Lecture 8:
 Hypothesis testing: One-sample case

Ernesto F. L. Amaral

March 04-20, 2024
Advanced Methods of Social Research (SOCI 420)
www.ernestoamaral.com

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 8 (pp. 185-215).

Outline

- Explain the logic of hypothesis testing, including concepts of the null hypothesis, the sampling distribution, the alpha level, and the test statistic
- Explain what it means to "reject the null hypothesis" or "do not reject the null hypothesis"
- Identify and cite examples of situations in which one-sample tests of hypotheses are appropriate
- Test the significance of single-sample means and proportions using the five-step model, and correctly interpret the results
- Explain the difference between one- and two-tailed tests, and specify when each is appropriate
- Define and explain Type I and Type II errors, and relate each to the selection of an alpha level
- Use the Student's t distribution to test the significance of a sample mean for a small sample

Significant differences

- Hypothesis testing is designed to detect significant differences
- Differences that did not occur by random chance
- Hypothesis testing is also called significance testing
- This chapter focuses on the "one sample" case
- Compare a random sample against a population
- Compare a sample statistic to a (hypothesized) population parameter to see if there is a statistically significant difference

Example 1: Question

- Are people who have been treated for alcoholism more reliable workers than those in the community?
- Does the group of all treated alcoholics have different absentee rates than the community as a whole?
- Effectiveness of rehabilitation center for alcoholics
- Absentee rates for community and sample
- Don't have resources to gather information of all people who have been treated by the program

Community	Sample of treated alcoholics
$\mu=7.2$ days per year	$\bar{X}=6.8$ days per year
$\sigma=1.43$	$n=127$

- What causes the difference between 7.2 and 6.8 ?
- Real difference? Or difference due to random chance?

A test of hypothesis for single-sample means

Example 1: Result

- For a known/empirical distribution, we use: $Z=\frac{X_{i}-\bar{X}}{s}$
- However, we are concerned with the sampling distribution of all possible sample means

$$
\text { Z(obtained })=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{6.8-7.2}{1.43 / \sqrt{127}}=-3.15
$$

- The sample outcome falls in the shaded area
- Z(obtained) $=-3.15$
- Reject H_{0} : $\mu=7.2$ days per year
- The sample of 127 treated alcoholics comes from a population that is significantly different from the community on absenteeism

The five-step model

1. Make assumptions and meet test requirements
2. Define the null hypothesis $\left(\mathrm{H}_{0}\right)$
3. Select the sampling distribution and establish the critical region
4. Compute the test statistic
5. Make a decision and interpret the test results

Example 2: Question

- The education department at a university has been accused of "grade inflation"
- Thus, education majors have much higher GPAs than students in general
- GPAs of all education majors should be compared with the GPAs of all students
- There are 1000s of education majors, far too many to interview
- How can the dispute be investigated without interviewing all education majors?

Example 2: Numbers

- The average GPA for all students is $2.70(\mu)$
- This value is a parameter
- Random sample of education majors
- Mean $=\bar{X}=3.00$
- Standard deviation $=s=0.70$
- Sample size $=n=117$
- There is a difference between parameter ($\mu=2.70$) and statistic ($\bar{X}=3.00$)
- It seems that education majors do have higher GPAs

Example 2: Explanations

- We are working with a random sample
- Not all education majors
- Two explanations for the difference

1. The sample mean $(\bar{X}=3.00)$ is the same as the population mean ($\mu=2.70$)

- The observed difference may have been caused by random chance

2. The difference is real (statistically significant)

- Education majors are different from all students

Step 1: Assumptions,requirements

- Make assumptions
- Random sampling
- Hypothesis testing assumes samples were selected according to EPSEM
- Meet test requirements
- The sample of 117 was randomly selected from all education majors
- Level of measurement is interval-ratio
- GPA is an interval-ratio level variable, so the mean is an appropriate statistic
- Sampling distribution is normal in shape
- This is a large sample ($n \geq 100$)

Step 2: Null hypothesis

- Null hypothesis, $\mathrm{H}_{0}: \mu=2.7$
- H_{0} always states there is no significant difference
- The sample of 117 comes from a population that has a GPA of 2.7
- The difference between 2.7 and 3.0 is trivial and caused by random chance
- Alternative hypothesis, $\mathrm{H}_{1}: \mu \neq 2.7$
- H_{1} always contradicts H_{0}
- The sample of 117 comes from a population that does not have a GPA of 2.7
- There is an actual difference between education majors ($\bar{X}=3.0$) and other students $(\mu=2.7)$

Step 3: Distribution, critical region

- Sampling distribution: standard normal shape
- Alpha (α) = 0.05
- Use the 0.05 value as a guideline to identify differences that would be rare if H_{0} is true
- Any difference with a probability less than α is rare and will cause us to reject the H_{0}
- Use the Z score to determine the probability of getting the observed difference
- If the probability is less than 0.05, the obtained Z score will be beyond the critical Z score of ± 1.96
- This is the critical Z score associated with a two-tailed test and $\alpha=0.05$

Step 4: Test statistic

- For a known/empirical distribution, we would use

$$
Z=\frac{X_{i}-\bar{X}}{s}
$$

- However, we are concerned with the sampling distribution of all sample means
- We only have the standard deviation for the sample (s), not for the population (σ)
$Z($ obtained $)=\frac{\bar{X}-\mu}{s / \sqrt{n-1}}=\frac{3.0-2.7}{0.7 / \sqrt{117-1}}=4.62$

Step 5: Decision, interpret

- Z (obtained) $=4.62$
- This is beyond Z (critical) $= \pm 1.96$
- The obtained Z score fell in the critical region, so we reject the H_{0}
- If H_{0} was true, a sample GPA of 3.0 would be unlikely
- Therefore, the H_{0} is false and must be rejected
- Education majors have a GPA that is significantly higher than general student body
- The difference between the parameter ($\mu=2.7$) and the statistic ($\bar{X}=3.0$) was large and unlikely to have occurred by random chance ($p<0.05$)

Five-step model summary

Situation

The test statistic is in the critical region

The test statistic is not in the critical region

Decision

Reject the null
hypothesis $\left(\mathrm{H}_{0}\right)$

Do not reject the null hypothesis $\left(\mathrm{H}_{0}\right)$

Interpretation

The difference is statistically significant

The difference is not statistically significant

- Model is fairly rigid, but there are two crucial choices
- One-tailed or two-tailed test
- Alpha (α) level

One or two-tailed test

- Null hypothesis always has the equal sign

$$
\mathrm{H}_{0}: \mu=2.7
$$

- Two-tailed test states that population mean is not equal to the value stated in null hypothesis

$$
\mathrm{H}_{1}: \mu \neq 2.7
$$

- One-tailed test estimates differences in a specific direction (based on theory)

$$
\begin{aligned}
& \mathrm{H}_{1}: \mu>2.7 \\
& \mathrm{H}_{1}: \mu<2.7
\end{aligned}
$$

One or two-tailed test

One- vs. Two-Tailed Tests, $\alpha=0.05$

If the Research Hypothesis $\left(H_{1}\right)$ Uses	The Test Is	Concern Is on	Z(critical) Is
\neq	Two-tailed	Both tails	± 1.96
$>$	One-tailed	Upper tail	+1.65
$<$	One-tailed	Lower tail	-1.65

Finding Critical Z Scores for One- and Two-Tailed Tests

		One-Tailed Value	
Alpha	Two-Tailed Value	Upper Tail	Lower Tail
0.10	± 1.65	+1.29	-1.29
0.05	± 1.96	+1.65	-1.65
0.01	± 2.58	+2.33	-2.33
0.001	± 3.32	+3.10	-3.10
0.0001	± 3.90	+3.70	-3.70

Source: Healey 2015, p. 197.

Two-tailed test: $\alpha=0.05$

A. The two-tailed test, Z (critical) $= \pm 1.96$

One-tailed test (upper): $\alpha=0.05$

B. The one-tailed test for upper tail, Z (critical) $=+1.65$

One-tailed test (lower): $\alpha=0.05$

C. The one-tailed test for lower tail, Z (critical) $=-1.65$

Selecting an alpha level

- By assigning an alpha level, one defines an "unlikely" sample outcome
- Alpha level is the probability that the decision to reject the null hypothesis is incorrect
- Examine this table for critical regions

The Relationship Between Alpha and Z(Critical) for a Two-Tailed Test

If Alpha $=$	The Two-Tailed Critical Region Will Begin at $Z($ Critical $)=$
0.100	± 1.65
0.050	± 1.96
0.010	± 2.58
0.001	± 3.32

Type I and Type II errors

- Type I error (alpha error)
- Rejecting a true null hypothesis
- Type II error (beta error)
- Not rejecting a false null hypothesis
- Examine table below for relationships between decision making and errors

Decision Making and the Five-Step Model

	If Our Decision Is to	And H_{0} Is Actually	The Result Is
a	Reject H_{0}	False	OK
b	Fail to reject H_{0}	True	OK
\mathbf{c}	Reject H_{0}	True	Type I or alpha (α) error
d	Fail to reject H_{0}	False	Type II or beta (β) error

Decisions about hypotheses

Hypotheses	$\boldsymbol{p}<\boldsymbol{\alpha}$	$\boldsymbol{p}>\boldsymbol{\alpha}$
Null hypothesis $\left(\mathrm{H}_{0}\right)$	Reject	Do not reject
Alternative hypothesis $\left(\mathrm{H}_{1}\right)$	Accept	Do not accept

- p-value is the probability of not rejecting the null hypothesis
- If a statistical software gives only the twotailed p-value, divide it by 2 to obtain the onetailed p-value

Significance level $(\boldsymbol{\alpha})$	Confidence level
$0.10(10 \%)$	90%
$0.05(5 \%)$	95%
$0.01(1 \%)$	99%
$0.001(0.1 \%)$	$99.9 \% \quad \overline{\mathbf{A}}] \mathbf{M}$

Example 3: Income, 2021

- Is the mean personal income of Veterans (GSS) lower than mean income of population 15+ (Census Bureau)?
- We know the income for the population $15+$

Source: U.S. Census Bureau, Mean Personal Income in the United States [MAPAINUSA646N], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/MAPAINUSA646N, October 24, 2022. Shaded areas indicate U.S. recessions.

Example 3: Census \& GSS

- We know the income for the 2021 GSS sample of Veterans
. mean conrinc if veteran==1

Mean estimation
Number of obs $=\mathbf{2 2 9}$

	Mean	Std. err.	[95\% conf. interval]	
conrinc	49562.49	$\mathbf{2 9 3 2 . 7 1 7}$	$\mathbf{4 3 7 8 3 . 8}$	$\mathbf{5 5 3 4 1 . 1 9}$

- What causes the difference between \$57,143.00 (pop.15+, Census) and \$49,562.49 (Veterans, GSS)?
- Real difference? Or difference due to random chance?

Example 3: Result

- Veteran population has mean income that is significantly lower than mean income of the population 15+
- The difference between the parameter \$57,143.00 and the statistic $\$ 49,562.49$ was large and unlikely to have occurred by random chance (p-value<0.05)
. ztest conrinc=57143 if veteran==1

One-sample z test

Variable	Obs	Mean	Std. err.	Std. dev.	[95\% con	interval]
conrinc	229	49562.49	. 0660819	1	49562.36	49562.62
```mean = mean(conrinc) z = -1.1e+05 H0: mean = 57143```						
$\begin{aligned} & \text { Ha: mea } \\ & \operatorname{Pr}(Z<Z \end{aligned}$	143   0000	$\begin{aligned} \text { Ha: mean }!=57143 & \text { Ha: mean }>57143 \\ \operatorname{Pr}(\|Z\|>\|z\|)=0.0000 & \operatorname{Pr}(Z>z)=1.0000 \end{aligned}$				

## The Student's $t$ distribution

- How can we test a hypothesis when the population standard deviation ( $\sigma$ ) is unknown, as is usually the case?
- For large samples ( $n \geq 100$ ), we can use the sample standard deviation (s) as an estimator of the population standard deviation ( $\sigma$ )
- Use standard normal distribution (Z)
- For small samples, $s$ is too biased to estimate $\sigma$
- Do not use standard normal distribution
- Use Student's $t$ distribution


## $t$ and $Z$ distributions



## $t$ and $Z$ distributions



## Choosing the distribution

- Choosing a sampling distribution when testing single-sample means for significance

If population standard deviation $(\sigma)$ is	Sampling distribution is the
Known	$Z$ distribution
Unknown and sample size $(n)$ is large	$Z$ distribution
Unknown and sample size $(n)$ is small	$t$ distribution

## Example 4: With $t$-test

- This is the same as example 3 , but with $t$-test
- GSS has a large sample. This is just an illustration
- Veteran population has mean income that is significantly lower than mean income of the population 15+ ( $p$-value<0.05)
. ttest conrinc=57143 if veteran==1

One-sample t test

Variable	Obs	Mean	Std. err.	Std. dev.	[95\% conf.	interval]
conrinc	229	49562.49	2932.717	44380.07	43783.8	55341.19
$\begin{aligned} \text { Ha: mean } & <57143 \\ \operatorname{Pr}(T<t) & =0.0052 \end{aligned}$		Ha: mean != 57143			Ha: mean > 57143	
		$\operatorname{Pr}(\|\mathrm{T}\|>\|\mathrm{t}\|)=0.0104$			$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=0.9948$	

## Five-step model for proportions

- When analyzing variables that are not measured at the interval-ratio level
- A mean is inappropriate
- We can test a hypothesis on a one sample proportion
- The five step model remains primarily the same, with the following changes
- The assumptions are: random sampling, nominal level of measurement, and normal sampling
distribution
- The formula for $Z$ is

$$
Z=\frac{P_{s}-P_{u}}{\sqrt{P_{u}\left(1-P_{u}\right) / n}}
$$

## Example 5: Proportions

- A random sample of 122 households in a lowincome neighborhood revealed that 53 of the households were headed by women
$-P_{s}=53 / 122=0.43$
- In the city as a whole, the proportion of womenheaded households $\left(P_{u}\right)$ is 0.39
- Are households in lower-income neighborhoods significantly different from the city as a whole?
- Conduct a $90 \%$ hypothesis test $(\alpha=0.10)$


## Step 1: Assumptions,requirements

- Make assumptions
- Random sampling
- Hypothesis testing assumes samples were selected according to EPSEM
- Meet test requirements
- The sample of 122 was randomly selected from all lower-income neighborhoods
- Level of measurement is nominal
- Women-headed households is measured as a proportion
- Sampling distribution is normal in shape
- This is a large sample ( $n \geq 100$ )


## Step 2: Null hypothesis

- Null hypothesis, $\mathrm{H}_{0}: P_{u}=0.39$
- The sample of 122 comes from a population where $39 \%$ of households are headed by women
- The difference between 0.43 and 0.39 is trivial and caused by random chance
- Alternative hypothesis, $\mathrm{H}_{1}: P_{u} \neq 0.39$
- The sample of 122 comes from a population where the percent of women-headed households is not 39
- The difference between 0.43 and 0.39 reflects an actual difference between lower-income neighborhoods and all neighborhoods


## Step 3: Distribution, critical region

- Sampling distribution
- Standard normal distribution (Z)
- Alpha $(\alpha)=0.10$ (two-tailed)
- Critical region begins at $Z$ (critical) $= \pm 1.65$
- This is the critical $Z$ score associated with a two-tailed test and alpha equal to 0.10
- If the obtained $Z$ score falls in the critical region, we reject $\mathrm{H}_{0}$


## Step 4: Test statistic

- Proportion of households headed by women


## City

Sample in a low-income neighborhood

$$
\begin{array}{ll}
\hline P_{u}=0.39 & P_{s}=0.43 \\
& n=122
\end{array}
$$

- The formula for $Z$ is

$$
Z=\frac{P_{s}-P_{u}}{\sqrt{P_{u}\left(1-P_{u}\right) / n}}=\frac{0.43-0.39}{\sqrt{0.39(1-0.39) / 122}}=0.91
$$

## Step 5: Decision, interpret

- $Z($ obtained $)=0.91$
- Z(obtained) did not fall in the critical region delimited by $Z$ (critical) $= \pm 1.65$, so we do not reject the $\mathrm{H}_{0}$
- This means that if $\mathrm{H}_{0}$ was true, a sample outcome of 0.43 would be likely
- Therefore, the $\mathrm{H}_{0}$ is not false and cannot be rejected
- The population of women-headed households in lower-income neighborhoods is not significantly different from the city as a whole
- The difference between the parameter $\left(P_{u}=0.39\right)$ and the statistic ( $P_{s}=0.43$ ) was small and likely to have occurred by random chance ( $p>0.10$ )


## Example 6: Sex, 2021

- Is the female proportion of the adult population (18+) in the U.S. higher than among the total population?
- We know the percentage of women for the population


## Population



Source: U.S. Census Bureau (https://www.census.gov/quickfacts/fact/table/US/PST045221).

## Example 6: Census \& GSS

- The percentage of women in the 2021 GSS sample 18+
. tab female

female	Freq.	Percent	Cum.
0	1,736	44.06	44.06
1	2,204	55.94	100.00
Total	3,940	100.00	

- What causes the difference between 50.5\% (population, Census) and 55.94\% (sample 18+, GSS)?
- Real difference? Or difference due to random chance?


## Example 6: Result

- Population 18+ has a statistically significant higher proportion of women than overall population
- The difference between the parameter $50.5 \%$ and the statistic $55.94 \%$ was large and unlikely to have occurred by random chance ( $p$-value<0.05)
. prtest female=. 505

One-sample test of proportion
Number of obs
$=$
3940

Variable	Mean	Std. err.	[95\% conf. interval]
female	. 5593909	. 0079093	. 543889.5748927
$\mathrm{p}=$ propo	( female		$z=6.8285$
H0: $p=0.505$			
Ha: $\mathrm{p}<0.505$		Ha: p != 0.505	Ha: p > 0.505
$\operatorname{Pr}(\mathrm{Z}<\mathrm{z})=1.0000$		$\operatorname{Pr}(\|Z\|>\|z\|)=0.0000$	$\operatorname{Pr}(Z>z)=0.0000$

