Lecture 2b: Survey weights

Ernesto F. L. Amaral

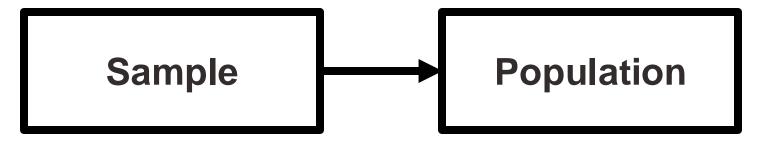
September 09, 2024 Introduction to Sociological Data Analysis (SOCI 600)

www.ernestoamaral.com

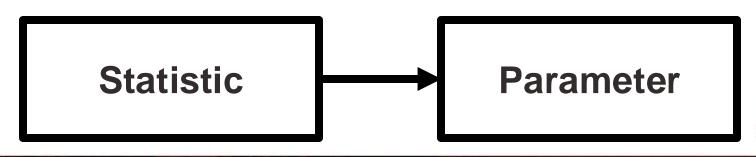
Source: Treiman, Donald J. 2009. Quantitative Data Analysis: Doing Social Research to Test Ideas. San Francisco: Jossey-Bass. Chapter 9 (pp. 195–224).

Outline

- Inferential statistics
- Survey weights
- Weight options in Stata
- Complex sample cluster design
- Weights in surveys
 - American Community Survey (ACS)
 - General Social Survey (GSS)
- Examples of descriptive statistics



Inferential statistics


- Social scientists need inferential statistics
 - They almost never have the resources or time to collect data from every case in a population
- Inferential statistics uses data from samples to make generalizations about populations
 - Population is the total collection of all cases in which the researcher is interested
 - Samples are carefully chosen subsets of the population
- With proper techniques, generalizations based on samples can represent populations

Basic logic and terminology

Information from samples is used to estimate information about the population

- Statistics: characteristics of samples
- Parameters: characteristics of populations
- Statistics are used to estimate parameters

Survey weights

Name	Number of observations collected in the survey	Weight to expand to population size	Weight to maintain sample size
José	1	4	0.8
Maria	1	6	1.2
Total	2	10	2

Survey weight = Population weight * (Sum of survey weights / Sum of population weights)

Weights for tables

- When we use a sample to estimate the absolute number of people
 - For an area
 - For a specific sub-group
 - We use weights to expand to population size
- If we use a sample to estimate the proportion of people in a specific sub-group
 - And we are not concerned with the absolute value
 - We use weights to maintain the sample size (we focus on percentages)

Weights for regressions

 In a simple linear regression, the test of statistical significance for a β coefficient (t-test) is estimated as

significance for a
$$\beta$$
 coefficient (t -test) is estimated as
$$t = \frac{\hat{\beta}}{SE_{\widehat{\beta}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{RSS}{df * S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{\sum_{i}(y_{i} - \hat{y}_{i})^{2}}{(n-2)\sum_{i}(x_{i} - \bar{x})^{2}}}}$$

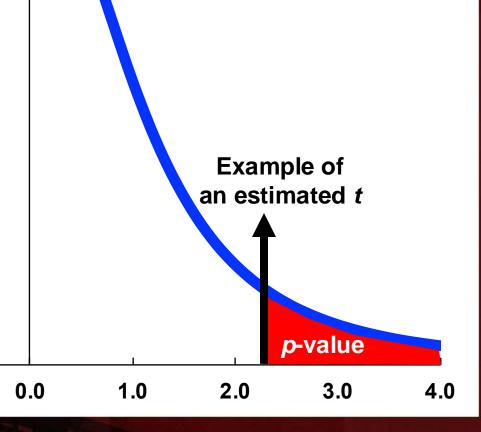
- SE_{β} : standard error of β
- MSE: mean squared error = RSS / df
- RSS: residual sum of squares = $\sum_{i} (y_i \hat{y}_i)^2 = \sum_{i} \hat{e}_i^2$
- df: degrees of freedom = n-2 for simple linear regression
 - 2 statistics (slope and intercept) are estimated to calculate sum of squares
- $-S_{xx}$: corrected sum of squares for x (total sum of squares)

Weights for regressions

- If we use a weight that expands to the population size
 (N) on regressions
 - We would be incorrectly informing the statistical software that we have a sample with enormous size
 - This would artificially increase the test of statistical significance for the coefficient

$$\uparrow t = \frac{\hat{\beta}}{SE_{\hat{\beta}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{\chi\chi}}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{\chi\chi}}}} = \frac{\hat{\beta}}{\sqrt{\frac{\sum_{i}(y_{i} - \hat{y}_{i})^{2}}{(n-2)\sum_{i}(x_{i} - \bar{x})^{2}}}}$$

 We have to inform the weight related to the sample design, but we should maintain the sample size (n)


t distribution (df = 2)

- Bigger the *t*-test
 - Stronger the statistical significance
- Smaller the p-value
 - Smaller the probability of not rejecting the null hypothesis
 - Tend to accept alternative (research) hypothesis

-3.0

-2.0

-1.0

Decisions about hypotheses

Hypotheses	<i>p</i> < α	<i>p</i> > α
Null hypothesis (H ₀)	Reject	Do not reject
Alternative hypothesis (H ₁)	Accept	Do not accept

- p-value is the probability of not rejecting the null hypothesis
- If a statistical software gives only the twotailed p-value, divide it by 2 to obtain the onetailed p-value

Significance level (α)	Confidence level (success rate)
0.10 (10%)	90%
0.05 (5%)	95%
0.01 (1%)	99%
0.001 (0.1%)	99.9% AM

Weight options in Stata

Frequency weight (fweight)

"Importance" weight (iweight)

Analytic weight (aweight)

Sampling weight (pweight)

Extract of 2018 ACS microdata

	year	strata	cluster	perwt	hhwt	sex	age	income
1	2018	360248	2.018012e+12	56.00	56.00	Male	46	28000
2	2018	360248	2.018012e+12	51.00	51.00	Male	20	5000
3	2018	360248	2.018012e+12	76.00	76.00	Female	84	0
4	2018	360248	2.018012e+12	55.00	55.00	Female	18	1200
5	2018	360248	2.018012e+12	143.00	143.00	Female	56	1500
6	2018	360248	2.018012e+12	198.00	198.00	Male	31	10000
7	2018	360248	2.018012e+12	48.00	48.00	Female	19	2000
8	2018	360248	2.018012e+12	48.00	48.00	Male	25	7000
9	2018	360248	2.018012e+12	65.00	65.00	Female	18	0
10	2018	360248	2.018012e+12	53.00	53.00	Female	18	15000
11	2018	360248	2.018012e+12	17.00	17.00	Male	63	0
12	2018	360248	2.018012e+12	39.00	39.00	Female	18	4000
13	2018	360248	2.018012e+12	104.00	104.00	Male	21	1000
14	2018	360248	2.018012e+12	200.00	200.00	Male	40	80000
15	2018	360248	2.018012e+12	20.00	20.00	Male	33	0
16	2018	360248	2.018012e+12	59.00	59.00	Male	19	2900
17	2018	360248	2.018012e+12	56.00	56.00	Male	55	0
18	2018	360248	2.018012e+12	77.00	77.00	Male	18	9000
19	2018	360248	2.018012e+12	16.00	16.00	Female	41	1100
20	2018	360248	2.018012e+12	46.00	46.00	Male	33	0

Frequency weight

FWEIGHT

- Expands survey size to the population size
- Indicates the number of duplicated observations
- Used on tables to generate frequencies
- Can be used in frequency distributions only when weight variable is discrete (no fractional numbers)

tab x [fweight = weight]

"Importance" weight

IWEIGHT

- Indicates the "importance" of the observation in some vague sense
- Has no formal statistical definition
- Any command that supports iweights will define exactly how they are treated
- Intended for use by programmers who want to produce a certain computation
- Can be used in frequency distributions even when weight variable is continuous (fractional numbers)

tab x [iweight = weight]

Analytic weight

AWEIGHT

- Inversely proportional to the variance of an observation
- Variance of the *j*th observation is assumed to be σ^2/w_j , where w_j are the weights
- For most Stata commands, the recorded scale of aweights is irrelevant
- Stata internally rescales frequencies, so sum of weights equals sample size

tab x [aweight = weight]

regress y x1 x2 [aweight = weight] A

More about analytic weight

 Observations represent averages and weights are the number of elements that gave rise to the average

Instead of

group	x	У
1	3	22
1	4	30
2	8	25
2	2	19
2	5	16

- Usually, survey data is collected from individuals and households (not as averages)
 - Thus, aweights are not appropriate for most cases

Sampling weight

PWEIGHT

- Denote the inverse of the probability that the observation is included due to the sampling design
- Variances, standard errors, and confidence intervals are estimated with a more precise procedure
- Indicated for statistical regressions to estimate robust standard errors
 - Obtain unbiased standard errors of OLS coefficients under heteroscedasticity (i.e., residuals not randomly distributed)
 - Robust standard errors are <u>usually</u> larger than conventional ones

regress y x1 x2 [pweight = weight]

Summary of Stata weights

WEIGHTS IN FREQUENCY DISTRIBUTIONS				
Weight unit of Expand to Maintain measurement population size sample size				
Discrete	fweight	owoight		
Continuous	iweight	aweight		

WEIGHTS IN STATISTICAL REGRESSIONS should maintain sample size				
Robust standard error TSS, ESS, RSS				
pweight	aweight			
reg <i>y x</i> , vce(robust) reg <i>y x</i> , vce(cluster <i>area</i>)	outreg2			

Example of 2018 ACS weight

. sum perwt, d

Person weight

	Percentiles	Smallest		
1%	10	1		
5%	19	1		
10%	29	1	Obs	3,214,539
25%	52	1	Sum of wgt.	3,214,539
50%	80		Mean	101.7774
		Largest	Std. dev.	83.93534
75%	124	1916		
90%	195	1990	Variance	7045.14
95%	263	2097	Skewness	2.845116
99%	427	2313	Kurtosis	17.99265

Example of 2018 ACS weight

. tab sex

Sex	Freq.	Percent	Cum.
Male Female	1,574,618 1,639,921	48.98 51.02	48.98 100.00
Total	3,214,539	100.00	

. tab sex [fweight=perwt]

Sex	Freq.	Percent	Cum.
Male Female	161,072,404 166,095,035	49.23 50.77	49.23 100.00
Total	327,167,439	100.00	

. tab sex [iweight=perwt]

Sex	Freq.	Percent	Cum.
	161,072,404 166,095,035	49.23 50.77	49.23 100.00
Total	327,167,439	100.00	

. tab sex [aweight=perwt]

Sex	Freq.	Percent	Cum.
Male Female	1,582,595 1,631,944	49.23 50.77	49.23 100.00
Total	3,214,539	100.00	

Example of 2021 GSS weight

. sum wtssnrps, d

person post-stratification weight, nonrespondents adjusted

	Percentiles	Smallest		
1%	.243687	.1723802		
5%	.30024	.1738938		
10%	.4057674	.1926333	0bs	4,032
25%	.5423563	.2104285	Sum of wgt.	4,032
50%	.8183308		Mean	1
		Largest	Std. dev.	.7260472
75%	1.212269	6.51434		
90%	1.798724	6.903664	Variance	.5271445
95%	2.27083	7.218392	Skewness	2.825826

Example of 2021 GSS weight

. tab sex, m

respondents sex	Freq.	Percent	Cum.
male	1,736	43.06	43.06
female	2,204	54.66	97.72
.i	19	0.47	98.19
.n	71	1.76	99.95
. S	2	0.05	100.00
Total	4,032	100.00	

. tab sex [fweight=wtssnrps], m
may not use noninteger frequency weights
r(401);

. tab sex [iweight=wtssnrps], m

respondents Percent Freq. Cum. sex male 1,904.2566 47.23 47.23 female 1,993.21543 49.43 96.66 18.1122752 0.45 97.11 113.299832 99.92 2.81 . n 100.00 3.11586052 0.08 . S 4,032 Total 100.00

. tab sex [aweight=wtssnrps], m

respondents			
sex	Freq.	Percent	Cum.
male	1,904.2566	47.23	47.23
female	1,993.21543	49.43	96.66
.i	18.1122752	0.45	97.11
• n	113.299832	2.81	99.92
. S	3.11586052	0.08	100.00
Total	4,032	100.00	

Complex sample cluster design

- To calculate standard errors correctly, variables for sample cluster design must be used
 - Without design variables, Stata will assume a simple random sample and underestimate standard errors

- Strata are created based on the lowest level of geography available in each sample
 - We use additional statistical techniques that account for the complex sample design to produce correct standard errors and statistical tests

Cluster design for tables

- If we want to estimate a confidence interval for a sample statistic (mean or proportion), we need to inform the complex survey design
- Confidence interval is a range of values used to estimate the true population parameter
- Confidence level is the success rate of the procedure to estimate the confidence interval
- Larger confidence levels generate larger confidence intervals

Confidence level, α , and Z

Confidence level $(1 - \alpha) * 100$	Significance level alpha (α)	α/2	Zscore
90%	0.10	0.05	±1.65
95%	0.05	0.025	±1.96
99%	0.01	0.005	±2.58
99.9%	0.001	0.0005	±3.32
99.99%	0.0001	0.00005	±3.90

Confidence intervals from samples

 $c.i. = sample \ estimate \pm margin \ of \ error \\ c.i. = sample \ estimate \pm score \ of \ confidence \ level* standard \ error$

• Sample mean (\bar{x}) , standard deviation (s), n < 30

$$c. i. = \bar{x} \pm t \left(\frac{s}{\sqrt{n}}\right) \qquad df = n - 1$$

• Sample mean (\bar{x}) , standard deviation (s), $n \ge 30$

$$c. i. = \bar{x} \pm Z \left(\frac{S}{\sqrt{n-1}} \right)$$

• Sam. proportion (P_s) , pop. proportion (P_u) , $n \ge 30$

$$c.i. = P_s \pm Z \sqrt{\frac{P_u(1 - P_u)}{n}}$$

Cluster design for regressions

 We also need to inform cluster design for regressions, because the t-test utilizes standard errors

because the *t*-test utilizes standard errors
$$t = \frac{\hat{\beta}}{SE_{\hat{\beta}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{RSS}{df * S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{\sum_{i}(y_{i} - \hat{y}_{i})^{2}}{(n-2)\sum_{i}(x_{i} - \bar{x})^{2}}}}$$

- SE_{β} : standard error of β
- MSE: mean squared error = RSS / df
- RSS: residual sum of squares = $\sum_{i} (y_i \hat{y}_i)^2 = \sum_{i} \hat{e}_i^2$
- df: degrees of freedom = n-2 for simple linear regression
- S_{xx} : corrected sum of squares for x (total sum of squares)

Cluster design & standard error

- Sample cluster designs underestimate standard errors, because they tend to select individuals with more similar characteristics from the same clusters
 - Simple random samples would provide more variation (higher standard errors), because they give the same chance of selection for all individuals in the population
- When we inform the cluster design, the standard error tends to increase and statistical significance decreases

$$t = \frac{\hat{\beta}}{SE_{\hat{\beta}}} = \frac{\hat{\beta}}{\sqrt{\frac{MSE}{S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{RSS}{df * S_{xx}}}} = \frac{\hat{\beta}}{\sqrt{\frac{\sum_{i}(y_{i} - \hat{y}_{i})^{2}}{(n-2)\sum_{i}(x_{i} - \bar{x})^{2}}}}$$

Weights in ACS

 In the American Community Survey (ACS)
 PERWT indicates how many persons in the U.S.
 population are represented by a given person in an IPUMS sample

https://usa.ipums.org/usa-action/variables/PERWT#description_section

- HHWT indicates how many households in the U.S. population are represented by a given household in an IPUMS sample
 - Users should also be sure to select one person (e.g.,
 PERNUM = 1) to represent the entire household

https://usa.ipums.org/usa-action/variables/HHWT#description_section

Summary of 2018 ACS weights

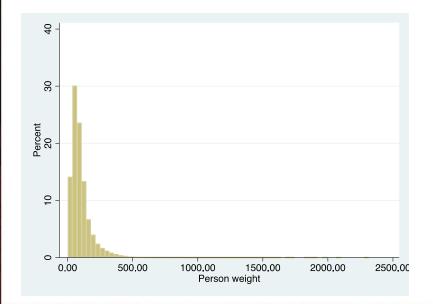
. sum perwt, d

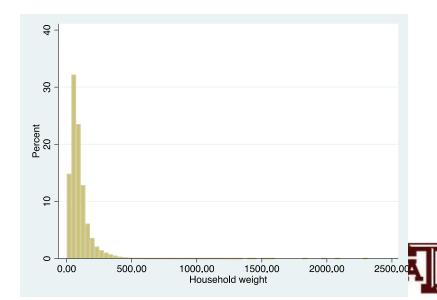
427

. sum hhwt if pernum==1, d

	Percentiles	Smallest		
1%	10	1		
5%	19	1		
10%	29	1	0bs	3,214,539
25%	52	1	Sum of Wgt.	3,214,539
50%	80		Mean	101.7774
		Largest	Std. Dev.	83.93534
75%	124	1916		
90%	195	1990	Variance	7045.14
95%	263	2097	Skewness	2.845116

2313


Kurtosis


17.99265

Person weight

	Percentiles	Smallest		
1%	8	1		
5%	16	1		
10%	25	1	0bs	1,410,976
25%	48	1	Sum of Wgt.	1,410,976
50%	73		Mean	91.85967
		Largest	Std. Dev.	75.18581
75%	112	1837		
90%	173	1990	Variance	5652.906
95%	234	2097	Skewness	2.88203
99%	386	2313	Kurtosis	19.09996

Household weight

ACS has a cluster sample

- All IPUMS samples are cluster samples
 - Samples are not individual-level samples
 - They are samples of households or dwellings
 - Individuals are sampled as parts of households
 - Information about all individuals within the same household
- Samples are also stratified to some degree
 - U.S. Census Bureau divides population into strata based on key characteristics
 - Sample separately from each stratum
 - Each stratum is proportionately represented in the final sample

ACS variables for cluster design

- Sampling weight (PERWT or HHWT)
 - It is chosen based on type of research question
- Household strata (STRATA)
 - Integrated variable that represents the impact of the sample design stratification on the estimates of variance and standard errors
 - In the 2005 onward ACS samples, strata are defined as unique Public Use Micro-data Areas (PUMA)
- Household cluster (CLUSTER)
 - Integrated variable which uniquely identifies each household record in a given sample

ACS complex sample design

 Account for ACS sample design in Stata svyset cluster [pweight=perwt], strata(strata)

. svyset cluster [pweight=perwt], strata(strata)

 After "svyset," you should indicate survey design with the option "svy" for commands that estimate standard errors

svy: mean y

svy: reg y x1 x2

Mean income

. mean income [pweight=perwt]

Mean estimation

Number of obs = 2,642,681

	Mean	Std. Err.	[95% Conf.	Interval]
income	31175.11	39.98542	31096.74	31253.48

. svy: mean income

(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 2,351 Number of PSUs = 1408111

Number of obs = 2,642,681 Population size = 262,216,823 Design df = 1,405,760

Linearized
Mean Std. Err. [95% Conf. Interval]
income 31175.11 40.99966 31094.75 31255.47

For subpopulations

- We use the following approach to conduct subpopulation analysis without compromising the data design structure
 - We produce estimates for the population of interest,
 while incorporating the full sample design information
 for variance estimation

 Example: only people with 15-64 years of age svyset cluster [pweight=perwt], strata(strata) svy, subpop(if age>=15 & age<=64): mean var1_

Mean income

. svv: mean income

(running mean on estimation sample)

Survey: Mean estimation

Number of strata = Number of obs Number of PSUs = 1408111Population size = 262,216,823

> Design df 1,405,760

2,642,681

3,214,539

	Mean	Linearized Std. Err.	[95% Conf.	Interval]
income	31175.11	40.99966	31094.75	31255.47

. svy, subpop(if income!=.): mean income (running **mean** on estimation sample)

Survey: Mean estimation

If we consider that

missing cases are

we need to inform

only non-missing

cases

part of the population,

that subpopulation is

Number of strata = Number of obs Number of PSUs = 1410976Population size = 327,167,439

Subpop. no. obs = 2,642,681 Subpop. size = 262,216,823

Design df 1,408,625

	Mean	Linearized Std. Err.	[95% Conf.	Interval]
income	31175.11	41.00232	31094.74	31255.47

Mean income (15-64)

. svy, subpop(if age>=15 & age<=64): mean income
(running mean on estimation sample)</pre>

Survey: Mean estimation

Number of strata = 2,351 Number of PSUs = 1410150 Number of obs = 3,175,157 Population size = 323,036,047 Subpop. no. obs = 2,004,091 Subpop. size = 209,809,274 Design df = 1,407,799

	Mean	Linearized Std. Err.	[95% Conf.	Interval]
income	36736.34	48.39971	36641.48	36831.2

If we consider that missing cases are part of the population, we need to inform that subpopulation is only non-missing cases . svy, subpop(if age>=15 & age<=64 & income!=.): mean income (running mean on estimation sample)

Survey: Mean estimation

Number of strata = 2,351 Number of PSUs = 1410976 Number of obs = 3,214,539 Population size = 327,167,439 Subpop. no. obs = 2,004,091 Subpop. size = 209,809,274 Design df = 1,408,625

	Mean	Linearized Std. Err.	[95% Conf.	Interval]
income	36736.34	48.40061	36641.48	36831.21

Example: 2019 ACS, Texas (nominal-level variable)

. tab sex

sex	Freq.	Percent	Cum.
male female	134,479 138,297	49.30 50.70	49.30 100.00
Total	272,776	100.00	

. tab sex [fweight=perwt]

sex	Freq.	Percent	Cum.
male female	14,389,011 14,606,870	49.62 50.38	49.62 100.00
Total	28,995,881	100.00	

- . svyset cluster [pweight=perwt], strata(strata)
- . svy: tab sex
 (running tabulate on estimation sample)

Number of strata = 212 Number of PSUs = 114,016

Number of obs
Population size
Design df = 272,776
28,995,881
= 113,804

sex	proportion
male female	. 4962 . 5038
Total	1

Key: proportion = Cell proportion

Example: 2019 ACS, Texas (ordinal-level variable)

. tab educ

educational attainment [general version]	Freq.	Percent	Cum.
n/a or no schooling	18,672	6.85	6.85
nursery school to grade 4	23,056	8.45	15.30
grade 5, 6, 7, or 8	21,619	7.93	23.22
grade 9	7,263	2.66	25.89
grade 10	6,783	2.49	28.37
grade 11	7,319	2.68	31.06
grade 12	74,662	27.37	58.43
1 year of college	33,207	12.17	70.60
2 years of college	15,505	5.68	76.28
4 years of college	41,586	15.25	91.53
5+ years of college	23,104	8.47	100.00
Total	272,776	100.00	

. tab educ [fweight=perwt]

educational attainment	1		
[general version]	Freq.	Percent	Cum.
n/a or no schooling	2,338,799	8.07	8.07
nursery school to grade 4	2,791,197	9.63	17.69
grade 5, 6, 7, or 8	2,627,585	9.06	26.75
grade 9	876,753	3.02	29.78
grade 10	758,921	2.62	32.40
grade 11	825,208	2.85	35.24
grade 12	7,564,180	26.09	61.33
1 year of college	3,606,553	12.44	73.77
2 years of college	1,561,001	5.38	79.15
4 years of college	3,996,149	13.78	92.93
5+ years of college	2,049,535	7.07	100.00
Total	28,995,881	100.00	

- . svyset cluster [pweight=perwt], strata(strata)
- . svy: tab educ
 (running tabulate on estimation sample)

Number of strata = 212 Number of PSUs = 114,016

Number of obs
Population size
Design df = 272,776
28,995,881
= 113,804

education al attainmen

[general

1 year o .1244 2 years .0538 4 years .1378 5+ years .0707

Total

grade 12

Key: proportion = Cell proportion

.2609

Example: 2019 ACS, Texas (interval-ratio-level variable)

. sum income

Variable	0bs	Mean	Std. dev.	Min	Max
income	219,299	32291.87	58306.42	0	483000

. sum income [iweight=perwt]

Variable	0bs	Weight	Mean	Std. dev.	Min	Max
income	219,299	22421711	31745.27	53892.93	0	483000

. svy: mean income

(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 212 Number of obs = 219,299Number of PSUs = 113,830 Population size = 22,421,711Design df = 113,618

. estat sd

Std. dev.

income	31745.27	142.2892	31466.39	32024.16	income	31745.2
	Mean	Linearized std. err.	[95% conf.	interval]		Mea

Weights in GSS

- The General Social Survey (GSS) targets the adult population (18+) living in U.S. households
- Due to the adoption of the sub-sampling design of non-respondents, a weight must be employed when using the GSS 2004 and after
- There are three continuous weight variables
 - WTSS
 - WTSSNR
 - WTSSALL
- They all maintain the original sample size, even in frequency distributions with "iweight"

WTSS

- WTSS variable takes into consideration
 - Sub-sampling of non-respondents
 - Number of adults in the household

- In years prior to 2004, a value of one is assigned to all cases, so they are effectively unweighted
 - Number of adults can be utilized to make this adjustment for years prior to 2004

WTSSNR

- WTSSNR variable takes into consideration
 - Sub-sampling of non-respondents
 - Number of adults in the household
 - Differential non-response across areas
- In years prior to 2004, a value of one is assigned to all cases, so they are effectively unweighted
 - Number of adults can be utilized to make this adjustment for years prior to 2004
 - Area non-response adjustment is not possible

WTSSALL

- WTSSALL takes WTSS and applies an adult weight to years before 2004
- The weight value of WTSSALL is the same as WTSS for 2004 and after

 Researchers who use the GSS data before or after 2004 may consider using the WTSSALL weight variable

```
tab x [aweight = wtssall]
```

sum x [aweight = wtssall]

GSS has a cluster sample

(https://gssdataexplorer.norc.org/gss_stdError)

- First- and second-stage units are selected with probabilities proportional to size
 - Size is defined by number of housing units

- Third-stage units (housing units) are selected to be an equal-probability sample
 - This results in roughly the same number of housing units selected per second-stage sampling unit

GSS variables for cluster design

(https://gssdataexplorer.norc.org/gss_stdError)

- There are two design variables
 - VSTRAT
 - VPSU
- First-stage unit
 - VSTRAT: Variance Stratum
 - National Frame Areas (NFAs): one or more counties
- Second-stage unit
 - VPSU: Variance Primary Sampling Unit
 - Segments: block, group of blocks, or census tract

GSS complex sample design

(https://gssdataexplorer.norc.org/gss_stdError)

Account for GSS sample design in Stata

```
svyset [weight=wtssall], strata(vstrat) psu(vpsu) singleunit(scaled)
```

 After "svyset," you should indicate survey design with the option "svy" for commands that estimate standard errors

svy: mean y

svy: reg y x1 x2

Strata with single sampling unit

(https://gssdataexplorer.norc.org/gss_stdError)

- VSTRAT and VPSU were created with a minimum of three respondents within a cell
 - If all cases are missing on a variable, you get an error message in Stata
 - "Missing standard error because of stratum with single sampling unit"
- It is recommended to utilize the "subpop" option for any subdomain analyses (e.g., for males)

svy, subpop(if sex==1): tab x

 You can also specify that strata with one sampling unit are "centered" at grand mean instead of stratum mean

svyset [weight=wtssall], strata(vstrat) psu(vpsu) singleunit(centered

Example: 2021 GSS in Stata (nominal-level variable)

. tab sex

respondents sex	Freq.	Percent	Cum.
male female	1,736 2,204	44.06 55.94	44.06 100.00
Total	3,940	100.00	

. tab sex [iweight=wtssnrps]

respondents sex	Freq.	Percent	Cum.
male female	1,904.2566 1,993.21543	48.86 51.14	48.86 100.00
Total	3,897.472	100.00	

. svyset [weight=wtssnrps], strata(vstrat) psu(vpsu) singleunit(scaled)
(sampling weights assumed)

. svy: tab sex

(running tabulate on estimation sample)

Number of strata = 9
Number of PSUs = 3,492
Number of obs = 3,940
Population size = 3,897.472
Design df = 3,483

responden	
ts sex	proportion
male female	.4886 .5114
Total	1

Key: proportion = Cell proportion

Example: 2021 GSS in Stata (ordinal-level variable)

. tab degree

r's highest degree	Freq.	Percent	Cum.
less than high school	246	6.14	6.14
high school	1,597	39.84	45.97
associate/junior college	370	9.23	55.20
bachelor's	1,036	25.84	81.04
graduate	760	18.96	100.00
Total	4,009	100.00	

. tab degree [iweight=wtssnrps]

r's highest degree	Freq.	Percent	Cum.
less than high school high school associate/junior college bachelor's graduate	480.972702 1,891.6334 452.656901 681.8664156 505.084448	11.99 47.15 11.28 16.99 12.59	11.99 59.13 70.42 87.41 100.00
Total	4,012.2139	100.00	

. svyset [weight=wtssnrps], strata(vstrat) psu(vpsu) singleunit(scaled)
(sampling weights assumed)

. svy: tab degree

(running tabulate on estimation sample)

Number of s	strata =	9
Number of F	SUs = 3,54	3
Number of obs	= 4,009	
	ze = 4,012.2139	
Design df	= 3,534	
r's		
highest		
degree	proportion	
uegree	proportion	
less tha	. 1199	
high sch	. 4715	
associat	.1128	
bachelor	. 1699	
graduate	. 1259	
Total	1	

Key: proportion = Cell proportion

Example: 2021 GSS in Stata (interval-ratio-level variable)

. sum conrinc

Variable	0bs	Mean	Std. dev.	Min	Max
conrinc	2,456	41722.79	39243.69	336	170912.6

. sum conrinc [iweight=wtssnrps]

Variable	0bs	Weight	Mean	Std. dev.	Min	Max
conrinc	2,456	2453.15509	37647.74	37376.88	336	170912.6

. svy: mean conrinc

(running **mean** on estimation sample)

Survey: Mean estimation

Number of strata = 9 Number of obs = 2,456Number of PSUs = 2,241 Population size = 2,453.1551Design df = 2,232

. estat sd

		Linearized		
	Mean	std. err.	[95% conf.	interval]
conrinc	37647.74	850.3902	35980.1	39315.38

	Mean	Std. dev.
conrinc	37647.74	37376.87

Examples of descriptive statistics

- Nominal-level variable
- Ordinal-level variable
- Interval-ratio-level variable
- Boxplots
- Age-sex structure

Nominal-level variable (Example: 2018 ACS in Stata)

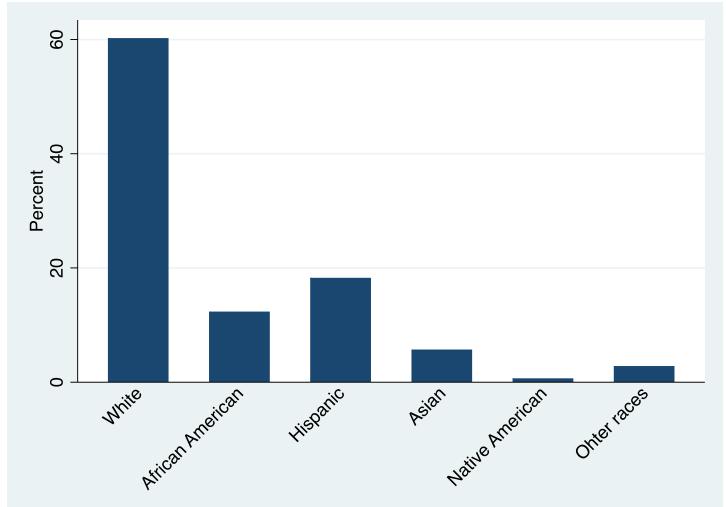
. tab raceth [fweight=perwt]

raceth	Freq.	Percent	Cum.
White	197,034,851	60.22	60.22
African American	40,373,281	12.34	72.56
Hispanic	59,740,273	18.26	90.82
Asian	18,662,293	5.70	96.53
Native American	2,170,486	0.66	97.19
Ohter races	9,186,255	2.81	100.00
Total	327,167,439	100.00	

. count if raceth!=.
 3,214,539

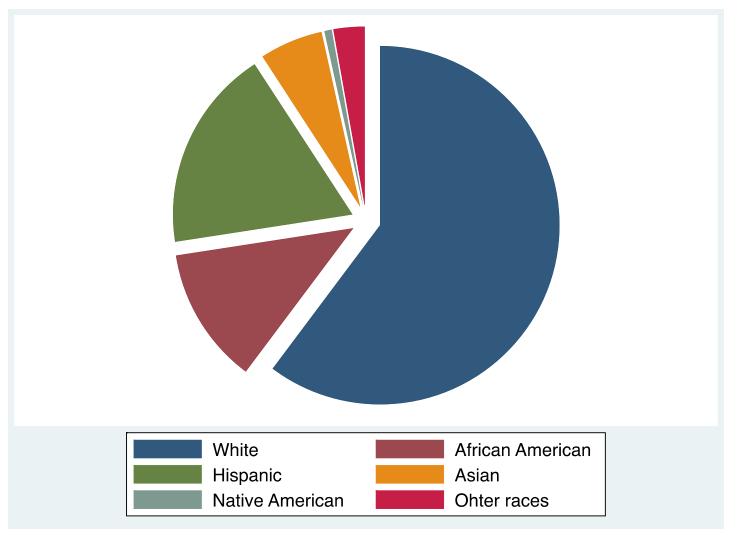
Edited table

Table 1. Distribution of U.S. population by race/ethnicity, 2018


Race/ethnicity	Percentage
Non-Hispanic White	60.22
Non-Hispanic African American	12.34
Hispanic	18.26
Non-Hispanic Asian	5.70
Non-Hispanic Native American	0.66
Other races	2.81
Total	99.99
Population size (N)	327,167,439
Sample size (n)	3,214,539

Source: 2018 American Community Survey.

Column graph for race/ethnicity, 2018


graph bar [fweight=perwt], over(raceth,
 label(angle(45))) ytitle("Percent")

Pie graph for race/ethnicity, 2018

graph pie [fweight=perwt], over(raceth) pie(_all, explode)

Source: 2018 American Community Survey.

Ordinal-level variable (Example: 2018 ACS in Stata)

. tab educgr [fweight=perwt]

educgr	Freq.	Percent	Cum.
Less than high school	97,758,814	29.88	29.88
High school	92,183,547	28.18	58.06
Some college	60,822,461	18.59	76.65
College	47,865,798	14.63	91.28
Graduate school	28,536,819	8.72	100.00
Total	327,167,439	100.00	

. count if educgr!=.
3,214,539

Edited table

Table 1. Distribution of U.S. population by educational attainment, 2018

Educational attainment	Percentage
Less than high school	29.88
High school	28.18
Some college	18.59
College	14.63
Graduate school	8.72
Total	100.00
Population size (N)	327,167,439
Sample size (n)	3,214,539

Source: 2018 American Community Survey.

Interval-ratio-level variable (Example: 2018 ACS in Stata)

. tabstat income [fweight=perwt] if income!=0, stat(min p25 p50 p75 max iqr mean sd)

Variable	Min	p25	p50	p75	Max	IQR	Mean	SD
income	4	16400	35000	61000	718000	44600	50043.98	62143.92

. count if income==. | income==0
1,640,226

Survey design for income

- . ***Complex survey design
- . svy, subpop(if income!=. & income!=0): mean income

(running **mean** on estimation sample)

Survey: Mean estimation

Number of strata = 2,351 Number of PSUs = 1410976 Number of obs = 3,214,539 Population size = 327,167,439 Subpop. no. obs = 1,574,313 Subpop. size = 163,349,075 Design df = 1,408,625

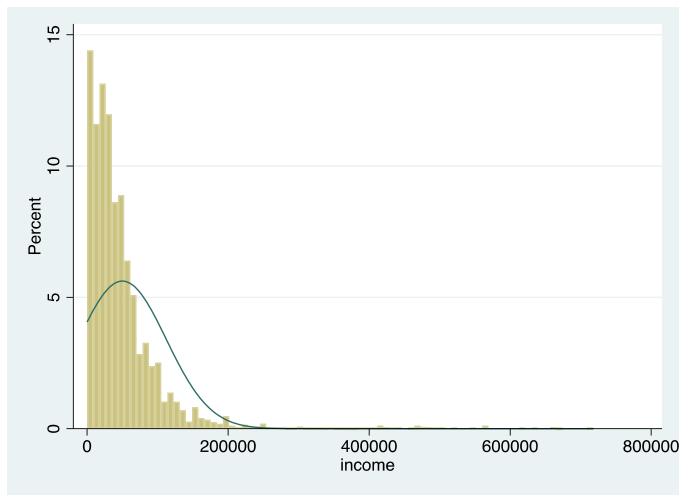
	Mean	Linearized std. err.	[95% conf.	interval]
income	50043.98	59.74195	49926.89	50161.07

. estat sd

	Mean	Std. dev.
income	50043.98	61547.67

Edited table

Table 1. Descriptive statistics of respondents' wage and salary income, U.S. population, 2018


Statistics	Income
Mean	50,043.98
Minimum	4.00
25th percentile	16,400.00
Median	35,000.00
75th percentile	61,000.00
Maximum	718,000.00
Range	717,996.00
Interquartile range	44,600.00
Standard deviation	61,547.67
Population size (N)	163,349,075
Sample size (n)	1,574,313
Missing cases	1,640,226

Source: 2018 American Community Survey.

Histogram of wage and salary income, U.S. population, 2018

hist income [fweight=perwt] if income!=0, percent normal

Source: 2018 American Community Survey.

Wage and salary income by sex, 2018 ACS

- . ***Income
- . table year [fweight=perwt] if income!=0, c(mean income p50 income)

2018	50043.98	35000
Census	mean(income)	med(income)

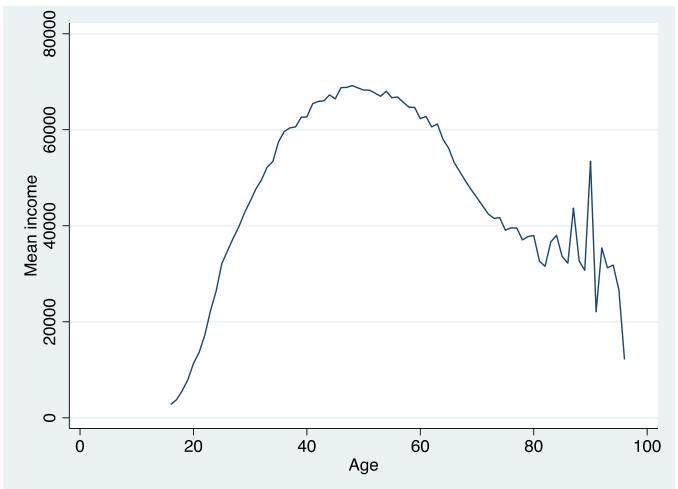
- . ***Income by sex
- . table female [fweight=perwt] if income!=0, c(mean income p50 income)

female	mean(income)	med(income)
Male	59014.14	40000
Female	40294.34	30000

Wage and salary income by race/ethnicity, 2018 ACS

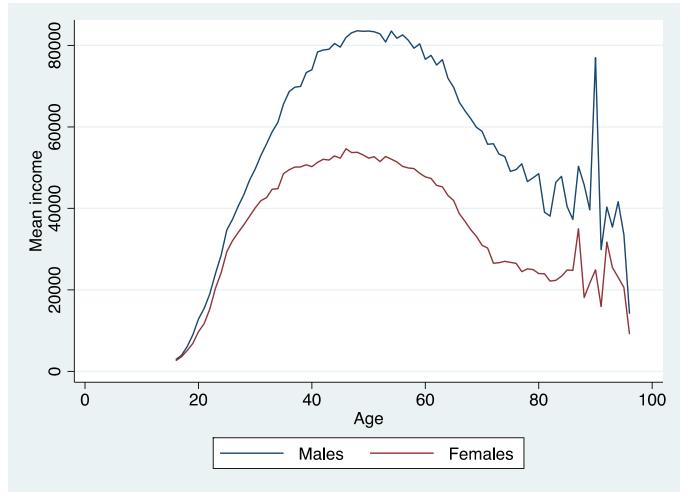
- . ***Income by race/ethnicity
- . table raceth [fweight=perwt] if income!=0, c(mean income p50 income)

raceth	mean(income)	med(income)
White	55289.18	40000
ican American	37183.63	29000
Hispanic	36236.16	27500
Asian	64154.23	43000
tive American	34851.55	27000
Ohter races	44162.79	30000

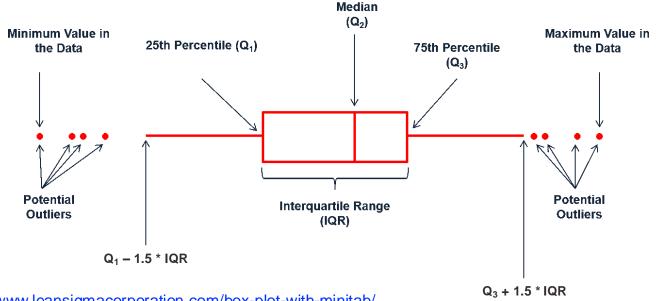

Wage and salary income by education, 2018 ACS

- . ***Income by educational attainment
- . table educgr [fweight=perwt] if income!=0, c(mean income p50 income)

educgr	mean(income)	med(income)
Less than high school	22750.89	18000
High school	34055.76	27000
Some college	39607.05	30300
College	67654.84	50000
Graduate school	98541.49	72000



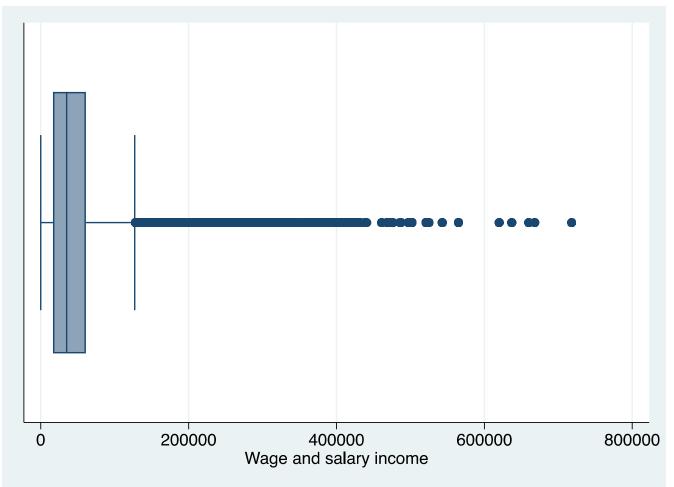
Mean income by age, U.S. population, 2018


Mean income by age and sex, U.S. population, 2018

Boxplots

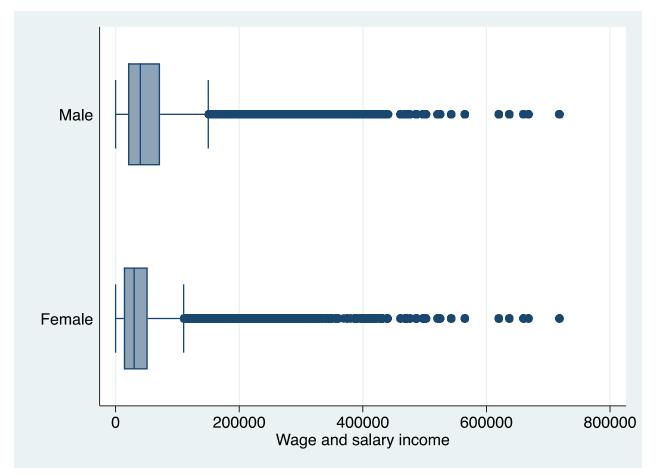
- Boxplot is also known as "box and whiskers plot"
 - It provides a way to visualize and analyze dispersion
 - Useful when comparing distributions
 - It uses median, range, interquartile range, outliers
 - Easier to read all this information than in tables

Example: 2018 ACS in Stata

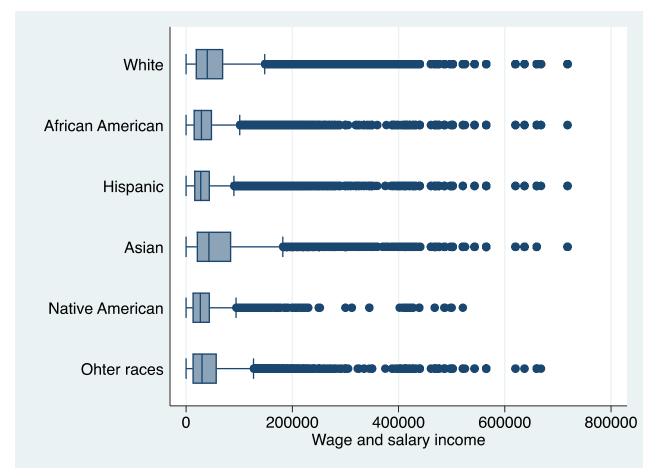

 Generate box plot for respondents' wage and salary income

```
graph hbox income if income!=0 [fweight=perwt],
    ytitle(Wage and salary income)
```

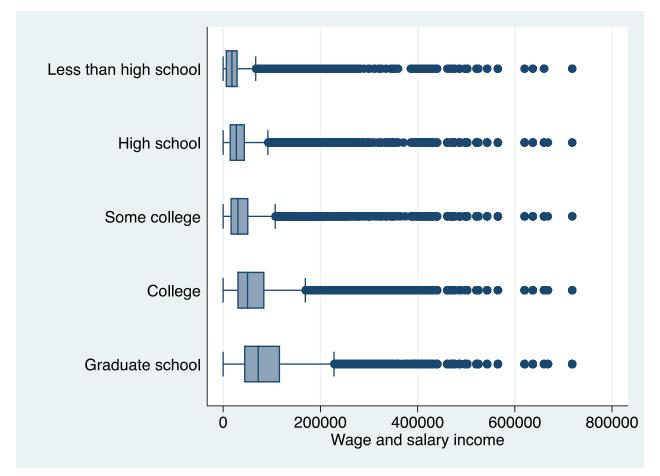

Edited figure


Figure 1. Distribution of respondents' wage and salary income, U.S. population, 2018

Income by sex, 2018

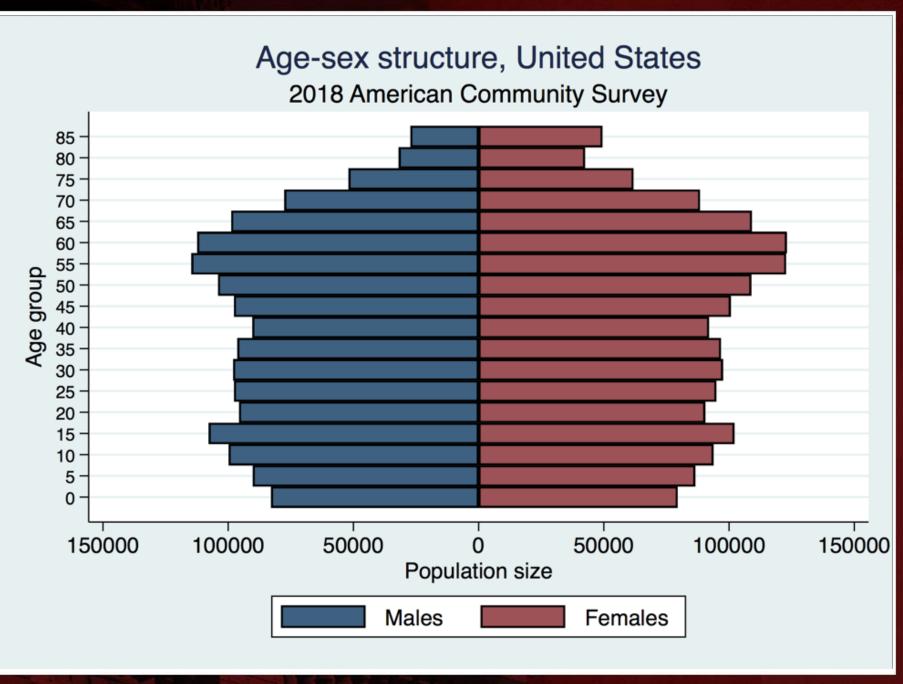

graph box income if income!=0 [fweight=perwt],
 over(female) ytitle(Wage and salary income)

Income by race/ethnicity, 2018

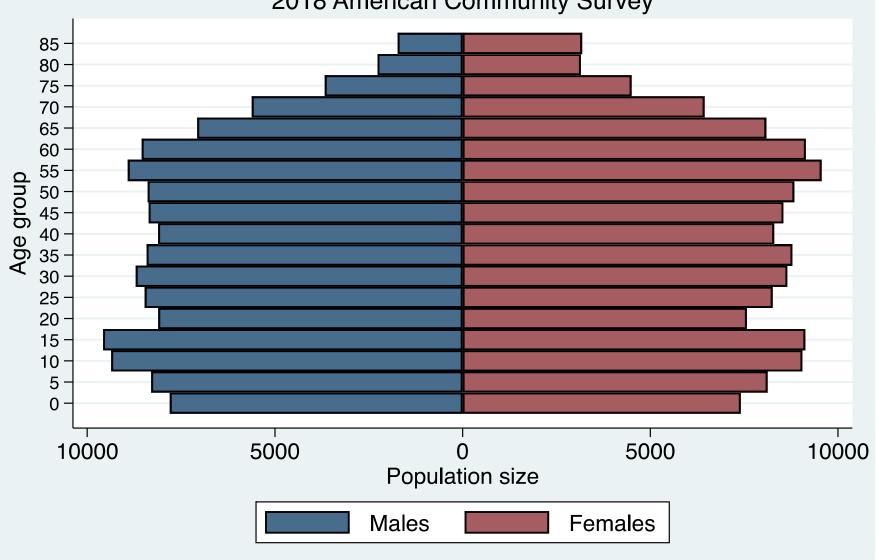

graph box income if income!=0 [fweight=perwt],
 over(raceth) ytitle(Wage and salary income)

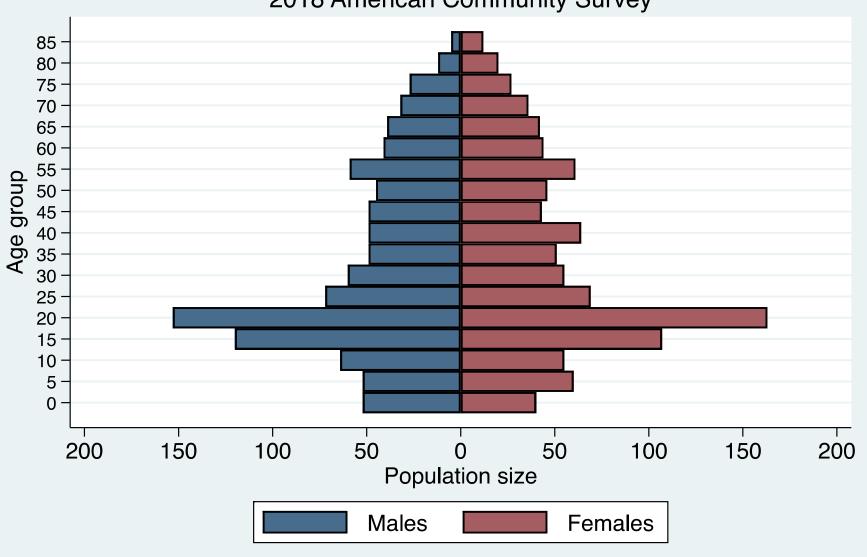
Income by education, 2018

graph box income if income!=0 [fweight=perwt],
 over(educgr) ytitle(Wage and salary income)



Age-sex structure


```
***Generate five-year age groups variable - automatically
egen age5y = cut(age), at(0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,100)
table age5y, contents (min age max age count age)
***Generate male variable (opposite of female variable)
gen male=!female
tab male female, m nolabel
***Generate variables with male and female totals by five-year age groups
sort age5v
by age5y: egen maletotal=total(male)
by age5y: egen femaletotal=total(female)
***Replace male total by negative value
replace maletotal =-maletotal
***Age-sex structure
twoway bar maletotal age5y [fweight=perwt], horizontal barwidth(5) fcolor(navy) lcolor(black) lwidth(medium) | / //
      bar femaletotal age5y [fweight=perwt], horizontal barwidth(5) fcolor(maroon) lcolor(black) lwidth(medium) ///
      legend(label(1 Males) label(2 Females)) ///
      ylabel(0(5)85, angle(horizontal) valuelabel labsize(*.8)) ///
      ytitle("Age group") ///
      xlabel(-150000 "150000" -100000 "100000" -50000 "50000" 0 50000 100000 150000) ///
      xtitle("Population size") ///
      title("Age-sex structure, United States") ///
      subtitle("2018 American Community Survey")
```



Age-sex structure, Texas

Age-sex structure, Brazos county

2018 American Community Survey

