Lecture 6:
 Analysis of variance and Chi square

Ernesto F. L. Amaral

September 29, 2022
Introduction to Sociological Data Analysis (SOCI 600)

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapters 10 (pp. 247-275) and 11 (pp. 276-306).

Outline

- Analysis of variance
- Chi square

Analysis of variance

- Identify and cite examples of situations in which analysis of variance (ANOVA) is appropriate
- Explain the logic of hypothesis testing as applied to ANOVA
- Perform the ANOVA test, using the five-step model as a guide, and correctly interpret the results
- Define and explain the concepts of population variance, total sum of squares, sum of squares between, sum of squares within, mean square estimates
- Explain the difference between the statistical significance and the importance (magnitude) of relationships between variables

ANOVA application

- ANOVA can be used in situations where the researcher is interested in the differences in sample means across three or more categories
- How do Protestants, Catholics, and Jews vary in terms of number of children?
- How do Republicans, Democrats, and Independents vary in terms of income?
- How do older, middle-aged, and younger people vary in terms of frequency of church attendance?

Extension of t-test

- We can think of ANOVA as an extension of t-test for more than two groups
- Are the differences between the samples large enough to reject the null hypothesis and justify the conclusion that the populations represented by the samples are different?
- Null hypothesis, H_{0}
$-\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\ldots=\mu_{\mathrm{k}}$
- All population means are similar to each other
- Alternative hypothesis, H_{1}
- At least one of the populations means is different

Logic of ANOVA

- Could there be a relationship between age and support for capital punishment?
- No difference between groups

Support for Capital Punishment by Age Group (fictitious data)

	$18-29$	$30-45$	$46-64$	$65+$
Mean	10.3	11.0	10.1	9.9
Standard deviation	2.4	1.9	2.2	1.7

- Difference between groups

Support for Capital Punishment by Age Group (fictitious data)

	$18-29$	$30-45$	$46-64$	$65+$
Mean	10.0	13.0	16.0	22.0
Standard deviation	2.4	1.9	2.2	1.7

Between and within differences

- If the H_{0} is true, the sample means should be about the same value
- If the H_{0} is true, there will be little difference between sample means
- If the H_{0} is false
- There should be substantial differences between sample means (between categories)
- There should be relatively little difference within categories
- The sample standard deviations should be small within groups

Likelihood of rejecting H_{0}

- The greater the difference between categories (as measured by the means)
- Relative to the differences within categories (as measured by the standard deviations)
- The more likely the H_{0} can be rejected
- When we reject H_{0}
- We are saying there are differences between the populations represented by the sample

Computation of ANOVA

1. Find total sum of squares (SST)

$$
S S T=\sum\left(X_{i}^{2}\right)-n \bar{X}^{2}
$$

2. Find sum of squares between (SSB)

$$
S S B=\sum\left[n_{k}\left(\bar{X}_{k}-\bar{X}\right)^{2}\right]
$$

- SSB = sum of squares between categories
$-n_{k}=$ number of cases in a category
- $\bar{X}_{k}=$ mean of a category

3. Find sum of squares within (SSW)

$$
S S W=S S T-S S B
$$

4. Degrees of freedom

$$
d f w=n-k
$$

$-d f w=$ degrees of freedom within
$-n=$ total number of cases

- $k=$ number of categories

$$
d f b=k-1
$$

$-d f b=$ degrees of freedom between

- $k=$ number of categories

Final estimations

5. Find mean square estimates

$$
\begin{aligned}
& \text { Mean square within }=\frac{S S W}{d f w} \\
& \text { Mean square between }=\frac{S S B}{d f b}
\end{aligned}
$$

6. Find the F ratio

$$
F(\text { obtained })=\frac{\text { Mean square between }}{\text { Mean square within }}
$$

Example

- Support for capital punishment
- Sample of 16 people who are equally divided across four age groups

Support for Capital Punishment by Age Group (fictitious data)

18-29		30-45		46-64		$65+$	
X_{i}	χ_{i}^{2}	χ_{i}	χ_{i}^{2}	χ_{i}	χ_{i}^{2}	X_{i}	χ_{i}^{2}
7	49	10	100	12	144	17	289
8	64	12	144	15	225	20	400
10	100	13	169	17	289	24	576
15	$\underline{225}$	17	$\underline{289}$	$\underline{20}$	400	$\underline{27}$	729
40	438	52	702	64	1058	88	1994
$\bar{X}_{k}=10.0$		$\bar{X}_{k}=13.0$		$\bar{X}_{k}=16.0$		$\bar{X}_{k}=22.0$	
		$\bar{X}=15.25$					

Step 1: Assumptions,requirements

- Independent random samples
- Interval-ratio level of measurement
- Normally distributed populations
- Equal population variances

Step 2: Null hypothesis

- Null hypothesis, $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
- The null hypothesis asserts there is no difference between the populations
- Alternative hypothesis, H_{1}
- At least one of the populations means is different

Step 3: Distribution, critical region

- Sampling distribution
- F distribution
- Significance level
- Alpha (α) = 0.05
- Degrees of freedom
- dfw $=n-k=16-4=12$
$-d f b=k-1=4-1=3$
- Critical F
$-F($ critical $)=3.49$

Step 4: Test statistic

1. Total sum of squares (SST)

$$
\begin{gathered}
S S T=\sum\left(X_{i}^{2}\right)-n \bar{X}^{2} \\
S S T=(438+702+1058+1994)-(16)(15.25)^{2} \\
S S T=471.04
\end{gathered}
$$

2. Sum of squares between (SSB)

$$
\begin{gathered}
S S B=\sum\left[n_{k}\left(\bar{X}_{k}-\bar{X}\right)^{2}\right] \\
S S B=4(10-15.25)^{2}+4(13-15.25)^{2} \\
+4(16-15.25)^{2}+4(22-15.25)^{2}=314.96
\end{gathered}
$$

3. Sum of squares within (SSW)

$$
S S W=S S T-S S B=471.04-314.96=156.08
$$

4. Degrees of freedom

$$
\begin{gathered}
d f w=n-k=16-4=12 \\
d f b=k-1=4-1=3
\end{gathered}
$$

5. Mean square estimates

$$
\begin{gathered}
\text { Mean square within }=\frac{S S W}{d f w}=\frac{156.08}{12}=13.00 \\
\text { Mean square between }=\frac{S S B}{d f b}=\frac{314.96}{3}=104.99
\end{gathered}
$$

6. F ratio

$$
\begin{gathered}
F(\text { obtained })=\frac{\text { Mean square between }}{\text { Mean square within }}=\frac{104.99}{13.00} \\
=8.08
\end{gathered}
$$

Step 5: Decision, interpret

- $F($ obtained $)=8.08$
- This is beyond $F($ critical $)=3.49$
- The obtained test statistic falls in the critical region, so we reject the H_{0}
- Support for capital punishment does differ across age groups

Limitations of ANOVA

- Requires interval-ratio level measurement of the dependent variable
- Requires roughly equal numbers of cases in the categories of the independent variable
- Statistically significant differences are not necessarily important (small magnitude)
- The alternative (research) hypothesis is not specific
- It only asserts that at least one of the population means differs from the others

Example from 2016 GSS

- We know the average income by race/ethnicity

```
. tabstat conrinc [aweight=wtssall], by(raceeth) stat(mean sd n)
Summary for variables: conrinc
Group variable: raceeth (Race/Ethnicity)
```

raceeth	Mean	SD	N
White	38845.62	39157.17	1072
Black	23243.04	19671.53	273
Hispanic	23128.92	21406.31	215
Other	50156.35	59219.9	72
Total	34649.3	36722.06	1632

- Does at least one category of the race/ethnicity variable have average income different than the others?
- This is not a perfect example for ANOVA, because the race/ethnicity variable does not have equal numbers of cases across its categories

Example from GSS: Result

- The probability of not rejecting H_{0} is small ($p<0.01$)
- At least one category of the race/ethnicity variable has average income different than the others with a 99\% confidence level
- However, ANOVA does not inform which category has an average income significantly different than the others in 2016
. oneway conrinc raceeth [aweight=wtssall]

Analysis of variance					
Source					
SS					

Edited table

Table 1. One-way analysis of variance for individual average income of the U.S. adult population by race/ethnicity, 2004, 2010, and 2016

Source	Sum of squares	Degrees of freedom	Mean of squares	F-test	Prob > F
2004					
Between groups	$5.92 \mathrm{e}+10$	3	$1.97 \mathrm{e}+10$	16.36	0.0000
Within groups	$2.03 \mathrm{e}+12$	1,682	$1.21 \mathrm{e}+09$		
Total	$2.09 \mathrm{e}+12$	1,685	$1.24 \mathrm{e}+09$		
$\mathbf{2 0 1 0}$					
Between groups	$6.02 \mathrm{e}+10$	3	$2.01 \mathrm{e}+10$	24.50	0.0000
Within groups	$9.79 \mathrm{e}+11$	1,195	$819,590,864$		
Total	$1.04 \mathrm{e}+12$	1,198	$867,818,893$		
2016					
Between groups	$1.01 \mathrm{e}+11$	3	$3.38 \mathrm{e}+10$	26.23	0.0000
Within groups	$2.10 \mathrm{e}+12$	1,628	$1.29 \mathrm{e}+09$		
Total	$2.20 \mathrm{e}+12$	1,631	$1.35 \mathrm{e}+09$		

Example from 2019 ACS, Texas

- We know the average income by race/ethnicity
. tabstat income if income!=0 \& income!=. [fweight=perwt], by(raceth) stat(mean sd n)
Summary for variables: income
Group variable: raceth

raceth	Mean	SD	N
White	63199.24	$\mathbf{7 4 6 0 1 . 0 4}$	$\mathbf{6 0 8 1 5 1 3}$
African American	40079.03	40410.99	1766063
Hispanic	36595.08	38076.88	5250789
Asian	66528.88	73827.69	$\mathbf{7 7 6 7 2 2}$
Native American	44246.01	57666.53	44743
Other races	46151.98	58649.93	$\mathbf{2 3 5 0 2 9}$
Total	50285.44	60567.56	$\mathbf{1 . 4 2 e + 0 7}$

- Does at least one category of race/ethnicity have average income different than the others?
- This is not a perfect example for ANOVA, because race/ethnicity does not have equal numbers of cases across its categories
, svy, subpop(if income!=0 \& income!=.): mean income, over(raceth) (running mean on estimation sample)
- estat sd
(correct standard deviation)

Over	Mean	Std. dev.
c.income@		
raceth		
White	63199.24	81952.97
African A..	40079.03	33729.03
Hispanic	36595.08	34417.96
Asian	$\mathbf{6 6 5 2 8 . 8 8}$	$\mathbf{7 1 6 3 3 . 2 6}$
Native Am. .	$\mathbf{4 4 2 4 6 . 0 1}$	57876.89
Other races	$\mathbf{4 6 1 5 1 . 9 8}$	56501.55

. svy, subpop(if income!=0 \& income!=.): mean income (running mean on estimation sample)
. estat sd

	Mean	Std. dev.
income	50285.44	59920.72

Example from ACS: Result

- The probability of not rejecting H_{0} is small ($p<0.01$)
- At least one category of the race/ethnicity variable has average income different than the others with a 99\% confidence level
- However, ANOVA does not inform which category has an average income significantly different than the others
. oneway income raceth if income!=0 \& income!=. [aweight=perwt]

Analysis of variance
Source
SS df MS F \quad Prob $>F$

Between groups	$2.2032 \mathrm{e}+13$	5	$4.4065 \mathrm{e}+12$	1259.17	0.0000
Within groups	$4.5608 \mathrm{e}+14$	130325	3.4995e+09	(statistical significance)	
Total	4.7811e+14	130330	$3.6685 \mathrm{e}+09$		
Bartlett's equal-variances test: chi2(5) = 1.2e+04				Prob>chi2 $=0.000$	

Example from 2019 ACS: n, N

. ***Sample size of each category of race/ethnicity and missing cases
. tab raceth if income!=0 \& income!=., m

raceth	Freq.	Percent	Cum.
White	69,043	52.98	52.98
African American	11,574	8.88	61.86
Hispanic	40,359	30.97	92.82
Asian	6,879	5.28	98.10
Native American	424	0.33	98.43
Other races	2,052	1.57	100.00
Total	130,331	100.00	

. ***Population size of each category of race/ethnicity
. tab raceth if income!=0 \& income!=. [fweight=perwt]

raceth	Freq.	Percent
Cum.		
White	$6,081,513$	42.96
African American	$1,766,063$	12.48
Hispanic	$5,250,789$	37.10
Asian	776,722	5.96
Native American	44,743	0.49
Other races	235,029	1.66
Total	$14,154,859$	100.00

(correct percentage distribution)

Source: 2019 American Community Survey, Texas.

Edited table

Table 1. One-way analysis of variance for wage and salary income by race/ethnicity, Texas, 2019

Race/ethnicity	Income		Population percentage		
	Mean	Standard deviation			
White	63,199.24	81,952.97	42.96		
African American	40,079.03	33,729.03	12.48		
Hispanic	36,595.08	34,417.96	37.10		
Asian	66,528.88	71,633.26	5.49		
Native American	44,246.01	57,876.89	0.32		
Other races	46,151.98	56,501.55	1.66		
Total	50,285.44	59,920.72	100.00		
Population size	-	-	14,154,859		
Sample size	-		130,331		
ANOVA	Sum of squares	Degrees of freedom	Mean of squares	F-test	Prob > F
Between groups	$2.20 \mathrm{e}+13$	5	$4.41 \mathrm{e}+12$	1,259.17	0.0000
Within groups	$4.56 \mathrm{e}+14$	130,325	$3.50 \mathrm{e}+09$		
Total	$4.78 \mathrm{e}+14$	130,330	$3.67 e+09$		

Chi square

- Identify and cite examples of situations in which the chi square test is appropriate
- Explain the structure of a bivariate table and the concept of independence as applied to expected and observed frequencies in a bivariate table
- Explain the logic of hypothesis testing in terms of chi square
- Perform the chi square test using the five-step model and correctly interpret the results
- Explain the limitations of the chi square test and, especially, the difference between statistical significance and substantive significance (importance, magnitude) $\widehat{\mathbf{A}}] \vec{M}$

The bivariate table

- Bivariate tables display the scores of cases on two different variables at the same time

Rates of Participation in Voluntary Associations by Marital Status for 100 Senior Citizens

	Marital Status		
Participation Rates	Married	Unmarried	
High			TOTALS
Low	$\overline{50}$	$\overline{50}$	50
TOTALS		$\overline{50}$	

Aspects of the table

- Note the two dimensions: rows and columns
- What is the independent variable?
- What is the dependent variable?
- Where are the row and column marginals?
- Where is the total number of cases (n)?

Rates of Participation in Voluntary Associations by Marital Status for 100 Senior Citizens

	Marital Status		
Participation Rates	Married	Unmarried	
High			TOTALS
Low	$\overline{50}$	$\overline{50}$	50
TOTALS		$\overline{50}$	

Source: Healey 2015, p. 278.

Important information to report

- Must have a title
- Cells are intersections of columns and rows
- Subtotals are called marginals
- Sample size (n) or population size (N) is reported at the intersection of row and column marginals

Independent, dependent variables

- Columns are scores of the independent variable
- There will be as many columns as there are scores on the independent variable
- Rows are scores on the dependent variable
- There will be as many rows as there are scores on the dependent variable
- Each cell reports the number of times each combination of scores occurred
- There will be as many cells as there are scores on the two variables combined

Test for independence

- Chi square as a test of statistical significance is a test for independence
- Two variables are independent if the classification of a case into a particular category of one variable has no effect on the probability that the case will fall into any particular category of the second variable

Rates of Participation in Voluntary Associations by Marital Status for 100 Senior Citizens

	Marital Status		
Participation Rates	Married	Unmarried	
High	25	25	50
Low	$\frac{25}{50}$	$\frac{25}{50}$	$\frac{50}{100}$
TOTALS	$50 T A L S$		

Cross tabulations

- Chi square is a test of significance based on bivariate tables
- Bivariate tables are also called cross tabulations, crosstabs, contingency tables
- We are looking for significant differences between
- The actual cell frequencies observed in a table (f_{o})
- And frequencies that would be expected by random chance or if cell frequencies were independent $\left(f_{e}\right)$

Computation of chi square

$$
\begin{gathered}
f_{e}=\frac{\text { Row marginal } \times \text { Column marginal }}{n} \\
\chi^{2}(\text { obtained })=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}
\end{gathered}
$$

where $f_{o}=$ cell frequencies observed in the bivariate table
$f_{e}=$ cell frequencies that would be expected if the variables were independent

Example

- Random sample of 100 social work majors
- We know whether the Council on Social Work Education has accredited their undergraduate programs
- And whether they were hired in social work positions within three months of graduation
- Is there a significant relationship between employment status and accreditation status?

Employment of 100 Social Work Majors by Accreditation Status of Undergraduate Program

	Accreditation Status		
Employment Status	Accredited	Not Accredited	TOTALS
Working as a social worker	30	10	40
Not working as a social worker	$\frac{25}{55}$	$\underline{35}$	$\underline{45}$
TOTALS		$\underline{100}$	

Step 1: Assumptions,requirements

- Independent random samples
- Level of measurement is nominal
- Note the minimal assumptions
- No assumption is made about the shape of the sampling distribution
- The chi square test is nonparametric or distributionfree

Step 2: Null hypothesis

- Null hypothesis, $\mathrm{H}_{0}: f_{o}=f_{e}$
- The variables are independent
- The observed frequencies are similar to the expected frequencies
- Alternative hypothesis, $\mathrm{H}_{1}: f_{o} \neq f_{e}$
- The variables are dependent of each other
- The observed frequencies are different than the expected frequencies

Step 3: Distribution, critical region

- Sampling distribution
- Chi square distribution (χ^{2})
- Significance level $(\alpha)=0.05$
- The decision to reject the null hypothesis has only a 0.05 probability of being incorrect
- Degrees of freedom $(d f)=(r-1)(c-1)$
- $r=$ number of rows; $c=$ number of columns
$-d f=(r-1)(c-1)=(2-1)(2-1)=1$
- $\chi^{2}($ critical $)=3.841$
- If the probability (p-value) is less than 0.05
- χ^{2} (obtained) will be beyond χ^{2} (critical)

Step 4: Test statistic
 Observed frequencies

	Accreditation Status		
Employment Status	Accredited	Not Accredited	TOTALS
Working as a social worker	30	10	40
Not working as a social worker	$\frac{25}{55}$	$\frac{35}{45}$	$\underline{60}$
TOTALS		100	

Expected frequencies

	Accreditation Status		
Employment Status	Accredited	Not Accredited	
Working as a social worker	22	TOTALS	
Not working as a social worker	$\frac{33}{55}$	$\frac{27}{45}$	40
TOTALS	55	$\underline{60}$	

Expected frequency $\left(f_{e}\right)$ for the top-left cell $f_{e}=\frac{\text { Row marginal } \times \text { Column marginal }}{n}=\frac{40 \times 55}{100}=22$

Computational table

(1)	(2)	(3)	(4)	(5)
f_{o}	f_{e}	$f_{o}-f_{e}$	$\left(f_{o}-f_{e}\right)^{2}$	$\left(f_{o}-f_{e}\right)^{2} / f_{e}$
30	22	8	64	2.91
10	18	-8	64	3.56
25	33	-8	64	1.94
$\frac{35}{100}$	$\frac{27}{100}$	$\frac{8}{0}$	64	$\underline{2.37}$

- $\chi^{2}($ obtained $)=10.78$

Step 5: Decision, interpret

- $\chi^{2}($ obtained $)=10.78$
- This is beyond χ^{2} (critical) $=3.841$
- The obtained χ^{2} score falls in the critical region, so we reject the H_{0}
- Therefore, the H_{0} is false and must be rejected
- There is a significant relationship between employment status and accreditation status in the population from which the sample was drawn

Interpreting chi square

- The chi square test tells us only if the variables are independent or not
- It does not tell us the pattern or nature of the relationship
- To investigate the pattern, compute percentages within each column and compare across the columns

Limitations of chi square

- Difficult to interpret
- When variables have many categories
- Best when variables have four or fewer categories
- With small sample size (n)
- We cannot assume that chi square sampling distribution will be accurate
- Small samples: High percentage of cells have expected frequencies of 5 or less
- Like all tests of hypotheses
- Chi square is sensitive to sample size
- As n increases, obtained chi square increases
- Large samples: Trivial relationships may be significant
- Statistical significance is not the same as substantive significance (importance, magnitude)

GSS example

- Is opinion about immigration different by sex?
- The probability of not rejecting H_{0} is big ($p>0.05$)
- Opinion about immigration does not depend on respondent's sex

Key
frequency
column percentage

| number of immigrants
 to america nowadays
 should be | respondents sex
 male | | female |
| ---: | ---: | ---: | ---: | Total

Source: 2016 General Social Survey.

Edited table

Table 1. Opinion of the U.S. adult population about how should the number of immigrants to the country be nowadays by sex, 2004, 2010, and 2016

Opinion About Number of Immigrants	Male (\%)	Female (\%)	Total (\%)	Chi Square ($\mathrm{df}=4$)	p-value
2004				2.3397	0.6740
Increase a lot	3.17	4.30	3.78		
Increase a little	6.89	6.27	6.56		
Remain the same	35.01	34.05	34.49		
Reduce a little	27.68	28.72	28.24		
Reduce a lot	27.24	26.66	26.93		
Total (sample size)	$\begin{array}{r} 100.00 \\ (914) \end{array}$	$\begin{array}{r} 100.00 \\ (1,069) \end{array}$	$\begin{array}{r} 100.00 \\ (1,983) \end{array}$		
2010				7.0998	0.1310
Increase a lot	5.21	3.88	4.45		
Increase a little	7.90	11.40	9.91		
Remain the same	35.29	34.96	35.10		
Reduce a little	24.03	25.31	24.77		
Reduce a lot	27.56	24.44	25.77		
Total (sample size)	$\begin{array}{r} 100.00 \\ (595) \end{array}$	$\begin{array}{r} 100.00 \\ (798) \end{array}$	$\begin{array}{r} 100.00 \\ (1,393) \end{array}$		
2016				1.3515	0.8530
Increase a lot	5.98	5.75	5.85		
Increase a little	12.70	11.11	11.82		
Remain the same	40.17	40.25	40.22		
Reduce a little	22.10	23.20	22.71		
Reduce a lot	19.05	19.69	19.40		
Total (sample size)	$\begin{array}{r} 100.00 \\ (819) \\ \hline \end{array}$	$\begin{array}{r} 100.00 \\ (1,026) \end{array}$	$\begin{array}{r} 100.00 \\ (1,845) \end{array}$		

Source: 2004, 2010, 2016 General Social Surveys.

ACS example

- Does education attainment vary by race/ethnicity?
- The probability of not rejecting H_{0} is small ($\mathrm{p}<0.01$)
- Education attainment is dependent on race/ethnicity
. tab educgr raceth [fweight=perwt], col nofreq

| | raceth | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| educgr | White | African A | Hispanic | Asian | Native Am | Ohter rac | Total |
| Less than high school | 23.19 | 30.14 | 49.76 | 27.23 | 20.66 | 47.04 | 35.24 |
| High school | 26.55 | 29.72 | 26.11 | 16.23 | 34.00 | 17.85 | 26.09 |
| Some college | 20.38 | 22.79 | 14.40 | 12.29 | 25.15 | 16.42 | 17.82 |
| College | 19.92 | 11.04 | 7.12 | 23.26 | 15.36 | 12.51 | 13.78 |
| Graduate school | 9.95 | 6.31 | 2.62 | 20.99 | 4.83 | 6.17 | 7.07 |
| Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |

```
. svy: tab educgr raceth, col
(running tabulate on estimation sample)
```

Number of strata $=212$
Number of PSUs $=114,016$
Pearson:
$\begin{array}{llll}\text { Uncorrected } & \text { chi2(20) } & =3.03 \mathrm{e}+04 & \\ \text { Design-based } & \mathrm{F}(19.11, & 2.2 \mathrm{e}+06)=676.9183 & P=0.0000\end{array}$
Source: 2019 American Community Survey, Texas.

Edited table

Table 1. Percentage distribution of population by educational attainment and race/ethnicity, Texas, 2019

Educational attainment	Non- Hispanic White	Non- Hispanic Black	Hispanic	Non- Hispanic Asian	Non- Hispanic Native American	Other races	Total
Less than high school	23.19	30.14	49.76	27.23	20.66	47.04	35.24
High school	26.55	29.72	26.11	16.23	34.00	17.85	26.09
Some college	20.38	22.79	14.40	12.29	25.15	16.42	17.82
College	19.92	11.04	7.12	23.26	15.36	12.51	13.78
Graduate school	9.95	6.31	2.62	20.99	4.83	6.17	7.07
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Population size (N)	$11,929,840$	$3,445,104$	$11,527,412$	$1,444,220$	79,394	569,911	$28,995,881$
Chi square $(d f=20)$	$3.03 \mathrm{e}+04$						
Design-based	676.92						
$F(19.11,2.2 e+06)$							
p-value							

Source: 2019 American Community Survey.

