Lecture 5:
 Hypothesis testing: One- and two-sample cases

Ernesto F. L. Amaral

September 22, 2022
Introduction to Sociological Data Analysis (SOCI 600)

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapters 8 (pp. 185-215) and 9 (pp. 216-246).

ATM TEXASRBITY.

Outline

- Hypothesis testing
- One-sample case
- Two-sample case

One-sample case

- Explain the logic of hypothesis testing, including concepts of the null hypothesis, the sampling distribution, the alpha level, and the test statistic
- Explain what it means to "reject the null hypothesis" or "do not reject the null hypothesis"
- Identify and cite examples of situations in which one-sample tests of hypotheses are appropriate
- Test the significance of single-sample means and proportions using the five-step model, and correctly interpret the results
- Explain the difference between one- and two-tailed tests, and specify when each is appropriate
- Define and explain Type I and Type II errors, and relate each to the selection of an alpha level
- Use the Student's t distribution to test the significance of a sample mean for a small sample

Significant differences

- Hypothesis testing is designed to detect significant differences
- Differences that did not occur by random chance
- Hypothesis testing is also called significance testing
- This chapter focuses on the "one sample" case
- Compare a random sample against a population
- Compare a sample statistic to a (hypothesized) population parameter to see if there is a statistically significant difference

Example 1: Question

- Are people who have been treated for alcoholism more reliable workers than those in the community?
- Does the group of all treated alcoholics have different absentee rates than the community as a whole?
- Effectiveness of rehabilitation center for alcoholics
- Absentee rates for community and sample
- Don't have resources to gather information of all people who have been treated by the program

Community	Sample of treated alcoholics
$\mu=7.2$ days per year	$\bar{X}=6.8$ days per year
$\sigma=1.43$	$n=127$

- What causes the difference between 7.2 and 6.8 ?
- Real difference? Or difference due to random chance?

A test of hypothesis for single-sample means

Example 1: Result

- For a known/empirical distribution, we use: $Z=\frac{X_{i}-\bar{X}}{s}$
- However, we are concerned with the sampling distribution of all possible sample means

$$
\text { Z(obtained })=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{6.8-7.2}{1.43 / \sqrt{127}}=-3.15
$$

- The sample outcome falls in the shaded area
- Z(obtained) $=-3.15$
- Reject H_{0} : $\mu=7.2$ days per year
- The sample of 127 treated alcoholics comes from a population that is significantly different from the community on absenteeism

The five-step model

1. Make assumptions and meet test requirements
2. Define the null hypothesis $\left(\mathrm{H}_{0}\right)$
3. Select the sampling distribution and establish the critical region
4. Compute the test statistic
5. Make a decision and interpret the test results

Example 2: Question

- The education department at a university has been accused of "grade inflation"
- Thus, education majors have much higher GPAs than students in general
- GPAs of all education majors should be compared with the GPAs of all students
- There are 1000s of education majors, far too many to interview
- How can the dispute be investigated without interviewing all education majors?

Example 2: Numbers

- The average GPA for all students is $2.70(\mu)$
- This value is a parameter
- Random sample of education majors
- Mean $=\bar{X}=3.00$
- Standard deviation $=s=0.70$
- Sample size $=n=117$
- There is a difference between parameter ($\mu=2.70$) and statistic ($\bar{X}=3.00$)
- It seems that education majors do have higher GPAs

Example 2: Explanations

- We are working with a random sample
- Not all education majors
- Two explanations for the difference

1. The sample mean $(\bar{X}=3.00)$ is the same as the population mean ($\mu=2.70$)

- The observed difference may have been caused by random chance

2. The difference is real (statistically significant)

- Education majors are different from all students

Step 1: Assumptions,requirements

- Make assumptions
- Random sampling
- Hypothesis testing assumes samples were selected according to EPSEM
- Meet test requirements
- The sample of 117 was randomly selected from all education majors
- Level of measurement is interval-ratio
- GPA is an interval-ratio level variable, so the mean is an appropriate statistic
- Sampling distribution is normal in shape
- This is a large sample ($n \geq 100$)

Step 2: Null hypothesis

- Null hypothesis, $\mathrm{H}_{0}: \mu=2.7$
- H_{0} always states there is no significant difference
- The sample of 117 comes from a population that has a GPA of 2.7
- The difference between 2.7 and 3.0 is trivial and caused by random chance
- Alternative hypothesis, $\mathrm{H}_{1}: \mu \neq 2.7$
- H_{1} always contradicts H_{0}
- The sample of 117 comes from a population that does not have a GPA of 2.7
- There is an actual difference between education majors ($\bar{X}=3.0$) and other students $(\mu=2.7)$

Step 3: Distribution, critical region

- Sampling distribution: standard normal shape
- Alpha (α) = 0.05
- Use the 0.05 value as a guideline to identify differences that would be rare if H_{0} is true
- Any difference with a probability less than α is rare and will cause us to reject the H_{0}
- Use the Z score to determine the probability of getting the observed difference
- If the probability is less than 0.05, the obtained Z score will be beyond the critical Z score of ± 1.96
- This is the critical Z score associated with a two-tailed test and $\alpha=0.05$

Step 4: Test statistic

- For a known/empirical distribution, we would use

$$
Z=\frac{X_{i}-\bar{X}}{s}
$$

- However, we are concerned with the sampling distribution of all sample means
- We only have the standard deviation for the sample (s), not for the population (σ)
$Z($ obtained $)=\frac{\bar{X}-\mu}{s / \sqrt{n-1}}=\frac{3.0-2.7}{0.7 / \sqrt{117-1}}=4.62$

Step 5: Decision, interpret

- Z (obtained) $=4.62$
- This is beyond Z (critical) $= \pm 1.96$
- The obtained Z score fell in the critical region, so we reject the H_{0}
- If H_{0} was true, a sample GPA of 3.0 would be unlikely
- Therefore, the H_{0} is false and must be rejected
- Education majors have a GPA that is significantly higher than general student body
- The difference between the parameter ($\mu=2.7$) and the statistic ($\bar{X}=3.0$) was large and unlikely to have occurred by random chance ($p<0.05$)

Five-step model summary

Situation

The test statistic is in the critical region

The test statistic is not in the critical region

Decision

Reject the null
hypothesis $\left(\mathrm{H}_{0}\right)$

Do not reject the null hypothesis $\left(\mathrm{H}_{0}\right)$

Interpretation

The difference is statistically significant

The difference is not statistically significant

- Model is fairly rigid, but there are two crucial choices
- One-tailed or two-tailed test
- Alpha (α) level

One or two-tailed test

- Null hypothesis always has the equal sign

$$
\mathrm{H}_{0}: \mu=2.7
$$

- Two-tailed test states that population mean is not equal to the value stated in null hypothesis

$$
\mathrm{H}_{1}: \mu \neq 2.7
$$

- One-tailed test estimates differences in a specific direction (based on theory)

$$
\begin{aligned}
& \mathrm{H}_{1}: \mu>2.7 \\
& \mathrm{H}_{1}: \mu<2.7
\end{aligned}
$$

One or two-tailed test

One- vs. Two-Tailed Tests, $\alpha=0.05$

If the Research Hypothesis $\left(H_{1}\right)$ Uses	The Test Is	Concern Is on	Z(critical) Is
\neq	Two-tailed	Both tails	± 1.96
$>$	One-tailed	Upper tail	+1.65
$<$	One-tailed	Lower tail	-1.65

Finding Critical Z Scores for One- and Two-Tailed Tests

		One-Tailed Value	
Alpha	Two-Tailed Value	Upper Tail	Lower Tail
0.10	± 1.65	+1.29	-1.29
0.05	± 1.96	+1.65	-1.65
0.01	± 2.58	+2.33	-2.33
0.001	± 3.32	+3.10	-3.10
0.0001	± 3.90	+3.70	-3.70

Source: Healey 2015, p. 197.

Two-tailed test: $\alpha=0.05$

A. The two-tailed test, Z (critical) $= \pm 1.96$

One-tailed test (upper): $\alpha=0.05$

B. The one-tailed test for upper tail, Z (critical) $=+1.65$

One-tailed test (lower): $\alpha=0.05$

C. The one-tailed test for lower tail, Z (critical) $=-1.65$

Selecting an alpha level

- By assigning an alpha level, one defines an "unlikely" sample outcome
- Alpha level is the probability that the decision to reject the null hypothesis is incorrect
- Examine this table for critical regions

The Relationship Between Alpha and Z(Critical) for a Two-Tailed Test

If Alpha $=$	The Two-Tailed Critical Region Will Begin at $Z($ Critical $)=$
0.100	± 1.65
0.050	± 1.96
0.010	± 2.58
0.001	± 3.32

Type I and Type II errors

- Type I error (alpha error)
- Rejecting a true null hypothesis
- Type II error (beta error)
- Not rejecting a false null hypothesis
- Examine table below for relationships between decision making and errors

Decision Making and the Five-Step Model

	If Our Decision Is to	And H_{0} Is Actually	The Result Is
a	Reject H_{0}	False	OK
b	Fail to reject H_{0}	True	OK
\mathbf{c}	Reject H_{0}	True	Type I or alpha (α) error
\mathbf{d}	Fail to reject H_{0}	False	Type II or beta (β) error

Decisions about hypotheses

Hypotheses	$\boldsymbol{p}<\boldsymbol{\alpha}$	$\boldsymbol{p}>\boldsymbol{\alpha}$
Null hypothesis $\left(\mathrm{H}_{0}\right)$	Reject	Do not reject
Alternative hypothesis $\left(\mathrm{H}_{1}\right)$	Accept	Do not accept

- p-value is the probability of not rejecting the null hypothesis
- If a statistical software gives only the twotailed p-value, divide it by 2 to obtain the onetailed p-value

Significance level $(\boldsymbol{\alpha})$	Confidence level
$0.10(10 \%)$	90%
$0.05(5 \%)$	95%
$0.01(1 \%)$	99%
$0.001(0.1 \%)$	$99.9 \% \quad \overline{\mathbf{A}}] \mathbf{M}$

Example 3: Income, 2021

- Is the mean personal income of Veterans (GSS) lower than mean income of population 15+ (Census Bureau)?
- We know the income for the population $15+$

Source: U.S. Census Bureau, Mean Personal Income in the United States [MAPAINUSA646N], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/MAPAINUSA646N, October 24, 2022. Shaded areas indicate U.S. recessions.

Example 3: Census \& GSS

- We know the income for the 2021 GSS sample of Veterans
. mean conrinc if veteran==1

Mean estimation
Number of obs $=\mathbf{2 2 9}$

	Mean	Std. err.	[95\% conf. interval]	
conrinc	49562.49	$\mathbf{2 9 3 2 . 7 1 7}$	$\mathbf{4 3 7 8 3 . 8}$	$\mathbf{5 5 3 4 1 . 1 9}$

- What causes the difference between $\$ 57,143.00$ (pop.15+, Census) and \$49,562.49 (Veterans, GSS)?
- Real difference? Or difference due to random chance?

Example 3: Result

- Veteran population has mean income that is significantly lower than mean income of the population 15+
- The difference between the parameter \$57,143.00 and the statistic $\$ 49,562.49$ was large and unlikely to have occurred by random chance (p-value<0.05)
. ztest conrinc=57143 if veteran==1

One-sample z test

Variable	Obs	Mean	Std. err.	Std. dev.	[95\% con	interval]
conrinc	229	49562.49	. 0660819	1	49562.36	49562.62
```mean = mean(conrinc) z = -1.1e+05 H0: mean = 57143```						
$\begin{aligned} & \text { Ha: mea } \\ & \operatorname{Pr}(Z<Z \end{aligned}$	143   0000	$\begin{gathered} \text { Ha: mean }!=57143 \\ \operatorname{Pr}(\|Z\|>\|z\|)=0.0000 \end{gathered}$			$\begin{aligned} \text { Ha: mean } & >57143 \\ \operatorname{Pr}(Z>z) & =1.0000 \end{aligned}$	

## The Student's $t$ distribution

- How can we test a hypothesis when the population standard deviation ( $\sigma$ ) is unknown, as is usually the case?
- For large samples ( $n \geq 100$ ), we can use the sample standard deviation (s) as an estimator of the population standard deviation ( $\sigma$ )
- Use standard normal distribution (Z)
- For small samples, $s$ is too biased to estimate $\sigma$
- Do not use standard normal distribution
- Use Student's $t$ distribution


## $t$ and $Z$ distributions



## $t$ and $Z$ distributions



## Choosing the distribution

- Choosing a sampling distribution when testing single-sample means for significance

If population standard deviation $(\sigma)$ is	Sampling distribution is the
Known	$Z$ distribution
Unknown and sample size $(n)$ is large	$Z$ distribution
Unknown and sample size $(n)$ is small	$t$ distribution

## Example 4: With $t$-test

- This is the same as example 3 , but with $t$-test
- GSS has a large sample. This is just an illustration
- Veteran population has mean income that is significantly lower than mean income of the population 15+ ( $p$-value<0.05)
. ttest conrinc=57143 if veteran==1

One-sample t test

Variable	Obs	Mean	Std. err.	Std. dev.	[95\% conf.	interval]
conrinc	229	49562.49	2932.717	44380.07	43783.8	55341.19
$\begin{aligned} \text { Ha: mean } & <57143 \\ \operatorname{Pr}(T<t) & =0.0052 \end{aligned}$		Ha: mean != 57143			Ha: mean > 57143	
		$\operatorname{Pr}(\|\mathrm{T}\|>\|\mathrm{t}\|)=0.0104$			$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=0.9948$	

## Five-step model for proportions

- When analyzing variables that are not measured at the interval-ratio level
- A mean is inappropriate
- We can test a hypothesis on a one sample proportion
- The five step model remains primarily the same, with the following changes
- The assumptions are: random sampling, nominal level of measurement, and normal sampling distribution
- The formula for $Z$ is

$$
Z=\frac{P_{s}-P_{u}}{\sqrt{P_{u}\left(1-P_{u}\right) / n}}
$$

## Example 5: Proportions

- A random sample of 122 households in a lowincome neighborhood revealed that 53 of the households were headed by women
$-P_{s}=53 / 122=0.43$
- In the city as a whole, the proportion of womenheaded households $\left(P_{u}\right)$ is 0.39
- Are households in lower-income neighborhoods significantly different from the city as a whole?
- Conduct a $90 \%$ hypothesis test $(\alpha=0.10)$


## Step 1: Assumptions,requirements

- Make assumptions
- Random sampling
- Hypothesis testing assumes samples were selected according to EPSEM
- Meet test requirements
- The sample of 122 was randomly selected from all lower-income neighborhoods
- Level of measurement is nominal
- Women-headed households is measured as a proportion
- Sampling distribution is normal in shape
- This is a large sample ( $n \geq 100$ )


## Step 2: Null hypothesis

- Null hypothesis, $\mathrm{H}_{0}: P_{u}=0.39$
- The sample of 122 comes from a population where $39 \%$ of households are headed by women
- The difference between 0.43 and 0.39 is trivial and caused by random chance
- Alternative hypothesis, $\mathrm{H}_{1}: P_{u} \neq 0.39$
- The sample of 122 comes from a population where the percent of women-headed households is not 39
- The difference between 0.43 and 0.39 reflects an actual difference between lower-income neighborhoods and all neighborhoods


## Step 3: Distribution, critical region

- Sampling distribution
- Standard normal distribution (Z)
- Alpha $(\alpha)=0.10$ (two-tailed)
- Critical region begins at $Z$ (critical) $= \pm 1.65$
- This is the critical $Z$ score associated with a two-tailed test and alpha equal to 0.10
- If the obtained $Z$ score falls in the critical region, we reject $\mathrm{H}_{0}$


## Step 4: Test statistic

- Proportion of households headed by women


## City

Sample in a low-income neighborhood

$$
\begin{array}{ll}
\hline P_{u}=0.39 & P_{s}=0.43 \\
& n=122 \\
\hline
\end{array}
$$

- The formula for $Z$ is

$$
Z=\frac{P_{s}-P_{u}}{\sqrt{P_{u}\left(1-P_{u}\right) / n}}=\frac{0.43-0.39}{\sqrt{0.39(1-0.39) / 122}}=0.91
$$

## Step 5: Decision, interpret

- $Z($ obtained $)=0.91$
- Z(obtained) did not fall in the critical region delimited by $Z$ (critical) $= \pm 1.65$, so we do not reject the $\mathrm{H}_{0}$
- This means that if $\mathrm{H}_{0}$ was true, a sample outcome of 0.43 would be likely
- Therefore, the $\mathrm{H}_{0}$ is not false and cannot be rejected
- The population of women-headed households in lower-income neighborhoods is not significantly different from the city as a whole
- The difference between the parameter $\left(P_{u}=0.39\right)$ and the statistic ( $P_{s}=0.43$ ) was small and likely to have occurred by random chance ( $p>0.10$ )


## Example 6: Sex, 2021

- Is the female proportion of the adult population (18+) in the U.S. higher than among the total population?
- We know the percentage of women for the population


## Population



Source: U.S. Census Bureau (https://www.census.gov/quickfacts/fact/table/US/PST045221).

## Example 6: Census \& GSS

- The percentage of women in the 2021 GSS sample 18+
. tab female

female	Freq.	Percent	Cum.
0	1,736	44.06	44.06
1	2,204	55.94	100.00
Total	3,940	100.00	

- What causes the difference between 50.5\% (population, Census) and 55.94\% (sample 18+, GSS)?
- Real difference? Or difference due to random chance?


## Example 6: Result

- Population 18+ has a statistically significant higher proportion of women than overall population
- The difference between the parameter $50.5 \%$ and the statistic $55.94 \%$ was large and unlikely to have occurred by random chance ( $p$-value<0.05)
. prtest female=. 505

One-sample test of proportion
Number of obs
$=$
3940

Variable	Mean	Std. err.	[95\% conf. interval]
female	. 5593909	. 0079093	. 543889.5748927
$\mathrm{p}=$ propo	( female		$z=6.8285$
H0: $p=0.505$			
Ha: $\mathrm{p}<0.505$		Ha: p != 0.505	Ha: p > 0.505
$\operatorname{Pr}(\mathrm{Z}<\mathrm{z})=1.0000$		$\operatorname{Pr}(\|Z\|>\|z\|)=0.0000$	$\operatorname{Pr}(Z>z)=0.0000$

## Two-sample case

- Identify and cite examples of situations in which the twosample test of hypothesis is appropriate
- Explain the logic of hypothesis testing, as applied to the two-sample case
- Explain what an independent random sample is
- Perform a test of hypothesis for two sample means or two sample proportions, following the five-step model and correctly interpret the results
- List and explain each of the factors (especially sample size) that affect the probability of rejecting the null hypothesis
- Explain the differences between statistical significance and importance


## Basic logic

- We analyze a difference between two sample statistics
- We compare means or proportions of two samples from specific sub-groups of the population
- This is the question under consideration
- "Is the difference between the samples large enough to allow us to conclude (with a known probability of error) that the populations represented by the samples are different?"


## Null hypothesis

- The $\mathrm{H}_{0}$ indicates that the populations are the same
- Assuming that the $\mathrm{H}_{0}$ is true, there is no difference between the parameters of the two populations
- On the other hand, we reject the $\mathrm{H}_{0}$ and say there is a difference between the populations
- If the difference between the sample statistics is large enough
- Or if the size of the estimated difference is unlikely


## $\mathrm{H}_{0}, \alpha, Z$ score, $p$-value

- The $\mathrm{H}_{0}$ is a statement of "no difference"
- The 0.05 level $(\alpha)$ will continue to be our indicator of a significant difference
- We change the sample statistics to a Z score
- Place the Z(obtained) on the sampling distribution
- Estimate probability ( $p$-value) above Z(obtained)
$-p$-value is the probability of not rejecting the null hypothesis
- Compare the $p$-value to the $\alpha$
- If $p<\alpha$, we reject $\mathrm{H}_{0}$
- If $p>\alpha$, we do not reject $\mathrm{H}_{0}$


## Test of hypothesis for two sample means



## The five-step model

1. Make assumptions and meet test requirements
2. Define the null hypothesis $\left(\mathrm{H}_{0}\right)$
3. Select the sampling distribution and establish the critical region
4. Compute the test statistic
5. Make a decision and interpret the test results

## Changes from one-sample case

- Step 1
- In addition to samples selected according to EPSEM principles
- Samples must be selected independently of each other: independent random sampling
- Step 2
- Null hypothesis statement will state that the two populations are not different
- Step 3
- Sampling distribution refers to difference between the sample statistics


## Two-sample test of means (large samples)

- Do men and women significantly differ on their support of gun control?
- For men (sample 1)
- Mean = 6.2
- Standard deviation $=1.3$
- Sample size $=324$
- For women (sample 2)
- Mean $=6.5$
- Standard deviation $=1.4$
- Sample size $=317$


## Step 1: Assumptions,requirements

- Independent random sampling
- The samples must be independent of each other
- Level of measurement is interval-ratio
- Support of gun control is assessed with an intervalratio level scale, so the mean is an appropriate statistic
- Sampling distribution is normal in shape
- Total $n \geq 100\left(n_{1}+n_{2}=324+317=641\right)$
- Thus, the Central Limit Theorem applies and we can assume a standard normal distribution (Z)


## Step 2: Null hypothesis

- Null hypothesis, $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$
- The null hypothesis asserts there is no difference between the populations
- Alternative hypothesis, $\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$
- The research hypothesis contradicts the $\mathrm{H}_{0}$ and asserts there is a difference between the populations


## Step 3: Distribution, critical region

- Sampling distribution
- Standard normal distribution (Z)
- Significance level
- Alpha ( $\alpha$ ) = 0.05 (two-tailed)
- The decision to reject the null hypothesis has only a 0.05 probability of being incorrect
- $Z($ critical $)= \pm 1.96$
- If the probability ( $p$-value) is less than 0.05
- Z(obtained) will be beyond Z(critical)


## Step 4: Test statistic

- Sample outcomes for support of gun control

Sample 1 (men)	Sample 2 (women)
$\bar{X}_{1}=6.2$	$\bar{X}_{2}=6.5$
$s_{1}=1.3$	$s_{2}=1.4$
$n_{1}=324$	$n_{2}=317$

- Pooled estimate of the standard error

$$
\sigma_{\bar{X}-\bar{X}}=\sqrt{\frac{s_{1}^{2}}{n_{1}-1}+\frac{s_{2}^{2}}{n_{2}-1}}=\sqrt{\frac{(1.3)^{2}}{324-1}+\frac{(1.4)^{2}}{317-1}}=0.107
$$

- Obtained $Z$ score

$$
Z(\text { obtained })=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sigma_{\bar{X}-\bar{X}}}=\frac{6.2-6.5}{0.107}=-2.80
$$

## Step 5: Decision, interpret

- $Z$ (obtained) $=-2.80$
- This is beyond $Z$ (critical) $= \pm 1.96$
- The obtained $Z$ score falls in the critical region, so we reject the $\mathrm{H}_{0}$
- Therefore, the $\mathrm{H}_{0}$ is false and must be rejected
- The difference between men's and women's support of gun control is statistically significant
- The difference between the sample means is so large that we can conclude (at $\alpha=0.05$ ) that a difference exists between the populations represented by the samples


## Two-sample test of means (small samples)

- Do families that reside in the center-city have more children than families that reside in the suburbs?
- For suburbs (sample 1)
- Mean = 2.37
- Standard deviation $=0.63$
- Sample size $=42$
- For center-city (sample 2)
- Mean = 2.78
- Standard deviation $=0.95$
- Sample size $=37$


## Step 1: Assumptions,requirements

- Independent random sampling
- The samples must be independent of each other
- Level of measurement is interval-ratio
- Number of children can be treated as interval-ratio
- Population variances are equal
- As long as the two samples are approximately the same size, we can make this assumption
- Sampling distribution is normal in shape
- Because we have two small samples ( $n<100$ ), we have to add the previous assumption in order to meet this assumption


## Step 2: Null hypothesis

- Null hypothesis, $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$
- The null hypothesis asserts there is no difference between the populations
- Alternative hypothesis, $\mathrm{H}_{1}: \mu_{1}<\mu_{2}$
- The research hypothesis contradicts the $\mathrm{H}_{0}$ and asserts there is a difference between the populations


## Step 3: Distribution, critical region

- Sampling distribution
- Student's $t$ distribution
- Significance level
- Alpha $(\alpha)=0.05$ (one-tailed)
- Degrees of freedom
$-n_{1}+n_{2}-2=42+37-2=77$
- Critical $t$
$-t($ critical $)=-1.671$


## Step 4: Test statistic

- Sample outcomes for number of children

Sample 1 (suburban) Sample 2 (center-city)

$$
\begin{array}{cc}
\hline \bar{X}_{1}=2.37 & \bar{X}_{2}=2.78 \\
s_{1}=0.63 & s_{2}=0.95 \\
n_{1}=42 & n_{2}=37 \\
\hline
\end{array}
$$

- Pooled estimate of the standard error

$$
\sigma_{\bar{X}-\bar{X}}=\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}}{n_{1}+n_{2}-2}} \sqrt{\frac{n_{1}+n_{2}}{n_{1} n_{2}}}=\sqrt{\frac{(42)(0.63)^{2}+(37)(0.95)^{2}}{42+37-2}} \sqrt{\frac{42+37}{(42)(37)}}=0.18
$$

- Obtained $t$

$$
t(\text { obtained })=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sigma_{\bar{X}-\bar{X}}}=\frac{2.37-2.78}{0.18}=-2.28
$$

## $t$ (obtained) \& $t$ (critical)

- Sampling distribution with critical region and test statistic displayed



## Step 5: Decision, interpret

- $t($ obtained $)=-2.28$
- This is beyond $t($ critical $)=-1.671$
- The obtained test statistic falls in the critical region, so we reject the $\mathrm{H}_{0}$
- The difference between the number of children in center-city families and the suburban families is statistically significant
- The difference between the sample means is so large that we can conclude (at $\alpha=0.05$ ) that a difference exists between the populations represented by the samples


## Example from GSS: $t$-test

- We know the average income by sex from the 2016 GSS
- table sex, $c(m e a n ~ c o n r i n c)$

responden   ts sex	mean(conrinc)
male   female	$\mathbf{4 1 5 8 3 . 5 2 8 1 4}$

- What causes the difference between male income of $\$ 41,583.53$ and female income of $\$ 28,353.35$ ?
- Real difference? Or difference due to random chance?


## Example from GSS: Result

- Men have an average income that is significantly higher than the female average income
- The difference between male income $(\$ 41,583.53)$ and female income ( $\$ 28,353.35$ ) was large and unlikely to have occurred by random chance ( $p<0.05$ ) in 2016

```
. ttest conrinc, by(sex)
```

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf.	Interval]
male	798	41583.53	1433.963	40507.87	38768.74	44398.32
female	834	28353.35	1049.496	30308.45	26293.38	30413.31
combined	1,632	34822.52	897.5571	36259.53	33062.03	36583
diff		13230.18	1765.955		9766.402	16693.96
diff = mean(male) - mean(female)					t	7.4918
Ho: diff $=0$				degree	of freedom	1630

Ha: diff $!=0$
$\operatorname{Pr}(|T|>|t|)=0.0000$
Ha: diff > 0
$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=0.0000$

## Edited table

Table 1. Two-sample $t$-test of individual average income of the U.S. adult population by sex, 2004, 2010, and 2016

Sex	$\mathbf{2 0 0 4}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 6}$
Male	$45,741.48$	$37,864.34$	$41,583.53$
	$(1,343.92)$	$(1,359.39)$	$(1,433.96)$
Female	$29,264.54$	$26,141.60$	$28,353.35$
	$(972.15)$	$(972.97)$	$(1,049.50)$
Difference	$16,476.94^{* * *}$	$11,722.74^{* * *}$	$13,230.18^{* * *}$
	$(1,665.71)$	$(1,643.94)$	$(1,765.96)$
Sample size	1,688	1,202	1,632
Note: Standard errors are reported in parentheses. *Significant at p<0.10;			
**Significant at p<0.05; ***Significant at p<0.01.			
Source: 2004, 2010, 2016 General Social Surveys.			

## Two-sample test of proportions (large samples)

- Do Black and White senior citizens differ in their number of memberships in clubs and organizations?
- Using the proportion of each group classified as having a "high" level of membership
- For Black senior citizens (sample 1)
- Proportion = 0.34
- Sample size = 83
- For White senior citizens (sample 2)
- Proportion = 0.25
- Sample size $=103$


## Step 1: Assumptions,requirements

- Independent random sampling
- The samples must be independent of each other
- Level of measurement is nominal
- We have measured the proportion of each group classified as having a "high" level of membership
- Population variances are equal
- As long as the two samples are approximately the same size, we can make this assumption
- Sampling distribution is normal in shape
- Total $n \geq 100\left(n_{1}+n_{2}=83+103=186\right)$
- Thus, the Central Limit Theorem applies and we ca assume a standard normal distribution


## Step 2: Null hypothesis

- Null hypothesis, $\mathrm{H}_{0}: P_{u 1}=P_{u 2}$
- The null hypothesis asserts there is no difference between the populations
- Alternative hypothesis, $\mathrm{H}_{1}: P_{u 1} \neq P_{u 2}$
- The research hypothesis contradicts the $\mathrm{H}_{0}$ and asserts there is a difference between the populations


## Step 3: Distribution, critical region

- Sampling distribution
- Standard normal distribution (Z)
- Significance level
- Alpha ( $\alpha$ ) = 0.05 (two-tailed)
- The decision to reject the null hypothesis has only a 0.05 probability of being incorrect
- $Z($ critical $)= \pm 1.96$
- If the probability ( $p$-value) is less than 0.05
- Z(obtained) will be beyond Z(critical)


## Step 4: Test statistic

- Sample outcomes for club memberships


## Sample 1 (Black senior citizens) Sample 2 (White senior citizens)

$$
\begin{array}{rlr}
P_{s 1}=0.34 & P_{s 2}=0.25 \\
n_{1} & =83 & n_{2}
\end{array}=103
$$

- Population proportion

$$
P_{u}=\frac{n_{1} P_{s 1}+n_{2} P_{s 2}}{n_{1}+n_{2}}=\frac{(83)(0.34)+(103)(0.25)}{83+103}=0.29
$$

- Pooled estimate of the standard error

$$
\sigma_{p-p}=\sqrt{P_{u}\left(1-P_{u}\right)} \sqrt{\frac{n_{1}+n_{2}}{n_{1} n_{2}}}=\sqrt{(0.29)(0.71)} \sqrt{\frac{83+103}{(83)(103)}}=0.07
$$

- Obtained Z score

$$
Z(\text { obtained })=\frac{P_{s 1}-P_{s 2}}{\sigma_{p-p}}=\frac{0.34-0.25}{0.07}=1.29
$$

## Step 5: Decision, interpret

- $Z($ obtained $)=1.29$
- This is below the $Z$ (critical) $=1.96$
- The obtained test statistic does not fall in the critical region, so we do not reject the $\mathrm{H}_{0}$
- The difference between the memberships of Black and White senior citizens is not significant
- The difference between the sample means is small enough that we can conclude (at $\alpha=0.05$ ) that no difference exists between the populations represented by the samples


## Example from GSS: proportion

- We know the proportion of pro-immigrants by political party from the 2016 GSS
. table democrat, c(mean proimmig)

Political   party	mean(proimmig)
Republicans   Democrats	. $\mathbf{1 1 7 0 9 6}$

- What causes the difference between the percentage of Republicans who a pro-immigration (11.7\%) and the percentage of Democrats who are pro-immigration (45.6\%)?
- Real difference? Or difference due to random chance?


## Example from GSS: Result

- Republicans are less pro-immigration than Democrats
- The difference between the percentage of Republicans who are pro-immigration (11.7\%) and the percentage of Democrats who are pro-immigration (45.6\%) was large and unlikely to have occurred by random chance ( $p<0.05$ ) in 2016
. prtest proimmig, by(democrat)
Two-sample test of proportions
Republicans: Number of obs =
Democrats: Number of obs =

Variable	Mean	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
Republicans   Democrats	.117096	.0155602			.0865987	.1475934
diff	-.3559471   under Ho:	.0233749			.4101332	.5017611

```
 diff = prop(Republicans) - prop(Democrats)
\(z=-11.0581\)
Ho: diff \(=0\)
```

```
Ha: diff != 0
Ha: diff > 0
\(\operatorname{Pr}(|Z|>|z|)=0.0000\)
\(\operatorname{Pr}(Z>z)=1.0000\)
```


## Edited table

Table 2. Test of proportions of pro-immigrants among the U.S. adult population by political party, 2004, 2010, and 2016

Political Party	2004	2010	2016
Republican	0.0911	0.1429	0.1171
	$(0.0124)$	$(0.0193)$	$(0.0156)$
Democratic	0.2164	0.2761	0.4559
	$(0.0178)$	$(0.0223)$	$(0.0234)$
Difference	$-0.1253^{* * *}$	$-0.1333^{* * *}$	$-0.3389^{* * *}$
	$(0.0217)$	$(0.0295)$	$(0.0281)$
Sample size	1,074	731	881
Note: Standard errors are reported in parentheses. *Significant at p<0.10;			
**Significant at p<0.05; ***Significant at p<0.01.			
Source: 2004, 2010, 2016 General Social Surveys.			

# Statistical significance vs. importance (magnitude) 

- As long as we work with random samples, we must conduct a test of significance
- Statistical significance is not the same thing as importance
- Importance is also known as magnitude of the effect
- Differences that are otherwise trivial or uninteresting may be significant


## Influence of sample size

- When working with large samples, even small differences may be statistically significant
- The larger the sample size ( $n$ )
- The greater the value of the test statistic
- The more likely it will fall in the critical region and be declared statistically significant
- In general, when working with random samples, statistical significance is a necessary but not a sufficient condition for importance


## Sample size \& test statistic

Test Statistics for Single-Sample Means Computed from Samples of Various Sizes ( $\bar{X}=80, \mu=79, s=5$ throughout)

Sample
Size ( $N$ )

Computing the Test Statistic
$50 \quad Z($ obtained $)=\frac{\bar{X}-\mu}{\sigma / \sqrt{N-1}}=\frac{80-79}{5 / \sqrt{49}}=\frac{1}{0.71}=$
$100 \quad Z($ obtained $)=\frac{\bar{X}-\mu}{\sigma / \sqrt{N-1}}=\frac{80-79}{5 / \sqrt{99}}=\frac{1}{0.50}=$
$500 \quad Z($ obtained $)=\frac{\bar{X}-\mu}{\sigma / \sqrt{N-1}}=\frac{80-79}{5 / \sqrt{499}}=\frac{1}{0.22}=$
$1000 \quad Z($ obtained $)=\frac{\bar{X}-\mu}{\sigma / \sqrt{N-1}}=\frac{80-79}{5 / \sqrt{999}}=\frac{1}{0.16}=$
$10,000 \quad Z$ (obtained) $=\frac{\bar{X}-\mu}{\sigma / \sqrt{N-1}}=\frac{80-79}{5 / \sqrt{9999}}=\frac{1}{0.05}=$

## Outcomes of hypothesis testing

- Result of a specific analysis could be
- Statistically significant and
- Important (large magnitude)
- Statistically significant, but
- Unimportant (small magnitude)
- Not statistically significant, but
- Important (large magnitude)
- Not statistically significant and
- Unimportant (small magnitude)


## Factors influencing the decision

1. The size of the observed difference

- For larger differences, we are more likely to reject $\mathrm{H}_{0}$

2. The value of alpha

- Usually the decision to reject the null hypothesis has only a 0.05 probability of being incorrect
- The higher the alpha
- The more likely we are to reject the $\mathrm{H}_{0}$
- But we would have a higher chance of being incorrect

3. The use of one- vs. two-tailed tests

- We are more likely to reject $\mathrm{H}_{0}$ with a one-tailed test

4. The size of the sample ( $n$ )

- For larger samples, we are more likely to reject $\mathrm{H}_{0}$

