ASSIGNMENT1
 Due by February 16, 2023 (Thursday) at 11:59pm
 Percent of final grade: 20\%

Instructor information

Ernesto F. L. Amaral, Associate Professor, Department of Sociology
Office: Liberal Arts Social Sciences Building (LASB) 320
Phone: (979)845-9706
Email: amaral@tamu.edu
Course website: http://www.ernestoamaral.com/soci633-23spring.html

Submission

This assignment should be submitted through Turnitin within Canvas. Turnitin is an online database system designed to help instructors detect plagiarism, track citations, facilitate peer reviews, and provide paperless grading markup in written assignments. Students should develop this assignment individually.

Answers to substantive questions should be written in Microsoft Word. The Word document should be on US Letter paper size, one-inch margins, Arial font, size 11, 1.5 line spacing. Answers to methods questions should be solved in Microsoft Excel, but the final results and interpretations should be exported and properly formatted in the Word document.

Look at examples of how to properly format tables and figures in Word at http://www.ernestoamaral.com/docs/soci633-23spring/Examples tab fig.pdf.

See examples of how to place tables and figures in your document, as well as of how to cite them throughout the document on this link (http://www.ernestoamaral.com/drafts.html).

Purpose

The purpose of this assignment is to highlight the fact that we should discuss population issues using scientific theoretical framework and data to support our analysis. Students should not rely on preconceptions and perceptions we might have about specific demographic subjects.

This assignment also aims to test the knowledge about topics on exponential growth, periods and cohorts, and age pyramids, as discussed in the classroom and course material. These topics are the foundation to understand a series of demographic methods that will be discussed throughout this course.

Main references

Poston, Dudley L.; Bouvier, Leon F. 2017. Population and Society: An Introduction to Demography. New York: Cambridge University Press. 2nd edition.

Rosling, Hans. 2013. Don't Panic: Hans Rosling Showing The Facts About Population. Stockholm: Gapminder. (https://vimeo.com/79878808)

Wachter, Kenneth W. 2014. Essential Demographic Methods. Cambridge: Harvard University Press

Population issues (2.5 points): 500 ± 50 words

1. A consistent discussion in demographic literature is related to how rapid population growth could potentially impact natural resources, climate change, and poverty in developing countries. Some researchers emphasize the need for more improvements in agricultural production and increased concern with the environmental limitations facing a growing population. They argue that there are too many people on Earth and we would all be better off if there were fewer people on the planet. Other researchers indicate that we've overcome these challenges through a reduction in poverty, educational improvements, and the provision of food to large populations.
1.1. Based on course material, are there too many people in the world nowadays? Why? Discuss these different concerns related to population growth, transition, and evolution for current societies.
1.2. Why population composition (e.g., by age, sex, race/ethnicity, marital status, and socioeconomic status) and population changes over time are important topics for demographers?

1.3. Why spatial distribution is an essential topic to understand human populations?

In addition to the course material covered in the class, I suggest you watch the video by Hans Rosling (link above and on the course website) about analyzing demographic trends with scientific data.

Age pyramids (5 points): $1,000 \pm 100$ words

2. Select two U.S. states and collect data to create bar graphs with age-sex structure for 2010, 2015, and 2021 (see example in Figure 2.1). Estimate child dependency ratio, old-age dependency ratio, and total dependency ratio for each state in each year. Use data from the American Community Survey (ACS) oneyear estimates, which are available in the "Tables" tool within the U.S. Census Bureau data website (https://data.census.gov/). Include graphs with age-sex structure and table with dependency ratios in your report and analyze them. Feel free to add and analyze other demographic indicators (e.g., population growth rate).

The answer to this question should be seen as a document that tells a coherent story about a subject. You should aim to have an answer that contains the following sections: (1) introduction; (2) background (you can cite previous studies); (3) data and methods; (4) results; (5) final considerations; and (6) references.

Figure 2.1. Age-sex structure of Brazilian population, 1970 and 2000

[^0]
Exponential growth, periods, and cohorts

The following questions are related to demographic concepts and methods.
Questions highlighted in yellow were already answered by the professor as examples. The file with answers is available in the course website and should be read by students. These questions are not worth any points.

Questions highlighted in red are worth 0.5 points each.
All other questions are worth 1 point each.

Exponential growth (8.5 points)

3.0. Define the following concepts in demography: balancing equation, population growth rate, exponential growth, closed populations, and doubling times.
3.1. Between 1960 and 1975 the population of Indonesia grew from about 100.6 million to 137.5 million. Between 1990 and 2000 it grew from 187.7 million to 225.0 million. Find the growth rates between 1960 and 1975 and between 1990 and 2000. Have the growth rates increased or decreased?
3.2. If the average growth rate for the Indonesian population between 2000 and 2020 turns out to be 18 per thousand per year, what will the population in 2020 be?
3.3. The population of Nigeria in 1960 was about 39.2 million. The average growth rate R during the 1960 s was 23.99 per thousand per year. During the 1970s it was 28.41 ; during the 1980 s, 29.41 ; during the 1990s, 35.169. It is predicted to be around 30 per thousand per year from 2000 to 2020. Draw a rough freehand graph of the logarithm of Nigerian population over time based on these data, label the axes, and predict the population in 2020. [You can draw the graph manually, digitalize your diagram, and insert in Microsoft Word.]
3.4. How much longer would it take the population of Indonesia to double, as compared with Nigeria, under the rates precited for 2000 to 2020?
3.5. Official U.S. Census counts are shown in Table 3.1. What were the yearly growth rates and population doubling times between the following years: (a) 1790 to 1900? (b) 1900 to 1950? (c) 1950 to 2000? (d) 1790 to 2000 ?

Table 3.1. U.S. Census counts in millions

Year	Population	Year	Population	Year	Population	Year	Population
1790	3.929	1850	23.192	1910	91.972	1970	203.212
1800	5.308	1860	31.443	1920	105.711	1980	226.546
1910	7.240	1870	39.818	1930	122.775	1990	248.710
1820	9.638	1880	50.156	1940	131.669	2000	281.421
1830	12.866	1890	62.948	1950	150.697	2010	308.745
1840	17.069	1900	75.995	1960	178.464		

Source: Wachter KW. 2014. Essential Demographic Methods. Cambridge: Harvard University Press. p. 28
3.6. If world population grew from 6.851 billion at mid-year 2010 to 7.017 billion at mid-year 2012, what was the growth rate R ? If world population continued to grow at or near this rate, how long would it take for the population to triple? How long for population to grow by 1 billion more beyond the 2012 level?
3.7. Suppose the world's population began to decline at rate of $R=0.007$ per year. How many years would it take for population size to return from its 2012 level to its 1950 level?
3.8. If $R=0.035$ and $t=20$ years, what is $\exp (R t)$? Estimate and interpret the natural log of the square root of $\exp (R t)$? [Tip: Exponential function is the inverse function for natural logarithms.] What is the doubling time for a population growing at a rate of 35 per thousand per year?
3.9. At mid-year 2012 Brazil, Pakistan, and Nigeria had similar total populations, 194, 188, and 170 million, respectively. Growth rates were $0.011,0.021$, and 0.024 per year. Suppose growth continues at these rates for at least 8 years. Use the exponential model to project populations for these three countries in 2020. Would their rankings change?
3.10. What is the natural logarithm of 1 billion? From data in Table 1.2 (page 16, Wachter, 2014), working on a logarithmic scale, estimate the year at which China's population passed 1 billion.
3.11. Dates at which world population first exceeded each number of billions from 1 to 7 are estimated to be (1) 1800, (2) 1925, (3) 1960, (4) 1974, (5) 1987, (6) 1999, and (7) 2011. Find the growth rate between each of these dates.
3.12. Suppose we care about 20% accuracy in predictions of proportional increases in population for countries like Egypt with growth rates around 21 per thousand. How soon would multiplicative effects be sure to become important?
3.13. From the U.S. Census counts in Table 3.1, find the growth rate between 1900 and 2000 to six decimal places. Use this growth rate along with the population in 1900 to predict populations throughout the century from an exponential model with constant growth. Draw a plot showing the actual census counts as points and the predicted census counts as a curve. Differences between observed and predicted values reflect the effects of changing growth rates over time. Are these differences more or less important than the multiplicative effects visible in the steepening of the predicted curve?

Periods and cohorts (4 points)

4.0. Define and differentiate the following concepts: period person-years lived, cohort person-years lived, rates, probabilities, and ratios.
4.1. Of the world's 10 most populous countries in 2012 (Table 2.1, page 37, Wachter, 2014), which has the highest net migration rate today? Which has the lowest Infant Mortality Rate? What fraction of the world's population is comprised by these 10 most populous countries? Search for current population data at World Bank Data (http://data.worldbank.org/).
4.2. Mexico is the country with the eleventh largest population in the world. Its Crude Birth Rate during 2012 is reported to have been 20.44 per thousand, and $2,373,020$ are reported to have been born. What mid-year population size would be consistent with these numbers?
4.3. Poland has a nearly stationary population, with $e_{0}=76$. There were about 380,000 births in 2012. What was the approximate size of the population?
4.4. Study the data in Table 2.1 (page 37, Wachter, 2014), and determine whether be is typically greater than, equal to, or less than 1 in a growing population. [$b=C B R / 1,000=$ crude birth rate $/ 1,000$].
4.5. From an almanac or other source, find dates of birth and death for the presidents of the United States from Theodore Roosevelt to Joe Biden. Draw a freehand Lexis diagram with the lifelines of these presidents. Label the axes clearly. [You can do this exercise manually, digitalize your diagram, and insert in Microsoft Word.]
(a) Draw and label a line representing the age 30 and a line representing the year 1945.
(b) Draw and label the area containing person-years lived by people between the ages of 20 and 30 for the years between 1964 and 1968.
(c) Draw and label the area representing the whole lifetime experience of the cohort aged 10 to 30 in 1917.
4.6. Work out an estimate of how many humans have ever lived based on the estimate for the time before the dawn of agriculture given in the text and the estimates of population sizes given in Table 1.4 (page 25, Wachter, 2014) under the assumption of constant rates of growth between the years cited in the table. For average lifespans, use 30 years before 1750, 40 years for 1750 to 1950, 50 years for 1950 to 1975, and 60 years for 1975 to 2000.

[^0]: Source: 1970 and 2000 Brazilian Demographic Censuses.

