Lecture (extra): Sample weights

Ernesto F. L. Amaral

January 22–24, 2018 Advanced Methods of Social Research (SOCI 420)

Sources: Stata Help & General Social Survey Codebook.

Using sample weights

Name	Number of observations collected in the survey	Weight to expand to population size	Weight to maintain sample size
José	1	4	0.8
Maria	1	6	1.2
Total	2	10	2

Sample weight =

Population weight * (Sum of sample weights / Sum of population weights)

Frequency weight in Stata • FWEIGHT

- Expands survey size to the population size
- Indicates the number of duplicated observations
- Used on tables to generate frequencies
- Can be used in frequency distributions only when weight variable is discrete (no fractional numbers)

"Importance" weight in Stata

• IWEIGHT

- Indicates the "importance" of the observation in some vague sense
- Has no formal statistical definition
- Any command that supports iweights will define exactly how they are treated
- Is intended for use by programmers who want to produce a certain computation
- Can be used in frequency distributions even when weight variable is continuous (fractional numbers)

Analytic weight in Stata

• AWEIGHT

- Inversely proportional to the variance of an observation
- Variance of the *j*th observation is assumed to be σ^2/w_j , where w_j are the weights
- For most Stata commands, the recorded scale of aweights is irrelevant
- Stata internally rescales frequencies, so sum of weights equals sample size

tab x [aweight = weight]

More about analytic weight

 Observations represent averages and weights are the number of elements that gave rise to the average

group	х	У	n
1	3.5	26.0	2
2	5.0	20.0	3

Instead of

group	x	У
1	3	22
1	4	30
2	8	25
2	2	19
2	5	16

- Usually, survey data is collected from individuals and households (not as averages)
 - Thus, aweights are not appropriate for most cases

Sampling weight in Stata

PWEIGHT

- Denote the inverse of the probability that the observation is included due to the sampling design
- Indicated for statistical regressions
- Variances, standard errors, and confidence intervals are estimated with a more precise procedure
 - Estimates robust standard errors

regress y x1 x2 [pweight = weight]

Summary of Stata weights

WEIGHTS IN FREQUENCY DISTRIBUTIONS

Weight unit of measurement	Expand to population size	Maintain sample size	
Discrete	fweight	aweight	
Continuous	iweight		

WEIGHTS IN STATISTICAL REGRESSIONS should maintain sample size			
Robust standard error	Adjusted R ² , TSS, ESS, RSS		
pweight	aweight		
reg y x, robust	outreg2		

General Social Survey

- GSS targets the adult population (18+) living in households in the United States
- Due to the adoption of the sub-sampling design of non-respondents, a weight must be employed when using the GSS 2004 and after
- There are three continuous weight variables
 - WTSS
 - WTSSNR
 - WTSSALL
- They all maintain the original sample size, even in frequency distributions with "iweight"

WTSS

- WTSS variable takes into consideration
 - Sub-sampling of non-respondents
 - Number of adults in the household

- In years prior to 2004, a one is assigned to all cases, so they are effectively unweighted
 - Number of adults can be utilized to make this adjustment for years prior to 2004

WTSSNR

- WTSSNR variable takes into consideration
 - Sub-sampling of non-respondents
 - Number of adults in the household
 - Differential non-response across areas
- In years prior to 2004, a one is assigned to all cases, so they are effectively unweighted
 - Number of adults can be utilized to make this adjustment for years prior to 2004
 - No area non-response adjustment is possible

WTSSALL

- WTSSALL takes WTSS and applies an adult weight to years before 2004
- The weight value of WTSSALL is the same as WTSS for 2004 and after
- Researchers who use the GSS data before or after 2004 may consider using the WTSSALL weight variable

tab x [aweight = wtssall]
sum x [aweight = wtssall]

GSS has a cluster sample

(https://gssdataexplorer.norc.org/pages/show?page=gss%2Fstandard_error)

- First- and second-stage units are selected with probabilities proportional to size
 - Size is defined by number of housing units
- Third-stage units (housing units) are selected to be an equal-probability sample
 - This results in roughly the same number of housing units selected per second-stage sampling unit
- To calculate standard errors correctly, sample design variables must be used
 - Without design variables, Stata will assume a simple random sample and underestimate standard errors

Complex survey design in GSS

(https://gssdataexplorer.norc.org/pages/show?page=gss%2Fstandard_error)

- There are two design variables
 - VSTRAT
 - VPSU
- First-stage unit
 - VSTRAT: Variance Stratum
 - National Frame Areas (NFAs): one or more counties
- Second-stage unit
 - VPSU: Variance Primary Sampling Unit
 - Segments: block, group of blocks, or census tract

Complex survey design in Stata

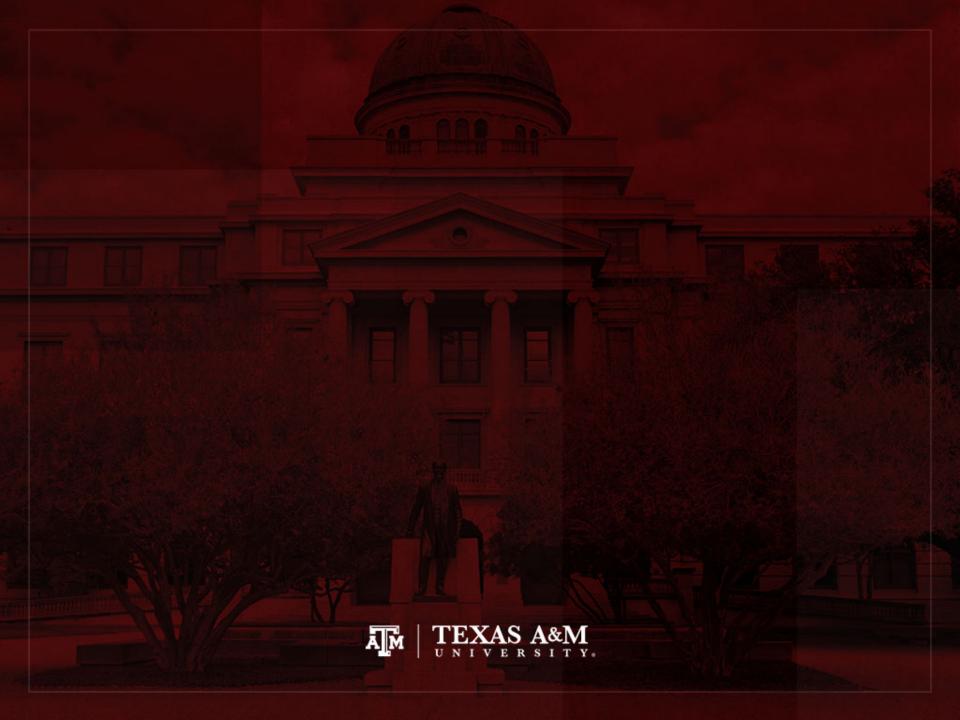
(https://gssdataexplorer.norc.org/pages/show?page=gss%2Fstandard_error)

Declare survey design for dataset

svyset [weight=wtssall], strata(vstrat) psu(vpsu) singleunit(scaled)

• After "svyset," you should indicate survey design with the option "svy" for each table and regression

svy: tab x svy: mean y svy: reg y x1 x2



Strata with single sampling unit

(https://gssdataexplorer.norc.org/pages/show?page=gss%2Fstandard_error)

- VSTRAT and VPSU were created with a minimum of three respondents within a cell
 - If all cases are missing on a variable, you get an error message in Stata
 - "Missing standard error because of stratum with single sampling unit"
- It is recommended to utilize the "subpop" option for any subdomain analyses (e.g., for males)
 svy, subpop(if sex==1): tab x
- You can also specify that strata with one sampling unit are "centered" at grand mean instead of stratum mean

svyset [weight=wtssall], strata(vstrat) psu(vpsu) singleunit(centered)

