |                                            |                                                                  |                            |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------|----------------------------|
| Sn           | Age $(X_i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $X_i - \overline{X}$                       | $(X_i - \overline{X})^2$                                         |                            |
| campus       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 – 19 = –1                               | $(-1)^2 = 1$                                                     |                            |
| car          | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 – 19 = 0                                | $(0)^2 = 0$                                                      |                            |
|              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 – 19 = 1                                | $(1)^2 = 1$                                                      | This residential           |
| nti          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 – 19 = –1                               | $(-1)^2 = 1$                                                     |                            |
| ide          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 – 19 = 1                                | $(1)^2 = 1$                                                      | campus is less             |
| Residential  | $\sum (X_i) = 95$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sum (X_i - \overline{X}) = 0$            | $\sum (X_i - \overline{X})^2 = 4$                                | diverse with               |
|              | $\overline{X}$ = 95/5 = 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | $\sim -\sqrt{4/E} - 0.00$                                        |                            |
|              | A = 93/3 = 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | $s = \sqrt{4/5} = 0.89$                                          |                            |
|              | A - 93/3 - 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | $S = \sqrt{4/5} = 0.89$                                          | respect to age             |
|              | Age $(X_i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $X_i - \overline{X}$                       | $S = \sqrt{4/5} = 0.89$ $(X_i - \overline{X})^2$                 |                            |
| sn           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $X_i - \overline{X}$ $20 - 23 = -3$        | · ·                                                              | respect to age (s=0.9)     |
| sndu         | Age (X <sub>i</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                   | $(X_i - \overline{X})^2$                                         | •                          |
| campus       | <b>Age (</b> <i>X</i> <sub><i>i</i></sub> <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 – 23 = –3                               | $(X_i - \overline{X})^2$ $(-3)^2 = 9$                            | (s=0.9)<br>than this urban |
| an campus    | Age (X <sub>i</sub> ) 20 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 - 23 = -3 $22 - 23 = -1$                | $(X_i - \overline{X})^2$ $(-3)^2 = 9$ $(-1)^2 = 1$               | (s=0.9)                    |
| Urban campus | Age (X <sub>i</sub> ) 20 22 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20 - 23 = -3 $22 - 23 = -1$ $18 - 23 = -5$ | $(X_i - \overline{X})^2$ $(-3)^2 = 9$ $(-1)^2 = 1$ $(-5)^2 = 25$ | (s=0.9)<br>than this urban |

 $\sum (X_i - \overline{X}) = \mathbf{0}$ 

 $s = \sqrt{88/5} = 4.20$ 

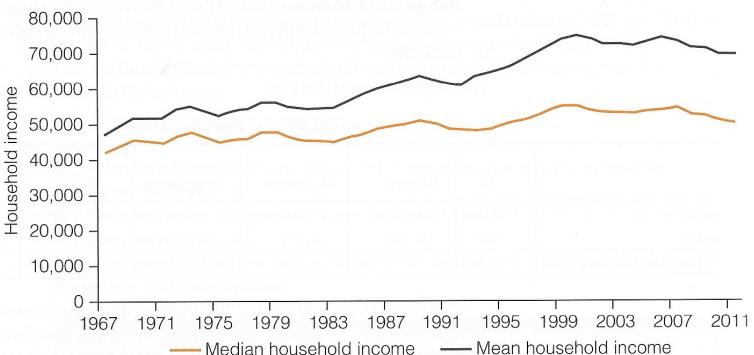
 $\sum (X_i - \overline{X})^2 = 88$ 



 $\sum (X_i) = 115$ 

 $\overline{X}$  = 115/5 = 23

Homicides per 100,000 population

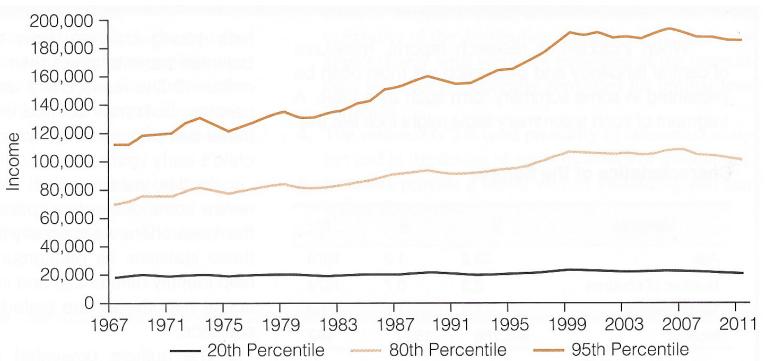

| es      | State         | Homicide rate         | Deviation                       | Deviation squared                    |
|---------|---------------|-----------------------|---------------------------------|--------------------------------------|
| state   | Connecticut   | 3.6                   | 0.88                            | 0.77                                 |
|         | Massachusetts | 3.2                   | 0.48                            | 0.23                                 |
| England | Rhode Island  | 2.8                   | 0.08                            | 0.01                                 |
|         | Vermont       | 2.2                   | -0.52                           | 0.27                                 |
|         | Maine         | 1.8                   | -0.92                           | 0.85                                 |
| New     |               | $\sum (X_i) = 13.6$   | $\sum (X_i - \overline{X}) = 0$ | $\sum (X_i - \overline{X})^2 = 2.13$ |
| Z       |               | $\overline{X} = 2.72$ |                                 | $s = \sqrt{2.13/5} = 0.66$           |
|         |               |                       |                                 |                                      |

|        | State      | Homicide rate                             | Deviation                       | Deviation squared                                                 |
|--------|------------|-------------------------------------------|---------------------------------|-------------------------------------------------------------------|
| tes    | Arizona    | 6.4                                       | 2.02                            | 4.08                                                              |
| stat   | Nevada     | 5.9                                       | 1.52                            | 2.31                                                              |
| S      | California | 4.9                                       | 0.52                            | 0.27                                                              |
| teri   | Oregon     | 2.4                                       | -1.98                           | 3.92                                                              |
| Wester | Washington | 2.3                                       | -2.08                           | 4.33                                                              |
| >      |            | $\sum (X_i) = 21.9$ $\overline{X} = 4.38$ | $\sum (X_i - \overline{X}) = 0$ | $\sum (X_i - \overline{X})^2 = 14.91$ $s = \sqrt{14.91/5} = 1.73$ |

# Income: Central tendency

- Median
  - Increases in income of the average American household
- Mean
  - Increases in average income for all American households

## Median and mean household incomes, United States, 1967-2011






# Income: Dispersion increased

- The increase was not shared equally
  - Low-income households: no growth
  - High-income households: robust increases

Percentiles of household income, United States, 1967–2011





## Reporting measures

- Measures of central tendency (e.g., mean) and dispersion (e.g., standard deviation)
  - Valuable descriptive statistics
  - Basis for many analytical techniques
  - Most often presented in some summary table

## **Characteristics of the sample**

| Variable            | Mean   | Standard deviation | Number of cases |  |
|---------------------|--------|--------------------|-----------------|--|
| Age                 | 33.2   | 1.3                | 1078            |  |
| Number of children  | 2.3    | 0.7                | 1078            |  |
| Years married       | 7.8    | 1.5                | 1052            |  |
| Income (in dollars) | 55,786 | 1,500              | 987             |  |

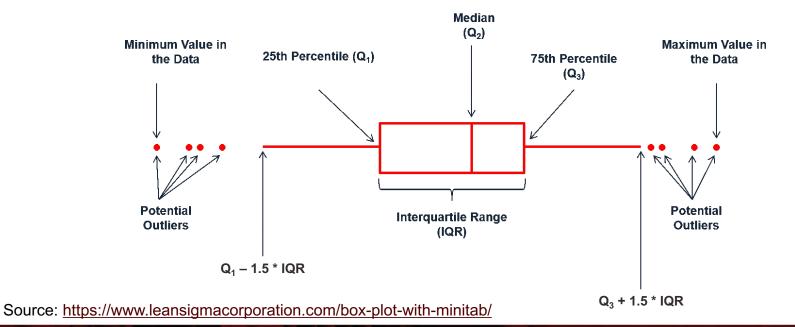
Source: Healey 2015, p.110.



## Parental engagement

- Means and standard deviations for number of days per week each parent engaged with child
  - How does maternal engagement compare to paternal engagement?
  - How does married engagement compare to cohabiting engagement?
  - How does engagement change over time?

## Parental engagement by age of child, gender, and marital status


|                | Mate      | rnal e | ngager                 | nent | Paternal engagement |      |           |      |
|----------------|-----------|--------|------------------------|------|---------------------|------|-----------|------|
| Marital status | 1 yea     | ar old | 3 years old 1 year old |      | 3 years old         |      |           |      |
|                | $\bar{X}$ | S      | $\bar{X}$              | S    | $\bar{X}$           | S    | $\bar{X}$ | S    |
| Married        | 5.30      | 1.40   | 4.95                   | 1.33 | 4.64                | 1.75 | 4.01      | 1.43 |
| Cohabiting     | 5.23      | 1.36   | 4.86                   | 1.38 | 4.67                | 1.58 | 4.04      | 1.53 |

Source: Healey 2015, p.110.



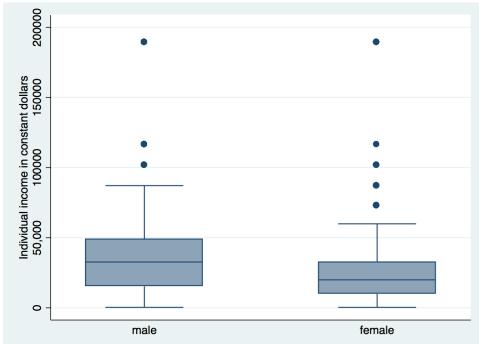
## Boxplots

- Boxplot is also known as "box and whiskers plot"
  - It provides a way to visualize and analyze dispersion
  - Useful when comparing distributions
  - It uses median, range, interquartile range, outliers
  - Easier to read all this information than in tables





## Income by sex, 2016


| Statistics for individual income | Male       | Female     |
|----------------------------------|------------|------------|
| Lowest score                     | 363.00     | 363.00     |
| Q1                               | 15,427.50  | 9,982.50   |
| Median                           | 32,670.00  | 19,965.00  |
| Q3                               | 49,005.00  | 32,670.00  |
| Highest score                    | 189,211.46 | 189,211.46 |
| IQR                              | 33,577.50  | 22,687.50  |
| Standard deviation               | 41,295.31  | 30,201.87  |
| Mean                             | 41,282.78  | 28,109.34  |

#### **Commands in Stata**

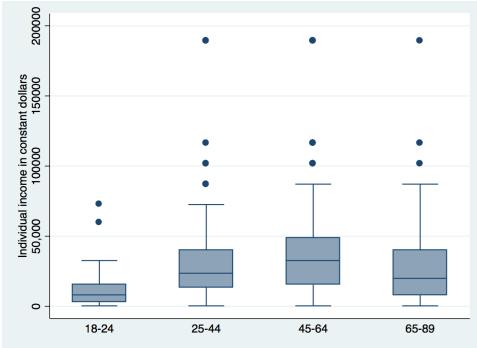
table sex [aweight=wtssall], c(min
conrinc p25 conrinc p50 conrinc p75
conrinc max conrinc)

table sex [aweight=wtssall], c(iqr
conrinc sd conrinc mean conrinc)

graph box conrinc [aweight=wtssall],
over(sex) ytitle(Individual income in
constant dollars)



# Income by age group, 2016


| Statistics for individual income | 18–24     | 25–44      | 45–64      | 65–89      |
|----------------------------------|-----------|------------|------------|------------|
| Lowest score                     | 363.00    | 363.00     | 363.00     | 363.00     |
| Q1                               | 3,267.00  | 13,612.50  | 15,427.50  | 8,167.50   |
| Median                           | 8,167.50  | 23,595.00  | 32,670.00  | 19,965.00  |
| Q3                               | 15,427.50 | 39,930.00  | 49,005.00  | 39,930.00  |
| Highest score                    | 72,600.00 | 189,211.46 | 189,211.46 | 189,211.46 |
| IQR                              | 12,160.50 | 26,317.50  | 33,577.50  | 31,762.50  |
| Standard deviation               | 11,787.32 | 33,269.47  | 41,486.09  | 33,303.36  |
| Mean                             | 11,214.16 | 32,863.93  | 42,552.21  | 30,848.29  |

### **Commands in Stata**

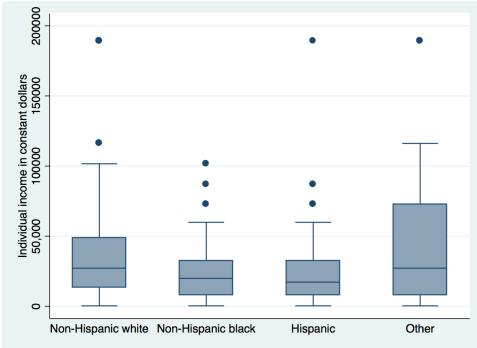
table agegr1 [aweight=wtssall], c(min conrinc p25 conrinc p50 conrinc p75 conrinc max conrinc)

table agegr1 [aweight=wtssall], c(iqr
conrinc sd conrinc mean conrinc)

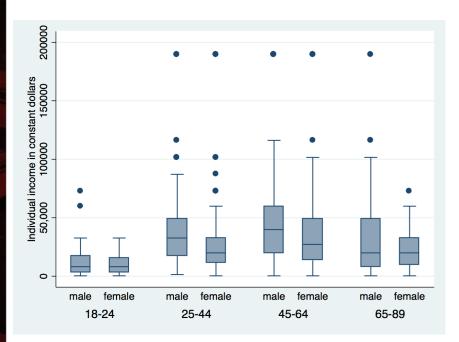
graph box conrinc [aweight=wtssall],
over(agegr1) ytitle(Individual income in
constant dollars)

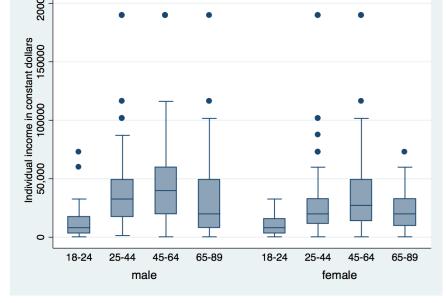


## Income by race/ethnicity, 2016


| Statistics for individual income | Non-Hispanic<br>white | Non-Hispanic<br>black | Hispanic   | Other      |
|----------------------------------|-----------------------|-----------------------|------------|------------|
| Lowest score                     | 363.00                | 363.00                | 363.00     | 363.00     |
| Q1                               | 13,612.50             | 8,167.50              | 8,167.50   | 8,167.50   |
| Median                           | 27,225.00             | 19,965.00             | 17,242.50  | 27,225.00  |
| Q3                               | 49,005.00             | 32,670.00             | 32,670.00  | 72,600.00  |
| Highest score                    | 189,211.46            | 101,640.00            | 189,211.46 | 189,211.46 |
| IQR                              | 35,392.50             | 24,502.50             | 24,502.50  | 64,432.50  |
| Standard deviation               | 39,157.17             | 19,671.53             | 21,406.31  | 59,219.90  |
| Mean                             | 38,845.62             | 23,243.04             | 23,128.92  | 50,156.35  |

### **Commands in Stata**


table raceeth [aweight=wtssall], c(min conrinc p25 conrinc p50 conrinc p75 conrinc max conrinc)


table raceeth [aweight=wtssall], c(iqr
conrinc sd conrinc mean conrinc)

graph box conrinc [aweight=wtssall],
over(raceeth) ytitle(Individual income
in constant dollars)

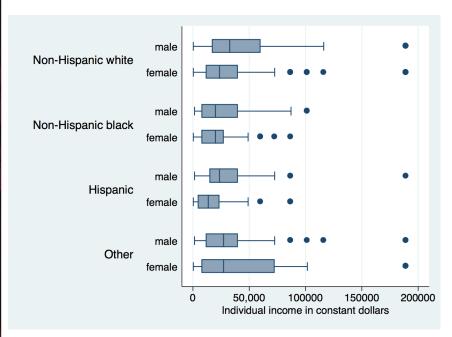


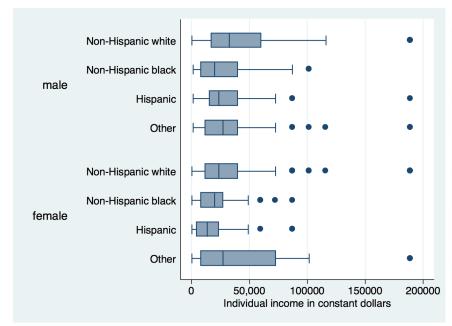
# Income by sex and age group, 2016





### **Command in Stata**


graph box conrinc [aweight=wtssall],
over(sex) over(agegr1) ytitle(Individual
income in constant dollars)


### **Command in Stata**

graph box conrinc [aweight=wtssall],
over(agegr1) over(sex) ytitle(Individual
income in constant dollars)



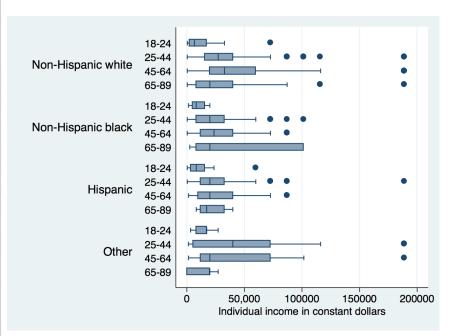
# Income by sex and race/ethnicity, 2016

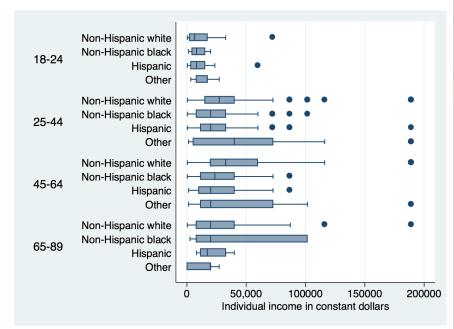




#### **Command in Stata**

graph hbox conrinc [aweight=wtssall],
over(sex) over(raceeth)
ytitle(Individual income in constant
dollars)


Source: 2016 General Social Survey.


#### **Command in Stata**

graph hbox conrinc [aweight=wtssall],
over(raceeth) over(sex)
ytitle(Individual income in constant
dollars)



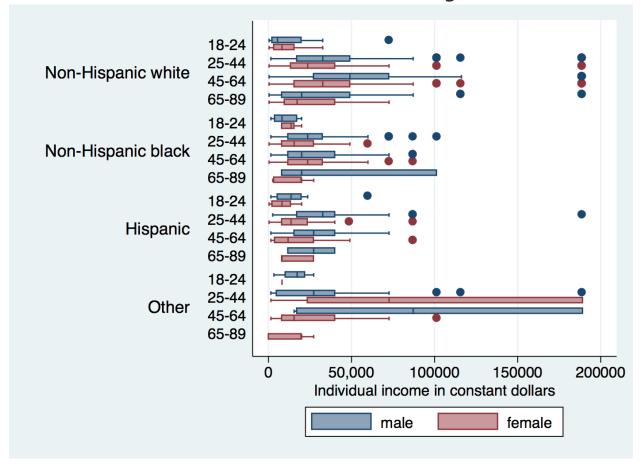
# Income by age group and race/ethnicity, 2016





### **Command in Stata**

graph hbox conrinc [aweight=wtssall],
over(agegr1) over(raceeth)
ytitle(Individual income in constant
dollars)


Source: 2016 General Social Survey.

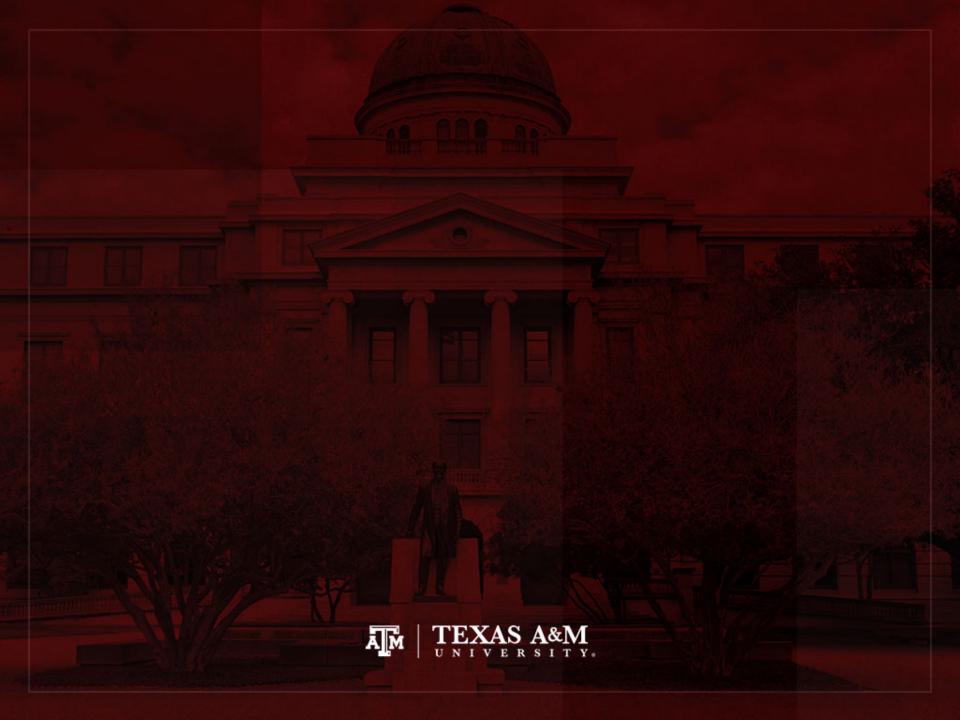
#### **Command in Stata**

graph hbox conrinc [aweight=wtssall],
over(raceeth) over(agegr1)
ytitle(Individual income in constant
dollars)



# Income by sex, age group, and race/ethnicity, 2016




graph hbox conrinc [aweight=wtssall], over(sex) over(agegr1) over(raceeth)
ytitle(Individual income in constant dollars)



## Summary

- Measures of dispersions are higher for more diverse groups
  - Larger samples and populations
- Measures of dispersions decrease, as diversity or variety decreases
  - Smaller samples and more homogeneous groups
- The lowest possible value for range and standard deviation is zero
  - In this case, there is no dispersion



