Lecture 1: Introduction

Ernesto F. L. Amaral

January 17–19, 2023
Advanced Methods of Social Research (SOCI 420)

www.ernestoamaral.com

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 1 (pp. 1–22).

Outline

- Course objective
- Why study statistics?
 - Describe role of statistics in social research
- Types of variables
 - Causal relationships: independent, dependent
 - Unit of measurement: discrete, continuous
 - Level of measurement: nominal, ordinal, interval-ratio
- General classes of statistics
 - Univariate, bivariate, multivariate, inferential
- General Social Survey (GSS)
- Stata

Main objectives of this course

- Statistics are tools used to analyze data and answer research questions
- Our focus is on how these techniques are applied in the social sciences
- Be familiar with advantages and limitations of the more commonly used statistical techniques
- Know which techniques are appropriate for a given purpose
- Develop statistical and computational skills to carry out elementary forms of data analysis

Data, software, and techniques

- This course is an introduction to social statistics using data from the General Social Survey (GSS) and the statistical package Stata
 - Univariate analysis
 - Mode, median, mean, boxplot
 - Measure of association for nominal-level variables
 - Chi Square
 - Measure of association for ordinal-level variables
 - Spearman's Rho
 - Measures of association for interval-ratio-level variables
 - Scatterplots, Pearson's r, analysis of variance (ANOVA)
 - Multivariate analysis
 - Ordinary least square regression (linear regression)

Why study statistics?

- Scientists conduct research to answer questions, examine ideas, and test theories
- Statistics are relevant for <u>quantitative research</u>
 <u>projects</u>: numbers and data used as information

 Statistics are mathematical techniques used by social scientists to analyze data in order to answer questions and test theories

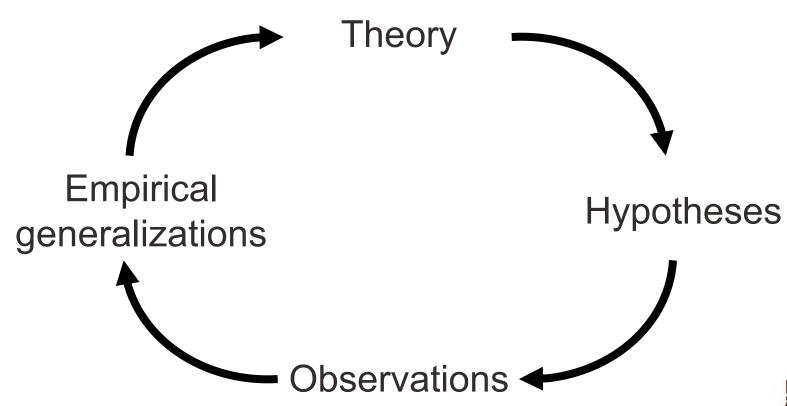
Importance of data manipulation

Studies without statistics

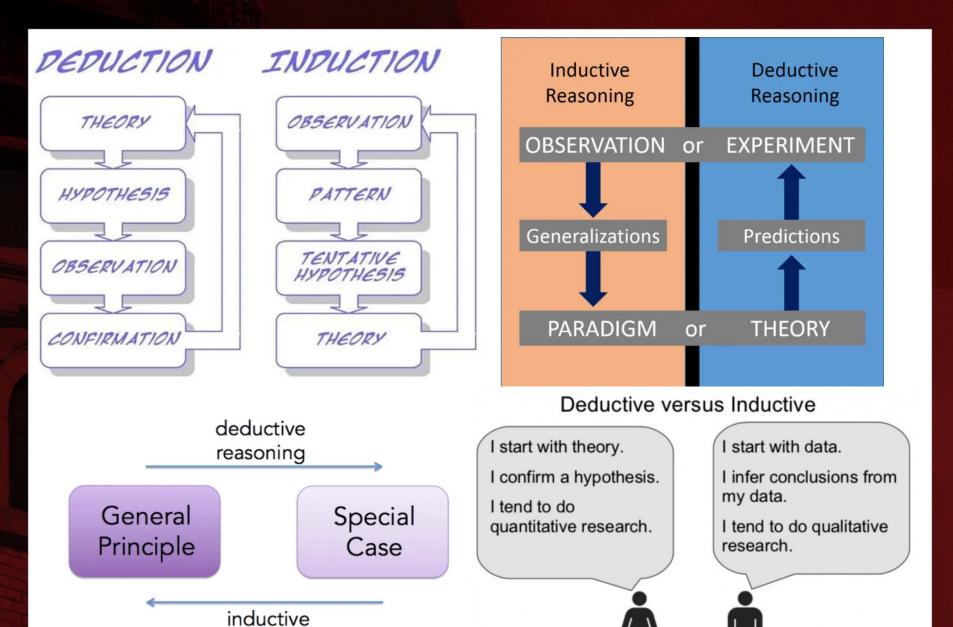
- Some of the most important works in the social sciences do not utilize statistics
- There is nothing magical about data and statistics
- Presence of numbers guarantees nothing about the quality of a scientific inquiry

Studies with statistics

- Data can be the most trustworthy information available to the researcher
- Researchers must organize, evaluate, analyze data
- Without understanding of statistical analysis,
 researcher will be unable to make sense of data


Statistics role in scientific inquiry

- Research is a disciplined inquiry to answer questions, examine ideas, and test theories
- Statistics are mathematical tools used to organize, summarize, and manipulate data
- Quantitative research collects and uses information in the form of numbers
- Data refers to information that is collected in the form of numbers



The wheel of science

 Scientific theory and research continually shape each other

Source: Healey, 2015, p.2.

Deductive

Inductive

reasoning

Theory

- Theory is an explanation of the relationships among social phenomena
- Scientific theory is subject to a rigorous testing process

- Social theories are complex and abstract explanations about problems in society
 - They develop explanations about these issues

Hypotheses

- Since theories are often complex and abstract, we need to be specific to conduct a valid test
- Hypotheses are preliminary answers to research questions, based on theories
- Hypothesis is a specific and exact statement about the relationship between variables...

Variables and observations

Variables

- Characteristics that can change values from case to case
- E.g. gender, age, race/ethnicity, number of children, place of residence, income...

Observations (cases)

- Refer to the entity from which data are collected
- Also known as "unit of analysis"
- E.g. individuals, households, states, countries...

Variables

- Variable: a characteristic/phenomenon whose value varies (changes) from case to case, and is empirically quantifiable
- Dependent variable: a variable whose variation depends on another variable
- Independent variable: a variable whose variation produces ("causes") variation in another variable

Observations

- Observations (cases) are collected information used to test hypotheses
- Decide how variables will be measured and how cases will be selected and tested
- Measure social reality: collect numerical data
- Information can be organized in databases
 - Variables as columns
 - Observations as rows

Example of a database

Observation	Salary per hour	Years of schooling	Years of experience in the labor market	Female	Marital status (married)
1	3.10	11	2	1	0
2	3.24	12	22	1	1
3	3.00	11	2	0	0
4	6.00	8	44	0	1
5	5.30	12	7	0	1
525	11.56	16	5	0	1
526	3.50	14	5	1	0

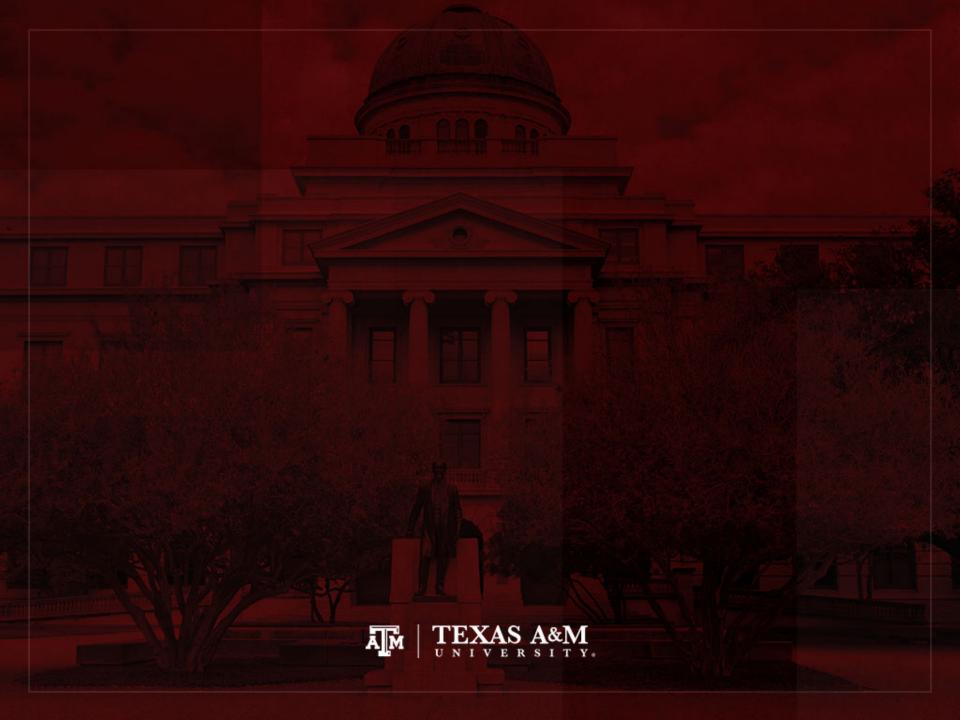
Source: Wooldridge, 2008.

Empirical generalizations

 Empirical generalizations are conclusions based on the analysis of collected observations that evaluate hypotheses and assess theory

- As we developed tentative explanations, we would begin to revise or elaborate the theory that guides the research project
 - If we changed our theory because of our empirical generalizations, a new research project would be needed to test the revised theory
 - The wheel of science would begin to turn again

Statistical analysis


- Statistical analysis of data should be applied after successfully completing earlier phases
 - Rigorous conceptualization and use of theory
 - Well-defined research design and methods
 - Well-conceived research questions
- Review research literature to learn how to
 - Develop and clarify definitions
 - Understand social concepts
 - Develop questions and indicators to measure concepts

Theory and research

- In the normal course of science, we rarely are in a position to declare a theory true or false
 - Evidence will gradually accumulate over time
 - Ultimate judgments of truth will be the result of many years of research and debate
- Theory stimulates research and research shapes theory
 - This is the key to enhance our understanding of the social world
- Statistics is one of the most important links between theory and research

Types of variables

- Variables may be classified in different forms
- Causal relationships
 - Independent or dependent
- Unit of measurement
 - Discrete or continuous

- Level of measurement
 - Nominal, ordinal, or interval-ratio

Causation

- Theories and hypotheses are often stated in terms of the relationships between variables
 - Causes: independent variables
 - Effects or results: dependent variables

У	x	Use	
Dependent variable	Independent variable	Econometrics	
Explained variable	Explanatory variable		
Response variable	Control variable	Experimental science	
Predicted variable	Predictor variable		
Outcome variable	Covariate		
Regressand	Regressor		

Correlation vs. causation

- Correlation and causation are different
 - Strong associations (correlation) may be used as evidence of causal relationships (causation)
 - Associations do not prove variables are causally related
- We might have problems of reverse causality
 - e.g., immigration increases competition in the labor market and affects earnings
 - Availability of jobs and income levels influence migration

Migration ← Earnings

Discrete or continuous

Discrete variables

- Have a basic unit of measurement that cannot be subdivided (whole numbers)
- Count number of units (e.g. people, cars, siblings) for each case (e.g. household, person)

Continuous variables

- Have scores that can be subdivided infinitely (fractional numbers)
- Report values as if continuous variables were discrete
- Statistics and graphs vary depending on whether variable is discrete or continuous

Level of measurement

- Level of measurement
 - Mathematical nature of the scores of a variable
 - It is crucial because statistical analysis must match the mathematical characteristics of variables
- Three levels of measurement
 - Nominal: scores are labels only, not numbers
 - Ordinal: scores have some numerical quality and can be ranked
 - Interval-ratio: scores are numbers

Nominal-level variables

- Have non-numerical scores or categories
 - Scores are different from each other, but cannot be treated as numbers (they are just labels)
 - Statistical analysis is limited to comparing relative sizes of categories

Variables	Gender	Political party preference	Religious preference
Categories	1 Male	1 Democrat	1 Protestant
	2 Female	2 Republican	2 Catholic
		3 Other	3 Jew
		4 Independent	4 None
			5 Other

Criteria to measure variables

- Be mutually exclusive
 - Each case must fit into one and only one category
- Be exhaustive
 - There must be a category for every case
- Include elements that are homogenous
 - The cases in each category must be similar to each other

Measuring religious affiliation

- Scale A (not mutually exclusive)
 - Protestant and Episcopalian overlap
- Scale B (not exhaustive)
 - Lacks no religion and other
- Scale C (not homogeneous)
 - Non-Protestant seems too broad

Scale A	Scale B	Scale C	Scale D	
Protestant	Protestant	Protestant	Protestant	
Episcopalian	Catholic	Non-Protestant	Catholic	
Catholic	Jew		Jew	
Jew			None	
None			Other	į
Other				P

Ordinal-level variables

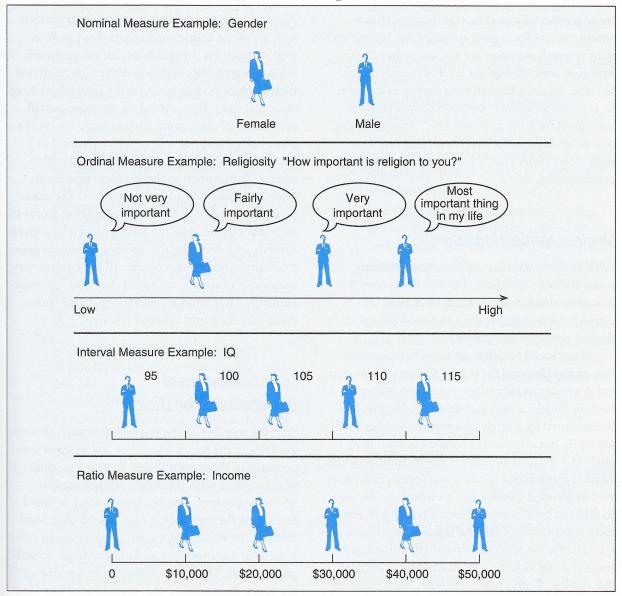
- Categories can be ranked from high to low
 - We can say that one case is higher or lower, more or less than another

- Scores have no absolute or objective meaning
 - Only represent position with respect to other scores
 - We can distinguish between high and low scores
 - But distance between scores cannot be described
 - Average is not permitted with ordinal-level variables

Examples: ordinal-level variables

- Attitude and opinion scales
 - Prejudice, alienation, political conservatism...
- Likert scale:
 - (1) strongly disagree; (2) disagree; (3) neither agree nor disagree; (4) agree; (5) strongly agree
- Into which of the following classes would you say you belong?

Score	Class
1	Lower class
2	Working class
3	Middle class
4	Upper class



Interval-ratio-level variables

- Scores are actual numbers that can be analyzed with all possible statistical techniques
- Have equal intervals between scores
- Have true zero points
 - Score of zero is not arbitrary
 - It indicates absence of whatever is being measured
- Examples:
 - Age (in years)
 - Income (in dollars)
 - Year of education
 - Number of children

Examples

Importance

- Level of measurement of a variable is crucial
 - It tells us which statistics are appropriate and useful
- Different statistics require different mathematical operations
 - Ranking, addition, square root...
- The first step in dealing with a variable and selecting appropriate statistics is to determine its level of measurement

Determine level of measurement

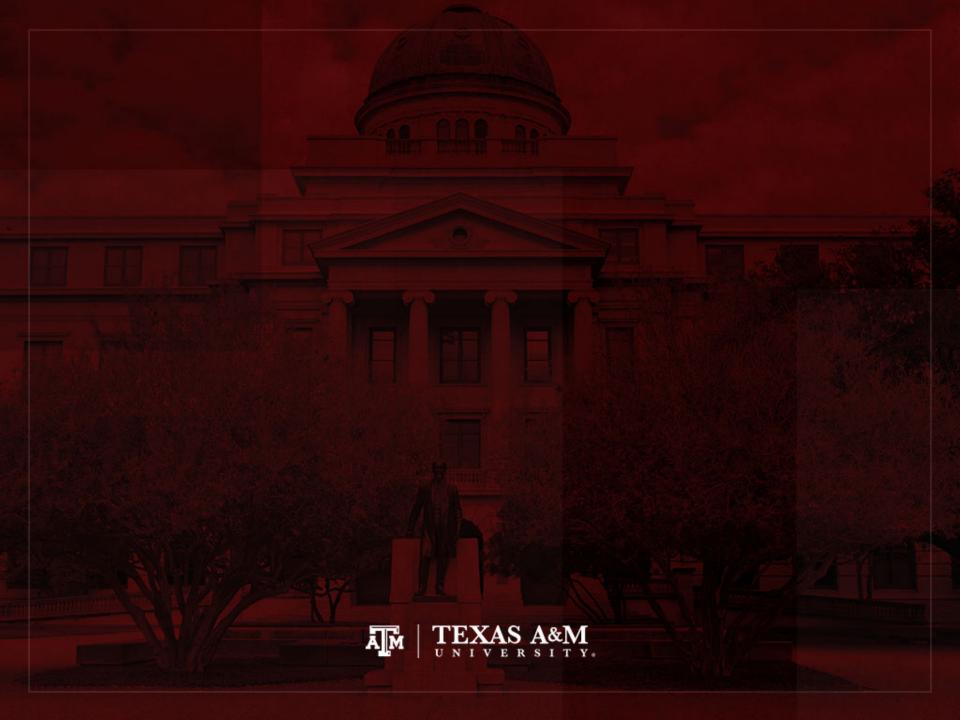
- Change the order of the scores. Do they still make sense?
 - If yes: the variable is nominal
 - If no: proceed to the next step
- Is the distance between the scores unequal?
 - If yes: the variable is ordinal
 - If no: the variable is interval-ratio

Nominal- and ordinal-level

 Nominal-level (e.g. marital status) and ordinal-level (e.g. capital punishment support) variables are almost always discrete

	support the death penants		What is your marital status? Are you presently:	
	Category	Score	Score Category	
	Strongly support	1	Married	1
	Somewhat support	2	Divorced	2
oppose	Neither support nor o	3	Separated	3
	Somewhat oppose	4	Widowed	4
	Strongly oppose	5	Single	5
7				-

Income at the ordinal level


- Always examine the way in which the scores of the variable are actually stated
 - Be careful to look at the way in which the variable is measured before defining its level of measurement
- This is a problem with interval-ratio variables that have been measured at the ordinal level

Score	Income range	
1	Less than \$24,999	
2	\$25,000 to \$49,999	
3	\$50,000 to \$99,999	
4	\$100,000 or more	

Variables' level of measurement

Variables' level of measurement	Examples of variables	Measurement procedures	Mathematical operations permitted	Examples of available techniques
Nominal	GenderRace/ethnicityReligionMarital status	Classification into categoriesMode	Counting number in each category (tabulation)Comparing sizes of categories	Chi SquareLogisticregressionMultinomiallogistic regression
Ordinal	Social classAttitudescalesOpinionscales	 All of the above Plus ranking of categories with respect to each other (scale) Mode, median 	All of the abovePlus judgments of "greater than" and "less than"	Spearman's RhoOrdered logistic regression
Interval- ratio	AgeNumber of childrenIncome	 All of the above Plus description of scores in terms of equal units Mode, median, mean 	 All of the above Plus mathematical operations (addition, subtraction, multiplication, division, square roots) 	 Scatterplots Pearson's r Analysis of variance (ANOVA) Ordinary least square regression (linear regression)

General classes of statistics

- Two main types of statistical techniques are available to analyze data and answer questions
- Descriptive statistics
- Inferential statistics

Descriptive statistics

- Univariate descriptive statistics
 - Summarize or describe the distribution of a single variable
- Bivariate descriptive statistics
 - Describe the relationship between two variables
- Multivariate descriptive statistics
 - Describe the relationship among three or more variables

Univariate descriptive statistics

- Univariate descriptive statistics
 - Include percentages, averages, and graphs
 - Data reduction: few numbers summarize many
- U.S. population by age groups, 2010

Age group	Percent						
Under 18 years	24.0						
18 to 44 years	36.6						
45 to 64 years	26.4						
65+ years	13.0						
Total (N)	308,745,538						

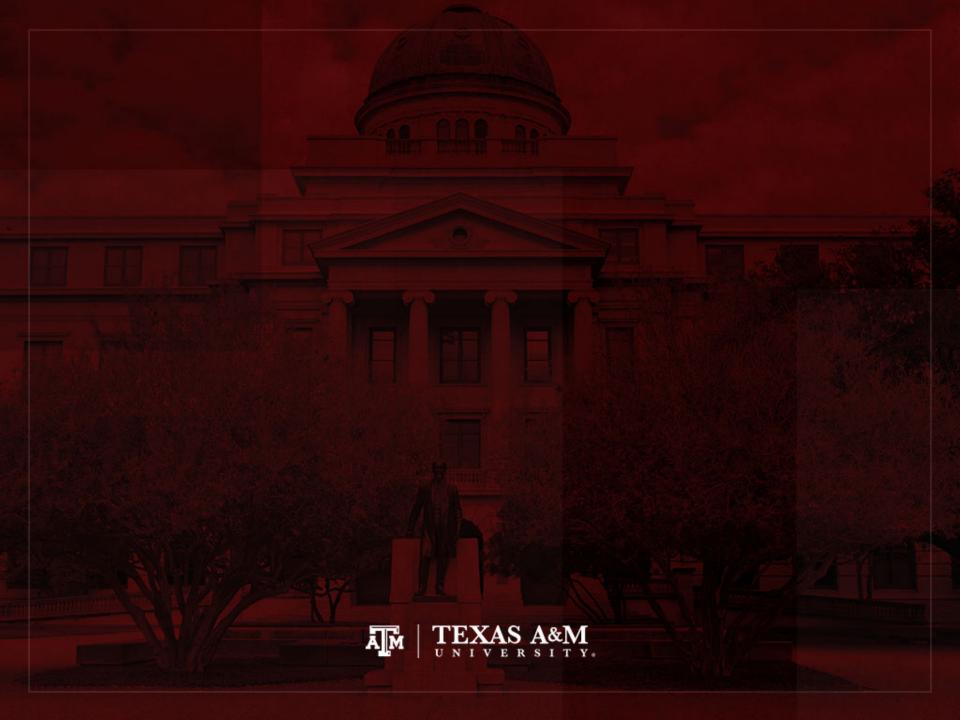
The median age was37.2 years in 2010

Bivariate descriptive statistics

- Bivariate descriptive statistics
 - Describe the strength and direction of the relationship between two variables
 - Measures of association: quantify the strength and direction of a relationship
 - Allow us to investigate causation and prediction
- E.g. relationship between study time and grade
 - Strength: closely related
 - Direction: as one increases, the other also increases
 - Prediction: the longer the study time, the higher the grade

Multivariate descriptive statistics

- Multivariate descriptive statistics
 - Describe the relationships between three or more variables
 - Measures of association: quantify the strength and direction of a multivariate relationship
- E.g. grade, age, gender
 - Strength: relationship between age and grade is strong for women, but weak for men
 - Direction: grades increase with age only for females
 - Prediction: older females will experience higher grades than younger females. Older males will have similar grades to younger males.


Inferential statistics

- Social scientists need inferential statistics
 - They almost never have the resources or time to collect data from every case in a population
- Inferential statistics uses data from samples to make generalizations about populations
 - Population is the total collection of all cases in which the researcher is interested
 - Samples are carefully chosen subsets of the population
- With proper techniques, generalizations based on samples can represent populations

Public-opinion polls

- Public-opinion polls and election projections are a familiar application of inferential statistics
 - Several thousand carefully selected voters are interviewed about their voting intentions
 - This information is used to estimate the intentions of all voters (millions of people)
- E.g. public-opinion poll reports that 42% of voters plans to vote for a certain candidate
 - 2,000 respondents are used to generalize to the American electorate population (130 million people)

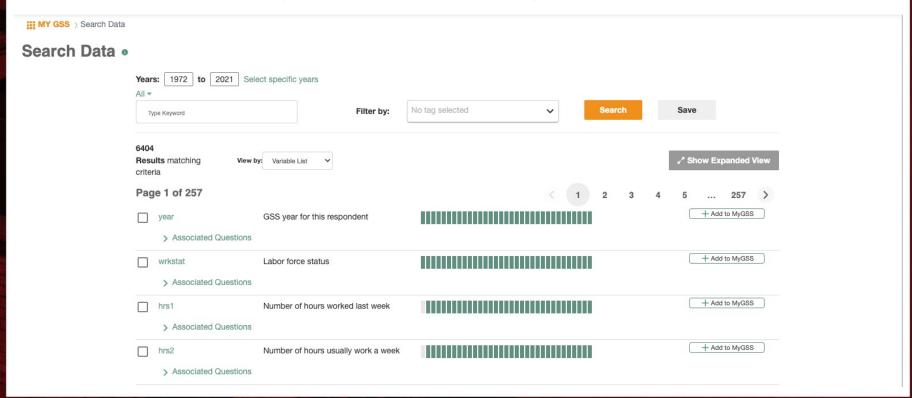
General Social Survey (GSS)

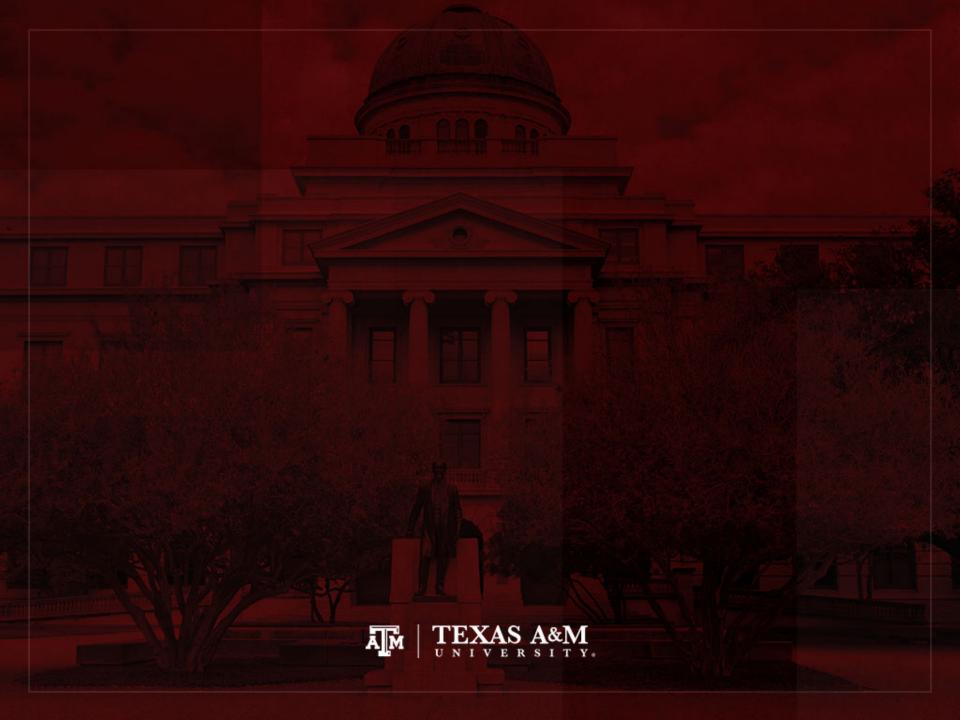
https://gss.norc.org/About-The-GSS

- Nationally representative survey of adults in the United States conducted since 1972
- Data on contemporary American society in order to monitor and explain trends in opinions, attitudes and behaviors
- The GSS has adapted questions from earlier surveys, thereby allowing researchers to conduct comparisons for up to 80 years
- GSS questionnaires:

https://gss.norc.org/get-documentation/questionnaires

GSS microdata


https://gss.norc.org/Get-The-Data


	year	id	wrkstat	wrkslf	wrkgovt	occ10	prestg10	indus10	marital	martype	divorce	widowed	pawrkslf	paocc10	papres10	paind10	mawrkslf	maocc10	mapres10	maind10
1	2021	1	1	2	.i	5400	38	7980	1	.i	2	2	1	9520	39	770	2	3255	64	8190
2	2021	2	1	2	.i	40	57	7470	3	.i	.i	2	2	10	72	2070	.i	.1	.i	.i
3	2021	3	2	2	.i	7750	35	4770	5	.i	.i	.i	2	2630	46	7380	2	4650	18	9090
4	2021	4	2	1	.i	4600	35	8470	2	.i	2	.i	2	3740	59	9470	2	5120	45	8390
5	2021	6	1	2	.i	5840	38	6990	5	.i	.i	.i	1	9130	35	6170	2	3500	69	8270
6	2021	7	1	2	.i	3800	40	9470	5	.i	.i	.i	2	4760	31	4670	.i	.i	.i	.i
7	2021	8	1	2	.i	1020	60	7390	5	.i	.i	.i	2	7720	27	3390	2	4230	25	7690
8	2021	9	2	2	.i	230	59	7870	3	.i	.i	2	2	1310	44	9590	2	230	59	8470
9	2021	10	5	2	.i	7020	38	6680	1	1	2	2	.i	.i	.i	.i	2	5860	32	7590
10	2021	12	8	2	.i	800	60	3960	3	.i	.i	2	1	310	39	8680	1	8350	42	1680
11	2021	13	1	2	.i	4850	45	4090	1	.i	2	2	.i	.i	.i	.i	.i	.i	.i	.i
12	2021	14	6	2	.i	4130	16	8680	5	.i	.i	.i	2	9120	35	6180	.i	.i	.i	.i
13	2021	15	5	2	.i	2310	61	7860	1	.i	2	2	.i	.i	.i	.i	1	8310	31	9070
14	2021	16	6	.i	.i	.i	.i	.i	5	.i	.i	.i	2	1240	65	7470	.i	.i	.i	.i
15	2021	17	2	1	.i	4850	45	4580	1	.i	2	2	1	6100	36	8590	2	4760	31	5170
16	2021	18	2	2	.i	2340	38	7890	5	.1	.1	.1	.1	.1	.1	.i	2	350	64	8090
17	2021	19	5	1	.i	4600	35	8470	5	.1	.1	.1	.1	.1	.1	.1	.i	.1	.1	.i
18	2021	21	8	2	.i	110	60	3980	1	.1	2	2	.1	.1	.1	.1	2	4760	31	5290
19	2021	22	6	2	.i	2900	43	7870	5	.1	.1	.1	2	1410	73	7460	2	5320	25	6770
20	2021	23	1	2	.i	2810	54	6570	5	.i	.i	.i	2	120	53	6870	2	735	57	7890
21	2021	24	1	2	.i	4760	31	5580	5	.i	.i	.i	2	4700	38	4670	2	5700	47	4770
22	2021	25	1	2	.i	4930	51	7380	5	.i	.i	.i	2	2200	74	7870	.i	.i	.i	.i
23	2021	26	7	2	.i	5100	24	4260	1	.1	2	2	2	430	39	6290	2	5230	29	5170
24	2021	27	4	2	.i	2810	54	6470	3	.i	.i	2	.i	.i	.i	.i	2	3500	69	8190
25	2021	28	1	2	.i	3850	60	9470	1	.i	2	2	.i	.i	.i	.i	2	5230	29	6870
26	2021	29	4	2	.i	1550	50	770	1	.i	2	2	.i	.i	.i	.i	2	5700	47	7870
27	2021	30	1	2	.i	2320	64	7860	1	.1	2	2	1	430	39	7370	.i	.i	.i	.i
28	2021	31	1	2	.i	2200	74	7870	1	.1	2	2	2	2200	74	7870	.i	.i	.i	.i
29	2021	32	4	2	.i	9620	25	5790	5	.1	.1	.1	2	3850	60	9470	2	1820	71	8370
30	2021	35	5	2	.i	5540	45	6370	4	.1	.1	2	.1	.1	.1	.1	.i	.i	.1	.i
31	2021	36	1	2	.i	3060	80	8180	1	.1	2	2	1	9140	26	6190	.i	.1	.1	.i
32	2021	37	1	2	.i	5800	47	9590	3	.1	.1	2	.1	.1	.1	.1	2	3500	69	8190
33	2021	38	1	2	.1	2550	50	7870	5	.1	.1	.1	2	4700	38	5190	2	5700	47	7980
34	2021	39	1	2	.i	20	50	2370	3	.i	.1	2	2	140	50	2370	2	5700	47	6990
35	2021	40	1	2	.i	5240	31	6890	3	.i	.1	2	.1	.1	.1	.1	2	565	47	2970
36	2021	41	1	2	.i	860	43	6990	3	.1	.1	2	2	6230	44	770	2	7750	35	2980
37	2021	42	1	2	.i	7010	49	3090	3	.i	.1	2	2	1360	65	9570	2	5700	47	8770
38	2021	43	1	2	.i	9130	35	4470	5	.i	.i	.1	2	8010	36	2880	1	4600	35	8470
39	2021	44	1	2	.i	4800	38	7470	1	.i	2	2	2	735	57	1290	2	630	47	6890
40	2021	45	1	2	.i	800	60	7290	5	.i	.i	.1	.1	.1	.1	.1	2	5120	45	3890
41	2021	46	7	2	.i	1006	65	6390	1	.i	1	2	2	1530	70	3360	2	1010	63	3390

GSS Data Explorer

 This is an online codebook that allows us to search for variables over time

https://gssdataexplorer.norc.org/variables/vfilter

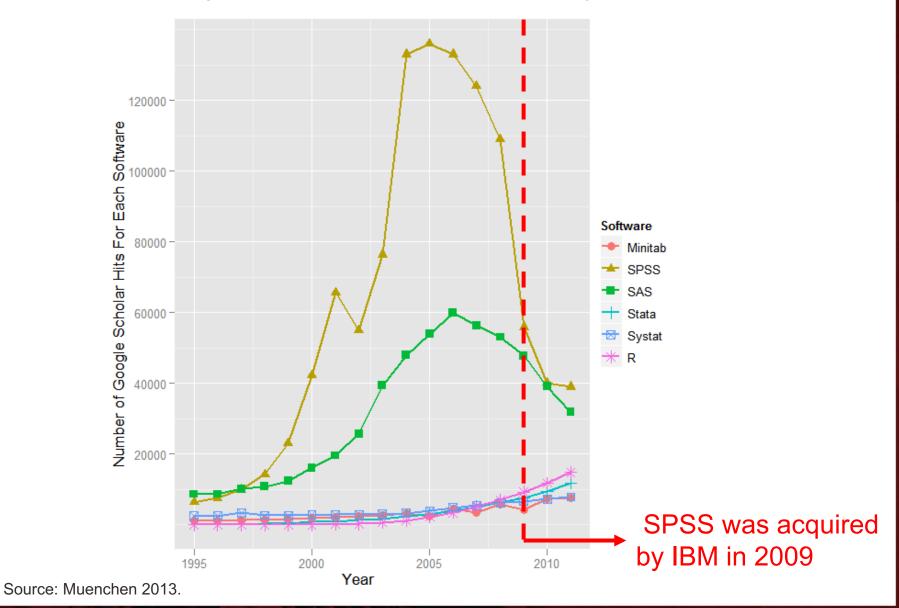
Stata

- Stata is a software package that provides tools for data manipulation, visualization, and estimation of various statistics
- Stata programming language is easier to understand than other statistical software packages (SPSS, SAS, R)
- Stata is popular across various social sciences, such as sociology, demography, and economics
- See more information on

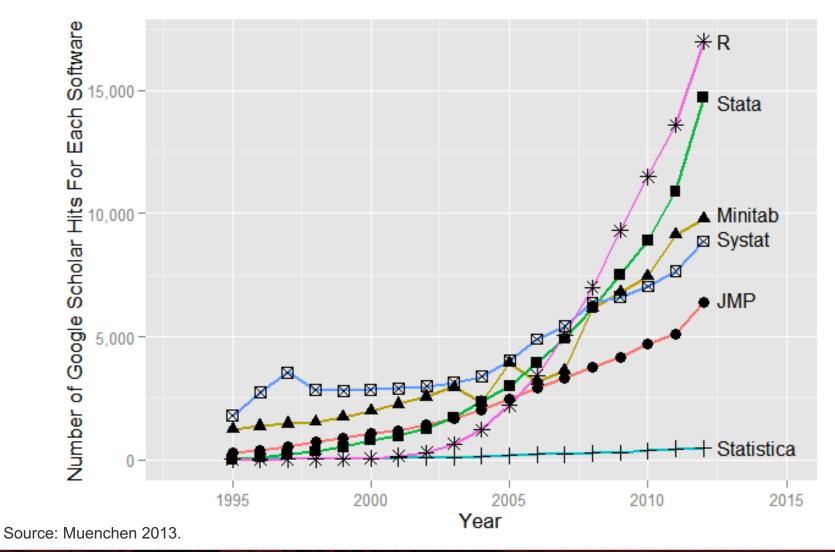
Popularity of statistical software

- Bob Muenchen has been tracking popularity of data science software using a variety of different approaches
 - E.g., he uses Google Scholar to count the number of scholarly articles found each year for each software

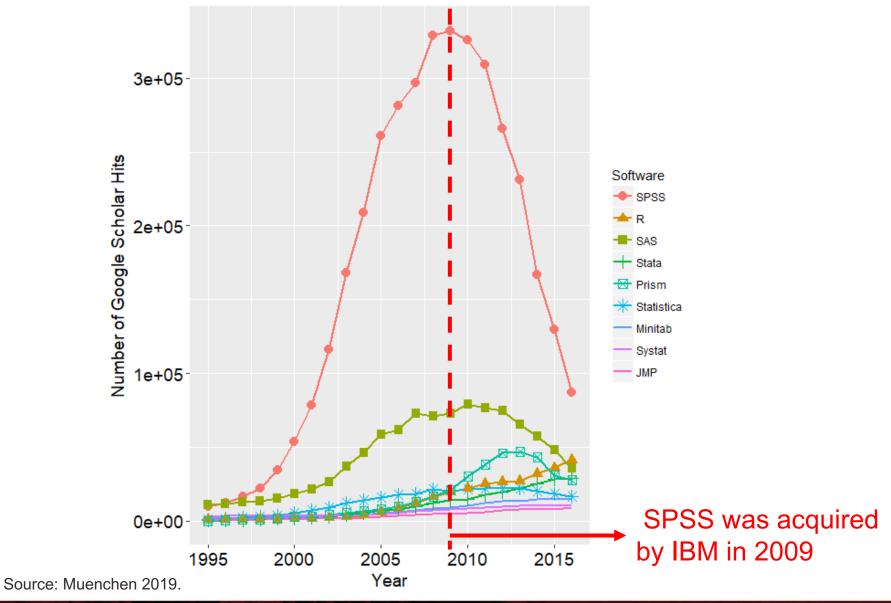
https://r4stats.com/articles/popularity/


- Forecast Update: Will 2014 be the Beginning of the End for SAS and SPSS?
 - May 14, 2013, by Bob Muenchen

https://www.r-bloggers.com/forecast-update-will-2014-be-the-beginning-of-the-end-for-sas-and-spss/


- Is Scholarly Use of R Use Beating SPSS Already?
 - July 15, 2019, by Bob Muenchen

https://www.r-bloggers.com/is-scholarly-use-of-r-use-beating-spss-already/


Scholarly use of data analysis software

Scholarly use of data analysis software, SAS and SPSS removed

Citations per year for each software

Age-period-cohort effects

Why most young demographers use R?

Age effect

 "You know, young people love free stuff and visualizations, they will grow up soon and will pay for Stata or SAS"

Period effect

 "I think it is because it is trendy nowadays, before everybody used Stata, later everybody will use Python"

Cohort effect

 "Maybe is because they learned R at the beginning of their carrier, and they will continue to use it for a long time"

Source: Acosta, Enrique. 2020. "Age-period-cohort analysis: Limitations and possibilities." Presentation at the 11th Demographic Conference of Young Demographers. February, 6.

R vs. Stata

- R is a free software package
 - The most advanced statistical models and techniques are made available quickly in R
 - Researchers, professors, and other professionals create extra commands for R with new methodological advances
 - The same happens for Stata, but not in the same pace
- Among our faculty, Stata is more popular

Stata licenses

 Instructions for accessing Stata through the Texas A&M Virtual Open Access Lab (VOAL)

> http://www.ernestoamaral.com/docs/soci420-23spring/Stata_VOAL_instructions.pdf

 Student short-term Stata license (free for a maximum of one week)

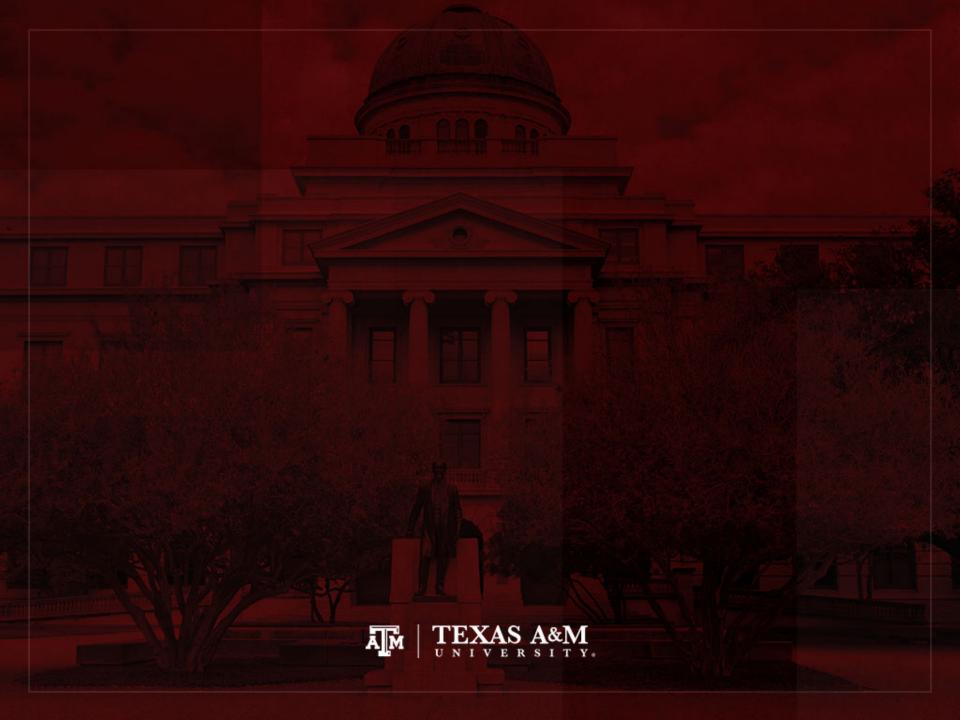
https://www.stata.com/customer-service/short-term-license

Student Single-User Stata License (lower prices)

https://www.stata.com/order/new/edu/gradplans/student-pricing

Stata help resources

Stata: Data Analysis and Statistical Software


http://www.stata.com/links

- Institute for Digital Research and Education (IDRE)
 - University of California, Los Angeles (UCLA)

https://stats.idre.ucla.edu/stata/

- Carolina Population Center (CPC)
 - The University of North Carolina at Chapel Hill (UNC)
 http://www.cpc.unc.edu/research/tools/data_analysis/statatutorial

