Lecture 2b: Survey weights

Ernesto F. L. Amaral

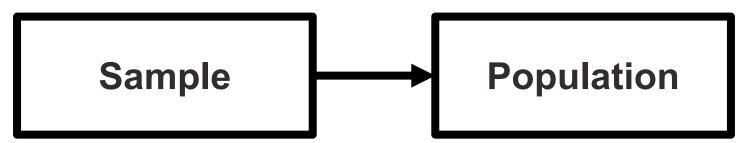
January 31, 2023 Advanced Methods of Social Research (SOCI 420)

www.ernestoamaral.com

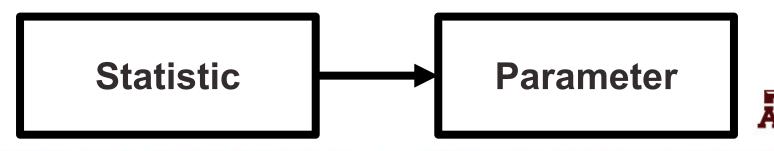
Source: Treiman, Donald J. 2009. Quantitative Data Analysis: Doing Social Research to Test Ideas. San Francisco: Jossey-Bass. Chapter 9 (pp. 195–224).

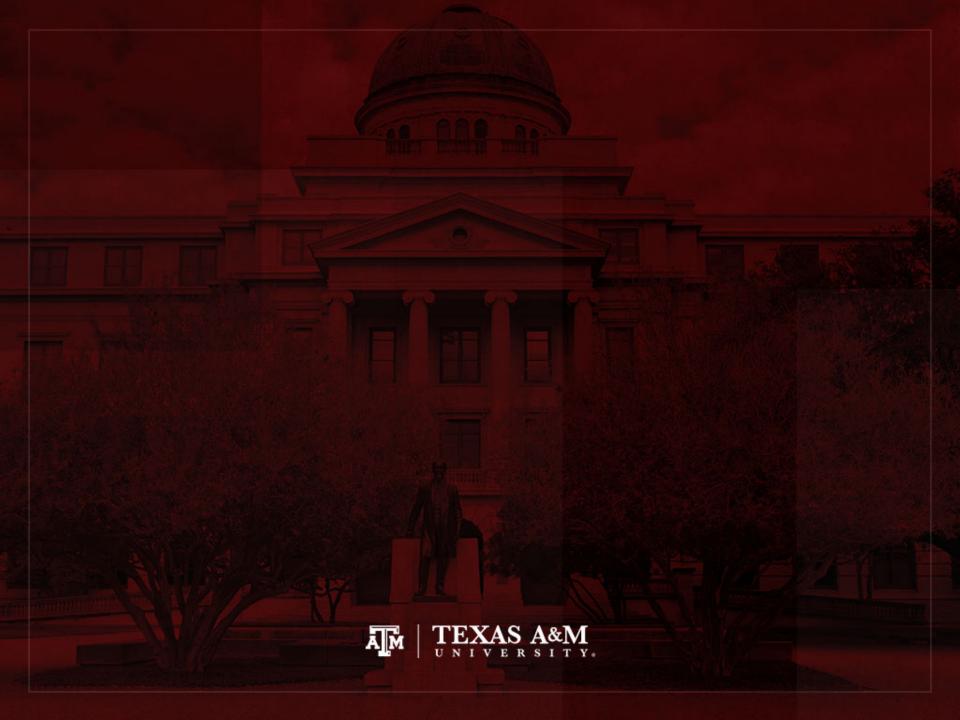
Outline

- Inferential statistics
- Survey weights
- Weight options in Stata
- Complex sample cluster design
- Weights in the General Social Survey (GSS)
- Examples of descriptive statistics



Inferential statistics


- Social scientists need inferential statistics
 - They almost never have the resources or time to collect data from every case in a population
- Inferential statistics uses data from samples to make generalizations about populations
 - Population is the total collection of all cases in which the researcher is interested
 - Samples are carefully chosen subsets of the population
- With proper techniques, generalizations based on samples can represent populations


Basic logic and terminology

• Information from samples is used to estimate information about the population

- Statistics: characteristics of samples
- Parameters: characteristics of populations
- Statistics are used to estimate parameters

Survey weights

Name	Number of observations collected in the survey	Weight to expand to population size	Weight to maintain sample size
José	1	4	0.8
Maria	1	6	1.2
Total	2	10	2

Survey weight =

Population weight * (Sum of survey weights / Sum of population weights)

Weights for tables

- When we use a sample to estimate the absolute number of people
 - For an area
 - For a specific sub-group
 - We use weights to expand to population size
- If we use a sample to estimate the proportion of people in a specific sub-group
 - And we are not concerned with the absolute value
 - We use weights to maintain the sample size (we focus on percentages)

Weights for regressions

• In a simple linear regression, the test of statistical significance for a β coefficient (*t*-test) is estimated as

$$t = \frac{\hat{\beta}}{SE_{\hat{\beta}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{RSS}{df * S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{\sum_{i}(y_i - \hat{y}_i)^2}{\sqrt{\frac{\sum_{i}(x_i - \bar{x})^2}}}}$$

- SE_{β} : standard error of β
- MSE: mean squared error = RSS / df
- RSS: residual sum of squares = $\sum_{i} (y_i \hat{y}_i)^2 = \sum_{i} \hat{e}_i^2$
- *df*: degrees of freedom = *n*–2 for simple linear regression
 - 2 statistics (slope and intercept) are estimated to calculate sum of squares
- S_{xx} : corrected sum of squares for x (total sum of squares)

Weights for regressions

- If we use a weight that expands to the population size
 (N) on regressions
 - We would be incorrectly informing the statistical software that we have a sample with enormous size
 - This would artificially increase the test of statistical significance for the coefficient

$$\mathbf{t} = \frac{\hat{\beta}}{SE_{\hat{\beta}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{\sum_{i}(y_i - \hat{y}_i)^2}{(n-2)\sum_{i}(x_i - \bar{x})^2}}}$$

- We have to inform the weight related to the sample design, but we should maintain the sample size (n)

t distribution (df = 2)

- Bigger the *t*-test
 - Stronger the statistical significance

Smaller the *p*-value

- Smaller the probability of not rejecting the null hypothesis
- Tend to accept alternative (research) hypothesis

-3.0

-4.0

-2.0

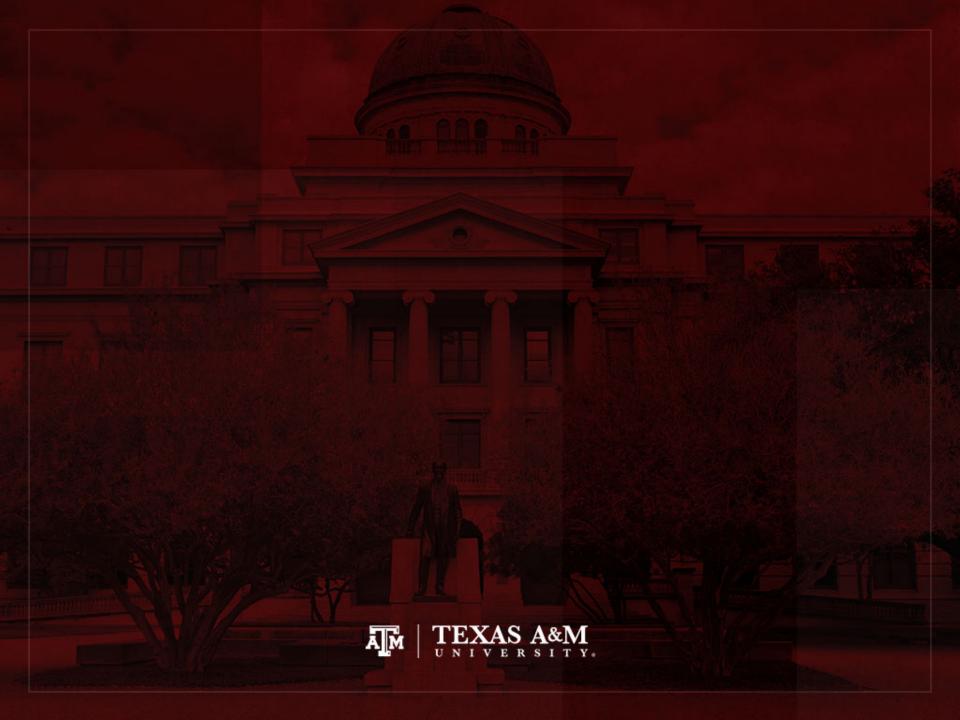
-1.0

0.0

1.0

Example of an estimated *t*

2.0


p-value

3.0

4.0

Decisions about hypotheses

Hypotheses	ρ < α	<i>p</i> > α	
Null hypothesis (H ₀)	Reject	Do not reject	
Alternative hypothesis (H ₁)	Accept	Do not accept	
 <i>p</i>-value is the probability of not rejecting the pull 	Significance level (α)	Confidence level (success rate)	
rejecting the null hypothesis	0.10 (10%)	90%	
- If a statistical software	0.05 (5%)	95%	
gives only the two- tailed <i>p</i> -value, divide it	0.01 (1%)	99%	
by 2 to obtain the one- tailed <i>p</i> -value	0.001 (0.1%)	99.9%	

Weight options in Stata

• Frequency weight (fweight)

• "Importance" weight (iweight)

• Analytic weight (aweight)

• Sampling weight (pweight)

Extract of 2018 ACS microdata

	year	strata	cluster	perwt	hhwt	sex	age	income
1	2018	360248	2.018012e+12	56.00	56.00	Male	46	28000
2	2018	360248	2.018012e+12	51.00	51.00	Male	20	5000
3	2018	360248	2.018012e+12	76.00	76.00	Female	84	0
4	2018	360248	2.018012e+12	55.00	55.00	Female	18	1200
5	2018	360248	2.018012e+12	143.00	143.00	Female	56	1500
6	2018	360248	2.018012e+12	198.00	198.00	Male	31	10000
7	2018	360248	2.018012e+12	48.00	48.00	Female	19	2000
8	2018	360248	2.018012e+12	48.00	48.00	Male	25	7000
9	2018	360248	2.018012e+12	65.00	65.00	Female	18	0
10	2018	360248	2.018012e+12	53.00	53.00	Female	18	15000
11	2018	360248	2.018012e+12	17.00	17.00	Male	63	0
12	2018	360248	2.018012e+12	39.00	39.00	Female	18	4000
13	2018	360248	2.018012e+12	104.00	104.00	Male	21	1000
14	2018	360248	2.018012e+12	200.00	200.00	Male	40	80000
15	2018	360248	2.018012e+12	20.00	20.00	Male	33	0
16	2018	360248	2.018012e+12	59.00	59.00	Male	19	2900
17	2018	360248	2.018012e+12	56.00	56.00	Male	55	0
18	2018	360248	2.018012e+12	77.00	77.00	Male	18	9000
19	2018	360248	2.018012e+12	16.00	16.00	Female	41	1100
20	2018	360248	2.018012e+12	46.00	46.00	Male	33	0

Frequency weight

FWEIGHT

- Expands survey size to the population size
- Indicates the number of duplicated observations
- Used on tables to generate frequencies
- Can be used in frequency distributions only when weight variable is discrete (no fractional numbers)

"Importance" weight

• IWEIGHT

- Indicates the "importance" of the observation in some vague sense
- Has no formal statistical definition
- Any command that supports iweights will define exactly how they are treated
- Intended for use by programmers who want to produce a certain computation
- Can be used in frequency distributions even when weight variable is continuous (fractional numbers)

Analytic weight

AWEIGHT

- Inversely proportional to the variance of an observation
- Variance of the *j*th observation is assumed to be σ^2/w_j , where w_j are the weights
- For most Stata commands, the recorded scale of aweights is irrelevant
- Stata internally rescales frequencies, so sum of weights equals sample size

tab x [aweight = weight]
regress y x1 x2 [aweight = weight]

More about analytic weight

 Observations represent averages and weights are the number of elements that gave rise to the average

group	x	У	n
1	3.5	26.0	2
2	5.0	20.0	3

Instead of

group	x	У
1	3	22
1	4	30
2	8	25
2	2	19
2	5	16

- Usually, survey data is collected from individuals and households (not as averages)
 - Thus, aweights are not appropriate for most cases

Sampling weight

PWEIGHT

- Denote the inverse of the probability that the observation is included due to the sampling design
- Variances, standard errors, and confidence intervals are estimated with a more precise procedure
- Indicated for statistical regressions to estimate robust standard errors
 - Obtain unbiased standard errors of OLS coefficients under heteroscedasticity (i.e., residuals not randomly distributed)
 - Robust standard errors are <u>usually</u> larger than conventional ones

regress y x1 x2 [pweight = weight]

Summary of Stata weights

WEIGHTS IN FREQUENCY DISTRIBUTIONS

Weight unit of measurement	Expand to population size	Maintain sample size
Discrete	fweight	owoight
Continuous	iweight	aweight

WEIGHTS IN STATISTICAL REGRESSIONS should maintain sample size				
Robust standard errorAdjusted R2, TSS, ESS, RSS				
pweight	aweight			
reg <i>y x</i> , vce(robust) reg <i>y x</i> , vce(cluster <i>area</i>)	outreg2			

Example of 2018 ACS weight

. sum perwt, d

Person weight

	Percentiles	Smallest		
1%	10	1		
5%	19	1		
10%	29	1	Obs	3,214,539
25%	52	1	Sum of wgt.	3,214,539
50%	80		Mean	101.7774
		Largest	Std. dev.	83.93534
75%	124	1916		
90%	195	1990	Variance	7045.14
95%	263	2097	Skewness	2.845116
99%	427	2313	Kurtosis	17.99265

Example of 2018 ACS weight

. tab sex	ex . tab sex [fweight=perwt]						
Sex	Freq.	Percent	Cum.	Sex	Freq.	Percent	Cum.
Male Female	1,574,618 1,639,921	48.98 51.02	48.98 100.00		161,072,404 166,095,035	49.23 50.77	49.23 100.00
Total	3,214,539	100.00		Total	327,167,439	100.00	

. tab sex [iweight=perwt]

. tab sex [aweight=perwt]

Sex	Freq.	Percent	Cum.	Sex	Freq.	Percent	Cum.
Male Female	161,072,404 166,095,035	49.23 50.77	49.23 100.00	Male Female	1,582,595 1,631,944	49.23 50.77	49.23 100.00
Total	327,167,439	100.00		Total	3,214,539	100.00	

Example of 2021 GSS weight

.

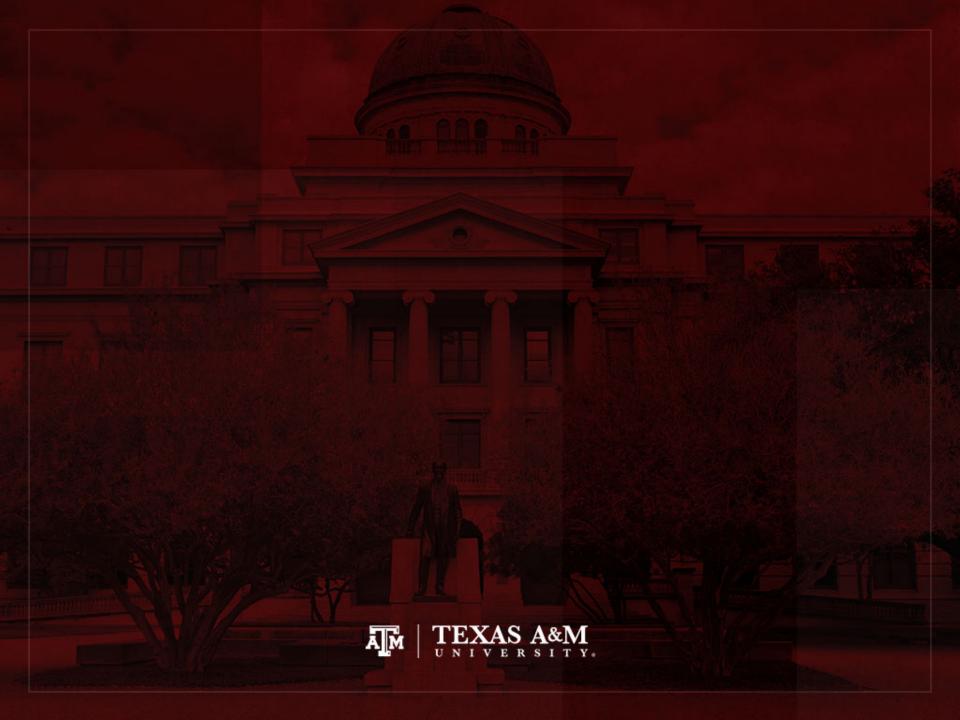
person post-stratification weight, nonrespondents adjusted

1%	Percentiles .243687	Smallest .1723802		
5%	.30024	.1738938		
10%	.4057674	.1926333	Obs	4,032
25%	.5423563	.2104285	Sum of wgt.	4,032
50%	.8183308		Mean	1
		Largest	Std. dev.	.7260472
75%	1.212269	6.51434		
90%	1.798724	6.903664	Variance	.5271445
95%	2.27083	7.218392	Skewness	2.825826
99%	3.986099	7.557038	Kurtosis	15.89999

Example of 2021 GSS weight

. tab sex, m

. tab sex [fweight=wtssnrps], m


may not use noninteger frequency weights
r(401);

respondents sex	Freq.	Percent	Cum.
male	1,736	43.06	43.06
female	2,204	54.66	97.72
.i	19	0.47	98.19
.n	71	1.76	99.95
. 5	2	0.05	100.00
Total	4,032	100.00	

. tab sex [iweight=wtssnrps], m

. tab sex [aweight=wtssnrps], m

respondents sex	Freq.	Percent	Cum.	respondents sex	Freq.	Percent	Cum.
male female .i .n .s	1,904.2566 1,993.21543 18.1122752 113.299832 3.11586052	47.23 49.43 0.45 2.81 0.08	47.23 96.66 97.11 99.92 100.00	male female .i .n .s	1,904.2566 1,993.21543 18.1122752 113.299832 3.11586052	47.23 49.43 0.45 2.81 0.08	47.23 96.66 97.11 99.92 100.00
Total	4,032	100.00		Total	4,032	100.00	

Complex sample cluster design

- To calculate standard errors correctly, variables for sample cluster design must be used
 - Without design variables, Stata will assume a simple random sample and underestimate standard errors

- Strata are created based on the lowest level of geography available in each sample
 - We use additional statistical techniques that account for the complex sample design to produce correct standard errors and statistical tests

Cluster design for tables

- If we want to estimate a confidence interval for a sample statistic (mean or proportion), we need to inform the complex survey design
- **Confidence interval** is a range of values used to estimate the true population parameter
- **Confidence level** is the success rate of the procedure to estimate the confidence interval
- Larger confidence levels generate larger confidence intervals

Confidence level, α , and Z

Confidence level (1 – α) * 100	Significance level alpha (α)	α / 2	Z score
90%	0.10	0.05	<u>+</u> 1.65
95%	0.05	0.025	±1.96
99%	0.01	0.005	<u>+</u> 2.58
99.9%	0.001	0.0005	<u>+</u> 3.32
99.99%	0.0001	0.00005	<u>+</u> 3.90

Source: Healey 2015, p.165.

Confidence intervals from samples

c.i.= sample estimate ± margin of error c.i.= sample estimate ± score of confidence level * standard error

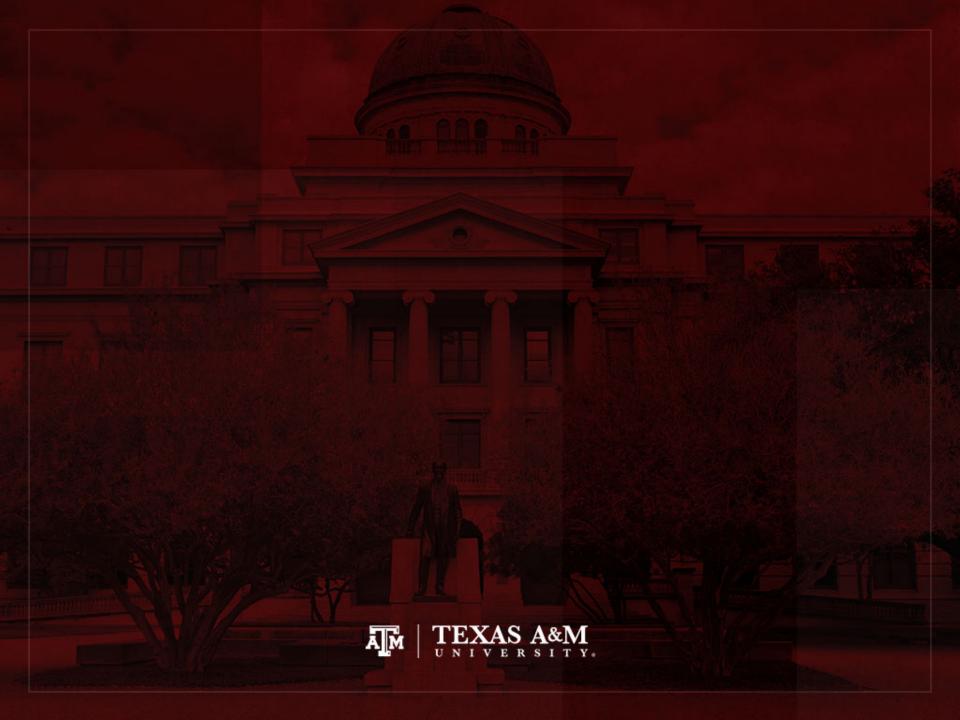
- Sample mean (\bar{x}) , standard deviation (s), n < 30 $c. i. = \bar{x} \pm t \left(\frac{s}{\sqrt{n}}\right) \qquad df = n - 1$
- Sample mean (\bar{x}), standard deviation (s), $n \ge 30$ $c.i. = \bar{x} \pm Z\left(\frac{s}{\sqrt{n-1}}\right)$
- Sam. proportion (P_s), pop. proportion (P_u), $n \ge 30$

$$c.i. = P_s \pm Z_s \sqrt{\frac{P_u(1 - P_u)}{n}}$$

Cluster design for regressions

• We also need to inform cluster design for regressions, because the *t*-test utilizes standard errors

$$t = \frac{\hat{\beta}}{SE_{\hat{\beta}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{RSS}{df * S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{\sum_{i}(y_i - \hat{y}_i)^2}{\sqrt{\frac{\sum_{i}(x_i - \bar{x})^2}}}}$$


- SE_{β} : standard error of β
- MSE: mean squared error = RSS / df
- RSS: residual sum of squares = $\sum_{i} (y_i \hat{y}_i)^2 = \sum_{i} \hat{e}_i^2$
- *df*: degrees of freedom = *n*–2 for simple linear regression
- S_{xx} : corrected sum of squares for x (total sum of squares)

Cluster design & standard error

- Sample cluster designs underestimate standard errors, because they tend to select individuals with more similar characteristics from the same clusters
 - Simple random samples would provide more variation (higher standard errors), because they give the same chance of selection for all individuals in the population
- When we inform the cluster design, the standard error tends to increase and statistical significance decreases

$$t = \frac{\hat{\beta}}{SE_{\hat{\beta}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{RSS}{df * S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{\sum_{i}(y_i - \hat{y}_i)^2}{\sqrt{\frac{\sum_{i}(x_i - \hat{y}_i)^2}{(n-2)\sum_{i}(x_i - \bar{x})^2}}}}$$

Weights in GSS

- The General Social Survey (GSS) targets the adult population (18+) living in U.S. households
- Due to the adoption of the sub-sampling design of non-respondents, a weight must be employed when using the GSS 2004 and after
- There are three continuous weight variables
 - WTSS
 - WTSSNR
 - WTSSALL
- They all maintain the original sample size, even in frequency distributions with "iweight"

WTSS

- WTSS variable takes into consideration
 - Sub-sampling of non-respondents
 - Number of adults in the household

- In years prior to 2004, a value of one is assigned to all cases, so they are effectively unweighted
 - Number of adults can be utilized to make this adjustment for years prior to 2004

WTSSNR

- WTSSNR variable takes into consideration
 - Sub-sampling of non-respondents
 - Number of adults in the household
 - Differential non-response across areas
- In years prior to 2004, a value of one is assigned to all cases, so they are effectively unweighted
 - Number of adults can be utilized to make this adjustment for years prior to 2004
 - Area non-response adjustment is not possible

WTSSALL

- WTSSALL takes WTSS and applies an adult weight to years before 2004
- The weight value of WTSSALL is the same as WTSS for 2004 and after
- Researchers who use the GSS data before or after 2004 may consider using the WTSSALL weight variable

tab x [aweight = wtssall]
sum x [aweight = wtssall]

GSS has a cluster sample

(https://gssdataexplorer.norc.org/pages/show?page=gss%2Fstandard_error)

- First- and second-stage units are selected with probabilities proportional to size
 - Size is defined by number of housing units

- Third-stage units (housing units) are selected to be an equal-probability sample
 - This results in roughly the same number of housing units selected per second-stage sampling unit

GSS variables for cluster design

(https://gssdataexplorer.norc.org/pages/show?page=gss%2Fstandard_error)

- There are two design variables
 - VSTRAT
 - VPSU
- First-stage unit
 - VSTRAT: Variance Stratum
 - National Frame Areas (NFAs): one or more counties
- Second-stage unit
 - VPSU: Variance Primary Sampling Unit
 - Segments: block, group of blocks, or census tract

GSS complex sample design

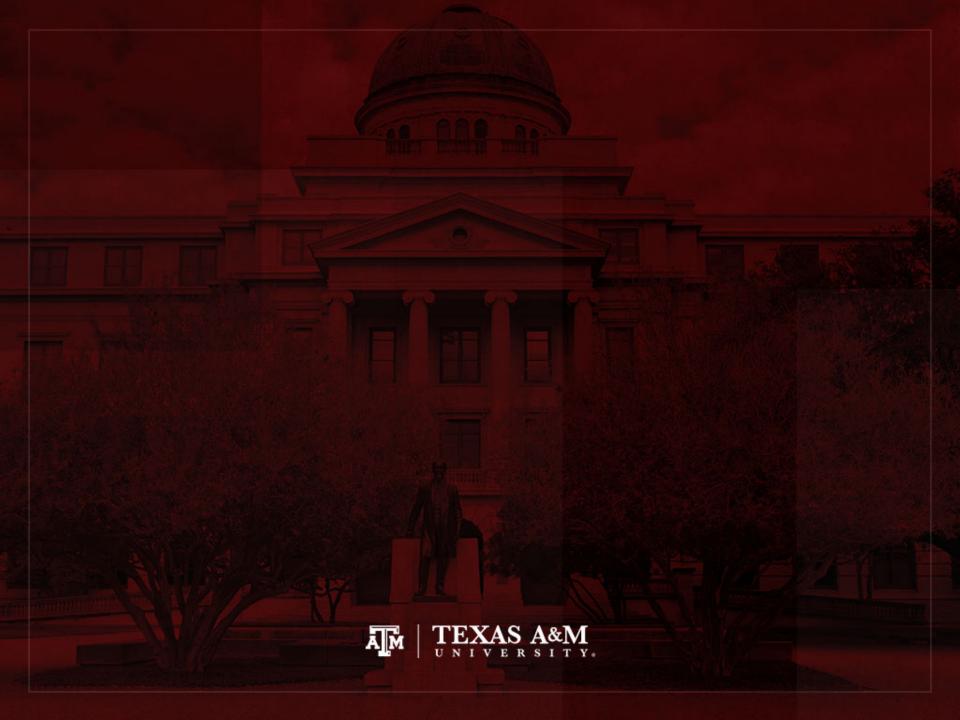
(https://gssdataexplorer.norc.org/pages/show?page=gss%2Fstandard_error)

• Account for GSS sample design in Stata

svyset [weight=wtssall], strata(vstrat) psu(vpsu) singleunit(scaled)

 After "svyset," you should indicate survey design with the option "svy" for commands that estimate standard errors

> svy: mean y svy: reg y x1 x2



Strata with single sampling unit

(https://gssdataexplorer.norc.org/pages/show?page=gss%2Fstandard_error)

- VSTRAT and VPSU were created with a minimum of three respondents within a cell
 - If all cases are missing on a variable, you get an error message in Stata
 - "Missing standard error because of stratum with single sampling unit"
- It is recommended to utilize the "subpop" option for any subdomain analyses (e.g., for males)
 svy, subpop(if sex==1): tab x
- You can also specify that strata with one sampling unit are "centered" at grand mean instead of stratum mean

svyset [weight=wtssall], strata(vstrat) psu(vpsu) singleunit(centered)

Example: 2021 GSS in Stata (nominal-level variable)

. tab sex

respondents sex	Freq.	Percent	Cum.
male female	1,736 2,204	44.06 55.94	44.06 100.00
Total	3,940	100.00	

. tab sex [iweight=wtssnrps]

respondents			
sex	Freq.	Percent	Cum.
male female	1,904.2566 1,993.21543	48.86 51.14	48.86 100.00
Total	3,897.472	100.00	

. svyset [weight=wtssnrps], strata(vstrat) psu(vpsu) singleunit(scaled)
(sampling weights assumed)

. svy: tab sex
(running tabulate on estimation sample)

Number of strat	a = 9
Number of PSUs	<u> </u>
Number of obs =	3,940
Population size = 3,	897.472
Design df =	3,483

responden ts sex	proportion
male female	.4886 .5114
Total	1

Key: proportion = Cell proportion

Example: 2021 GSS in Stata (ordinal-level variable)

				(sampling weights a	ssumed)	
. tab degree				. svy: tab	degree	
r's highest degree	Freq.	Percent	Cum.	(running t a	abulate on es	timation sample)
less than high school	246	6.14	6.14	Number of s	strata =	9
high school	1,597	39.84	45.97	Number of F	PSUs = 3,54	3
associate/junior college	370	9.23	55.20	Number of obs		-
bachelor's	1,036	25.84	81.04		ze = 4,012.2139	
graduate	760	18.96	100.00	Design df	= 3,534	
Total	4,009	100.00		r's		
				highest		
. tab degree [iweight=wts	snrps]			degree	proportion	
r's highest degree	Freq.	Percent	Cum.	less tha	. 1199	
	i i cqi	Tercent		high sch	. 4715	
less than high school	480.972702	11.99	11.99	-		
high school	1,891.6334	47.15	59.13	associat	.1128	
associate/junior college	452.656901	11.28	70.42	bachelor	. 1699	
bachelor's	681.8664156	16.99	87.41	graduate	. 1259	
graduate	505.084448	12.59	100.00			
Tatal	4 412 2120	100.00		Total	1	

100.00

Total **4,012.2139**

Key: proportion = Cell proportion

Example: 2021 GSS in Stata (interval-ratio-level variable)

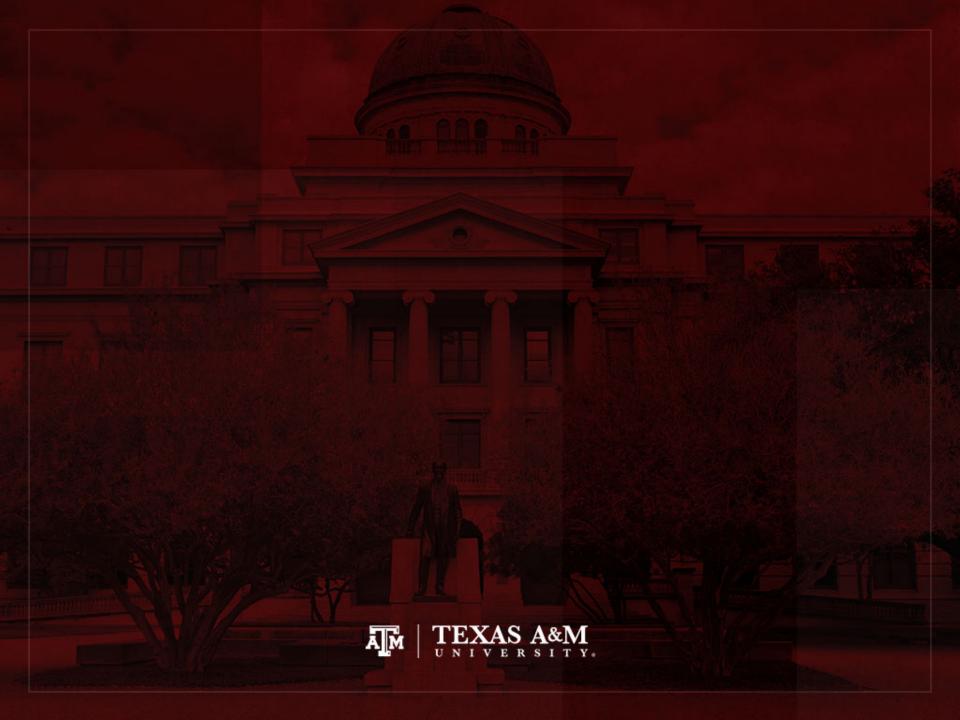
. sum conrinc

Variable	ariable Obs Mean		Mean	Std. dev.	Min	Max
conrinc		2,456	41722.79	39243.69	336	170912.6

. sum conrinc [iweight=wtssnrps]

Variable	Obs	Weight	Mean	Std. dev.	Min	Max
conrinc	2,456	2453.15509	37647.74	37376.88	336	170912.6

. svy: mean conrinc


(running **mean** on estimation sample)

Survey: Mean estimation

Number of	strata :	=	9	Number	of	obs	=	2,456
Number of	PSUs :	= 2,24	1	Populat	ion	size	=	2,453.1551
				Design	df		=	2,232

	Mean	Linearized std. err.	[95% conf.	interval]		Mean	Std. dev.
conrinc	37647.74	850.3902	35980.1	39315.38	conrinc	37647.74	37376.87

