Lecture (chapter 8): Hypothesis testing I: The one-sample case

Ernesto F. L. Amaral

October 18, 2022 Advanced Methods of Social Research (SOCI 420)

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 8 (pp. 185–215).

Outline

- Explain the logic of hypothesis testing, including concepts of the null hypothesis, the sampling distribution, the alpha level, and the test statistic
- Explain what it means to "reject the null hypothesis" or "do not reject the null hypothesis"
- Identify and cite examples of situations in which one-sample tests of hypotheses are appropriate
- Test the significance of single-sample means and proportions using the five-step model, and correctly interpret the results
- Explain the difference between one- and two-tailed tests, and specify when each is appropriate
- Define and explain Type I and Type II errors, and relate each to the selection of an alpha level
- Use the Student's *t* distribution to test the significance of a sample mean for a small sample

Significant differences

- Hypothesis testing is designed to detect significant differences
 - Differences that did not occur by random chance
 - Hypothesis testing is also called significance testing
- This chapter focuses on the "one sample" case
 - Compare a random sample against a population
 - Compare a sample statistic to a (hypothesized) population parameter to see if there is a statistically significant difference

Example 1: Question

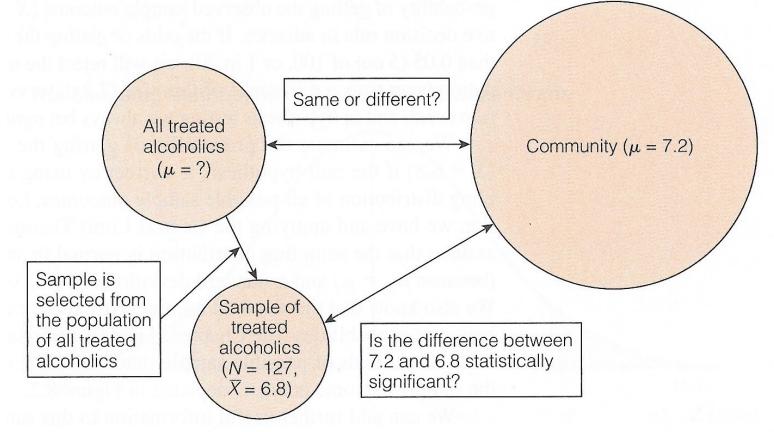
- Are people who have been treated for alcoholism more reliable workers than those in the community?
 - Does the group of all treated alcoholics have different absentee rates than the community as a whole?
 - Effectiveness of rehabilitation center for alcoholics
- Absentee rates for community and sample
 - Don't have resources to gather information of all people who have been treated by the program

Community	Sample of treated alcoholics
$\mu = 7.2 \ days \ per \ year$	$\overline{X} = 6.8 \ days \ per \ year$
$\sigma = 1.43$	n = 127

- What causes the difference between 7.2 and 6.8?
 - Real difference? Or difference due to random chance?

Source: Healey 2015, p.187.

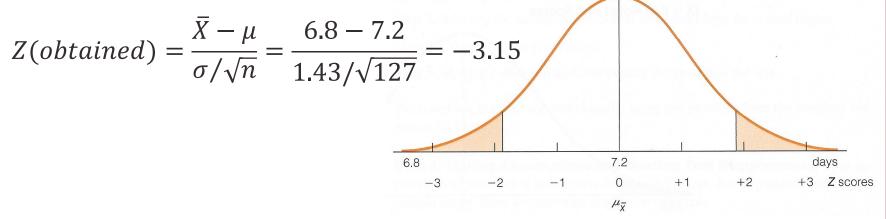
A test of hypothesis for single-sample means



Source: Healey 2015, p.187.

Example 1: Result

- For a known/empirical distribution, we use: $Z = \frac{X_i X_i}{c}$
- However, we are concerned with the sampling distribution of all possible sample means



- The sample outcome falls in the shaded area
 - Z(obtained) = -3.15
 - Reject H_0 : μ = 7.2 days per year
 - The sample of 127 treated alcoholics comes from a population that is significantly different from the community on absenteeism

The five-step model

- 1. Make assumptions and meet test requirements
- 2. Define the null hypothesis (H_0)
- 3. Select the sampling distribution and establish the critical region
- 4. Compute the test statistic
- 5. Make a decision and interpret the test results

Example 2: Question

- The education department at a university has been accused of "grade inflation"
 - Thus, education majors have much higher GPAs than students in general
- GPAs of all education majors should be compared with the GPAs of all students
 - There are 1000s of education majors, far too many to interview
 - How can the dispute be investigated without interviewing all education majors?

Example 2: Numbers

- The average GPA for all students is 2.70 (µ)
 This value is a parameter
- Random sample of education majors
 - Mean = \bar{X} = 3.00
 - Standard deviation = s = 0.70
 - Sample size = n = 117
- There is a difference between parameter $(\mu=2.70)$ and statistic ($\overline{X}=3.00$)

- It seems that education majors do have higher GPAs

Example 2: Explanations

- We are working with a random sample
 Not all education majors
- Two explanations for the difference
- 1. The sample mean (\overline{X} =3.00) is the same as the population mean (μ =2.70)
 - The observed difference may have been caused by random chance
- 2. The difference is real (statistically significant)
 Education majors are different from all students

Step 1: Assumptions, requirements

- Make assumptions
 - Random sampling
 - Hypothesis testing assumes samples were selected according to EPSEM
- Meet test requirements
 - The sample of 117 was randomly selected from all education majors
 - Level of measurement is interval-ratio
 - GPA is an interval-ratio level variable, so the mean is an appropriate statistic
 - Sampling distribution is normal in shape
 - This is a large sample $(n \ge 100)$

Step 2: Null hypothesis

- Null hypothesis, H_0 : $\mu = 2.7$
 - H₀ always states there is no significant difference
 - The sample of 117 comes from a population that has a GPA of 2.7
 - The difference between 2.7 and 3.0 is trivial and caused by random chance
- Alternative hypothesis, H_1 : $\mu \neq 2.7$
 - H₁ always contradicts H₀
 - The sample of 117 comes from a population that does not have a GPA of 2.7
 - There is an actual difference between education majors (\overline{X} =3.0) and other students (μ =2.7)

Step 3: Distribution, critical region

- Sampling distribution: standard normal shape
 - Alpha (α) = 0.05
 - Use the 0.05 value as a guideline to identify differences that would be rare if H_0 is true
 - Any difference with a probability less than α is rare and will cause us to reject the H₀
- Use the Z score to determine the probability of getting the observed difference
 - If the probability is less than 0.05, the obtained Z score will be beyond the critical Z score of ±1.96
 - This is the critical Z score associated with a two-tailed test and α =0.05

Step 4: Test statistic

• For a known/empirical distribution, we would use

$$Z = \frac{X_i - \overline{X}}{s}$$

- However, we are concerned with the sampling distribution of all sample means
- We only have the standard deviation for the sample (s), not for the population (σ)

$$Z(obtained) = \frac{\overline{X} - \mu}{s/\sqrt{n-1}} = \frac{3.0 - 2.7}{0.7/\sqrt{117 - 1}} = 4.62$$

Step 5: Decision, interpret

- *Z*(*obtained*) = 4.62
 - This is beyond $Z(critical) = \pm 1.96$
 - The obtained Z score fell in the critical region, so we **reject** the H_0
 - If H₀ was true, a sample GPA of 3.0 would be unlikely
 - Therefore, the H_0 is false and must be rejected
- Education majors have a GPA that is significantly higher than general student body
 - The difference between the parameter (μ =2.7) and the statistic (\overline{X} =3.0) was large and unlikely to have occurred by random chance (p<0.05)

Five-step model summary

Situation	Decision	Interpretation
The test statistic is in the critical region	Reject the null hypothesis (H_0)	The difference is statistically significant
The test statistic is not in the critical region	Do not reject the null hypothesis (H_0)	The difference is not statistically significant

- Model is fairly rigid, but there are two crucial choices
 - One-tailed or two-tailed test
 - Alpha (α) level

One or two-tailed test

- Null hypothesis always has the equal sign H_0 : $\mu = 2.7$
- Two-tailed test states that population mean is not equal to the value stated in null hypothesis
 H₁: μ ≠ 2.7
- One-tailed test estimates differences in a specific direction (based on theory)

H₁: μ > 2.7 H₁: μ < 2.7

One or two-tailed test

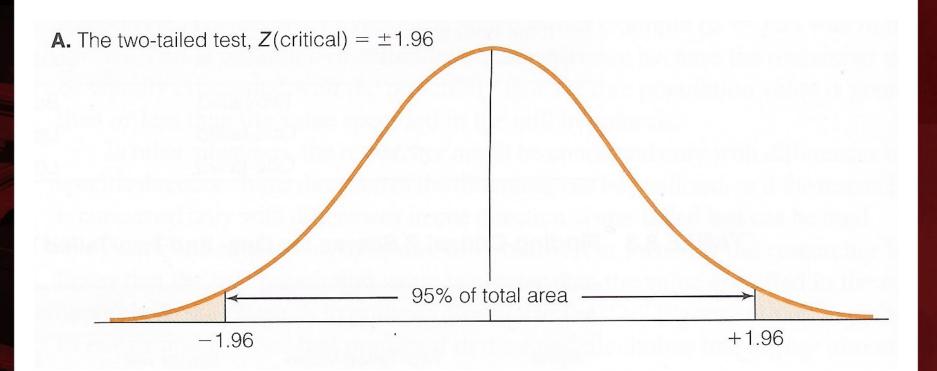
One- vs. Two-Tailed Tests, $\alpha = 0.05$

If the Research Hypothesis (H_1) Uses	The Test Is	Concern Is on	Z(critical) Is
¥	Two-tailed	Both tails	±1.96
>	One-tailed	Upper tail	+1.65
<	One-tailed	Lower tail	-1.65

Finding Critical Z Scores for One- and Two-Tailed Tests

		One-Tailed Value		
Alpha	Two-Tailed Value	Upper Tail	Lower Tail	
0.10	±1.65	+1.29	-1.29	
0.05	±1.96	+1.65	-1.65	
0.01	±2.58	+2.33	-2.33	
0.001	±3.32	+3.10	-3.10	
0.0001	±3.90	+3.70	-3.70	

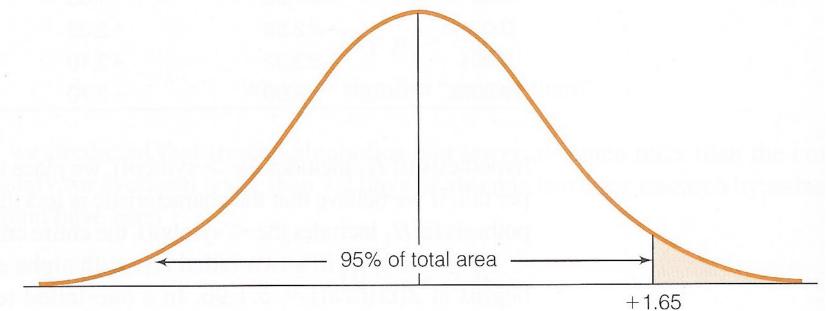
Two-tailed test: α =0.05



Source: Healey 2015, p.198.

One-tailed test (upper): α =0.05

B. The one-tailed test for upper tail, Z(critical) = +1.65



Source: Healey 2015, p.198.

One-tailed test (lower): α =0.05

C. The one-tailed test for lower tail, Z(critical) = -1.65



Source: Healey 2015, p.198.

Selecting an alpha level

- By assigning an alpha level, one defines an "unlikely" sample outcome
- Alpha level is the probability that the decision to reject the null hypothesis is incorrect
- Examine this table for critical regions

The Relationship Between Alpha and Z(Critical) for a Two-Tailed Test

If Alpha =	The Two-Tailed Critical Region Will Begin at <i>Z</i> (Critical) =
0.100	±1.65
0.050	±1.96
0.010	±2.58
0.001	±3.32

Type I and Type II errors

- Type I error (alpha error)
 - Rejecting a true null hypothesis
- Type II error (beta error)
 - Not rejecting a false null hypothesis
- Examine table below for relationships between decision making and errors

Decision Making and the Five-Step Model

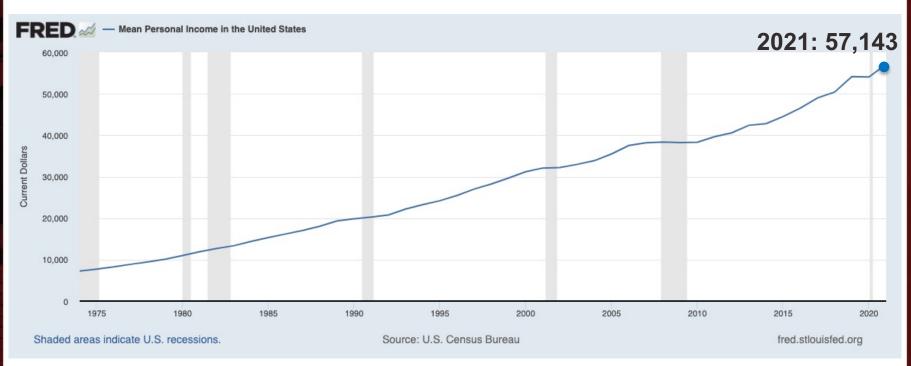
	If Our Decision Is to	And H ₀ Is Actually	The Result Is
а	Reject H ₀	False	OK
b	Fail to reject H ₀	True	OK
С	Reject H ₀	True	Type I or alpha ($lpha$) error
d	Fail to reject H_0	False	Type II or beta (eta) error

Decisions about hypotheses

Hypotheses	ρ < α	<i>p</i> > α
Null hypothesis (H ₀)	Reject	Do not reject
Alternative hypothesis (H ₁)	Accept	Do not accept
 <i>p</i>-value is the probability of not rejecting the null 	Significance level (α)	Confidence level
hypothesis	0.10 (10%)	90%
- If a statistical software	0.05 (5%)	95%
gives only the two- tailed <i>p</i> -value, divide it	0.01 (1%)	99%
by 2 to obtain the one- tailed <i>p</i> -value	0.001 (0.1%)	99.9%

Example 3: Income, 2021

- Is the mean personal income of Veterans (GSS) lower than mean income of population 15+ (Census Bureau)?
- We know the income for the population 15+



Source: U.S. Census Bureau, Mean Personal Income in the United States [MAPAINUSA646N], retrieved from FRED, Federal Reserve Bank of St. Louis; <u>https://fred.stlouisfed.org/series/MAPAINUSA646N</u>, October 24, 2022. Shaded areas indicate U.S. recessions.

Example 3: Census & GSS

- We know the income for the <u>2021 GSS sample of</u> <u>Veterans</u>
- . mean conrinc if veteran==1

Mean estimation

Number of obs = 229

	Mean	Std. err.	[95% conf.	interval]
conrinc	49562.49	2932.717	43783.8	55341.19

- What causes the difference between \$57,143.00 (pop.15+, Census) and \$49,562.49 (Veterans, GSS)?
- Real difference? Or difference due to random chance?

Example 3: Result

- Veteran population has mean income that is significantly lower than mean income of the population 15+
 - The difference between the parameter \$57,143.00 and the statistic \$49,562.49 was large and unlikely to have occurred by random chance (*p*-value<0.05)

. ztest conrinc=57143 if veteran==1

One-sample z test

Variable	Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
conrinc	229	49562.49	.0660819	1	49562.36	49562.62
mean = H0: mean =	= mean(con = 57143	rinc)			z	= -1.1e+05
	n < 57143) = 0.0000		a: mean != 5 Z > z) = (n > 57143 2) = 1.0000

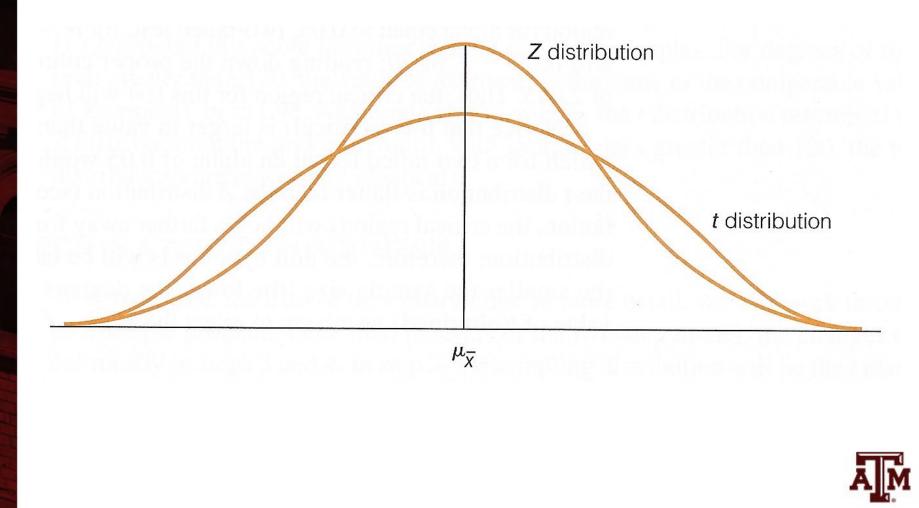
The Student's *t* distribution

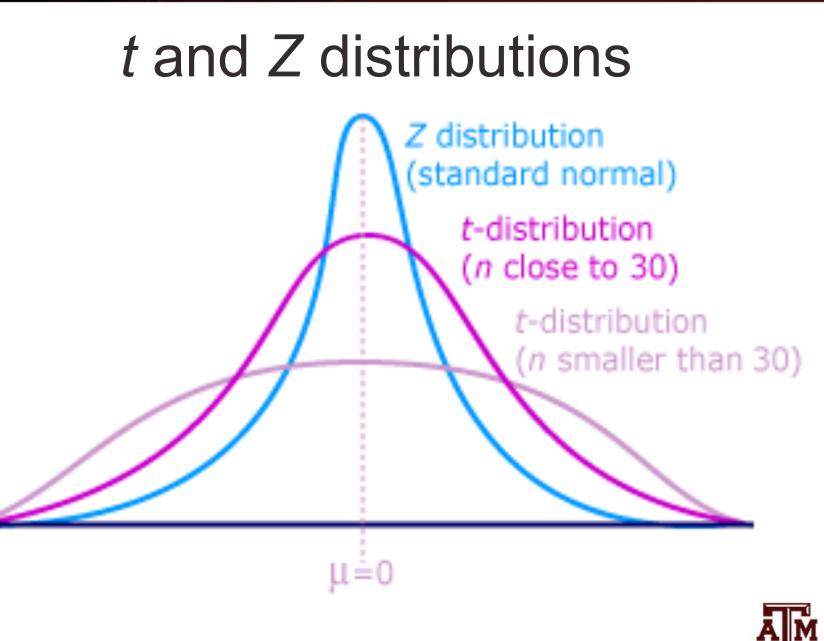
- How can we test a hypothesis when the population standard deviation (σ) is unknown, as is usually the case?
- For large samples (n ≥ 100), we can use the sample standard deviation (s) as an estimator of the population standard deviation (σ)

– Use standard normal distribution (Z)

- For small samples, s is too biased to estimate σ
 Do not use standard normal distribution
 - Use Student's t distribution

t and Z distributions





Source: https://joejeong33.wordpress.com/2013/06/03/t-distributionin-the-normal-distribution-there-are-enough/.

Choosing the distribution

• Choosing a sampling distribution when testing single-sample means for significance

If population standard deviation (σ) is	Sampling distribution is the
Known	Z distribution
Unknown and sample size (<i>n</i>) is large	Z distribution
Unknown and sample size (<i>n</i>) is small	t distribution

Example 4: With *t*-test

- This is the same as example 3, but with *t*-test
 - GSS has a large sample. This is just an illustration
- Veteran population has mean income that is significantly lower than mean income of the population 15+ (*p*-value<0.05)
- . ttest conrinc=57143 if veteran==1

```
One-sample t test
Variable
                                             Std. dev.
                                                           [95% conf. interval]
               0bs
                          Mean
                                  Std. err.
 conrinc
               229
                                  2932.717
                                              44380.07
                      49562.49
                                                            43783.8
                                                                       55341.19
    mean = mean(conrinc)
                                                                        -2.5848
                                                                   +
                                                                     =
H0: mean = 57143
                                                  Degrees of freedom =
                                                                            228
  Ha: mean < 57143
                               Ha: mean != 57143
                                                              Ha: mean > 57143
 Pr(T < t) = 0.0052
                                                             Pr(T > t) = 0.9948
                            Pr(|T| > |t|) = 0.0104
```

Five-step model for proportions

- When analyzing variables that are not measured at the interval-ratio level
 - A mean is inappropriate
 - We can test a hypothesis on a one sample proportion
- The five step model remains primarily the same, with the following changes
 - The assumptions are: random sampling, nominal level of measurement, and normal sampling distribution
 - The formula for Z is

$$Z = \frac{P_s - P_u}{\sqrt{P_u(1 - P_u)/n}}$$

Example 5: Proportions

 A random sample of 122 households in a lowincome neighborhood revealed that 53 of the households were headed by women

 $-P_s = 53 / 122 = 0.43$

- In the city as a whole, the proportion of womenheaded households (P_u) is 0.39
- Are households in lower-income neighborhoods significantly different from the city as a whole?
- Conduct a 90% hypothesis test ($\alpha = 0.10$)

Step 1: Assumptions, requirements

- Make assumptions
 - Random sampling
 - Hypothesis testing assumes samples were selected according to EPSEM
- Meet test requirements
 - The sample of 122 was randomly selected from all lower-income neighborhoods
 - Level of measurement is nominal
 - Women-headed households is measured as a proportion
 - Sampling distribution is normal in shape
 - This is a large sample $(n \ge 100)$

Step 2: Null hypothesis

- Null hypothesis, $H_0: P_u = 0.39$
 - The sample of 122 comes from a population where 39% of households are headed by women
 - The difference between 0.43 and 0.39 is trivial and caused by random chance
- Alternative hypothesis, $H_1: P_u \neq 0.39$
 - The sample of 122 comes from a population where the percent of women-headed households is not 39
 - The difference between 0.43 and 0.39 reflects an actual difference between lower-income neighborhoods and all neighborhoods

Step 3: Distribution, critical region

- Sampling distribution
 - Standard normal distribution (Z)
- Alpha (α) = 0.10 (two-tailed)
- Critical region begins at $Z(critical) = \pm 1.65$
 - This is the critical Z score associated with a two-tailed test and alpha equal to 0.10
 - If the obtained Z score falls in the critical region, we reject H₀

Step 4: Test statistic

Proportion of households headed by women

City	Sample in a low-income neighborhood	
$P_{u} = 0.39$	$P_{\rm s} = 0.43$	
	n = 122	

• The formula for *Z* is

$$Z = \frac{P_s - P_u}{\sqrt{P_u(1 - P_u)/n}} = \frac{0.43 - 0.39}{\sqrt{0.39(1 - 0.39)/122}} = 0.91$$

Step 5: Decision, interpret

- *Z*(*obtained*) = 0.91
 - *Z*(*obtained*) did not fall in the critical region delimited by *Z*(*critical*) = \pm 1.65, so we *do not reject* the H₀
 - This means that if H_0 was true, a sample outcome of 0.43 would be likely
 - Therefore, the H_0 is not false and cannot be rejected
- The population of women-headed households in lower-income neighborhoods is not significantly different from the city as a whole
 - The difference between the parameter (P_u =0.39) and the statistic (P_s =0.43) was small and likely to have occurred by random chance (p>0.10)

Example 6: Sex, 2021

- Is the female proportion of the adult population (18+) in the U.S. higher than among the total population?
- We know the percentage of women for the population

PEOPLE	
Population	
Population Estimates, July 1 2021, (V2021)	☎ 331,893,745
Population estimates base, April 1, 2020, (V2021)	☎ 331,449,281
Population, percent change - April 1, 2020 (estimates base) to July 1, 2021, (V2021)	▲ 0.1%
Population, Census, April 1, 2020	331,449,281
Population, Census, April 1, 2010	308,745,538
Age and Sex	
Persons under 5 years, percent	▲ 5.7%
Persons under 18 years, percent	▲ 22.2%
Persons 65 years and over, percent	▲ 16.8%
Female persons, percent	🛆 50.5%

Source: U.S. Census Bureau (https://www.census.gov/quickfacts/fact/table/US/PST045221).

Example 6: Census & GSS

- The percentage of women in the **2021 GSS sample 18+**
 - . tab female

female	Freq.	Percent	Cum.
0 1	1,736 2,204	44.06 55.94	44.06 100.00
Total	3,940	100.00	

- What causes the difference between 50.5% (population, Census) and 55.94% (sample 18+, GSS)?
- Real difference? Or difference due to random chance?

Example 6: Result

- Population 18+ has a statistically significant higher proportion of women than overall population
 - The difference between the parameter 50.5% and the statistic 55.94% was large and unlikely to have occurred by random chance (*p*-value<0.05)
- . prtest female=.505

One-sample test of proportion			mber of obs	=	3940
Variable	Mean	Std. err.	[95%	conf.	interval]
female	. 5593909	.0079093	. 543	3889	.5748927
<pre>p = proportion(female) H0: p = 0.505</pre>				z =	= 6.8285
Ha: p < 0. Pr(Z < z) = 1		Ha: p != 0.505 Pr(Z > z) = 0.0000	Pr		> 0.505) = 0.0000

