Lecture 4: Measures of dispersion

Ernesto F. L. Amaral

February 19-21, 2024
Advanced Methods of Social Research (SOCI 420)
www.ernestoamaral.com

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 4 (pp. 91-121).

Outline

- Explain the purpose of measures of dispersion
- Compute and interpret these measures
- Range (R), interquartile range (Q or $I Q R$)
- Standard deviation (s), variance (s^{2})
- Select an appropriate measure of dispersion and correctly calculate and interpret the statistic
- Describe and explain the mathematical characteristics of the standard deviation
- Analyze a boxplot

Concept of dispersion

- Dispersion refers to the variety, diversity, or amount of variation among scores
- The greater the dispersion of a variable, the greater the range of scores and the greater the differences between scores
- Examples
- Typically, a large city will have more diversity than a small town
- Some states (California, New York) are more racially diverse than others (Maine, lowa)

Ambulance assistance

- Examples below have similar means
- 7.4 minutes for service A and 7.6 minutes for service B
- Service A is more consistent in its response
- Less dispersion than service B

Range (R)

- Range indicates the distance between the highest and lowest scores in a distribution
- Range $(R)=$ Highest Score - Lowest Score
- Quick and easy indication of variability
- Can be used with ordinal-level or interval-ratiolevel variables
- Why can't the range be used with variables measured at the nominal level?
- For these variables, use frequency distributions to analyze dispersion

Limitations of range

- Range is based on only two scores
- It is distorted by atypically high or low scores
- Influenced by outliers
- No information about variation between high and low scores

Interquartile range (Q or IQR)

- A type of range measure
- Considers only the middle 50% of the cases in a distribution
- Avoids some of the problems of the range by focusing on just the middle 50% of scores
- Avoids the influence of outliers

Limitation of interquartile range

- The interquartile range is based on only two scores
- It fails to yield any information from all of the other scores
- Based only on Q_{1} and Q_{3}

Birth rates for 40 nations, 2012

(number of births per 1000 population)

Rank	Nation	Birth rate	Rank	Nation	Birth rate	
40 (highest)	Niger	46	20	Libya	23	
39	Uganda	45	19	India	22	
38	Malawi	43	18	Venezuela	21	
37	Angola	42	17	Mexico	20	
36	Mozambique	42	16	Colombia	19	
35	Tanzania	41	15	Kuwait	18	
34	Nigeria	40	14	Vietnam	17	
33	Guinea	39	13	Ireland	16	
32	Senegal	38	12	Chile	15	
31	Togo	36	11	Australia	14	
30	Kenya	35	10	United States	13	
29	Ethiopia	34	9	United Kingdom	13	
28	Rwanda	33	8	Russia	13	
27	Ghana	32	7	France	13	
26	Guatemala	29	6	China	12	
25	Pakistan	28	5	Canada	11	
24	Haiti	27	4	Spain	10	
26	Cambodia	26	3	Japan	9	
22	Egypt	25	2	Italy	9	
21	Syria	24	1 (lowest)	Germany	8	

Examples of R and $/ Q R$

- Range $=$ Highest score - Lowest score $=46-8=38$
- Interquartile range (IQR)
- Locate Q_{3} (75th percentile) and Q_{1} (25th percentile)
- $Q_{3}: 0.75 \times 40=30$ th case
- Kenya is the 30th case with a birth rate of 35
$-Q_{1}: 0.25 \times 40=10$ th case
- United States is the 10th case with a birth rate of 13
- Difference of these values is interquartile range
- $I Q R=Q 3-Q 1=35-13=22$

Standard deviation

- The most important and widely used measure of dispersion
- It should be used with interval-ratio-level variables, but is often used with ordinal-level variables
- Good measure of dispersion
- Uses all scores in the distribution
- Describes the average or typical deviation of the scores
- Increases in value as the distribution of scores becomes more diverse

Interpreting standard deviation

- It is an index of variability that increases in value as the distribution becomes more variable
- It allows us to compare distributions
- It can be interpreted in terms of normal deviation
- We will discuss on Chapter 5

Formulas

- Standard deviation and variance are based on the distance between each score and the mean
- Formula for variance

$$
s^{2}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N}
$$

- Formula for standard deviation

$$
s=\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N}}
$$

Step-by-step calculation of s

- Subtract mean from each score: $\left(X_{i}-\bar{X}\right)$
- Square the deviations: $\left(X_{i}-\bar{X}\right)^{2}$
- Sum the squared deviations: $\sum\left(X_{i}-\bar{X}\right)^{2}$
- Divide the sum of squared deviations by N :

$$
\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N}
$$

- Square root brings value back to original unit:

$$
\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{N}}
$$

	Age (X_{i})	$\boldsymbol{X}_{\boldsymbol{i}}-\overline{\boldsymbol{X}}$	$\left(X_{i}-\bar{X}\right)^{2}$
	18	18-19 = - 1	$(-1)^{2}=1$
	19	$19-19=0$	$(0)^{2}=0$
	20	$20-19=1$	$(1)^{2}=1$
	18	18-19 = - 1	$(-1)^{2}=1$
	20	$20-19=1$	$(1)^{2}=1$
	$\begin{gathered} \sum\left(X_{i}\right)=95 \\ \bar{X}=95 / 5=19 \end{gathered}$	$\sum\left(X_{i}-\bar{X}\right)=0$	$\begin{gathered} \sum\left(X_{i}-\bar{X}\right)^{2}=4 \\ s=\sqrt{4 / 5}=0.89 \\ \hline \end{gathered}$

This residential campus is less diverse with respect to age

$$
(s=0.9)
$$

than this urban
campus ($s=4.2$).

Reporting several variables

- Measures of central tendency (e.g., mean) and dispersion (e.g., standard deviation)
- Valuable descriptive statistics
- Basis for many analytical techniques
- Most often presented in summary tables

Characteristics of the sample

Variable	Mean	Standard deviation	Number of cases
Age	33.2	1.3	1,078
Number of children	2.3	0.7	1,078
Years married	7.8	1.5	1,052
Income (in dollars)	55,786	1,500	987

Source: Healey 2015, p. 110.

Parental engagement

- Means and standard deviations for number of days per week each parent engaged with child
- How does maternal engagement compare to paternal engagement?
- How does married engagement compare to cohabiting engagement?
- How does engagement change over time?

Parental engagement by age of child, gender, and marital status

Marital status	Maternal engagement				Paternal engagement			
	1 year old		3 years old		1 year old		3 years old	
	\bar{X}	s	\bar{X}	s	\bar{X}	s	\bar{X}	s
Married	5.30	1.40	4.95	1.33	4.64	1.75	4.01	1.43
Cohabiting	5.23	1.36	4.86	1.38	4.67	1.58	4.04	

Income: Central tendency

- Median
- Increases in income of the average American household
- Mean
- Increases in average income for all American households

Median and mean household incomes, United States, 1967-2011

Income: Dispersion increased

- The increase was not shared equally
- Low-income households: no growth
- High-income households: robust increases

Percentiles of household income, United States, 1967-2011

Boxplots

- Boxplot is also known as "box and whiskers plot"
- It provides a way to visualize and analyze dispersion
- Useful when comparing distributions
- It uses median, range, interquartile range, outliers
- Easier to read all this information than in tables

Income by sex, 2016

Statistics for individual income	Male	Female
Lowest score	363.00	363.00
Q1	$15,427.50$	$9,982.50$
Median	$32,670.00$	$19,965.00$
Q3	$49,005.00$	$32,670.00$
Highest score	$189,211.46$	$189,211.46$
IQR	$33,577.50$	$22,687.50$
Mean	$41,282.78$	$28,109.34$
Standard deviation	$41,295.31$	$30,201.87$

Commands in Stata

```
tabstat conrinc [aweight=wtssall],
by(sex) stat(min p25 p50 p75 max iqr
mean sd)
graph box conrinc [aweight=wtssall],
over(sex) ytitle(Individual income in
constant dollars)
```


Income by age group, 2016

Statistics for individual income	$\mathbf{1 8 - 2 4}$	$\mathbf{2 5 - 4 4}$	$\mathbf{4 5 - 6 4}$	$\mathbf{6 5 - 8 9}$
Lowest score	363.00	363.00	363.00	363.00
Q1	$3,267.00$	$13,612.50$	$15,427.50$	$8,167.50$
Median	$8,167.50$	$23,595.00$	$32,670.00$	$19,965.00$
Q3	$15,427.50$	$39,930.00$	$49,005.00$	$39,930.00$
Highest score	$72,600.00$	$189,211.46$	$189,211.46$	$189,211.46$
IQR	$12,160.50$	$26,317.50$	$33,577.50$	$31,762.50$
Mean	$11,214.16$	$32,863.93$	$42,552.21$	$30,848.29$
Standard deviation	$11,787.32$	$33,269.47$	$41,486.09$	$33,303.36$

Commands in Stata

```
tabstat conrinc [aweight=wtssall],
by(agegr1) stat(min p25 p50 p75 max iqr
mean sd)
graph box conrinc [aweight=wtssall],
over(agegrl) ytitle(Individual income in
constant dollars)
```

Source: 2016 General Social Survey.

Income by race/ethnicity, 2016

Statistics for individual income	Non-Hispanic white	Non-Hispanic black	Hispanic	Other
Lowest score	363.00	363.00	363.00	363.00
Q1	$13,612.50$	$8,167.50$	$8,167.50$	$8,167.50$
Median	$27,225.00$	$19,965.00$	$17,242.50$	$27,225.00$
Q3	$49,005.00$	$32,670.00$	$32,670.00$	$72,600.00$
Highest score	$189,211.46$	$101,640.00$	$189,211.46$	$189,211.46$
IQR	$35,392.50$	$24,502.50$	$24,502.50$	$64,432.50$
Mean	$38,845.62$	$23,243.04$	$23,128.92$	$50,156.35$
Standard deviation	$39,157.17$	$19,671.53$	$21,406.31$	$59,219.90$

Commands in Stata

tabstat conrinc [aweight=wtssall], by (raceeth) stat(min p25 p50 p75 max iqr mean sd)
graph box conrinc [aweight=wtssall], over(raceeth) ytitle(Individual income in constant dollars)

Source: 2016 General Social Survey.

Income by sex and age group,

2016

Command in Stata

graph box conrinc [aweight=wtssall], over(sex) over(agegr1) ytitle(Individual income in constant dollars)

Command in Stata

graph box conrinc [aweight=wtssall], over(agegr1) over(sex) ytitle(Individual income in constant dollars)

Income by sex and race/ethnicity, 2016

Command in Stata

graph hbox conrinc [aweight=wtssall], over(sex) over(raceeth)
ytitle(Individual income in constant dollars)

Command in Stata

graph hbox conrinc [aweight=wtssall], over(raceeth) over(sex)
ytitle(Individual income in constant dollars)

Income by age group and race/ethnicity, 2016

Command in Stata

graph hbox conrinc [aweight=wtssall], over(agegr1) over(raceeth)
ytitle(Individual income in constant dollars)

Command in Stata

graph hbox conrinc [aweight=wtssall], over(raceeth) over(agegrl)
ytitle(Individual income in constant dollars)

Income by sex, age group, and race/ethnicity, 2016

[^0]Source: 2016 General Social Survey.

Example: 2016 GSS in Stata

- Respondents' income in constant dollars sum conrinc [aweight=wtssall], d respondent income in constant dollars

	Percentiles	Smallest		
1%	363	363		
5%	1452	363		
10%	3993	363	Obs	1,632
25%	11797.5	363	Sum of Wgt.	$1,695.2263$
50%	23595		Mean	34649.3
	39930	189211.5		36722.06
75%	72600	189211.5	Variance	$1.35 e+09$
90%	101640	189211.5	Skewness	2.538394
95%	189211.5	189211.5	Kurtosis	10.63267

Example: 2016 GSS in Stata

- Respondents' income in constant dollars codebook conrinc

type: numeric (double)			
label	LABW, but 26 nonmissing	values are	t labeled
range:	[363, 189211.46]	units:	. 01
unique values:	26	missing .:	0/2,867
unique mv codes:	1	missing .*:	1,235/2,867
examples:	17242.5		
	39930		
	.i IAP		
	.i IAP		

Edited table

Table 1. Descriptive statistics of respondents' income in constant dollars, U.S. adult population, 2016

Statistics	Income
Mean	$34,649.30$
Minimum	363.00
25th percentile	$11,797.50$
Median	$23,595.00$
75th percentile	$39,930.00$
Maximum	$189,211.50$
Range	$188,848.50$
Interquartile range	$28,132.50$
Standard deviation	$36,722.06$
Sample size	1,632
Missing cases	1,235

Example: 2016 GSS in Stata

- Respondents' income in constant dollars hist conrinc, percent normal

Example: 2016 GSS in Stata

- Generate box plot for respondents' income in constant dollars
graph hbox conrinc [aweight=wtssall],
ytitle(Respondents' income in constant dollars)

Edited figure

Figure 1. Distribution of respondents' income in constant dollars, U.S. adult population, 2016

Source: 2016 General Social Survey.

Summary

- Measures of dispersions are higher for more diverse groups
- Larger samples and populations
- Measures of dispersions decrease, as diversity or variety decreases
- Smaller samples and more homogeneous groups
- The lowest possible value for range and standard deviation is zero
- In this case, there is no dispersion

[^0]: graph hbox conrinc [aweight=wtssall], over(sex) over(agegr1) over(raceeth) ytitle(Individual income in constant dollars)

