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Outline
• Introduction

– Bivariate regression
– Multivariate regression
– Standardized coefficients (b*)
– Statistical significance (t-test)
– Multiple correlation (R2)
– Assumptions: Gauss-Markov theorem

• Meaning of linear regression
– Example: Income = F(age, education)

• Determining normality
– Example: ln(income) = F(age, education)

• Predicted values
• Residual analysis with graphs

– Example: OLS with age and age squared
• Dummy variables

– Example: Full OLS model
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Introduction
• Ordinary least squares (OLS) regression (linear 

regression)
– Important technique to estimate associations of several 

independent variables (x1, x2, ..., xk) with a dependent 
variable (y) at the interval-ratio level of measurement

– Variables are at the interval-ratio level, but we can include 
ordinal and nominal variables as dummy variables

– Each independent variable has a linear relationship with 
the dependent variable

– Independent variables are uncorrelated with each other

– When these and other requirements are violated (as they 
often are), this technique will produce biased and/or 
inefficient estimates
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Correlation vs. causation
• Correlation and causation are different 

– Strong associations (correlation) may be used as 
evidence of causal relationships (causation)

– Associations do not prove variables are causally related

• We might have problems of reverse causality
– e.g., immigration increases competition in the labor 

market and affects earnings

– Availability of jobs and income levels influence migration

4
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Bivariate and multivariate models
• Bivariate (simple) regression equation

y = a + bx = β0 + β1x
– a = β0 = y intercept (constant)
– b = β1 = slope

• Multivariate (multiple) regression equation
y = a + b1x1 + b2x2 = β0 + β1x1 + β2x2

– b1 = β1 = partial slope of the linear relationship 
between the first independent variable (x1) and y

– b2 = β2 = partial slope of the linear relationship 
between the second independent variable (x2) and y
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Bivariate regression
y = a + bx = β0 + β1x

– a = β0 = y intercept (constant)

– b = β1 = slope

• In a scatterplot
– The independent variable (x) is displayed along the 

horizontal axis
– The dependent variable (y) is displayed along the 

vertical axis
– Each dot on a scatterplot is a case
– The dot is placed at the intersection of the case’s 

scores on x and y
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Example of a scatterplot

8Source: Healey 2015, p.343.
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Regression line
• A regression line is added to the graph

• It summarizes the linear correlation between x
and y

– This straight line connects all of the dots

– Or this line comes as close as possible to connecting 
all of the dots
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Scatterplot with regression line

10Source: Healey 2015, p.344.



Prediction
• Scatterplots can be used to predict values of Y 

(𝑌′ or #𝑌) based on values of X

• Locate a particular X value on the horizontal axis

• Draw a vertical line up to the regression line

• Then draw a horizontal line over to the vertical 
axis
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Example of prediction

12Source: Healey 2015, p.348.



Estimating the regression line
• The regression line touches each conditional 

mean of Y
– Or the line comes as close as possible to all scores

• The dots above each value of X can be thought 
of as conditional distributions of Y
– In previous chapters, column percentages were the 

conditional distributions of Y for each value of X
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Conditional means of Y
• Conditional means of Y are found by summing all Y values 

for each value of X and dividing by the number of cases

14Source: Healey 2015, p.349.
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Estimating coefficients
• Ordinary least squares (OLS) simple regression

– OLS: linear regression
– Simple: only one independent variable

Y = a + bX = β0 + β1X
• Where

– Y = score on the dependent variable
– X = score on the independent variable
– a = β0 = the Y intercept or the point where the 

regression line crosses the Y axis
– b = β1 = slope of the regression line or the amount of 

change produced in Y by a unit change in X
15



Computing the slope (b)
• Before using the formula for the regression line, 

we need to estimate a and b
• First, estimate b

• The numerator of the formula is the “covariation” 
of X and Y
– How much X and Y vary together
– Its value reflects the direction and strength of the 

association between X and Y
16

𝑏 =
∑ 𝑋 − &𝑋 𝑌 − &𝑌

∑ 𝑋 − &𝑋 !



Computing the Y intercept (a)
• The intercept (a) is the point where the 

regression line crosses the Y axis

• Estimate a using the mean for X, the mean for Y, 
and b

17

𝑎 = #𝑌 − 𝑏 #𝑋



Example
• Number of children (X) and hours per week 

husband spends on housework (Y) at dual-
career households

18Source: Healey 2015, p.343.



Example: calculation table
• Calculation of b is simplified if you set up a 

computation table

19Source: Healey 2015, p.351.



Example: slope and intercept
• Based on previous table, estimate the slope (b)

• Estimate the intercept (a)

20

𝑏 =
∑ 𝑋 − &𝑋 𝑌 − &𝑌

∑ 𝑋 − &𝑋 ! =
18.32
26.68

= 0.69

𝑎 = &𝑌 − 𝑏 &𝑋 = 3.33 − 0.69 2.67 = 1.49



Example: interpretations
• Regression equation with a=1.49 and b=0.69

Y’ = 1.49 + (0.69)X
– b = 0.69

• For every additional child in the dual-career 
household, husbands perform on average an 
additional 0.69 hours (around 36 minutes) of 
housework per week

– a = 1.49
• The regression line crosses the Y axis at 1.49
• When there are zero children in a dual-career 

household, husbands perform on average 1.49 
hours of housework per week
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Example: coefficients

22Source: Healey 2015, p.344.

b=0.69

a=1.49



Example: predictions
• What is the predicted value of Y (Y’) when X equals 6?

Y’ = 1.49 + (0.69)X = 1.49 + (0.69)(6) = 5.63
– In dual-career families with 6 children, the husband is 

predicted to perform on average 5.63 hours of 
housework a week

• What about when X equals 7?
Y’ = 1.49 + (0.69)X = 1.49 + (0.69)(7) = 6.32

– In dual-career families with 7 children, the husband is 
predicted to perform on average 6.32 hours of 
housework a week

– Notice how the difference in these two predicted 
values equals b (6.32 – 5.63 = 0.69)
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GSS: Income = F(Education)
***Dependent variable: Respondent’s income (conrinc)
***Independent variable: Years of schooling (educ)

***Scatterplot with regression line
twoway scatter conrinc educ || lfit conrinc educ, ytitle(Respondent's income) xtitle(Years of schooling)

***Regression coefficients
***Least-squares regression model
***They can be reported in the footnote of the scatterplot
svy: reg conrinc educ

24. 

                                                                              
       _cons    -26219.18   5819.513    -4.51   0.000    -37841.55   -14596.81
        educ     4326.103   460.7631     9.39   0.000     3405.896    5246.311
                                                                              
     conrinc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                           Linearized
                                                                              

                                                R-squared         =     0.1147
                                                Prob > F          =     0.0000
                                                F(   1,     65)   =      88.15
                                                Design df         =         65
Number of PSUs     =       130                  Population size   = 1,694.7478
Number of strata   =        65                  Number of obs     =      1,631

Survey: Linear regression

(running regress on estimation sample)
. svy: reg conrinc educ

Source: 2016 General Social Survey.



Income by education
Figure 1. Respondent’s income by years of 
schooling, U.S. adult population, 2016
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ACS: Income = F(Age)
***Dependent variable: Wage and salary income (income)
***Independent variable: Age (age)

***Scatterplot with regression line
twoway (scatter income age) (lfit income age) if income!=0, ytitle(Wage and salary income) xtitle(Age)

26Source: 2018 American Community Survey.



Income by age
Figure 1. Wage and salary income by age, U.S. 2018
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Multivariate regression
y = a + b1x1 + b2x2 = β0 + β1x1 + β2x2

• a = β0 = the y intercept (constant), where the 
regression line crosses the y axis

• b1 = β1 = partial slope for x1 on y
– β1 indicates the change in y for one unit change in x1, 

controlling for x2

• b2 = β2 = partial slope for x2 on y
– β2 indicates the change in y for one unit change in x2, 

controlling for x1

29



Partial slopes (β)
• The partial slopes (β) indicate the effect of each 

independent variable on y

• While controlling for the effect of the other 
independent variables

• This control is called ceteris paribus
– Other things equal

– Other things held constant

– All other things being equal
30



Ceteris paribus
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Ceteris paribus
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Ceteris paribus
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Ceteris paribus
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• The partial slopes show the effects of the 
independent variables (x1, x2) in their original 
units

• These values can be used to predict scores on 
the dependent variable (y)

• Partial slopes must be computed before 
computing the y intercept (β0)

Interpretation of partial slopes

35



Formulas of partial slopes

36

b1 = β1 = partial slope of x1 on y
b2 = β2 = partial slope of x2 on y
sy = standard deviation of y
s1 = standard deviation of the first independent variable (x1)
s2 = standard deviation of the second independent variable (x2)
ry1 = bivariate correlation between y and x1
ry2 = bivariate correlation between y and x2
r12 = bivariate correlation between x1 and x2

𝑏$ = 𝛽$ =
𝑠&
𝑠$

𝑟&$ − 𝑟&%𝑟$%
1 − 𝑟$%%

𝑏% = 𝛽% =
𝑠&
𝑠%

𝑟&% − 𝑟&$𝑟$%
1 − 𝑟$%%



Formula of constant
• Once b1 (β1) and b2 (β2) have been calculated, 

use those values to calculate the y intercept (β0)

37

𝑎 = #𝑦 − 𝑏!�̅�! − 𝑏"�̅�"

𝛽# = #𝑦 − 𝛽!�̅�! − 𝛽"�̅�"



Income = F(age, education)

38Source: 2018 American Community Survey.



Summary of Stata weights

39

WEIGHTS IN FREQUENCY DISTRIBUTIONS

Weight unit of
measurement

Expand to
population size

Maintain
sample size

Discrete fweight
aweight

Continuous iweight

WEIGHTS IN STATISTICAL REGRESSIONS
should maintain sample size

Robust standard error Adjusted R2,
TSS, ESS, RSS

pweight aweight

reg y x, vce(robust)
reg y x, vce(cluster area) outreg2



Example: Coefficients (β)

40Source: 2018 American Community Survey.

. ***Complex survey design

. svyset cluster [pweight=perwt], strata(strata)





Standardized coefficients (b*)
• Partial slopes (b1=β1 ; b2=β2) are in the original units of 

the independent variables
– This makes assessing relative effects of independent variables 

difficult when they have different units
– It is easier to compare if we standardize to a common unit by 

converting to Z scores

• Compute beta-weights (b*) to compare relative effects of 
the independent variables
– Amount of change in the standardized scores of y for a one-unit 

change in the standardized scores of each independent variable
• While controlling for the effects of all other independent variables

– They show the amount of change in standard deviations in y for 
a change of one standard deviation in each x

42



Formulas
• Formulas for standardized coefficients

𝑏$∗ = 𝑏$
𝑠$
𝑠&

= 𝛽$∗ = 𝛽$
𝑠$
𝑠&

𝑏%∗ = 𝑏%
𝑠%
𝑠&

= 𝛽%∗ = 𝛽%
𝑠%
𝑠&

43



Standardized coefficients
• Standardized regression equation

𝑍& = 𝑎( + 𝑏$∗𝑍$ + 𝑏%∗𝑍%

• Z indicates that all scores have been 
standardized to the normal curve

𝑍) =
𝑥) − �̅�
𝑠

• The y intercept will always equal zero once the 
equation is standardized

𝑍& = 𝑏$∗𝑍$ + 𝑏%∗𝑍%
44



Example: Standardized beta (b*)

45Source: 2018 American Community Survey.





Statistical significance (t-test)
• In a simple linear regression, the test of statistical 

significance for a β coefficient (t-test) is estimated as

𝑡 =
#𝛽

𝑆𝐸!"
=

#𝛽
𝑀𝑆𝐸
𝑆##

=
#𝛽
𝑅𝑆𝑆

𝑑𝑓 ∗ 𝑆##

=
#𝛽

∑$ 𝑦$ − /𝑦$ %
𝑛 − 2 ∑$ 𝑥$ − �̅� %

– SEβ: standard error of β

– MSE: mean squared error = RSS / df

– RSS: residual sum of squares = ∑! 𝑦! − !𝑦! " = ∑! �̂�!
"

– df: degrees of freedom = n–2 for simple linear regression
• 2 statistics (slope and intercept) are estimated to calculate sum of squares

– Sxx: corrected sum of squares for x (total sum of squares)

47



Statistical power
• Statistical power for regression analysis is the probability 

of finding a significant coefficient ( #𝛽 ≠ 0), when there is a 
significant relationship in the population (𝛽 ≠ 0)
– Power is dependent on the confidence level, size of coefficient 

(magnitude), and sample size

– Small samples might not capture enough variation among 
observations

– If we have large samples, we tend to have statistical significance 
(as measured by t-test), even for coefficients ( .𝛽) with small 
magnitude 

𝑡 =
#𝛽

𝑆𝐸!"
=

#𝛽
𝑀𝑆𝐸
𝑆##

=
#𝛽
𝑅𝑆𝑆

𝑑𝑓 ∗ 𝑆##

=
#𝛽

∑$ 𝑦$ − /𝑦$ %
𝑛 − 2 ∑$ 𝑥$ − �̅� %

48



t distribution (df = 2)

49

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

p-value

Example of
an estimated t

• Bigger the t-test
– Stronger the statistical 

significance

• Smaller the p-value
– Smaller the probability 

of not rejecting the 
null hypothesis

– Tend to accept 
alternative (research) 
hypothesis
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Hypotheses p < α p > α

Null hypothesis
(H0)

Reject Do not reject

Alternative hypothesis
(H1)

Accept Do not accept

– p-value is the 
probability of not 
rejecting the null 
hypothesis

– If a statistical software 
gives only the two-
tailed p-value, divide it 
by 2 to obtain the one-
tailed p-value

Significance level
(α)

Confidence level
(success rate)

0.10 (10%) 90%

0.05 (5%) 95%

0.01 (1%) 99%

0.001 (0.1%) 99.9%

Decisions about hypotheses



Example: Statistical significance

51Source: 2018 American Community Survey.





Multiple correlation (R2)
• The coefficient of multiple determination (R2) 

measures how much of the dependent variable 
(y) is explained by all independent variables (x1, 
x2, x3, ..., xk) combined

• R2 is an estimation of the percentage of the 
variation in y that is explained by variations in all 
independent variables in the population

• The coefficient of multiple determination is an 
indicator of the strength of the entire regression 
equation

53



R2 estimation
• For a regression with two independent variables, 

this is the equation to estimate R2

𝑅% = 𝑟&$% + 𝑟&%.$% 1 − 𝑟&$%

– R2 = coefficient of multiple determination
– 𝑟&'% = coefficient of determination for y and x1 (or 

amount of variation in y explained by x1)
– 𝑟&%.'% = partial correlation of y and x2, while controlling 

for x1 (or amount of variation in y explained by x2, 
after x1 is controlled)

– 1 − 𝑟&'% = amount of variation remaining in y, after 
controlling for x1

54



Partial correlation of y and x2
• Before estimating R2, we need to estimate the partial 

correlation of y and x2, while controlling for x1 (ry2.1)

• We need three correlations
– Bivariate correlation between y and x1 (ry1)

– Bivariate correlation between y and x2 (ry2)

– Bivariate correlation between x1 and x2 (r12)

55

𝑟&%.$ =
𝑟&% − 𝑟&$ 𝑟$%

1 − 𝑟&$% 1 − 𝑟$%%



Explaining R2 estimation
𝑅% = 𝑟&$% + 𝑟&%.$% 1 − 𝑟&$%

• If the partial correlation of y and x2, while 
controlling for x1 (ry2.1), is not equal to zero
– R2 will necessarily increase by adding x2

– Any variable x will have a non-zero correlation with y

– In real databases, y and any x don’t have correlation 
exactly equal to zero

• Thus, more independent variables (even if not 
related to theory) will generate higher R2

56



R2 and independent variables
• Selection of independent variables based on R2

size might generate unreasonable models
• There is nothing in the hypotheses of linear 

models that require a minimum value for R2

• Models with small R2 might mean that we didn’t 
include important independent variables
– It doesn’t mean necessarily that non-observed factors 

(residuals) are correlated with independent variables

• R2 size doesn’t have influence on the mean of 
residuals being equal to zero

57



R2 in terms of variance
• R2 can also be written in terms of variance of y

in the population (σy2) and variance of error term 
(residual u) in the population (σu2)

R2 = 1 – σu2 / σy2

• R2 is the proportion of variation in y explained by 
all independent variables...

58



TSS = ESS + RSS
∑!#$% 𝑦! − 1𝑦 " = ∑!#$% !𝑦! − 1𝑦 "+ ∑!#$% 𝑦! − !𝑦! "

– Total sum of squares (TSS)
•Sum of squares total (SST)
•TSS = ∑!#$% 𝑦! − 1𝑦 "

•df (degrees of freedom) = n–1, where n is the sample size
•Average total sum of squares = TSS / df = TSS / (n–1)

– Explained sum of squares (ESS)
•Sum of squares due to regression (SSR), model sum of squares (MSS)
•ESS = ∑!#$% !𝑦! − 1𝑦 "

•df = k, where k is the number of independent variables
•Average explained sum of squares = ESS / df = ESS / k

– Residual sum of squares (RSS)
•Sum of squared errors of prediction (SSE)
•RSS = ∑!#$% 𝑦! − !𝑦! " = ∑!#$% �̂�!

"

•df = n–k–1
•Average residual sum of squares = RSS / df = RSS / (n–k–1)

59



R2 in terms of variance
• Total sum of squares equal explained sum of 

squares plus residual sum of squares
TSS = ESS + RSS

TSS/TSS = (ESS + RSS)/TSS
1 = ESS/TSS + RSS/TSS
ESS/TSS = 1 – RSS/TSS

• R2 is the proportion of variation in y explained by 
all independent variables

R2 = ESS / TSS
R2 = 1 – RSS / TSS

R2 = 1 – (RSS/n) / (TSS/n)
R2 = 1 – σu2 / σy2

60



𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅! = 1 −
1 − 𝑅!
𝑛 − 1

𝑛 − 𝑘 − 1

Adjusted R2

• We can replace RSS/n and TSS/n by non-
biased terms for σu2 and σy2

Adjusted R2 = 1 – [RSS/(n–k–1)] / [TSS/(n–1)]
– Adjusted R2 doesn’t correct for possible bias of R2

estimating the true population R2

– But it penalizes for the inclusion of redundant 
independent variables

– k is the number of independent variables

– Negative adjusted R2 indicates a poor overall fit

61



Comparing models
• We can compare adjusted R2 of models 

with different forms of independent 
variables

y = β0 + β1log(x) + u
y = β0 + β1x + β2x2 + u

– We cannot use R2 or adjusted R2 to choose 
between different forms of dependent variable

– Different forms of y have different amounts of 
variation to be explained

62



Example: R2, Adjusted R2

63Source: 2018 American Community Survey.





• The Gauss-Markov theorem states that if the 
linear regression model satisfies classical 
assumptions
– Then ordinary least squares (OLS) regression 

produces unbiased estimates that have the smallest 
variance of all possible linear estimators

– We should have a random sample of n observations 
for the population model

– Best Linear Unbiased Estimators (BLUEs)

Gauss-Markov theorem

65



• The regression model is linear in the coefficients 
and the error term
– An increase of one unit in an independent variable 

makes the expected value of y to vary by the 
magnitude of the correspondent β

– All terms in the model are either the constant or a 
parameter multiplied by an independent variable

– The population model can be written as
y = β0 + β1x1 + β2x2 + β3x3 + ... + βkxk + e

– β0, β1,..., βk represent unknown parameters
– Error term is known as the residual (e, ϵ, or u)

• It is an unobserved random error
• It is the variation in y that the model doesn't explain

1. Linear in parameters
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• For any value of x, the distribution of y is 
centered around the expected value of y given x

9𝑦 = E(y|x) as a linear function of x

67

Conditional means of y



• No independent variable is a perfect linear function of 
other independent variables
– No independent variable is constant and there are no exact 

linear relations among independent variables

• Independent variables should be associated among 
themselves, but there should be no perfect collinearity
– e.g., one variable should not be the multiple of another one

• High levels of correlation among independent variables 
and small sample size increase standard errors of β
– This decreases statistical significance: t = β / SEβ

• High correlation (but not perfect) among independent 
variables is not desirable (multicollinearity)

2. No perfect collinearity
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• All independent variables (x) are uncorrelated with 
the error term (e)
– If an independent variable is correlated with the error term, 

the independent variable can be used to predict the error 
term

– This violates the notion that the error term represents 
unpredictable random error

• This assumption is referred to as exogeneity
– When this type of correlation exists, there is endogeneity

– There is reverse causality between independent and 
dependent variables, omitted variable bias, or 
measurement error

69

3. All x are uncorrelated with e

Source: https://statisticsbyjim.com/regression/ols-linear-regression-assumptions/



• Observations of the error term (e) are 
uncorrelated with each other
– One observation of the error term should not predict 

the next observation

4. Uncorrelated observations of e

70Source: https://statisticsbyjim.com/regression/ols-linear-regression-assumptions/

• Verify by graphing 
the residuals in the 
order that the data 
was collected
– We want to see 

randomness in the 
plot

E.g. observations of e are correlated



• The error term has as population mean of zero
– The expected value (mean) of the unobserved random 

error (e) is zero, given any values of the independent 
variables

– E(e|x1,x2,...,xk) = 0

5. Error term has mean of zero

71

• Residuals = e = yi – ŷi
– Observed minus fitted

– Observed minus predicted

– Sum of residuals 
(population mean) should 
be zero

y

ŷ

e = y – ŷ
(positive)

y

ŷ
e = y – ŷ
(negative)

Source: Healey 2015, p.344.



• The error term has a constant variance (no heteroscedasticity)
– Variance of errors (e) should be consistent for all observations

– Variance does not change for each observation or range of observations

– If this assumption is violated, the model has heteroscedasticity

6. Homoscedasticity

72Source: Hamilton, 1992, p.52–53.

HeteroscedasticityHomoscedasticity



• The error term (e) should be normally distributed
– OLS does not require that the error term follows a 

normal distribution to produce unbiased estimates 
with minimum variance

7. Optional: e is normally distributed

73Source: https://statisticsbyjim.com/regression/ols-linear-regression-assumptions/

– But satisfying this 
assumption allows 
us to perform 
statistical 
hypothesis testing 
and generate 
reliable confidence 
and prediction 
intervals

E.g. residuals are normally distributed





• Ordinary least squares regression is commonly 
named linear regression

• The model is linear in the parameters: β0, β1...

• An increase of one unit in an independent 
variable makes the expected value of y to vary 
by the magnitude of the correspondent β

• However, it allows us to include non-linear 
associations

Meaning of linear regression
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• There are no restrictions of how y and x are 
associated with the original dependent and 
independent variables

• We can use natural logarithm, squared values, 
squared root, dummy independent variables...

• The interpretation of coefficients depends of 
how y and x are estimated and included in the 
regression

No restrictions
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• An increase of one unit in x increases y by β1 units
y = β0 + β1x + e

• An increase of 1% in x increases y by (β1/100) units

y = β0 + β1log(x) + e
• An increase of one unit in x increases y by (100*β1)%

– Exact percentual change with semi-elasticity {[exp(β1) – 1]*100}

log(y) = β0 + β1x + e
• An increase of 1% in x increases y by β1%

– Constant elasticity model
– Elasticity is the ratio of the percentage change in y to the 

percentage change in x

log(y) = β0 + β1log(x) + e

Interpretation of coefficients
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Logarithm functional forms
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Model Dependent
variable

Independent
variable

Interpretation
of β1

linear y x ∆y=β1∆x

linear-log y log(x) ∆y=(β1/100)%∆x

log-linear
(semi-log) log(y) x %∆y=(100β1)∆x

log-log log(y) log(x) %∆y=β1%∆x

Source: Wooldridge, 2008.



Linear
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Linear-Log



Log-Linear
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Log-Log





Income = F(age, education)

82Source: 2018 American Community Survey.



Interpretation of coefficients
(income with continuous independent variables)

• Coefficient for age equals 796.34
– When age increases by one unit, income increases on 

average by 796.34 dollars, controlling for education

• Coefficient for education equals 16,863.33
– When education increases by one unit, income 

increases on average by 16,863.33 dollars, controlling 
for age

83



Standardized coefficients

84Source: 2018 American Community Survey.



Interpretation of standardized
(income with continuous independent variables)

• Coefficient for age equals 0.1943
– When age increases by one standard deviation, 

income increases on average by 0.1943 standard 
deviations, controlling for education

• Coefficient for education equals 0.3369
– When education increases by one standard deviation, 

income increases on average by 0.3369 standard 
deviations, controlling for age
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Adjusted R2

86Source: 2018 American Community Survey.





Determining normality
• Some statistical methods require random 

selection of respondents from a population with 
normal distribution for its variables
– OLS regressions require normal distribution for its 

interval-ratio-level variables

– We can analyze histograms, boxplots, outliers, 
quantile-normal plots, and measures of skewness and 
kurtosis to determine if variables have a normal 
distribution
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89Source: 2018 American Community Survey.

Histogram of income



90Source: 2018 American Community Survey.

Boxplot of income



Quantile-normal plots

91

• A quantile-normal plot is a scatter plot
– One axis has quantiles of the original data
– The other axis has quantiles of the normal distribution

• If the points do not form a straight line or if the points 
have a non-linear symmetric pattern
– The variable does not have a normal distribution

• If the pattern of points is roughly straight
– The variable has a distribution close to normal

• If the variable has a normal distribution
– The points would exactly overlap the diagonal line



Source: Hamilton 1992, p.16.

(discrete values) (bimodal)

Quantile-normal plots reflect distribution shapes



93Source: 2018 American Community Survey.

Quantile-normal plot of income



Skewness

94

• Skewness is a measure of symmetry
– A distribution is symmetric if it looks the same to the left and right 

of the center point
– Skewness for a normal distribution is zero
– Negative values for the skewness indicate variable is skewed to 

the left (left tail is long relative to the right tail)
– Positive values for the skewness indicate variable is skewed to 

the right (right tail is long relative to the left tail)
• Rule of thumb

– Skewness between –0.5 and 0.5: variable is fairly symmetrical
– Skewness between –1 and –0.5 or between 0.5 and 1: variable 

moderately skewed
– Skewness less than –1 or greater than 1: variable is highly 

skewed
Source: https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
https://www.spcforexcel.com/knowledge/basic-statistics/are-skewness-and-kurtosis-useful-statistics

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
https://www.spcforexcel.com/knowledge/basic-statistics/are-skewness-and-kurtosis-useful-statistics


Kurtosis

95

• Kurtosis is a measure of whether the data are heavy-
tailed or light-tailed relative to a normal distribution
– Variables with high kurtosis tend to have heavy tails or outliers
– Variables with low kurtosis tend to have light tails or lack of 

outliers
– A uniform distribution would be the extreme case
– The kurtosis for a standard normal distribution is three

• Excess kurtosis
– Some sources subtract 3 from the kurtosis
– The standard normal distribution has an excess kurtosis of zero
– Positive excess kurtosis indicates a “heavy-tailed” distribution
– Negative excess kurtosis indicates a “light tailed” distribution

Source: https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
https://www.spcforexcel.com/knowledge/basic-statistics/are-skewness-and-kurtosis-useful-statistics
https://www.stata-journal.com/sjpdf.html?articlenum=st0204

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
https://www.spcforexcel.com/knowledge/basic-statistics/are-skewness-and-kurtosis-useful-statistics
https://www.stata-journal.com/sjpdf.html?articlenum=st0204


96Source: 2018 American Community Survey.

Skewness and Kurtosis



Power transformation
• Lawrence Hamilton (“Regression with Graphics”, 1992, p.18–19)

y3 →  q = 3
y2 →  q = 2
y1 →  q = 1
y0.5 →  q = 0.5
log(y) →  q = 0

–(y–0.5) →  q = –0.5
–(y–1) →  q = –1

• q > 1: reduce concentration on the right (reduce negative skew)
• q = 1: original data
• q < 1: reduce concentration on the left (reduce positive skew)
• log(x+1) may be applied when x=0. If distribution of log(x+1) is 

normal, it is called lognormal distribution
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98Source: 2018 American Community Survey.

Histogram of log of income



99Source: 2018 American Community Survey.

Boxplot of log of income



100Source: 2018 American Community Survey.

Quantile-normal plot of log of income



101Source: 2018 American Community Survey.

Skewness and Kurtosis



Interpretation of ln(income)
(with continuous independent variables)

• With the logarithm of the dependent variable
– Coefficients are interpreted as percentage changes

• If coefficient of x1 equals 0.12
– exp(β1) times

• x1 increases by one unit, y increases on average 1.13 times, 
controlling for other independent variables

– 100*[exp(β1)–1] percent
• x1 increases by one unit, y increases on average by 13%, 

controlling for other independent variables

• If coefficient has a small magnitude: –0.3<β<0.3
– 100*β percent

• x1 increases by one unit, y increases on average 
approximately by 12%, controlling for other independents
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ln(income) = F(age, education)

104Source: 2018 American Community Survey.



Exponential of coefficients

105Source: 2018 American Community Survey.



Interpretation of age
(income with continuous independent variables)

• Coefficient for age equals 0.0225
– exp(β1) times

• When age increases by one unit, income increases on average 
by 1.0228 times, controlling for education

– 100*[exp(β1)–1] percent
• When age increases by one unit, income increases on average 

by 2.28%, controlling for education

– 100*β1 percent
• When age increases by one unit, income increases on average 

approximately by 2.25%, controlling for education
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Interpretation of education
(income with continuous independent variables)

• Coefficient for education equals 0.3382
– exp(β1) times

• When education increases by one unit, income increases on 
average by 1.4024 times, controlling for age

– 100*[exp(β1)–1] percent
• When education increases by one unit, income increases on 

average by 40.24%, controlling for age

– 100*β1 percent
• When education increases by one unit, income increases on 

average approximately by 33.82%, controlling for age
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Standardized coefficients

108Source: 2018 American Community Survey.



Interpretation of standardized
(income with continuous independent variables)

• Coefficient for age equals 0.2638
– exp(β1) times

• When age increases by one standard deviation, income 
increases on average by 1.3019 times, controlling for 
education

– 100*[exp(β1)–1] percent
• When age increases by one standard deviation, income 

increases on average by 30.19%, controlling for education

– 100*β1 percent
• When age increases by one standard deviation, income 

increases on average approximately by 26.38%, controlling 
for education
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Adjusted R2

110Source: 2018 American Community Survey.





Predicted values
• We can estimate the predicted values of the 

dependent variable for each individual in the 
dataset

• Use the estimated coefficients from the 
regression model

yi’ = ŷi = β0 + β1x1i + β2x2i

112



Predicted income
• Income = F(age, education)

• Use the regression equation to predict income for 
someone with 45 years of age and college education

ŷ = –31,880.99 + 796.34(age) + 16,863.33(educgr)
ŷ = –31,880.99 + (796.34)(45) + (16,863.33)(4)

ŷ = 71,407.63

• Under these conditions, we would predict 71,407.63 
dollars for that individual

113Source: 2018 American Community Survey.



Microdata

114Source: 2018 American Community Survey.



Predicted income by age

115Source: 2018 American Community Survey.



Predicted income by education

116Source: 2018 American Community Survey.

1: Less than high school
2: High school
3: Some college
4: College
5: Graduate school



• ln(income) = F(age, education)

• Use the regression equation to predict log of income for 
someone with 45 years of age and college education

ln(ŷ) = 8.3488 + 0.0225(age) + 0.3382(educgr)
ln(ŷ) = 8.3488 + (0.0225)(45) + (0.3382)(4)

ln(ŷ) = 10.7141
ŷ = 44,985.70

• Under these conditions, we would predict 44,985.70 
dollars for that individual

Predicted log of income

117Source: 2018 American Community Survey.



Microdata

118Source: 2018 American Community Survey.



Predicted ln(income) by age

119Source: 2018 American Community Survey.

Predicted ln(income) by education Exponential of
predicted ln(income) by education

Exponential of
predicted ln(income) by age





Residual analysis with graphs
• Homoscedasticity assumption

– The variance of y scores is uniform for all values of x

– If the y scores are evenly spread above and below 
the regression line for the entire length of the line, the 
association is homoscedastic

• The same assumption applies to residuals
– Difference between observed value (y) and predicted 

value (ŷ)
– e = y – ŷ

– We can plot residuals against predicted values ŷ 
(which summarize all x variables)
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Microdata

122Source: 2018 American Community Survey.



Fonte: Hamilton, 1992: 52.123

=
𝑌
−
, 𝑌



Fonte: Hamilton, 1992: 53.124



Residuals: Income=F(age, education)
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Residuals: ln(income)=F(age, education)





OLS with age and age squared
• ln(income) as a function of age and age squared

y = β0 + β1x + β2x2 + u
• Variation in income due to variation in age

Δy / Δx ≈ β1 + 2β2x
• Marginal effect of age on income depends on β1, 

β2, and specific age value (x)
• There is a positive value of x, in which the effect 

of x on y is zero, called the critical point (x*)
x* = |β1/(2β2)|
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Mean income by age
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ln(income) = F(age, age squared)

130Source: 2018 American Community Survey.



Association of income with age
• Variation in income due to variation in age

Δln(income) / Δage ≈ β1 + 2β2(age)
Δln(income) / Δage ≈ 0.1943 + 2(–0.0020)(age)

Δln(income) / Δage ≈ 0.1943 – 0.0040(age)

• Critical point (curve changes from upward to 
downward)

age* = |β1/(2β2)| = |0.1943/(2*–0.0020)|
age* = |–48.57| = 48.57
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Predicted ln(income) by age, age2

132Source: 2018 American Community Survey.
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133Source: 2018 American Community Survey.



Residuals: ln(income)=F(age,age2)

134Source: 2018 American Community Survey.



Residuals: Exp. ln(income)=F(age, age2)

135Source: 2018 American Community Survey.





Dummy variables
• Many variables that are important in social life 

are nominal-level variables
– They cannot be included in a regression equation or 

correlational analysis (e.g., sex, race/ethnicity)

• We can create dummy variables
– Two categories, one coded as 0 and the other as 1

137

Sex Male Female
1 1 0
2 0 1

Race/
ethnicity White Black Hispanic Other

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1



• Age does not have a normal distribution

• Generate age group variable (categorical)
– 16–19; 20–24; 25–34; 35–44; 45–54; 55–64; 65+
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Age in interval-ratio level

138Source: 2018 American Community Survey.



• Age has seven categories

• Generate dummy variables for age...

Age in ordinal level

139Source: 2018 American Community Survey.



Dummies for age
• Generate dummy variables for age group

140

Age
group

Age
16–19

Age
20–24

Age
25–34

Age
35–44

Age
45–54

Age
55–64

Age
65+

16–19 1 0 0 0 0 0 0
20–24 0 1 0 0 0 0 0
25–34 0 0 1 0 0 0 0
35–44 0 0 0 1 0 0 0
45–54 0 0 0 0 1 0 0
55–64 0 0 0 0 0 1 0
65+ 0 0 0 0 0 0 1



Reference category
• Use the category with 

the largest sample size
as the reference (25–34)

141Source: 2018 American Community Survey.

• Or category with large 
sample and meaningful 
interpretation for your 
problem (age group with 
the highest average 
income: 45–54)



• Education does not have a normal distribution

• Generate education group variable (categorical)
– Less than high school; high school; some college; 

college; graduate school
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142Source: 2018 American Community Survey.



• Education has five categories

• Generate dummy variables for education...

Education in ordinal level

143Source: 2018 American Community Survey.



Dummies for education
• Generate dummy variables for education group

144

Education group <High
school

High
school

Some
College College Graduate

school

Less than high school 1 0 0 0 0

High school 0 1 0 0 0

Some college 0 0 1 0 0

College 0 0 0 1 0

Graduate school 0 0 0 0 1



Reference group
• Use the category with the largest sample size as 

the reference (high school)

145Source: 2018 American Community Survey.



log income = F(age, education)

146Source: 2018 American Community Survey.



Exponential of coefficients

147Source: 2018 American Community Survey.



Interpretation of age
(log of income with dummies as independent variables)

• 45–54 age group is reference category for age
• Coefficient for 16–19 age group equals –2.2230

– exp(β1) times
• People between 16–19 years of age have on average earnings 

0.1083 times the earnings of people between 45–54 years of age, 
controlling for the other independent variables

– 100*[exp(β1)–1] percent
• People between 16–19 years of age have on average earnings 

89.17% lower than earnings of people between 45–54 years of age, 
controlling for the other independent variables

– 100*β1 percent: result is not good because β1>0.3
• People between 16–19 years of age have on average earnings 

approximately 222.30% lower than earnings of people between 45–
54 years of age, controlling for the other independent variables
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Interpretation of education
(log of income with dummies as independent variables)

• High school is reference category for education
• Coefficient for college equals 0.5445

– exp(β1) times
• People with college degree have on average earnings 1.7238 times 

higher than earnings of high school graduates, controlling for the 
other independent variables

– 100*[exp(β1)–1] percent
• People with college degree have on average earnings 72.38% higher

than earnings of high school graduates, controlling for the other 
independent variables

– 100*β1 percent: result is not good because β1>0.3
• People with college degree have on average earnings approximately 

54.45% higher than earnings of high school graduates, controlling for 
the other independent variables
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Standardized coefficients

150Source: 2018 American Community Survey.



Residuals: ln(income)=F(age group, educ. group)

151Source: 2018 American Community Survey.



Residuals: Exp. ln(income)=F(age group, educ. group)

152Source: 2018 American Community Survey.





Full OLS model (ACS)
• Dependent variable

– Natural logarithm of income
• Independent variables

– Sex: female; male (reference)
– Age group: 16–19; 20–24; 25–34; 35–44; 45–54 

(reference); 55–64; 65+
– Education group: less than high school, high school 

(reference), some college, college, graduate school
– Race/ethnicity: White (reference); African American; 

Hispanic; Asian; Native American; Other races
– Marital status: married (reference); separated, divorced, 

widowed; never married
– Migration status: non-migrant (reference); internal 

migrant; international migrant
154Source: 2018 American Community Survey.



Command in Stata

155Source: 2018 American Community Survey.



156Source: 2018 American Community Survey.

Coefficients
from OLS 
regression for 
natural logarithm 
of income,
Texas, 2018



157Source: 2018 American Community Survey.

Exponential of 
coefficients
from OLS 
regression for 
natural logarithm 
of income,
Texas, 2018
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Table 1. Coefficients and standard errors estimated with ordinary least squares models for the logarithm of 
wage and salary income as the dependent variable, Texas, 2018

Note: Coefficients and standard errors were generated with the complex survey design of the American Community Survey. The standardized coefficients were 
generated with sample weights. Standard errors are reported in parentheses. *Significant at p<0.10; **Significant at p<0.05; ***Significant at p<0.01.
Source: 2018 American Community Survey.

Independent variables Model 1 Model 2 Model 3 Model 4
Model 4

Standardized
coefficients

Constant 10.61*** 10.70*** 10.76*** 10.76***
(0.00961) (0.0106) (0.0106) (0.0106)

Sex
Male ref. ref. ref. ref. ref.
Female -0.449*** -0.444*** -0.436*** -0.437*** -0.177

(0.00700) (0.00700) (0.00707) (0.00707)
Age groups
16-19 -2.195*** -2.204*** -2.007*** -1.995*** -0.348

(0.0226) (0.0228) (0.0241) (0.0242)
20-24 -1.154*** -1.142*** -0.973*** -0.959*** -0.242

(0.0155) (0.0155) (0.0168) (0.0169)
25-34 -0.396*** -0.385*** -0.302*** -0.292*** -0.101

(0.0103) (0.0102) (0.0106) (0.0107)
35-44 -0.100*** -0.0921*** -0.0734*** -0.0706*** -0.0236

(0.0101) (0.0101) (0.0100) (0.0100)
45-54 ref. ref. ref. ref. ref.

55-64 -0.0545*** -0.0698*** -0.0737*** -0.0752*** -0.0214
(0.0108) (0.0108) (0.0107) (0.0107)

65+ -0.604*** -0.631*** -0.634*** -0.638*** -0.115
(0.0183) (0.0183) (0.0183) (0.0183)

Continue...
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Table 1. Coefficients and standard errors estimated with ordinary least squares models for the logarithm of 
wage and salary income as the dependent variable, Texas, 2018

Note: Coefficients and standard errors were generated with the complex survey design of the American Community Survey. The standardized coefficients were 
generated with sample weights. Standard errors are reported in parentheses. *Significant at p<0.10; **Significant at p<0.05; ***Significant at p<0.01.
Source: 2018 American Community Survey.

Independent variables Model 1 Model 2 Model 3 Model 4
Model 4

Standardized
coefficients

Education groups
Less than high school -0.336*** -0.311*** -0.314*** -0.315*** -0.0809

(0.0125) (0.0129) (0.0128) (0.0128)
High school ref. ref. ref. ref. ref.

Some college 0.165*** 0.156*** 0.157*** 0.157*** 0.0549
(0.00965) (0.00971) (0.00963) (0.00962)

College 0.579*** 0.551*** 0.539*** 0.543*** 0.178
(0.0100) (0.0102) (0.0101) (0.0101)

Graduate school 0.848*** 0.826*** 0.803*** 0.808*** 0.204
(0.0119) (0.0123) (0.0122) (0.0122)

Continue...
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Table 1. Coefficients and standard errors estimated with ordinary least squares models for the logarithm of 
wage and salary income as the dependent variable, Texas, 2018

Note: Coefficients and standard errors were generated with the complex survey design of the American Community Survey. The standardized coefficients were 
generated with sample weights. Standard errors are reported in parentheses. *Significant at p<0.10; **Significant at p<0.05; ***Significant at p<0.01.
Source: 2018 American Community Survey.

Independent variables Model 1 Model 2 Model 3 Model 4
Model 4

Standardized
coefficients

Race/ethnicity
White ref. ref. ref. ref.

African American -0.211*** -0.172*** -0.173*** -0.0461
(0.0126) (0.0126) (0.0126)

Hispanic -0.132*** -0.125*** -0.129*** -0.0503
(0.00860) (0.00853) (0.00854)

Asian -0.153*** -0.166*** -0.158*** -0.0288
(0.0176) (0.0175) (0.0173)

Native American -0.0988* -0.0758 -0.0715 -0.00272
(0.0540) (0.0549) (0.0555)

Other races -0.140*** -0.124*** -0.119*** -0.0123
(0.0302) (0.0301) (0.0303)

Continue...
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Table 1. Coefficients and standard errors estimated with ordinary least squares models for the logarithm of 
wage and salary income as the dependent variable, Texas, 2018

Note: Coefficients and standard errors were generated with the complex survey design of the American Community Survey. The standardized coefficients were 
generated with sample weights. Standard errors are reported in parentheses. *Significant at p<0.10; **Significant at p<0.05; ***Significant at p<0.01.
Source: 2018 American Community Survey.

Independent variables Model 1 Model 2 Model 3 Model 4
Model 4

Standardized
coefficients

Marital status
Married ref. ref. ref.

Separated, divorced, widowed -0.139*** -0.136*** -0.0398
(0.0102) (0.0102)

Never married -0.270*** -0.270*** -0.104
(0.00950) (0.00948)

Migration status
Non-migrant ref. ref.

Internal migrant -0.121*** -0.0242
(0.0160)

International migrant -0.494*** -0.0287
(0.0684)

R2 0.346 0.349 0.356 0.358 0.358
Observations 127,785 127,785 127,785 127,785 127,785



Exponential of age group coefficients
(Example of how to show regression results in conferences. Edited in Excel)

162Source: 2018 American Community Survey, Texas.
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Exponential of age group coefficients
(Example of how to show regression results in conferences. Edited in Excel.)

163Source: 2018 American Community Survey, Texas.
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Predicted female income by age
(Using “mgen” command within SPost13 package by Long and Freese, 2014)

mgen, stub(F) at(agegr=(16 20 25 35 45 55 65) female=1 ///
raceth=1 educgr=2 marital=1 migrant=1) allstats

164Source: 2018 American Community Survey, Texas.



165Source: 2018 American Community Survey, Texas.

Predicted male income by age
(Using “mgen” command within SPost13 package by Long and Freese, 2014)

mgen, stub(M) at(agegr=(16 20 25 35 45 55 65) female=0 ///
raceth=1 educgr=2 marital=1 migrant=1) allstats



Predicted income by age and sex
For White, High School, Married, Non-migrant

166Source: 2018 American Community Survey, Texas.
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167Source: 2018 American Community Survey, Texas.



Residuals
ln(income)=F(sex,age,educ,race/ethnicity,marital,migrant)

168Source: 2018 American Community Survey, Texas.



Residuals
Exp.ln(income)=F(sex,age,educ,race/ethnicity,marital,migrant)

169Source: 2018 American Community Survey, Texas.





Example with GSS

171Source: 2016 General Social Survey.
. 

                                                                              
       _cons     9.949482   .0471336   211.09   0.000     9.855349    10.04361
     educgr5     .8516728   .0920326     9.25   0.000      .667871    1.035475
     educgr4     .4559903   .0843136     5.41   0.000     .2876045    .6243761
     educgr3     .2367316   .0940649     2.52   0.014     .0488711    .4245921
     educgr1    -.4276264   .1163403    -3.68   0.000    -.6599739   -.1952789
      agegr5    -.4155278    .096474    -4.31   0.000    -.6081997   -.2228559
      agegr4    -.0050007   .0638917    -0.08   0.938    -.1326013    .1225999
      agegr2    -.3345438   .0736023    -4.55   0.000    -.4815379   -.1875498
      agegr1    -1.166963   .1220959    -9.56   0.000    -1.410805   -.9231207
                                                                              
   lnconrinc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                           Linearized
                                                                              

                                                R-squared         =     0.1982
                                                Prob > F          =     0.0000
                                                F(   8,     58)   =      53.49
                                                Design df         =         65
Number of PSUs     =       130                  Population size   = 1,688.1407
Number of strata   =        65                  Number of obs     =      1,626

Survey: Linear regression

(running regress on estimation sample)
. svy: reg lnconrinc agegr1 agegr2 agegr4 agegr5 educgr1 educgr3 educgr4 educgr5 if year==2016



Standardized coefficients

172Source: 2016 General Social Survey.

. 

                                                                              
       _cons     9.927145   .0541188   183.43   0.000                        .
     educgr5     .7994411   .0810907     9.86   0.000                 .2359353
     educgr4     .5121465   .0675632     7.58   0.000                 .1828828
     educgr3     .2160742   .0977414     2.21   0.027                 .0516399
     educgr1    -.4255014   .1019697    -4.17   0.000                -.0970916
      agegr5    -.4761732    .103716    -4.59   0.000                -.1110716
      agegr4     .0151364   .0656439     0.23   0.818                 .0061022
      agegr2    -.3035091    .072592    -4.18   0.000                -.1091483
      agegr1    -1.133145   .1077317   -10.52   0.000                -.2566052
                                                                              
   lnconrinc        Coef.   Std. Err.      t    P>|t|                     Beta
                                                                              

       Total    2167.33229     1,625  1.33374294   Root MSE        =    1.0468
                                                   Adj R-squared   =    0.1785
    Residual    1771.74929     1,617  1.09570148   R-squared       =    0.1825
       Model    395.582999         8  49.4478749   Prob > F        =    0.0000
                                                   F(8, 1617)      =     45.13
      Source         SS           df       MS      Number of obs   =     1,626

. reg lnconrinc agegr1 agegr2 agegr4 agegr5 educgr1 educgr3 educgr4 educgr5 if year==2016, beta
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Independent
variables

2004 2010 2016
Coefficients Standardized

coefficients Coefficients Standardized
coefficients Coefficients Standardized

coefficients
Constant 10.030*** 9.919*** 9.949***

(0.063) (0.090) (0.047)
Age groups

18–24 -1.114*** -0.269 -1.438*** -0.327 -1.167*** -0.257
(0.104) (0.188) (0.122)

25–34 -0.306*** -0.118 -0.406*** -0.140 -0.335*** -0.109
(0.074) (0.102) (0.074)

35–49 ref. ref. ref. ref. ref. ref.

50–64 0.132* 0.041 0.043 0.015 -0.005 0.006
(0.068) (0.092) (0.064)

65+ -0.596*** -0.120 -0.720*** -0.168 -0.416*** -0.111
(0.165) (0.175) (0.097)

Education groups

Less than high school -0.410*** -0.101 -0.477*** -0.139 -0.428*** -0.097
(0.117) (0.125) (0.116)

High school ref. ref. ref. ref. ref. ref.

Junior college 0.276*** 0.071 0.142 0.018 0.237** 0.052
(0.097) (0.122) (0.094)

Bachelor 0.620*** 0.219 0.579*** 0.197 0.456*** 0.183
(0.062) (0.099) (0.084)

Graduate 0.785*** 0.233 0.983*** 0.251 0.852*** 0.236
(0.097) (0.088) (0.092)

R2 0.242 0.222 0.288 0.272 0.198 0.183
Number of observations 1,685 1,685 1,201 1,201 1,626 1,626

Table 1. Coefficients and standard errors estimated with ordinary least squares models for the logarithm of 
respondent’s income as the dependent variable, U.S. adult population, 2004, 2010, and 2016

Note: Coefficients and standard errors were generated with the complex survey design of the General Social Survey. The standardized coefficients were generated 
without the complex survey design. Standard errors are reported in parentheses. *Significant at p<0.10; **Significant at p<0.05; ***Significant at p<0.01.
Source: 2004, 2010, 2016 General Social Surveys.





Interaction with dummy variables
• As before, we can simply include dummy 

variables as independent variables
earnings = β0 + δ0 women + β1 education + u

– Difference between sexes does not depend on the 
level of education (fitted lines are parallel)

175

δ0 < 0 

slope = β1

women: earnings = (β0 + δ0) + β1 educ

men: earnings = β0 + β1 educ

earnings

education

β0 + δ0

β0



Different slopes
• We can test if the effect of education on 

earnings vary by sex
earnings = (β0 + δ0 women) + (β1 + δ1 women)*educ + u

176

men

women

earnings

education

δ0 < 0, δ1 < 0 

men

women

earnings

education

δ0 < 0, δ1 > 0 





Age-education & earnings, Brazil

Year Area

Log of
mean

earnings

Age-
education

group

Dummies
for age-education

groups

Distr. of
male
pop.

Variables
for distribution

of male population
Num.

of
obs.

log(Ygit) G11–G44 G11 ... G44 P11–P44 P11 ... P44

1970 110006 5.80
15–24

years &
< primary

1 ... 0 0.221 0.221 ... 0 2,016

1970 110006 6.02
15–24

years &
primary

0 ... 0 0.102 0 ... 0 927

1970 110006 6.57
15–24

years &
secondary

0 ... 0 0.007 0 ... 0 62

1970 110006 7.58
15–24

years &
university

0 ... 0 0.001 0 ... 0 11

... ... ... ... ... ... ... ... ... ... ... ...

1970 110006 7.91
50–64

years &
university

0 ... 1 0.002 ... ... 0.002 15

... ... ... ... ... ... ... ... ... ... ...

178Source: https://doi.org/10.31235/osf.io/na8tv.

https://doi.org/10.31235/osf.io/na8tv


Fixed effects models
Baseline

model
Composition

model
Dependent variable

Logarithm of the
mean real monthly earnings

by age-education group,
area, and time

log(Ygit) log(Ygit)

Independent variables
16 age-education indicators

* time (G11–G44) * θt (G11–G44) * θt

Distribution of male
population into 16 age-
education groups * time

(P11–P44) * θt

Area-time
fixed effects αit αit

179
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Effects of age-education indicators (G11–G44)

Baseline model, Brazil, 2010

Source: 1970, 1980, 1991, 2000, and 2010 Brazilian Demographic Censuses. 180
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Effects of age-education indicators (G11–G44)
Composition model, Brazil, 2010

Source: 1970, 1980, 1991, 2000, and 2010 Brazilian Demographic Censuses.
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182Source: 1970, 1980, 1991, 2000, and 2010 Brazilian Demographic Censuses.
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Religion & earnings, Brazil
• Unit of analysis

– Group defined by age, education, area, year 
(4*3*502*4=24,096)

• Dependent variable
– Logarithm of average earnings of each group

• Independent variables
– Age-education indicators
– Proportion of Protestants in each group * year
– Area and year fixed effects

187Source: https://doi.org/10.31219/osf.io/c5p2a.

https://doi.org/10.31219/osf.io/c5p2a


Earnings by proportion Protestants

Source: 1970 and 2000 Brazilian Demographic Censuses.

Prop. Protestants
15–24 years, 0–4 education

Prop. Protestants * Year
15–24 years, 0–4 education

Prop. Protestants
25–34 years, 0–4 education

Prop. Protestants * Year
25–34 years, 0–4 education

o 1970        x 2000

188



o 1970        x 2000

Earnings by proportion Protestants

Source: 1970 and 2000 Brazilian Demographic Censuses.

Prop. Protestants
35–49 years, 0–4 education

Prop. Protestants * Year
35–49 years, 0–4 education

Prop. Protestants
50–64 years, 0–4 education

Prop. Protestants * Year
50–64 years, 0–4 education
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Interaction of religion and race

190Source: 1980, 1991, and 2000 Brazilian Demographic Censuses.
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