Lecture (chapter 4): Measures of dispersion

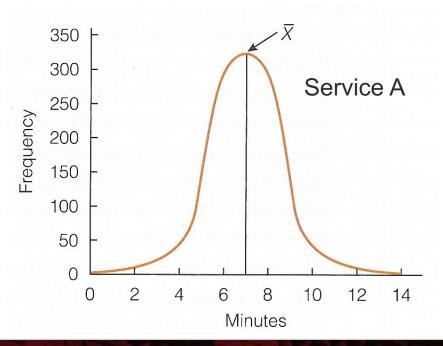
Ernesto F. L. Amaral

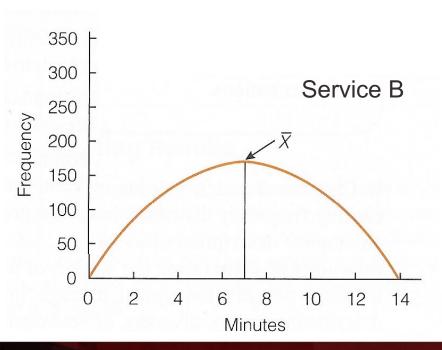
September 20, 2022
Advanced Methods of Social Research (SOCI 420)

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 4 (pp. 91–121).

Outline

- Explain the purpose of measures of dispersion
- Compute and interpret these measures
 - Range (R), interquartile range (Q or IQR)
 - Standard deviation (s), variance (s^2)
- Select an appropriate measure of dispersion and correctly calculate and interpret the statistic
- Describe and explain the mathematical characteristics of the standard deviation
- Analyze a boxplot




Concept of dispersion

- Dispersion refers to the variety, diversity, or amount of variation among scores
- The greater the dispersion of a variable, the greater the range of scores and the greater the differences between scores
- Examples
 - Typically, a large city will have more diversity than a small town
 - Some states (California, New York) are more racially diverse than others (Maine, Iowa)

Ambulance assistance

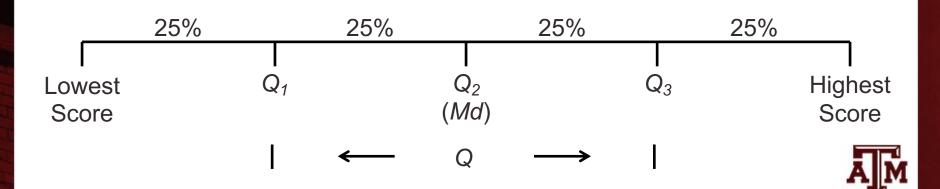
- Examples below have similar means
 - 7.4 minutes for service A and 7.6 minutes for service B
- Service A is more consistent in its response
 - Less dispersion than service B

Range (R)

- Range indicates the distance between the highest and lowest scores in a distribution
- Range (R) = Highest Score Lowest Score
- Quick and easy indication of variability
- Can be used with ordinal-level or interval-ratiolevel variables
- Why can't the range be used with variables measured at the nominal level?
 - For these variables, use frequency distributions to analyze dispersion

Limitations of range

Range is based on only two scores


- It is distorted by atypically high or low scores
 - Influenced by outliers

 No information about variation between high and low scores

Interquartile range (Q or IQR)

- A type of range measure
 - Considers only the middle 50% of the cases in a distribution
- Avoids some of the problems of the range by focusing on just the middle 50% of scores
 - Avoids the influence of outliers

Limitation of interquartile range

The interquartile range is based on only two scores

- It fails to yield any information from all of the other scores
 - Based only on Q_1 and Q_3

Birth rates for 40 nations, 2012

(number of births per 1000 population)

Rank	Nation	Birth rate	Rank	Nation	Birth rate
40 (highest)	Niger	46	20	Libya	23
39	Uganda	45	19	India	22
38	Malawi	43	18	Venezuela	21
37	Angola	42	17	Mexico	20
36	Mozambique	42	16	Colombia	19
35	Tanzania	41	15	Kuwait	18
34	Nigeria	40	14	Vietnam	17
33	Guinea	39	13	Ireland	16
32	Senegal	38	12	Chile	15
31	Togo	36	11	Australia	14
30	Kenya	35	10	United States	13
29	Ethiopia	34	9	United Kingdom	13
28	Rwanda	33	8	Russia	13
27	Ghana	32	7	France	13
26	Guatemala	29	6	China	12
25	Pakistan	28	5	Canada	11
24	Haiti	27	4	Spain	10
26	Cambodia	26	3	Japan	9
22	Egypt	25	2	Italy	9
21	Syria	24	1 (lowest)	Germany	8

Examples of R and IQR

Range = Highest score – Lowest score = 46 – 8 = 38

- Interquartile range (IQR)
 - Locate Q_3 (75th percentile) and Q_1 (25th percentile)
 - Q_3 : 0.75 x 40 = 30th case
 - Kenya is the 30th case with a birth rate of 35
 - Q_1 : 0.25 x 40 = 10th case
 - United States is the 10th case with a birth rate of 13
 - Difference of these values is interquartile range
 - IQR = Q3 Q1 = 35 13 = 22

Standard deviation

- The most important and widely used measure of dispersion
 - It should be used with interval-ratio-level variables, but is often used with ordinal-level variables
- Good measure of dispersion
 - Uses all scores in the distribution
 - Describes the average or typical deviation of the scores
 - Increases in value as the distribution of scores becomes more diverse

Interpreting standard deviation

 It is an index of variability that increases in value as the distribution becomes more variable

It allows us to compare distributions

- It can be interpreted in terms of normal deviation
 - We will discuss on Chapter 5

Formulas

- Standard deviation and variance are based on the distance between each score and the mean
- Formula for variance

$$s^2 = \frac{\sum (X_i - \bar{X})^2}{N}$$

Formula for standard deviation

$$s = \sqrt{\frac{\sum (X_i - \bar{X})^2}{N}}$$

Step-by-step calculation of s

- Subtract mean from each score: $(X_i \overline{X})$
- Square the deviations: $(X_i \bar{X})^2$
- Sum the squared deviations: $\sum (X_i \bar{X})^2$
- Divide the sum of squared deviations by N:

$$\frac{\sum (X_i - \bar{X})^2}{N}$$

Square root brings value back to original unit:

$$\sqrt{\frac{\sum (X_i - \bar{X})^2}{N}}$$

ns	Age (X_i)	$X_i - \overline{X}$	$(X_i - \overline{X})^2$	
campus	18	18 – 19 = –1	$(-1)^2 = 1$	
car	19	19 – 19 = 0	$(0)^2 = 0$	
	20	20 – 19 = 1	$(1)^2 = 1$	This residential
nti	18	18 – 19 = –1	$(-1)^2 = 1$	
ide	20	20 – 19 = 1	$(1)^2 = 1$	campus is less
Residential	$\sum_{i} (X_i) = 95$ $\overline{X} = 95/5 = 19$	$\sum (X_i - \overline{X}) = 0$	$\sum (X_i - \overline{X})^2 = 4$ $s = \sqrt{4/5} = 0.89$	diverse with
			,	respect to age
	Age (X_i)	$X_i - \overline{X}$	$(X_i - \overline{X})^2$	(s=0.9)
Sn	20	20 – 23 = –3	$(-3)^2 = 9$	(3-0.9)
campus	22	22 – 23 = –1	$(-1)^2 = 1$	than this urban
car	18	18 – 23 = –5	$(-5)^2 = 25$	campus (<i>s</i> =4.2).
an	25	25 – 23 = 2	$(2)^2 = 4$	Campus (3-4.2).
Urban	30	30 – 23 = 7	$(7)^2 = 49$	
) 	$\sum (X_i) = 115$ $\overline{X} = 115/5 = 23$	$\sum (X_i - \overline{X}) = 0$	$\sum (X_i - \bar{X})^2 = 88$ $s = \sqrt{88/5} = 4.20$	AM

Homicides per 100,000 population

S	State	Homicide rate	Deviation	Deviation squared
state	Connecticut	3.6	0.88	0.77
	Massachusetts	3.2	0.48	0.23
and	Rhode Island	2.8	0.08	0.01
ngla	Vermont	2.2	-0.52	0.27
Ш	Maine	1.8	-0.92	0.85
New		$\sum_{i} (X_i) = 13.6$	$\sum (X_i - \overline{X}) = 0$	$\sum (X_i - \overline{X})^2 = 2.13$
Z		$\overline{X} = 2.72$		$s = \sqrt{2.13/5} = 0.66$

	State	Homicide rate	Deviation	Deviation squared
tes	Arizona	6.4	2.02	4.08
stat	Nevada	5.9	1.52	2.31
	California	4.9	0.52	0.27
teri	Oregon	2.4	-1.98	3.92
Western	Washington	2.3	-2.08	4.33
>		$\sum (X_i) = 21.9$ $\overline{X} = 4.38$	$\sum (X_i - \overline{X}) = 0$	$\sum (X_i - \overline{X})^2 = 14.91$ $s = \sqrt{14.91/5} = 1.73$
		X = 4.38		$s = \sqrt{14.91/5} = 1.73$

Reporting several variables

- Measures of central tendency (e.g., mean) and dispersion (e.g., standard deviation)
 - Valuable descriptive statistics
 - Basis for many analytical techniques
 - Most often presented in summary tables

Characteristics of the sample

Variable	Mean	Standard deviation	Number of cases
Age	33.2	1.3	1,078
Number of children	2.3	0.7	1,078
Years married	7.8	1.5	1,052
Income (in dollars)	55,786	1,500	987

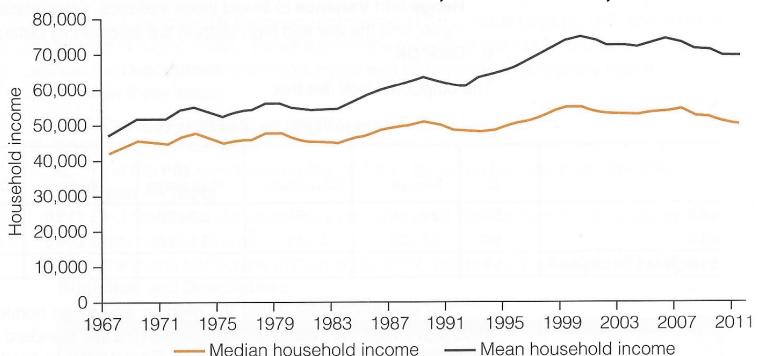
Source: Healey 2015, p.110.

Parental engagement

- Means and standard deviations for number of days per week each parent engaged with child
 - How does maternal engagement compare to paternal engagement?
 - How does married engagement compare to cohabiting engagement?
 - How does engagement change over time?

Parental engagement by age of child, gender, and marital status

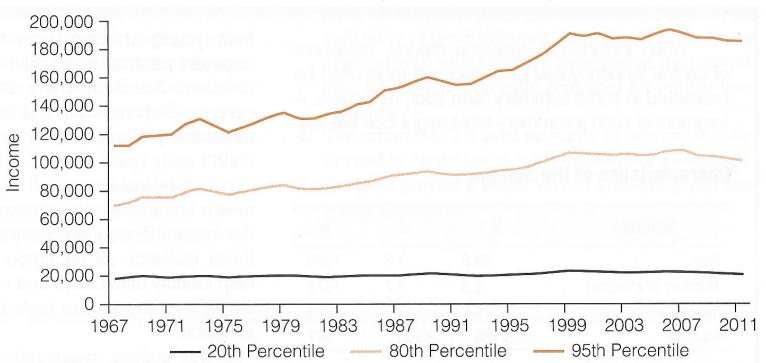
	Mate	rnal e	ngager	ment	Paternal engagement			nent
Marital status	1 yea	ar old	3 years old		1 year old		3 years old	
	\bar{X}	S	\bar{X}	S	\bar{X}	S	\bar{X}	S
Married	5.30	1.40	4.95	1.33	4.64	1.75	4.01	1.43
Cohabiting	5.23	1.36	4.86	1.38	4.67	1.58	4.04	1.53


Source: Healey 2015, p.110.

Income: Central tendency

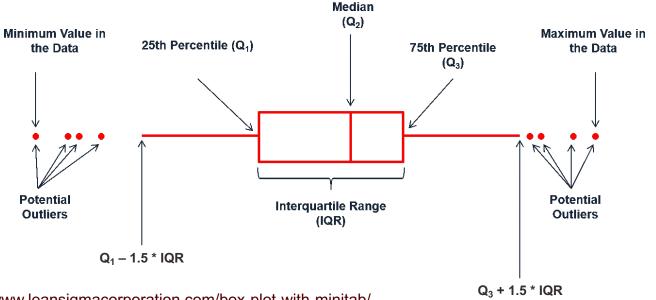
- Median
 - Increases in income of the average American household
- Mean
 - Increases in average income for all American households

Median and mean household incomes, United States, 1967-2011



Income: Dispersion increased

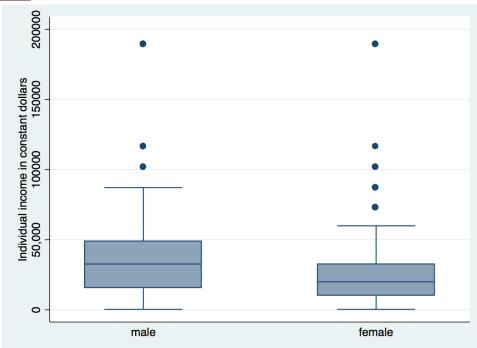
- The increase was not shared equally
 - Low-income households: no growth
 - High-income households: robust increases


Percentiles of household income, United States, 1967–2011

Boxplots

- Boxplot is also known as "box and whiskers plot"
 - It provides a way to visualize and analyze dispersion
 - Useful when comparing distributions
 - It uses median, range, interquartile range, outliers
 - Easier to read all this information than in tables

Source: https://www.leansigmacorporation.com/box-plot-with-minitab/

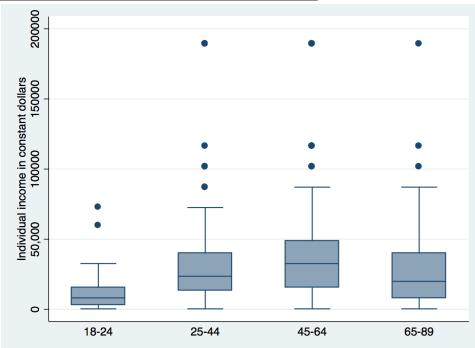

Income by sex, 2016

Statistics for individual income	Male	Female
Lowest score	363.00	363.00
Q1	15,427.50	9,982.50
Median	32,670.00	19,965.00
Q3	49,005.00	32,670.00
Highest score	189,211.46	189,211.46
IQR	33,577.50	22,687.50
Mean	41,282.78	28,109.34
Standard deviation	41,295.31	30,201.87

Commands in Stata

tabstat conrinc [aweight=wtssall],
by(sex) stat(min p25 p50 p75 max iqr
mean sd)

graph box conrinc [aweight=wtssall],
over(sex) ytitle(Individual income in
constant dollars)

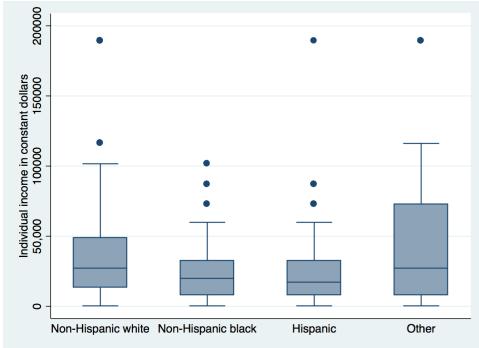

Income by age group, 2016

Statistics for individual income	18–24	25–44	45–64	65–89
Lowest score	363.00	363.00	363.00	363.00
Q1	3,267.00	13,612.50	15,427.50	8,167.50
Median	8,167.50	23,595.00	32,670.00	19,965.00
Q3	15,427.50	39,930.00	49,005.00	39,930.00
Highest score	72,600.00	189,211.46	189,211.46	189,211.46
IQR	12,160.50	26,317.50	33,577.50	31,762.50
Mean	11,214.16	32,863.93	42,552.21	30,848.29
Standard deviation	11,787.32	33,269.47	41,486.09	33,303.36

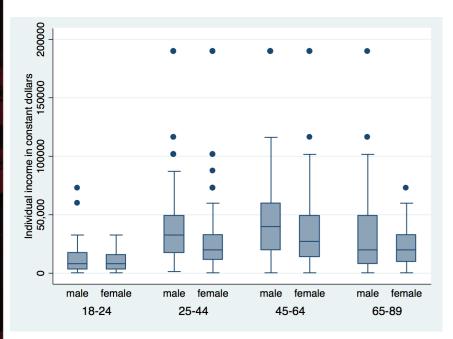
Commands in Stata

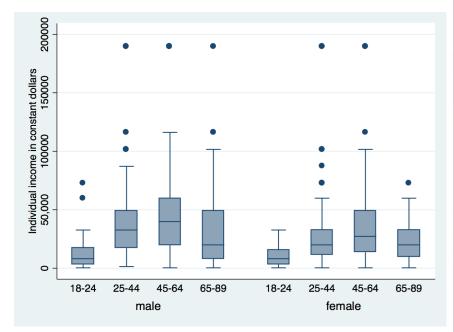
tabstat conrinc [aweight=wtssall],
by(agegr1) stat(min p25 p50 p75 max iqr
mean sd)

graph box conrinc [aweight=wtssall],
over(agegr1) ytitle(Individual income in
constant dollars)


Income by race/ethnicity, 2016

Statistics for individual income	Non-Hispanic white	Non-Hispanic black	Hispanic	Other
Lowest score	363.00	363.00	363.00	363.00
Q1	13,612.50	8,167.50	8,167.50	8,167.50
Median	27,225.00	19,965.00	17,242.50	27,225.00
Q3	49,005.00	32,670.00	32,670.00	72,600.00
Highest score	189,211.46	101,640.00	189,211.46	189,211.46
IQR	35,392.50	24,502.50	24,502.50	64,432.50
Mean	38,845.62	23,243.04	23,128.92	50,156.35
Standard deviation	39,157.17	19,671.53	21,406.31	59,219.90

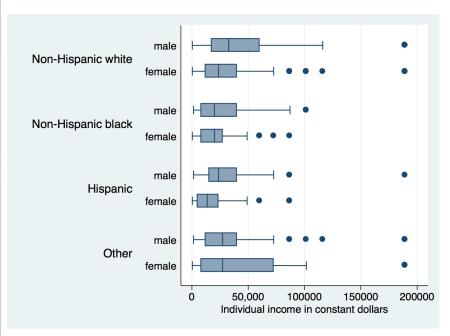

Commands in Stata


tabstat conrinc [aweight=wtssall],
by(raceeth) stat(min p25 p50 p75 max iqr
mean sd)

graph box conrinc [aweight=wtssall],
over(raceeth) ytitle(Individual income
in constant dollars)

Income by sex and age group, 2016

Command in Stata


graph box conrinc [aweight=wtssall],
over(sex) over(agegr1) ytitle(Individual
income in constant dollars)

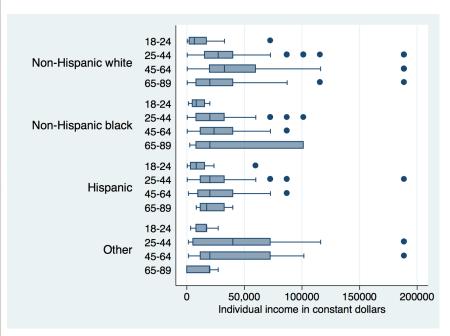
Command in Stata

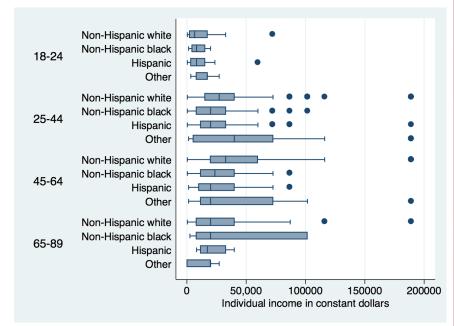
graph box conrinc [aweight=wtssall],
over(agegr1) over(sex) ytitle(Individual
income in constant dollars)

Income by sex and race/ethnicity, 2016

Command in Stata

graph hbox conrinc [aweight=wtssall],
over(sex) over(raceeth)
ytitle(Individual income in constant
dollars)


Source: 2016 General Social Survey.

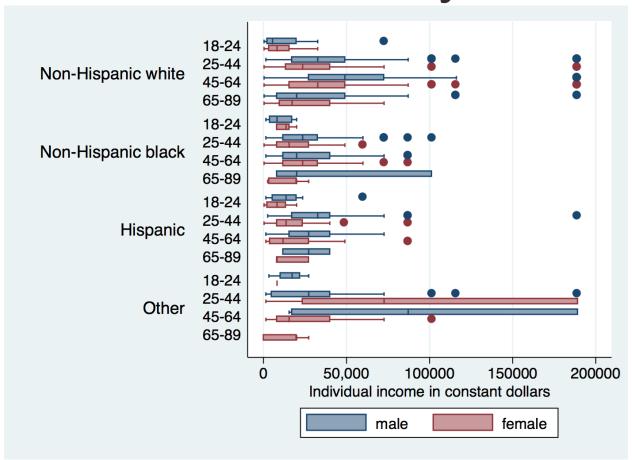

Command in Stata

graph hbox conrinc [aweight=wtssall],
over(raceeth) over(sex)
ytitle(Individual income in constant
dollars)

Income by age group and race/ethnicity, 2016

Command in Stata

graph hbox conrinc [aweight=wtssall],
over(agegr1) over(raceeth)
ytitle(Individual income in constant
dollars)


Source: 2016 General Social Survey.

Command in Stata

graph hbox conrinc [aweight=wtssall],
over(raceeth) over(agegr1)
ytitle(Individual income in constant
dollars)

Income by sex, age group, and race/ethnicity, 2016

graph hbox conrinc [aweight=wtssall], over(sex) over(agegr1) over(raceeth)
ytitle(Individual income in constant dollars)

Example: 2016 GSS in Stata

Respondents' income in constant dollars
 sum conrinc [aweight=wtssall], d

respondent income in constant dollars

	Percentiles	Smallest		
1%	363	363		
5%	1452	363		
10%	3993	363	0bs	1,632
25%	11797.5	363	Sum of Wgt.	1,695.2263
50%	23595		Mean	34649.3
		Largest	Std. Dev.	36722.06
75%	39930	189211.5		
90%	72600	189211.5	Variance	1.35e+09
95%	101640	189211.5	Skewness	2.538394
99%	189211.5	189211.5	Kurtosis	10.63267

Example: 2016 GSS in Stata

Respondents' income in constant dollars

codebook conrinc

conrinc

respondent income in constant dollars

type: numeric (double)

label: LABW, but 26 nonmissing values are not labeled

range: [363,189211.46] units: .01

unique values: 26 missing .: 0/2,867

unique mv codes: 1 missing .*: 1,235/2,867

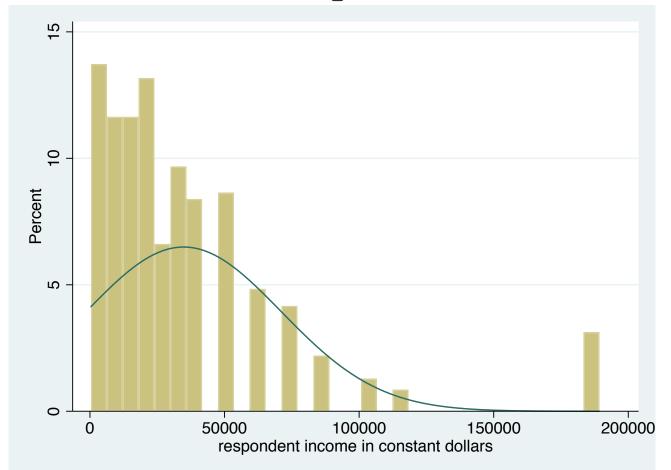
examples: 17242.5

39930

.i IAP

.i IAP

Edited table

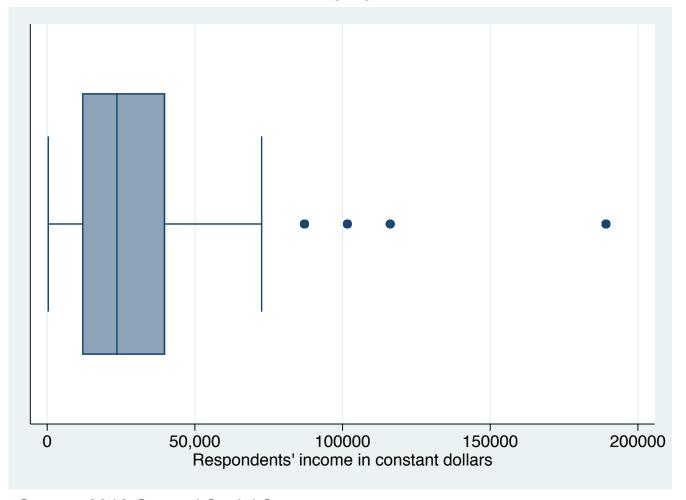

Table 1. Descriptive statistics of respondents' income in constant dollars, U.S. adult population, 2016

Statistics	Income
Mean	34,649.30
Minimum	363.00
25th percentile	11,797.50
Median	23,595.00
75th percentile	39,930.00
Maximum	189,211.50
Range	188,848.50
Interquartile range	28,132.50
Standard deviation	36,722.06
Sample size	1,632
Missing cases	1,235

Example: 2016 GSS in Stata

 Respondents' income in constant dollars hist conrinc, percent normal

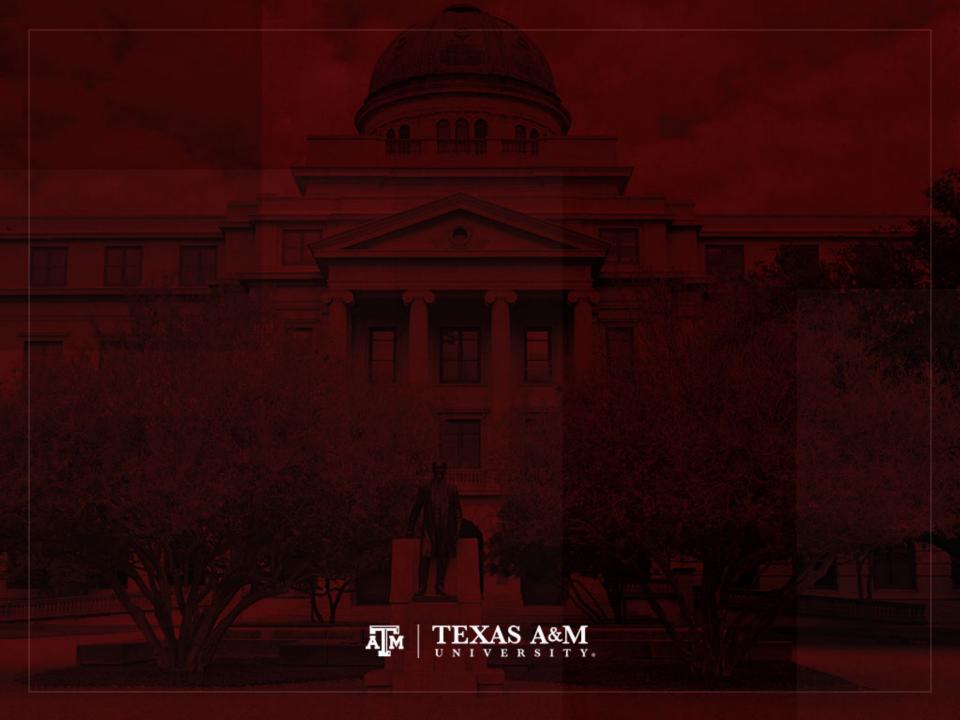
Example: 2016 GSS in Stata


 Generate box plot for respondents' income in constant dollars

```
graph hbox conrinc [aweight=wtssall],
ytitle(Respondents' income in constant dollars)
```


Edited figure

Figure 1. Distribution of respondents' income in constant dollars, U.S. adult population, 2016



Summary

- Measures of dispersions are higher for more diverse groups
 - Larger samples and populations
- Measures of dispersions decrease, as diversity or variety decreases
 - Smaller samples and more homogeneous groups
- The lowest possible value for range and standard deviation is zero
 - In this case, there is no dispersion

