Lecture 4: Normal curve

Ernesto F. L. Amaral

September 21, 2023
Introduction to Sociological Data Analysis (SOCI 600)

www.ernestoamaral.com

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 5 (pp. 122-142).

The normal curve

- Define and explain the concept of the normal curve
- Convert empirical scores to Z scores
- Use Z scores and the normal curve table (Appendix A) to find areas above, below, and between points on the curve
- Express areas under the curve in terms of probabilities

Properties of the normal curve

- Theoretical
- Bell-shaped
- Unimodal
- Smooth
- Symmetrical
- Unskewed

- Tails extend to infinity
- Mode, median, and mean are same value

Standard normal distribution

- Normal distribution with $\bar{X}=0$ and $s=1$
- Distances on horizontal axis cut off the same area
- $\pm 1 \mathrm{~s}=68.26 \%$
- $\pm 2 \mathrm{~s}=95.44 \%$
- $\pm 3 \mathrm{~s}=99.72 \%$

- Between mean \& 1s = 34.13\%
- Between mean \& 2s $=47.72 \%$
- Between mean \& 3s = 49.86\%

IQ scores, females
$\bar{X}=100$
$s=10$
$N=1000$

Z scores

- Z scores are scores that have been standardized to the theoretical normal curve
- Z scores represent how different a raw score is from the mean in standard deviation units
- To find areas, first compute Z scores
- The Z score formula changes a raw score to a standardized score

$$
Z=\frac{X_{i}-\bar{X}}{s}
$$

IQ for males

$$
Z=\frac{X_{i}-\bar{X}}{s}=\frac{120-100}{20}=+1.00
$$

1	1	1	1	1	1	1
-3	-2	-1	0	+1	+2	+3

- An IQ score of 120 falls one standard deviation above (to the right of) the mean

Area under the normal curve

FIGURE A. 1 Area Between Mean and Z

- Compute the Z score
- Draw a picture of the normal curve and shade in the area in which you are interested
- Find your Z score in Column A...
\(\left.$$
\begin{array}{ccc}\text { (a) } & \begin{array}{c}\text { (b) } \\
\text { Area }\end{array} & \begin{array}{c}\text { (c) } \\
\text { Area } \\
\text { Beyond } \\
Z\end{array}
$$

\hline Between Z\end{array}\right]\)| Mean and Z | 0.5000 | |
| :---: | :---: | :---: |
| 0.00 | 0.0000 | 0.4960 |
| 0.01 | 0.0040 | 0.4920 |
| 0.02 | 0.0080 | 0.4880 |
| 0.03 | 0.0120 | 0.4840 |
| 0.04 | 0.0160 | 0.4801 |
| 0.05 | 0.0199 | 0.4761 |
| 0.06 | 0.0239 | 0.4721 |
| 0.07 | 0.0279 | 0.4681 |
| 0.08 | 0.0319 | 0.4641 |
| 0.09 | 0.0359 | 0.4602 |
| 0.10 | 0.0398 | 0.4562 |
| 0.11 | 0.0438 | 0.4522 |
| 0.12 | 0.0478 | 0.4483 |
| 0.13 | 0.0517 | 0.4443 |
| 0.14 | 0.0557 | 0.4404 |
| 0.15 | 0.0596 | 0.4364 |
| 0.16 | 0.0636 | 0.4325 |
| 0.17 | 0.0675 | 0.4286 |
| 0.18 | 0.0714 | 0.4247 |
| 0.19 | 0.0753 | 0.4207 |

FIGURE A. 2 Area Beyond Z

(a)	(b) Area	(c) Area Beyond
Z	Z Mean and Z	Z
0.21	0.0832	0.4168
0.22	0.0871	0.4129
0.23	0.0910	0.4090
0.24	0.0948	0.4052
0.25	0.0987	0.4013
0.26	0.1026	0.3974
0.27	0.1064	0.3936
0.28	0.1103	0.3897
0.29	0.1141	0.3859
0.30	0.1179	0.3821
0.31	0.1217	0.3783
0.32	0.1255	0.3745
0.33	0.1293	0.3707
0.34	0.1331	0.3669
0.35	0.1368	0.3632
0.36	0.1406	0.3594
0.37	0.1443	0.3557
0.38	0.1480	0.3520
0.39	0.1517	0.3483
0.40	0.1554	0.3446
\ldots	\ldots.	\ldots

Positive score

FIGURE A. 1 Area Between Mean and Z

- Find your Z score in Column A
- To find area below a positive score
- Add column b area to 0.50
- To find area above a positive score
- Look in column c

(a)	(b) Area Between	(c) Area Beyond Z
Z	Mean and Z	0.5000
0.00	0.0000	0.4960
0.01	0.0040	0.4920
0.02	0.0080	0.4880
0.03	0.0120	0.4840
0.04	0.0160	0.4801
0.05	0.0199	0.4761
0.06	0.0239	0.4721
0.07	0.0279	0.4681
0.08	0.0319	0.4641
0.09	0.0359	0.4602
0.10	0.0398	0.4562
0.11	0.0438	0.4522
0.12	0.0478	0.4483
0.13	0.0517	0.4443
0.14	0.0557	0.4404
0.15	0.0596	0.4364
0.16	0.0636	0.4325
0.17	0.0675	0.4286
0.18	0.0714	0.4247
0.19	0.0753	0.4207
0.20	0.0793	

FIGURE A. 2 Area Beyond Z

(a)

(a)	(b) Area Between Mean and Z	(c) Area Beyond Z
0.21	0.0832	0.4168
0.22	0.0871	0.4129
0.23	0.0910	0.4090
0.24	0.0948	0.4052
0.25	0.0987	0.4013
0.26	0.1026	0.3974
0.27	0.1064	0.3936
0.28	0.1103	0.3897
0.29	0.1141	0.3859
0.30	0.1179	0.3821
0.31	0.1217	0.3783
0.32	0.1255	0.3745
0.33	0.1293	0.3707
0.34	0.1331	0.3669
0.35	0.1368	0.3632
0.36	0.1406	0.3594
0.37	0.1443	0.3557
0.38	0.1480	0.3520
0.39	0.1517	0.3483
0.40	0.1554	0.3446
\ldots	\ldots	\ldots

Area below $Z=0.85$

- Finding the area below a positive Z score:
- $Z=+0.85$
- Area from column b=0.3023
- $0.50+0.3023=0.8023$ or 80.23%

Command in Stata (normal shows area below Z)
display normal(0.85)
.80233746

Area above Z = 0.40

- Finding the area above a positive Z score
- $Z=+0.40$
- Area from column c = 0.3446 or 34.46%

Command in Stata (normal shows area below Z)
di 1-normal(0.4)
.34457826

Negative score

FIGURE A. 1 Area Between Mean and Z

- Find your Z score in Column A
- To find area below a negative score
- Look in column c
- To find area above a negative score
- Add column b area to 0.50

(a)	(b) Area	(c) Area Beyond Z
Mean and Z	Z	
0.00	0.0000	0.5000
0.01	0.0040	0.4960
0.02	0.080	0.4920
0.03	0.0120	0.4880
0.04	0.0160	0.4840
0.05	0.0199	0.4801
0.06	0.0239	0.4761
0.07	0.0279	0.4721
0.08	0.0319	0.4681
0.09	0.0359	0.4641
0.10	0.0398	0.4602
0.11	0.0438	0.4562
0.12	0.0478	0.4522
0.13	0.0517	0.4483
0.14	0.0557	0.4443
0.15	0.0596	0.4404
0.16	0.0636	0.4364
0.17	0.0675	0.4325
0.18	0.0714	0.4286
0.19	0.0753	0.4247
0.20	0.0793	0.4207

FIGURE A. 2 Area Beyond Z

(a)	(b) Area Between Mean and Z	(c) Area Beyond Z
0.21	0.0832	0.4168
0.22	0.0871	0.4129
0.23	0.0910	0.4090
0.24	0.0948	0.4052
0.25	0.0987	0.4013
0.26	0.1026	0.3974
0.27	0.1064	0.3936
0.28	0.1103	0.3897
0.29	0.1141	0.3859
0.30	0.1179	0.3821
0.31	0.1217	0.3783
0.32	0.1255	0.3745
0.33	0.1293	0.3707
0.34	0.1331	0.3669
0.35	0.1368	0.3632
0.36	0.1406	0.3594
0.37	0.1443	0.3557
0.38	0.1480	0.3520
0.39	0.1517	0.3483
0.40	0.1554	0.3446
\ldots	\ldots	\ldots

Area below $Z=-1.35$

- Finding the area below a negative Z score
- $Z=-1.35$
- Area from column c $=0.0885$ or 8.85%

Command in Stata (normal shows area below Z)
di normal(-1.35)
.08850799

Between scores, opposite sides

FIGURE A. 1 Area Between Mean and Z

\(\left.$$
\begin{array}{ccc}\text { (a) } & \begin{array}{c}\text { (b) } \\
\text { Area } \\
\text { Between } \\
Z\end{array} & \begin{array}{c}\text { (c) } \\
\text { Area } \\
\text { Beyond }\end{array}
$$

Z\end{array}\right]\)| $Z .0 .500$ | | |
| :---: | :---: | :---: |
| 0.00 | 0.0000 | 0.5000 |
| 0.01 | 0.0040 | 0.4960 |
| 0.02 | 0.0080 | 0.4920 |
| 0.03 | 0.0120 | 0.4880 |
| 0.04 | 0.0160 | 0.4840 |
| 0.05 | 0.0199 | 0.4801 |
| 0.06 | 0.0239 | 0.4761 |
| 0.07 | 0.0279 | 0.4721 |
| 0.08 | 0.0319 | 0.4681 |
| 0.09 | 0.0359 | 0.4641 |
| 0.10 | 0.0398 | 0.4602 |
| 0.11 | 0.0438 | 0.4562 |
| 0.12 | 0.0478 | 0.4522 |
| 0.13 | 0.0517 | 0.4483 |
| 0.14 | 0.0557 | 0.4443 |
| 0.15 | 0.0596 | 0.4404 |
| 0.16 | 0.0636 | 0.4364 |
| 0.17 | 0.0675 | 0.4325 |
| 0.18 | 0.0714 | 0.4286 |
| 0.19 | 0.0753 | 0.4247 |
| 0.20 | 0.0793 | 0.4207 |

FIGURE A. 2 Area Beyond Z

$\left.\begin{array}{ccc}\text { (a) } & \begin{array}{c}\text { (b) } \\ \text { Area } \\ Z\end{array} & \begin{array}{c}\text { (c) } \\ \text { Between } \\ \text { Mean and } Z\end{array}\end{array} \begin{array}{c}\text { Area } \\ \text { Beyond } \\ Z\end{array}\right]$

Area between two scores, opposite sides of mean

- Finding the area between Z scores on different sides of the mean
- $Z=-0.35$, area from column $b=0.1368$
- $Z=+0.60$, area from column $b=0.2257$
- Area $=0.1368+0.2257=0.3625$ or 36.25%

Command in Stata (normal shows area below Z)
di normal(0.6)-normal(-0.35)
.36257753

Between scores, same side of

mean

- Find your Z scores in Column A

To find area
between two scores on the same side of the mean

- Find the area between each score and the mean from column b
- Subtract the smaller area from the larger area

FIGURE A. 1 Area Between Mean and Z

FIGURE A. 2 Area Beyond Z

(a) Z	(b) Area Between Mean and Z	(c) Area Beyond Z	(a) Z	(b) Area Between Mean and Z	(c) Area Beyond Z
0.00	0.0000	0.5000	0.21	0.0832	0.4168
0.01	0.0040	0.4960	0.22	0.0871	0.4129
0.02	0.0080	0.4920	0.23	0.0910	0.4090
0.03	0.0120	0.4880	0.24	0.0948	0.4052
0.04	0.0160	0.4840	0.25	0.0987	0.4013
0.05	0.0199	0.4801	0.26	0.1026	0.3974
0.06	0.0239	0.4761	0.27	0.1064	0.3936
0.07	0.0279	0.4721	0.28	0.1103	0.3897
0.08	0.0319	0.4681	0.29	0.1141	0.3859
0.09	0.0359	0.4641	0.30	0.1179	0.3821
0.10	0.0398	0.4602	0.31	0.1217	0.3783
0.11	0.0438	0.4562	0.32	0.1255	0.3745
0.12	0.0478	0.4522	0.33	0.1293	0.3707
0.13	0.0517	0.4483	0.34	0.1331	0.3669
0.14	0.0557	0.4443	0.35	0.1368	0.3632
0.15	0.0596	0.4404	0.36	0.1406	0.3594
0.16	0.0636	0.4364	0.37	0.1443	0.3557
0.17	0.0675	0.4325	0.38	0.1480	0.3520
0.18	0.0714	0.4286	0.39	0.1517	0.3483
0.19	0.0753	0.4247	0.40	0.1554	0.3446
0.20	0.0793	0.4207

Area between two scores, same side of mean

- Finding the area between Z scores on the same side of the mean
- $Z=+0.65$, area from column $b=0.2422$
- $Z=+1.05$, area from column $b=0.3531$
- Area $=0.3531-0.2422=0.1109$ or 11.09%

Command in Stata (normal shows area below Z)
di normal(1.05)-normal(0.65)
.11098705

Estimating probabilities

- Areas under the curve can also be expressed as probabilities
- Probabilities are proportions
- They range from 0.00 to 1.00
- The higher the value, the greater the probability
- The more likely the event

Example

- If a distribution has mean equals to 13 and standard deviation equals to 4
- What is the probability of randomly selecting a score of 19 or more?

$$
Z=\frac{X_{i}-\bar{X}}{s}=\frac{19-13}{4}=\frac{6}{4}=1.5
$$

- Command in Stata (normal shows area below Z)

$$
\begin{gathered}
\text { di } 1 \text {-normal (1.5) } \\
p=0.0668072
\end{gathered}
$$

Estimated date of delivery, 2017

Probability up to April 03

$$
\begin{gathered}
z 1=(277-281) / 13 \\
\mathrm{di} \text { normal }(-0.31) \\
p=0.3782805=37.83 \%
\end{gathered}
$$

Probability between April 02-03
$z 1=(277-281) / 13 ; \quad z 2=(276-281) / 13$
di normal (-0.31)-normal (-0.38) $p=0.0263078=2.63 \%$

Estimated date of delivery, 2023

Probability up to June 30

```
                z1=(242-281)/13
                di normal(-3)
p=0.0013499=0.14%
```

Probability between June 29-30
$z 1=(242-281) / 13 ; \quad z 2=(241-281) / 13$
di normal (-3)-normal (-3.08) $p=0.0003149=0.03 \%$

Determining normality

- Some statistical methods require random selection of respondents from a population with normal distribution for its variables
- We can analyze histograms, boxplots, outliers, quantile-normal plots to determine if variables have a normal distribution

Histogram of income

Boxplot of income

Quantile-normal plots

- A quantile-normal plot is a scatter plot
- One axis has quantiles of the original data
- The other axis has quantiles of the normal distribution
- If the points do not form a straight line or if the points have a non-linear symmetric pattern
- The variable does not have a normal distribution
- If the pattern of points is roughly straight
- The variable has a distribution close to normal
- If the variable has a normal distribution
- The points would exactly overlap the diagonal line

Quantile-normal plots reflect distribution shapes

Heavy Tails, High and Low Outliers

Negative Skew, Low Outliers

Light Tails, No Outliers

Granularity (discrete values)

Positive Skew, High Outliers

Quantile-normal plot of income

Power transformation

- Lawrence Hamilton ("Regression with Graphics", 1992, p.18-19)

$$
\begin{gathered}
Y^{3} \rightarrow q=3 \\
Y^{2} \rightarrow q=2 \\
Y^{1} \rightarrow q=1 \\
Y^{0.5} \rightarrow q=0.5 \\
\log (Y) \rightarrow q=0 \\
-\left(Y^{-0.5}\right) \longrightarrow q=-0.5 \\
-\left(Y^{-1}\right) \rightarrow q=-1
\end{gathered}
$$

- $q>1$: reduce concentration on the right (reduce negative skew)
- $q=1$: original data
- $\mathrm{q}<1$: reduce concentration on the left (reduce positive skew)
- $\log (x+1)$ may be applied when $x=0$. If distribution of $\log (x+1)$ is normal, it is called lognormal distribution

Histogram of log of income

Boxplot of log of income

Quantile-normal plot of log of income

Points to remember

- Cases with scores close to the mean are common and those with scores far from the mean are rare
- The normal curve is essential for understanding inferential statistics in Part II of the textbook

