Lecture 23: Elaborating bivariate tables

Ernesto F. L. Amaral

November 16, 2017 Advanced Methods of Social Research (SOCI 420)

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 14 (pp. 380–404).

Chapter learning objectives

- Explain the purpose of multivariate analysis in terms of observing the effect of a control variable
- Construct and interpret partial tables
- Compute and interpret partial measures of association
- Recognize and interpret direct, spurious or intervening, and interactive relationships
- Compute and interpret partial gamma
- Explain limitations of elaborating bivariate tables

Controlling for a third variable

- Social science research projects are multivariate
- One way to conduct multivariate analysis is to observe the effect of third variables, one at a time, on a bivariate correlation
- The elaboration technique extends the analysis of bivariate tables and associations

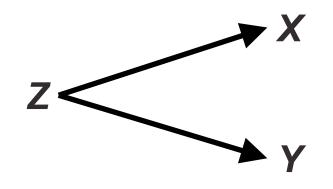
Partial tables

- We observe how a control variable (*Z*) affects the relationship between *X* and *Y*
- To control for a third variable, the bivariate relationship is reconstructed for each value of the control variable
- Tables that display the relationship between X and Y for each value of Z (a third variable) are called partial tables

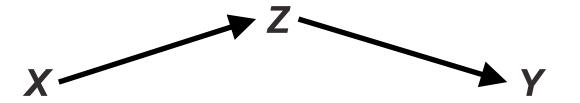
Focus on three basic patterns

- Direct relationships
- Spurious or intervening relationships
- Interaction

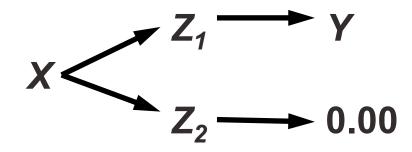
Direct relationships

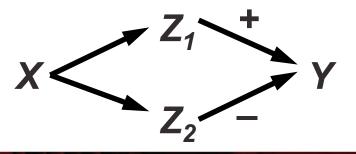

- In a direct relationship, the control variable has little effect on the relationship between *X* and *Y*
- The column percentages and Gammas in the partial tables are about the same as the bivariate table
- This outcome supports the argument that *X* causes *Y*
- Also referred to as replication

Spurious relationships


- In a spurious relationship, X and Y are not related, both are caused by Z
- In a spurious relationship, the Gammas in the partial tables are dramatically lower than the gamma in the bivariate table, perhaps even falling to zero
- Also referred to as explanation

Intervening relationships


- In an intervening relationship, X and Y are not directly related to each other but are linked by Z, which "intervenes" between the two
- Also referred to as interpretation



Interaction

- Interaction occurs when the association between X and Y changes across the categories of Z
 - X and Y could only be related for some categories of Z

 X and Y could have a positive association for one category of Z and a negative association for others

Summary

Possible results when controlling for third variables

Compared with Bivariate Table, Partial Tables Show	Pattern	Implications for Further Analysis	Likely Next Step	Theoretical Implications
Same relationship between X and Y (e.g., gammas for partial tables are no more than ± 0.10 different from the bivariate gamma)	Direct relationship (replication)	Disregard Z	Analyze another Z variable •	Theory that X causes Y is supported
Weaker relationship between X and Y (e.g., gammas for partial tables are all at least	Spurious relationship (explanation)	Incorporate Z	Focus on relationship between Z and Y	Theory that X causes Y is not supported
0.10 weaker than the bivariate gamma)	Intervening relationship (interpretation)	Incorporate Z	Focus on relationships among <i>X, Y</i> , and <i>Z</i>	Theory that X causes Y is partially sup- ported but must be revised to take Z into account
Mixed (e.g., there is a difference of at least ± 0.10 between gammas for the partial tables and between the gammas for partial tables and the bivariate gamma)	Interaction (specification)	Incorporate Z	Analyze subgroups (categories of <i>Z</i>) separately	Theory that X causes Y is partially supported but must be revised to take Z into account

Source: Healey 2015, p.389.

Partial Gamma

- Partial Gamma indicates the overall strength of association between X and Y after the effects of the control variable (Z) have been removed
 - Compare Partial Gamma (G_p) to the Gamma (G) for the bivariate table to see if the relationship has changed

$$G_p = \frac{\sum N_s - \sum N_d}{\sum N_s + \sum N_d}$$

- $-N_s$ is the number of pairs of cases ranked in the <u>same</u> <u>order</u> across all partial tables
- N_d is the number of pairs of cases ranked in <u>different</u> <u>order</u> across all partial tables

Example 1

- Association between
 - Number of memberships in student organizations
 - X, independent variable
 - Satisfaction with college
 - Y, dependent variable

Satisfaction with College by Number of Memberships in Student Organizations

Members	hips (<i>X</i>)	
None	At Least One	TOTALS
57 (54.3%)	56 (33.9%)	113
48 (45.7%)	109 (66.1%)	157
105 (100.0%)	165 (100.0%)	<u>157</u> 270
	None 57 (54.3%) 48 (45.7%)	57 (54.3%) 56 (33.9%) 48 (45.7%) 109 (66.1%)

Source: Healey 2015, p.381.

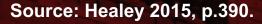
Interpretation

- Comparing the conditional distributions of Y (the column percentages), we find a positive relationship
 - This direction is confirmed by the sign of Gamma (+0.40)
- College students with at least one membership in a student organization are more likely than students with no memberships to have high satisfaction with college

GPA as a control variable

Associations remain positive

Satisfaction by Membership, Controlling for GPA


A. High GPA	Member	rships (X)	
Satisfaction (Y)	None	At Least One	TOTALS
Low	29 (54.7%)	28 (34.1%)	57
High	24 (45.3%)	54 (65.9%)	78
TOTALS	53 (100.0%)	82 (100.0%)	135
	Gamma	= 0.40	
B. Low GPA	Membe	rships (X)	
Satisfaction (Y)	None	At Least One	TOTALS
Low	28 (<i>53.8%</i>)	28 (33.7%)	56
High	24 (46.2%)	55 (66.3%)	79
TOTALS	52 (100.0%)	83 (100.0%)	135
	Gamma	= 0.39	

Association still positive

- The relationship between integration and satisfaction is the same in the partial tables as it was in the bivariate table
 - This is evidence of a direct relationship

High GPA	Low GPA
$N_{\rm s} = (29)(54) = 1566$	$N_{\rm s} = (28)(55) = 1540$
$N_d = (28)(24) = 672$	$N_d = (28)(24) = 672$

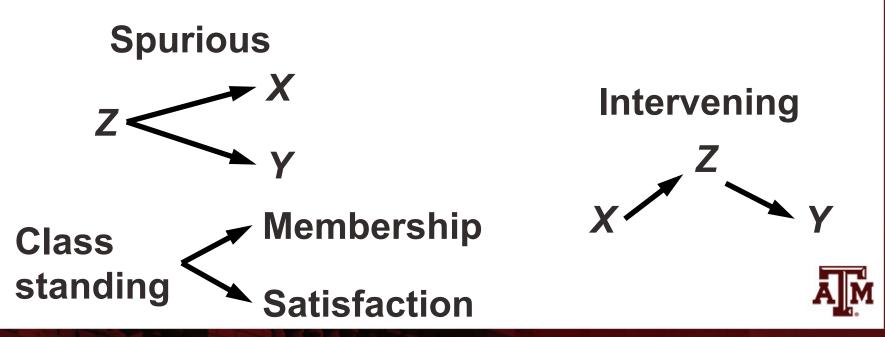
 $G_p = \frac{\sum N_s - \sum N_d}{\sum N_s + \sum N_d} = \frac{(1566 + 1540) - (672 + 672)}{(1566 + 1540) + (672 + 672)} = 0.40$

Class standing as a control

• There is no more association

- Upperclass students: seniors and juniors
- Underclass students: sophomores and freshmen

Satisfaction by Membership, Controlling for Class


A. Upperclass Students	Member	ships (<i>X</i>)	
Satisfaction (Y)	None	At Least One	TOTALS
Low	8 (25.0%)	32 (24.8%)	40
High	24 (75.0%)	97 (75.2%)	121
TOTALS	32 (100.0%)	129 (100.0%)	161
D. Hadambar Obstation	Gamma	= 0.01	
B. Underclass Students	Member	ships (<i>X</i>)	
Satisfaction (Y)	None	At Least One	TOTALS
Low	49 (67.1%)	24 (66.7%)	73
High	24 (<i>32.9%</i>)	12 (33.3%)	36
TOTALS	73 (100.0%)	36 (100.0%)	109
	Gamma	u = 0.01	

Source: Healey 2015, p.385.

Association disappears

- The original bivariate relationship between memberships and satisfaction disappears in the partial tables
 - When the association disappears, we have either a spurious or an intervening relationship

Spurious relationship

- Decision about whether the association is spurious or intervening is based on
 - Temporal (timing) or theoretical grounds
- A spurious relationship makes more sense
 - Class standing likely predicts the number of memberships, and not the other way around
 - Partial Gamma supports our conclusion (reduced to zero)

	Uppercla	ISS	Underclass	
	$N_s = (8)(97) = 7$	776	$N_{\rm s} = (49)(12) = 588$	-
	$N_d = (32)(24) =$	768	$N_d = (24)(24) = 576$	_
C _ 2	$\sum N_s - \sum N_d$	(776 +	588) - (768 + 576) 588) + (768 + 576)	- 0.01
$u_p - \frac{1}{2}$	$\sum N_s + \sum N_d$	(776 +	588) + (768 + 576)	- 0.01

Example 2

- Relationship for 50 immigrants between
 - Length of residence: X, independent variable
 - English fluency: Y, dependent variable

	Length of	f Residence	
English Fluency	Less Than Five Years (Low)	More Than Five Years (High)	TOTALS
Low	20	10	30
High	5	15	20
TOTALS	25	25	50

- Gamma = +0.67
 - Strong and positive association
 - As length of residence increases, English fluency also increases

Sex as a control variable

Associations remain positive

	A. Males	Length o	f Residence	
• $G_m = 0.78$	English Fluency	Less Than Five Years (Low)	More Than Five Years (High)	TOTALS
	Low	10	5	15
	High	2	8	10
	TOTALS	12	13	25

B. Female	es Length o	f Residence	
English Fluency	Less Than Five Years (Low)	More Than Five Years (High)	TOTALS
Low	10	5	15
High	3	7	10
TOTALS	13	12	25

• $G_f = 0.65$

Source: Healey 2015, p.398, problem 14.1.

Partial Gamma

$$G_m = \frac{N_s - N_d}{N_s + N_d} = \frac{80 - 10}{80 + 10} = 0.78$$

$$G_f = \frac{N_s - N_d}{N_s + N_d} = \frac{70 - 15}{70 + 15} = 0.65$$

$$G_p = \frac{\sum N_s - \sum N_d}{\sum N_s + \sum N_d} = \frac{(80 + 70) - (10 + 15)}{(80 + 70) + (10 + 15)} = 0.71$$

Source: Healey 2015, p.398, problem 14.1.

Sex has no effect

- While the two Gammas for the partial tables (0.78 and 0.65) differ slightly
 - They both indicate a strong and positive association between length of residence and English fluency
- Comparing Partial Gamma (0.71) to the original Gamma (0.67), we find little difference
- We have evidence of a direct relationship
 - Controlling for sex does not affect the association between length of residence and English fluency for immigrants

Source: Healey 2015, p.398, problem 14.1.

Example 3

- Relationship for 78 juvenile males between
 - Academic record: X, independent variable
 - Delinquency: Y, dependent variable

Delinquency by Academic Record

	Academ	ic Record	
Delinquency	Poor	Good	TOTALS
Low	13 (27.1%)	20 (66.7%)	33 (<i>42.3%</i>)
High	35 (72.9%)	10 (<i>33.3%</i>)	45 (57.7%)
TOTALS	48 (100.0%)	30 (100.0%)	78 (100.0%)
	Gamma	a = -0.69	

- Gamma = -0.69
 - Juvenile males with better academic records have lower delinquency

Source: Healey 2015, p.392.

Area of residence as a control

Associations differ across partial tables

Delinquency by Academic Record, Controlling for Residence

A. Urban	Academ	lic Record	
Delinquency	Poor	Good	TOTALS
Low	10 (27.8%)	3 (<i>30.0%</i>)	13 (<i>28.3%</i>)
High	26 (72.2%)	7 (70.0%)	33 (71.7%)
TOTALS	36 (100.0%)	10 (100.0%)	46 (100.0%)
	Gamm	a = -0.05	
	Clamin		
B. Nonurban		nic Record	Compu
B. Nonurban Delinquency			TOTALS
	Academ	nic Record	
Delinquency	Academ Poor	nic Record Good	20 (62.5%)
Delinquency Low	Academ Poor 3 (<i>25.0%</i>)	nic Record Good 17 (85.0%)	

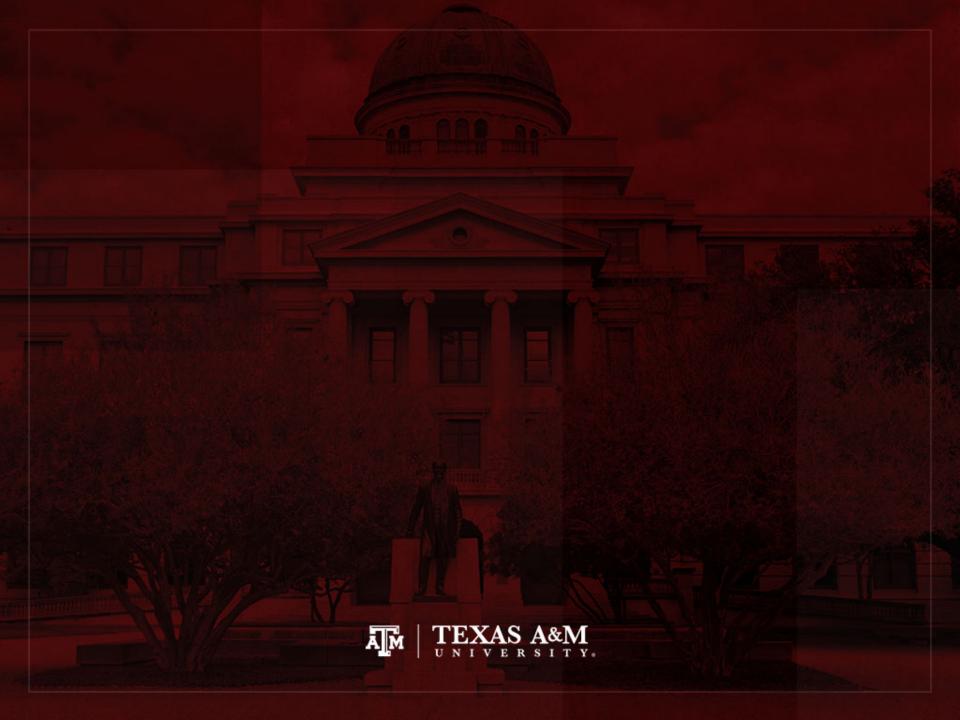
Source: Healey 2015, p.392.

Interpretation

- Gamma for urban areas is -0.05
 - No association between academic record and delinquency
- Gamma for nonurban areas is -0.89
 - Strong and negative association between academic record and delinquency
- Associations between X and Y differ across partial tables
 - This is an indication of interaction

Origin of control variables

- Control variables are based on theory
- Research projects are anchored in theory, so control variables come mainly from theory
- Understanding a spurious relationship (explanation) or an intervening relationship (interpretation) cannot be based on statistical grounds or inspecting the partial tables



Limitations of partial tables

• Basic limitation: Sample size

- Greater the number of partial tables, the more likely to run out of cells or have small cells
- Potential solutions
 - Reduce number of cells by collapsing categories (recoding)
 - Use very large samples
 - Use techniques appropriate for interval-ratio level

