Lecture 6: Introduction to inferential statistics

Ernesto F. L. Amaral

February 28, 2023
Advanced Methods of Social Research (SOCI 420)

www.ernestoamaral.com

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 6 (pp. 144-159).

Outline

- Explain the purpose of inferential statistics in terms of generalizing from a sample to a population
- Define and explain the basic techniques of random sampling
- Explain and define these key terms: population, sample, parameter, statistic, representative, EPSEM sampling techniques
- Differentiate between the sampling distribution, the sample, and the population
- Explain two theorems

Basic logic and terminology

- Problem
- The populations we wish to study are almost always so large that we are unable to gather information from every case
- Solution
- We choose a sample - a carefully chosen subset of the population - and use information gathered from the cases in the sample to generalize to the population

Basic logic and terminology

- Statistics are mathematical characteristics of samples
- Parameters are mathematical characteristics of populations
- Statistics are used to estimate parameters

Statistic

Parameter

Samples

- Must be representative of the population
- Representative: The sample has the same characteristics as the population
- How can we ensure samples are representative?
- Samples drawn according to the rule of EPSEM (equal probability of selection method)
- If every case in the population has the same chance of being selected, the sample is likely to be representative

A population of 100 people

44 white women
44 white men
6 African-American women
6 African-American men

Nonprobability sampling

EPSEM sampling techniques

1. Simple random sampling
2. Systematic sampling
3. Stratified sampling
4. Cluster sampling

1. Simple random sampling

- To begin, we need
- A list of the population
- Then, we need a method for selecting cases from the population, so each case has the same probability of being selected
- The principle of EPSEM
- A sample selected this way is very likely to be representative of the population
- Variable in population should have a normal distribution or $n>30$

Example

- You want to know what percent of students at a large university work during the semester
- Draw a sample size (n) of 500 from a list of all students ($N=20,000$)
- Assume the list is available from the Registrar
- How can you draw names, so every student has the same chance of being selected?

Example

- Each student has a unique, 6 digit ID number that ranges from 000001 to 999999
- Use a table of random numbers or a computer program to select 500 ID numbers with 6 digits each
- Each time a randomly selected 6 digit number matches the ID of a student, that student is selected for the sample
- Continue until 500 names are selected

Example

- Stata

```
set obs 500
```

generate student $=$ runiformint $(1,999999)$
sum student

Variable \| Obs	Mean	Std. Dev.	Min	Max	
student \|	500	482562.6	283480.9	3652	997200

- Excel
- RANDBETVEEN (minimum,maximum)
- Returns a random number between those you specify
- Drag the function to 500 cells
=RANDBETWEEN $(1,999999)$
- RANDARRAY (rows,columns,minimum,maximum) =RANDARRAY(500, 1, 1,999999)

Example

- Disregard duplicate numbers
- Ignore cases in which no student ID matches the randomly selected number
- After questioning each of these 500 students, you find that 368 (74\%) work during the semester

Applying logic and terminology

- In the previous example:
- Population: All 20,000 students
- Sample: 500 students selected and interviewed
- Statistic: 74\% (percentage of sample that held a job during the semester)
- Parameter: Percentage of all students in the population who held a job

Simple random sample

2. Systematic sampling

- Useful for large populations
- Randomly select the first case then select every $k^{\text {th }}$ case
- Sampling interval
- Distance between elements selected in the sample
- Population size (N) divided by sample size (n)
- Sampling ratio
- Proportion of selected elements in the population
- Sample size (n) divided by population size (N)
- Can be problematic if the list of cases is not truly random or demonstrates some patterning

Example

- If a list contained 10,000 elements and we want a sample of 1,000
- Sampling interval
- Population size $/$ sample size $=10,000 / 1,000=10$
- We would select every 10th element for our sample
- Sampling ratio
- Sample size $/$ population size $=1,000 / 10,000=1 / 10$
- Proportion of selected elements in population
- Select the first element at random

3. Stratified sampling

- It guarantees the sample will be representative on the selected (stratifying) variables
- Stratification variables relate to research interests
- First, divide the population list into subsets, according to some relevant variable
- Homogeneity within subsets
- E.g., only women in a subset; only men in another subset - Heterogeneity between subsets
- E.g., subset of women is different than subset of men
- Second, sample from the subsets
- Select the number of cases from each subset proportional to the population

Example

- If you want a sample of 1,000 students
- That would be representative to the population of students by sex and GPA
- You need to know the population composition
- E.g., women with a 4.0 average compose 15 percent of the student population
- Your sample should follow that composition
- In a sample of 1,000 students, you would select 150 women with a 4.0 average

Stratified, systematic sample

4. Cluster sampling

- Select groups (or clusters) of cases rather than single cases
- Heterogeneity within subsets
- E.g., each subset has both women and men, following same proportional distribution as population
- Homogeneity between subsets
- E.g., all subsets with both women and men should be similar
- Clusters are often geographically based
- For example, cities or voting districts
- Sampling often proceeds in stages
- Multi-stage cluster sampling
- Less representative than simple random sampling $\widehat{A}]^{\mathbf{M}}$

Stratified vs. cluster sampling

- Stratified
- Homogeneity within subsets
- Heterogeneity between subsets
- Select cases from each subset

Subset of women

Subset of men

- Cluster
- Heterogeneity within subsets (groups, clusters, areas)
- Homogeneity between subsets
- Select groups (e.g., area 1) rather than single cases

Area 1:
women \& men

Area 2:
women \& men

Sampling distribution

- Sampling distribution is the probabilistic distribution of a statistic for all possible samples of a given size (n)
- It is the distribution of a statistic (e.g., proportion, mean) for all possible outcomes of a certain size
- Central tendency and dispersion
- Mean is the same as the population mean
- Standard deviation is referred as standard error
- It is the population standard deviation divided by the square root of n
- We have to take into account the complex survey design to estimate the standard error (svyset command in Stata)

Linking sample and population

- Every application of inferential statistics involves three different distributions
- Population: empirical; unknown
- Sampling distribution: theoretical; known
- Sample: empirical; known
- In inferential statistics, the sample distribution links the sample with the population

Population

Sampling distribution

Sample

Example

- Suppose we want to gather information on the age of a community of 10,000 individuals
- Sample 1: $n=100$ people, plot sample's mean of 27
- Replace people in the sample back to the population
- Sample 2: $n=100$ people, plot sample's mean of 30
- Replace people in the sample back to the population

26 27 28 29

Example

- We repeat this procedure: sampling, replacing
- Until we have exhausted every possible combination of 100 people from the population of 10,000
- Sampling distribution has a normal shape

		-	-	-	-	-			
	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	
26	27	28	29	30	31	32	33	34	N00

Another example:

A population of 10 people

 with \$0-\$9

The sampling distribution ($n=1$)

The sampling distribution ($n=2$)

The sampling distribution

The sampling distribution

Source: Babbie 2001, p. 190.

Properties of sampling distribution

- It has a mean $\left(\mu_{\bar{X}}\right)$ equal to the population mean (μ)
- It has a standard deviation (standard error, $\sigma_{\bar{X}}$) equal to the population standard deviation (σ) divided by the square root of n
- It has a normal distribution

A Sampling Distribution of Sample Means

First theorem

- Tells us the shape of the sampling distribution and defines its mean and standard deviation
- If repeated random samples of size n are drawn from a normal population with mean μ and standard deviation σ
- Then, the sampling distribution of sample means will have a normal distribution with...
- A mean: $\mu_{\bar{X}}=\mu$
- A standard error of the mean: $\sigma_{\bar{X}}=\sigma / \sqrt{n}$

First theorem

- Begin with a characteristic that is normally distributed across a population (IQ, height)
- Take an infinite number of equally sized random samples from that population
- The sampling distribution of sample means will be normal

Central limit theorem

- If repeated random samples of size n are drawn from any population with mean μ and standard deviation σ
- Then, as n becomes large, the sampling distribution of sample means will approach normality with...
- A mean: $\mu_{\bar{X}}=\mu$
- A standard error of the mean: $\sigma_{\bar{X}}=\sigma / \sqrt{n}$
- This is true for any variable, even those that are not normally distributed in the population
- As sample size grows larger, the sampling distribution of sample means will become normal in shape

Central limit theorem

- The importance of the central limit theorem is that it removes the constraint of normality in the population
- Applies to large samples ($n \geq 100$)
- If the sample is small $(n<100)$
- We must have information on the normality of the population before we can assume the sampling distribution is normal

Additional considerations

- The sampling distribution is normal
- We can estimate areas under the curve (Appendix A)
- Or in Stata: display normal (z)
- We do not know the value of the population mean (μ)
- But the mean of the sampling distribution $\left(\mu_{\bar{X}}\right)$ is the same value as μ
- We do not know the value of the population standard deviation (σ)
- But the standard deviation of the sampling distribution $\left(\sigma_{\bar{X}}\right)$ is equal to σ divided by the square root of n

Symbols

Distribution Shape Mean

Standard deviation

Proportion

Samples	Varies	\bar{X}	s	P_{s}
Populations	Varies	μ	σ	P_{u}

Sampling distributions

Normal $\mu_{\bar{X}}$
of means

$$
\mu_{\bar{X}} \quad \sigma_{\bar{X}}=\sigma / \sqrt{n}
$$

of proportions
μ_{p}
σ_{p}

