Lecture 3: Cohort mortality

Ernesto F. L. Amaral

February 07-14, 2023
Demographic Methods (SOCI 633/320)

www.ernestoamaral.com

Cohort mortality

- Cohort survival by analogy
- Probabilities of dying
- Columns of the cohort life table
- King Edward's children
- From ${ }_{n} L_{x}$ to e_{x}
- Shapes of lifetable functions
- The radix
- Annuities and insurance
- Mortality of the 1300s and 2000s

Cohort survival by analogy

- Analyze lifelines and the deaths that occur in the diagonal stripe on the Lexis diagram that represents a particular cohort's experience
- Understand measures of survival and probabilities of dying as a function of age for the cohort
- We could also analyze the rectangle on a Lexis diagram that represents some period
- We would consider the lifelines that cross the rectangle and the deaths that fall inside it

Lexis diagram

Why start with cohort measures?

- The period measure is more complicated
- People at risk of dying at different ages are different people
- For the experience of a cohort over time
- People at risk of dying at different ages are the same people
- Cohort measures are conceptually simpler than period measures, so we begin with them

Disadvantage

- Disadvantage of cohorts measures is being out of date
- To have complete measures of cohort mortality for all ages, we have to wait until all members of the cohort have died
- Rates for young ages refer to the distant past
- The most recent cohorts with complete mortality data are those born around 1900
- Measures of period mortality are more complicated, but they use more recent data

Basic cohort measures

- The basic measures of cohort mortality are elementary
- Take the model for exponential population growth
- Apply it to a closed population consisting of the members of a single cohort
- Change the symbols in the equations, but keep the equations themselves

Why is it a closed population?

- If our population consists of a single cohort
- No one else enters the population after the cohort is born
- Babies born to cohort members belong to later cohorts, not to their parents' cohort
- For this cohort, the only changes in population size come from deaths to members of the population
- Measures from chapter 1 reappear with new names in an analogy between populations and cohorts...

Population Growth

Cohort Mortality

Age x
Cohort survivors ℓ_{x}
Survival probability $1-q=1-d / l$
Hazard rate h (with minus sign)
Area under $\ell_{x}, C P Y L, L$
Age-specific rates m
Initial cohort size l_{0} (radix)
Cohort deaths d

Note: $\mathrm{A}=1+(\mathrm{B}-\mathrm{D}) / \mathrm{K}$. But for a cohort, after age zero, births don't happen anymore.

Multiplication process

- The same process of multiplication for population growth happens for cohort mortality
- It is not the mortality rates (m) that multiply
- It is not the probabilities of dying (q)
- It is the probabilities of surviving $(1-q)$
- Age x is the subscript on the cohort survivors: I_{x}
- Time t is used for population size: $K(t)=K_{t}$
- The notation is different but the idea is the same

Multiplicative rules

- Multiplicative rule for population growth

$$
K(t+n)=A K(t)
$$

- Multiplicative rule for cohort survivorship

$$
I_{x+n}=\left(1-{ }_{n} q_{x}\right) I_{x}
$$

- Subscript \boldsymbol{n} specifies the length of the interval
$-{ }_{n} \boldsymbol{q}_{x}$: probability of dying within an interval of length n that starts at age x and ends at age $x+n$
$-I_{x+n}$: members who survive to age $x+n$

More notations

- ${ }_{n} q_{x}$: probability of dying between ages x and $x+n$ among cohort members alive at age x

$$
{ }_{n} q_{x}={ }_{n} d_{x} / I_{x}
$$

- $1-{ }_{n} q_{x}$: probability of surviving from age x to age $x+n$ among cohort members alive at age x

$$
1-{ }_{n} q_{x}=I_{x+n} / I_{x}
$$

- ${ }_{n} \boldsymbol{d}_{x}$: cohort deaths between ages x and $x+n$
- ${ }_{n} L_{x}$: cohort person-years lived in this interval
- I_{x} : cohort members alive at age x are split in two
$-{ }_{n} d_{x}$: members who die before age $x+n$
$-I_{x+n}=I_{x}-{ }_{n} d_{x}$: members who survive to age $x+n$

Some more notations

- In the expression ${ }_{n} \boldsymbol{q}_{x}$ the left subscript gives the width of the age interval and the right subscript gives the starting age
- ${ }_{10} q_{20}$: probability of dying between 20 and 30
- Not between 10 and 20
- Do not confuse ${ }_{n} q_{x}$ with n multiplied by q_{x}
- If you want to multiply n by I_{x}, use this notation: $(n)\left(I_{x}\right)$
- ${ }_{10} q_{20}$ goes from 20.00000 to 29.99999
- "The interval from 20 to 30 " (including exact age 20, excluding exact age 30)
- Some authors call it "the interval from 20 to 29"

Example

- A cohort born in 1984 reached age 18 in 2002 and $1,767,644$ were alive at their $18^{\text {th }}$ birthday - Only 724 of them died before age 19
- Probability of dying

$$
{ }_{1} q_{18}={ }_{1} d_{18} / I_{18}=724 / 1,767,644=0.000410
$$

- Probability of surviving

$$
\begin{gathered}
1-{ }_{1} q_{18}=1-0.000410=0.999590 \\
I_{19} / I_{18}=1,766,920 / 1,767,644=0.999590
\end{gathered}
$$

Hazard rates

- Hazard rates can express the pace of death within cohorts
- Hazard rate is the counterpart of population growth rate
- We measure population growth with slopes of logarithms of population size
- We can measure cohort losses with slopes of logarithms of numbers of survivors
- We insert a minus sign to make the hazard rate into a positive number
- Because cohorts decrease as they age
- i.e., cohorts grow smaller, not larger, as they age

Hazard rate formula

- The hazard rate for a cohort is minus the slope of the logarithm of the number of cohort survivors as a function of age
- Expressing hazard rate $\left(h_{x}\right)$ in the interval starting at age x (omitting any subscript for n)

$$
h_{x}=-\frac{1}{n} \log \left(\frac{l_{x+n}}{l_{x}}\right) \quad R=\frac{1}{n} \log \left(\frac{K_{t+n}}{K_{t}}\right)
$$

- Formula for cohort survivorship resemble formula for exponential population growth

$$
\begin{gathered}
l_{x+n}=l_{x} e^{-n h_{x}}=l_{x} e^{-h_{x} n} \\
K_{t+n}=K_{t} e^{R n}
\end{gathered}
$$

Example

- The cohort of boys born in the United States in 1980 started out with $1,853,616$ members
$-1,836,853$ of them survived to their first birthday

$$
\begin{aligned}
& h_{x}=-\frac{1}{n} \log \left(\frac{l_{x+n}}{l_{x}}\right) \\
& h_{x}=-\frac{1}{1} \log \left(\frac{1,836,853}{1,853,616}\right) \\
& h_{x}=-\log (0.990957) \\
& h_{x}=-(-0.009084) \\
& h_{x}=0.009084
\end{aligned}
$$

Probabilities of dying

- A hazard rate is a rate like R, whereas ${ }_{n} q_{x}$ is a probability
- The word "probability" suggests a random process
- Randomness refers in principle to a randomly selected member of our cohort
- The occurrence of death appears partly random and partly determined by causes
- These causes are partly random and partly determined by prior causes

${ }_{n} q_{x}$-conversions

- Problems that involve working out ${ }_{n} q_{x}$ values for different x and n are called " ${ }_{n} q_{x}$-conversions"
- Demographers frequently find themselves with data for one set of age intervals when they need answers for different intervals
- They may have data for 1-year-wide intervals and need answers for 5 -year-wide intervals
- They may have data for 15-year intervals and need answers for 5 -year intervals
- They may have tables for ages 25 and 30 and need to know how many women survive to a mean age of childbearing of, for example, 27.89 years

Applying multiplication to I_{x}

- From our analogy with population growth, we go from I_{x} to I_{x+n} by multiplication
- We go from I_{65} to I_{85} by multiplying by $1-{ }_{20} q_{65}$

$$
I_{85}=\left(1-{ }_{20} q_{65}\right) I_{65}
$$

- We go from I_{85} to I_{100} by multiplying by $1-{ }_{15} q_{85}$

$$
I_{100}=\left(1-{ }_{15} q_{85}\right) I_{85}
$$

- We go from I_{65} to I_{100} by multiplying by the product $\left(1-{ }_{20} q_{65}\right)\left(1-{ }_{15} q_{85}\right)$

$$
I_{100}=\left(1-{ }_{20} q_{65}\right)\left(1-{ }_{15} q_{85}\right) I_{65}
$$

Survival probabilities multiply

- While we are interested in q, we work with 1 - q
- We do not multiply the ${ }_{n} q_{x}$ values
- To die, you can die in the first year or in the second year or in the third year, and so on
- You only do it once
- There is no multiplication
- We multiply the $1-{ }_{n} q_{x}$ values
- To survive 10 years you must survive the first year and survive the second year and survive the third year, and so on
- These "ands" mean multiplication

Basic assumption

- We need an assumption when we do not have direct data for short intervals of interest, such as 1-year-wide intervals
- We need an assumption when we only have data for wider intervals, such as 5-year-wide intervals
- We assume the probability of dying is constant within each interval where we have no further information

Applying assumption

- If we do not know ${ }_{1} q_{20}$ or ${ }_{1} q_{21}$ but we do know ${ }_{2} q_{20}$
- We assume that the probability of dying is constant between ages 20 and 22

$$
{ }_{1} q_{20}={ }_{1} q_{21}=q
$$

- Then $(1-q)^{2}$ has to equal $1-{ }_{2} q_{20}$
- More generally, for y between x and $x+n-1$

$$
\begin{aligned}
& \left(1-{ }_{1} q_{y}\right)^{n}=1-{ }_{n} q_{x} \\
& 1-{ }_{1} q_{y}=\left(1-{ }_{n} q_{x}\right)^{1 / n} \\
& { }_{1} q_{y}=1-\left(1-{ }_{n} q_{x}\right)^{1 / n}
\end{aligned}
$$

Example 1

- For the cohort of U.S. women born in 1980

$$
{ }_{2} q_{20}=0.000837
$$

- Calculate ${ }_{1} q_{20}$

$$
\begin{aligned}
& { }_{1} q_{y}=1-\left(1-{ }_{n} q_{x}\right)^{1 / n} \\
& { }_{1} q_{20}=1-\left(1-{ }_{2} q_{20}\right)^{1 / 2}=1-(1-0.000837)^{1 / 2} \\
& { }_{1} q_{20}=1-(0.999163)^{1 / 2}=1-0.999581 \\
& { }_{1} q_{20}=0.000419
\end{aligned}
$$

Example 2

- For the cohort of women born in 1780 in Sweden

$$
{ }_{5} q_{20}=0.032545
$$

- Calculate ${ }_{1} q_{20}$

$$
\begin{aligned}
& { }_{1} q_{y}=1-\left(1-{ }_{n} q_{x}\right)^{1 / n} \\
& { }_{1} q_{20}=1-\left(1-{ }_{5} q_{20}\right)^{1 / 5}=1-(1-0.032545)^{1 / 5} \\
& { }_{1} q_{20}=1-(0.967455)^{1 / 5}=1-0.993405 \\
& { }_{1} q_{20}=0.006595
\end{aligned}
$$

Example 3

- Suppose we know that ${ }_{5} q_{80}=0.274248$
- We want to find the probability of dying each year which would, if constant, account for the observed 5year mortality and survivorship
- Calculate ${ }_{1} 9_{80}$

$$
\begin{aligned}
& { }_{1} q_{y}=1-\left(1-{ }_{n} q_{x}\right)^{1 / n} \\
& { }_{1} q_{80}=1-\left(1-{ }_{5} q_{80}\right)^{1 / 5}=1-(1-0.274248)^{1 / 5} \\
& { }_{1} q_{80}=1-(0.725752)^{1 / 5}=1-0.937902 \\
& { }_{1} q_{80}=0.062098
\end{aligned}
$$

Example 4

- More elaborate conversion problems arise
- We might have values from a forecast of survival for the U.S. cohort of women born in 1980

$$
I_{65}=0.915449 ; I_{75}=0.799403 ;{ }_{35} q_{65}=0.930201
$$

- We might want the probability of surviving from 70 to 100: I_{100} / I_{70}

$$
\begin{aligned}
\frac{l_{100}}{l_{70}}=1-{ }_{30} q_{70} & =\frac{\frac{l_{100}}{l_{65}}}{\frac{l_{70}}{l_{65}}}=\frac{1-{ }_{35} q_{65}}{1-{ }_{5} q_{65}}=\frac{1-0.930201}{\left(1-{ }_{10} q_{65}\right)^{5 / 10}}=\frac{0.069799}{\left(1-{ }_{10} q_{65}\right)^{1 / 2}}=\frac{0.069799}{\left(l_{75} / l_{65}\right)^{1 / 2}} \\
\frac{l_{100}}{l_{70}} & =\frac{0.069799}{\left(\frac{0.799403}{0.915449}\right)^{\frac{1}{2}}}=\frac{0.069799}{(0.873236)^{\frac{1}{2}}}=\frac{0.069799}{0.934471}=0.074694
\end{aligned}
$$

Use the Lexis diagram

- The best way to solve complicated conversion problems is to begin by drawing a diagonal line on a Lexis diagram
- Mark off each age for which there is information about survivorship at that age
- Mark off ages which are the endpoints of intervals over which there is information about mortality within the interval
- Between each marked age, assume a constant probability of dying, and apply the conversion formulas

Columns of the cohort life table

- Lifetable is a table with I_{x} and ${ }_{n} q_{x}$ as columns with a set of other measures of mortality
- Columns and their names and symbols are fixed by tradition
- This is customary since the 1600 s
- Each column is a function of age, so the columns of the lifetable are sometimes called "lifetable functions"
- Rows correspond to age groups

Information in lifetable columns

- All the main columns of the lifetable contain the same information from a mathematical point of view
- With some standard assumptions any column can be computed from any other
- But they present information from different perspectives for use in different applications
- Survivors
- Deaths
- Average life remaining

King Edward's children

- King Edward III of England was born in 1312 and reigned from 1337 to 1377

Table 3.2 Children of King Edward III of England

$1330-1376$	Edward, The Black Prince
$1332-1382$	Isabel
$1335-1348$	Joan
$1336-$?	William of Hatfield (died young)
$1338-1368$	Lionel of Antwerp, Duke of Clarence
$1340-1398$	John of Gaunt, Duke of Lancaster
$1341-1402$	Edmund Langley, Duke of York
$1342-1342$	Blanche
$1344-1362$	Mary
$1346-1361$	Margaret
$1355-1397$	Thomas of Woodstock, Duke of Gloucester

Lexis diagram for King Edward's children

Figure 3.1 Lexis diagram for the children of King Edward III
Source: Wachter 2014, p. 56.

Constructing a cohort life table

- Generally, lifetables are constructed with 1-year or 5-year intervals
- A complete life table provides life table functions in single years of age
- Lifetables in which functions are given for age groups are called "abridged lifetables" in older works
- Usually, for lifetables with 5-year-wide intervals
- The first age group is a 1 -year-wide interval (0-1)
- The second age group is a 4-year-wide interval (1-5)

Table 3.3 Five columns of King Edward's family lifetable

An

Start of age group (x) and width (n)

- Lifetables begin with a column labeled x
- Starting age for the age group
- The next column has the width n of the age group
- The difference between the value of x for this row and the value for the next age group found in the next row
- The last age group is called the "open-ended age interval" since it has no maximum age
- Symbol for infinity (∞) is used for the length of this interval
- We don't set any upper limit of our own

Number of survivors $\left(I_{x}\right)$

- The survivorship column I_{x} leads off the datadriven entries of the cohort lifetable

$$
I_{x+n}=I_{x}\left(1-{ }_{n} q_{x}\right)
$$

- The first-row entry $\left(I_{0}\right)$ is the radix, the initial size of the cohort at birth
- The choice of radix is up to us
- A lifetable can be built up from any radix, an actual size or a convenient size

Graph of I_{x} as a function of x

Figure 3.2 Lifespans and ℓ_{x}

Continuous function for I_{x}

- The previous plot for a large population has lots of very thin bars
- We often draw a smooth curve through the midpoints of the right-hand sides of the bars
- Instead of taking steps down, I_{x} becomes a continuous function
- Demographers often draw the bars with different colors for the portions of each person's life spent in and out of some activity
- Rearing children, being married, free from disability

Typical shape of I_{x}

Probability of dying $\left({ }_{n} q_{x}\right)$

- The column which follows I_{x} in the lifetable contains the probability of dying in the interval given that one is alive at the start
- This is the ${ }_{n} q_{x}$ measure

$$
{ }_{n} q_{x}=1-\left(I_{x+n} / l_{x}\right)
$$

- For our example
- In the first age group, ${ }_{n} q_{x}=1-9 / 10=0.100$
- In the second age group, ${ }_{n} q_{x}=1-6 / 9=0.333$

Number of deaths $\left({ }_{n} d_{x}\right)$

- We go on to insert a column which gives deaths between ages x and $x+n$

$$
{ }_{n} d_{x}=I_{x}-I_{x+n}
$$

- This column counts the lifelines that end in each age interval on the Lexis diagram

From ${ }_{n} L_{x}$ to e_{x}

- The remaining columns of the lifetable relate to cohort person-years lived (CPYL)
- In order to calculate person-years, we need ${ }_{n} a_{x}$
- ${ }_{n} a_{x}$ tells us how many years within an interval people live on average if they die in the interval
- This quantity is about half the width of the interval (n/2)

Table 3.4 Right-hand columns of a lifetable

x	${ }_{n} a_{x}$	${ }_{n} L_{x}$	${ }_{n} m_{x}$	T_{x}	e_{x}	$x+e_{x}$
0	0.50	90.5	0.011	334	33.4	33.4
10	5.33	76.0	0.039	243	27.0	37.0
20	10.00	110.0	0.009	167	27.8	47.8
40	9.00	56.0	0.071	57	11.4	51.4
60	1.00	1.0	1.000	1	1.0	61.0

Cohort person-years lived $\left({ }_{n} L_{x}\right)$

- With ${ }_{n} a_{x}$, we can calculate cohort person-years lived between ages x and $x+n\left({ }_{n} L_{x}\right)$
- Also called "big L"
- Think of " L " standing for life
- Big L is one of the four most important columns with
$-I_{x}$, "little l"
$-{ }_{n} q_{x}$
$-e_{x}$

Formula of ${ }_{n} L_{x}$

- The value of ${ }_{n} L_{x}$ is made up of two contributions - Those who survive the whole interval $\left(l_{x+n}\right)$ contribute a full n years to ${ }_{n} L_{x}$
- Those who die during the interval $\left({ }_{n} d_{x}\right)$ contribute on average ${ }_{n} a_{x}$ years
- Our formula adds these two contributions

$$
{ }_{n} L_{x}=(n)\left(I_{x+n}\right)+\left({ }_{n} a_{x}\right)\left({ }_{n} d_{x}\right)
$$

- We usually have ${ }_{n} a_{x}=n / 2$, then formula simplifies

$$
n L_{x} \approx(n / 2)\left(I_{x}+I_{x+n}\right)
$$

${ }_{n} L_{x}$ as the area under the I_{x} curve

- With a smooth curve of I_{x}, we can calculate ${ }_{n} L_{x}$ as the area under the I_{x} curve between x and $x+n$

Death rate $\left({ }_{n} m_{x}\right)$

- For the lifetable death rate $\left({ }_{n} m_{x}\right)$, we divide cohort deaths $\left({ }_{n} d_{x}\right)$ by cohort person-years lived (${ }_{n} L_{x}$)
- The column ${ }_{n} m_{x}$ is the age-specific counterpart of the crude death rate (CDR)
- ${ }_{n} m_{x}$ is a rate, measured per unit of time
- The lifetable death rate measured over a very short interval starting at x is very close to the hazard rate

Remaining person-years of life $\left(T_{x}\right)$

- We can obtain person-years of life remaining for cohort members who reach age $x\left(T_{x}\right)$
- We simply add up all person-years to be lived beyond age x
- T_{x} is easiest to compute by filling the whole ${ }_{n} L_{x}$ column and cumulating sums from the bottom up

$$
T_{x}={ }_{n} L_{x}+{ }_{n} L_{x+n}+{ }_{n} L_{x+2 n}+\ldots
$$

Remaining life expectancy (e_{x})

- The main use of T_{x} is for computing the expectation of further life beyond age $x\left(e_{x}\right)$
- The T_{x} person-years will be lived by the I_{x} members of the cohort who reach age x
- So, e_{x} is given by the formula

$$
e_{x}=T_{x} / I_{x}
$$

- The expectation of life at age zero (at birth) is often called the life expectancy $\left(e_{0}\right)$

Average age at death $\left(x+e_{x}\right)$

- e_{x} is the expectation of future life beyond age x
- It is not an average age at death
- We add x and e_{x} to obtain the average age at death for cohort members who survive to age x
- Not all lifetables include $x+e_{x}$
- The $x+e_{x}$ column always go up
- e_{x} does not always go down
- It often goes up after the first few years of life, because babies who survive infancy are no longer subject to the high risks of infancy

Index of lifespan

- Expectation of life at birth $\left(e_{0}\right)$ is often taken as an index of overall mortality
- However, it gives a poor idea of lifespan
- Because it is heavily affected by infant mortality
- IMR can be high in some countries
- A better index of lifespan is $10+e_{10}$

Full cohort life table for King Edward's children

x	n	ℓ_{x}	${ }_{n} q_{x}$	${ }_{n} d_{x}$	${ }_{n} a_{x}$	${ }_{n} L_{x}$	${ }_{n} m_{x}$	T_{x}	e_{x}	$x+e_{x}$
0	10	10	0.100	1	0.50	90.5	0.011	334	33.4	33.4
10	10	9	0.333	3	5.33	76.0	0.039	243	27.0	37.0
20	20	6	0.167	1	10.00	110.0	0.009	167	27.8	47.8
40	20	5	0.800	4	9.00	56.0	0.071	57	11.4	51.4
60	∞	1	1.000	1	1.00	1.0	1.000	1	1.0	61.0

Shapes of lifetable functions

- Different lifetable functions express the same basic information from different points of view
- Demographers often have to
- Start with entries for some column and work out entries for another
- Start with bits and pieces of data from a few columns and solve for some missing piece of information
- Each lifetable function has a characteristic shape...

Typical shapes of lifetable functions

Figure 3.3 Typical shapes of lifetable functions

Cohort lifetable formulas

Formula
${ }_{n} q_{x}=1-\left(\ell_{x+n} / \ell_{x}\right)$
${ }_{n} d_{x}=\ell_{x}-\ell_{x+n}$
${ }_{n} L_{x}=(n)\left(\ell_{x+n}\right)+\left({ }_{n} a_{x}\right)\left({ }_{n} d_{x}\right)$
${ }_{n} m_{x}={ }_{n} d_{x} /{ }_{n} L_{x}$
$T_{x}=\sum_{x}^{\infty}{ }_{n} L_{a}$
$e_{x}=T_{x} / \ell_{x}$

Name
Probability of dying
Cohort deaths
Person-years lived
Lifetable death rate
Remaining person-years
Expectation of life

The radix $\left(I_{0}\right)$

- The radix $\left(I_{0}\right)$ indicates the cohort's initial size - In Latin, it means "root"
- It does not have to be the size of an actual cohort
- An initial size of 1,000 or 100,000 or 1 is easier
- With $I_{0}=1, I_{x}$ is the expected proportion of the cohort surviving to age x
- Demographers choose a radix to suit their tastes

Interpreting lifetable

- The lifetable is used to follow a cohort through life - I_{0} is seen as a random sample of the actual cohort
- Survival of the sample mirrors survival for the whole cohort
- Conceptually, it is good to picture an actual group of people (whole cohort or sample)
- Starting with I_{0} members and living out their lives
- Surviving
- Aging
- Dying

Changing the radix

- Some quantities alter and others remain the same when changing the radix
- Quantities that change (absolute numbers)
$-I_{x}$
$-{ }_{n} L_{x}$
$-{ }_{n} d_{x}$
- Quantities that do not change (indicators)
$-{ }_{n} q_{x}$
$-{ }_{n} m_{x}$
$-e_{x}$

Combining lifetables

- Because men and women die at different rates, we usually construct separated lifetables by sex
- Sometimes, we want a lifetable for everyone
- We do not average ${ }_{n} q_{x}$ or ${ }_{n} m_{x}$, we work with I_{x}
- Let $f_{\text {fab }}$ be the fraction female at birth in the cohort
- Assume that single-sex lifetables have the same radix

$$
l_{x}^{c}=\left(f_{f a b}\right) l_{x}^{\text {female }}+\left(1-f_{f a b}\right) l_{x}^{\text {male }}
$$

$-l_{x}^{c}$: "c" stands for "combined sex"

- $\left(f_{\text {fab }}\right) l_{0}$ baby girls
- ($\left.\left.1-f_{\text {fab }}\right)\right)_{0}$ baby boys

Annuities and insurance

- Annuities and insurance are social institutions that become familiar usually after school or college when starting a job or a family
- Earliest applications of lifetable methods in the 1600s and 1700s were to annuities
- Idea of a steady income (e.g., after retirement)
- You buy a policy from an annuity company for a single payment (P)
- The company agrees to pay you an annual benefit (B) for as long as you live

Annuities

- The purpose of buying an annuity is to share risk
- You pay now and collect benefits as long as you live
- If you die soon, the company wins
- If you live long, the company loses
- The company sets the purchase price to break even or come out ahead
- Examples here deal with "actuarially fair rates", where profit is zero
- In practice, a margin for profit is added
- The purchase price ought to depend on the age of the buyer

Annuities and lifetable

- To derive formulas connecting payments (P) and benefits (B), we imagine all I_{x} members of a cohort buying annuities at some age x
- Some members live long
- Other members don't live as long
- Over the first n years after purchase
- Cohort members live a total of ${ }_{n} L_{x}$ person-years
- Each one receiving a benefit B each year, for $B\left({ }_{n} L_{x}\right)$ in benefits overall

Formula for annuities

- Over all future ages, total benefits amount to

$$
B_{n} L_{x}+B_{n} L_{x+n}+B_{n} L_{x+2 n}+B_{n} L_{x+3 n} \ldots=B T_{x}
$$

- The total purchase amount equals price per person (P) times the number of buyers $\left(I_{x}\right)$

$$
P\left(I_{x}\right)
$$

- Equating purchase to benefits implies

$$
\begin{gathered}
P I_{x}=B T_{x} \\
P=B T_{x} / I_{x} \\
P=B e_{x}
\end{gathered}
$$

Need to consider interests

- If an annuity with a benefit of $\$ 10,000$ a year is purchased at age 20, it could cost a lot
- If $e_{20}=50$ years

$$
\begin{gathered}
P=B e_{x} \\
P=10,000 * 50 \\
P=500,000
\end{gathered}
$$

- Companies don't charge so much, because
- They invest money and earn interest while it is waiting to pay future benefits
- Time elapses between purchase and receipt of benefits

Considering interests

- To consider interest, imagine the company opening a separate bank account for each future n-year period
- It invests money for early benefits in short-term investments
- It invests money for distant future in long-term investments
- We calculate annuity price by estimating how much money the company must put into each account at the start
- In order to have enough money to pay benefits from that account when the time comes

Interests for different accounts

- For the first account, the company has to deposit enough money to pay out benefits $B\left({ }_{n} L_{x}\right)$ on average half-way through the first period
- This leaves on average about $n / 2$ years for money to grow through compound interest
- At compound interest, 1 dollar grows to $(1+i)^{n / 2}$ dollars in $n / 2$ years with interest rate i
- So, the company needs to deposit $B_{n} L_{x} /(1+i)^{n / 2}$
- For the next account, money can earn interest for an average on $n+n / 2$ years, so the deposit equals

$$
B_{n} L_{x+n} /(1+i)^{n+n / 2}
$$

- When the cohort reaches age y, the deposit is

$$
B_{n} L_{y} /(1+i)^{y-x+n / 2}
$$

General formula with interests

- The company needs to deposit for all accounts

$$
\frac{B_{n} L_{x}}{(1+i)^{n / 2}}+\frac{B_{n} L_{x+n}}{(1+i)^{n+n / 2}}+\frac{B_{n} L_{x+2 n}}{(1+i)^{2 n+n / 2}}+\cdots
$$

- Lifetables with an open-ended interval starting at a top age xmax introduce a specificity
- The rule is to replace $n / 2$ with $e_{x \max }$

$$
(1+i)^{n+e_{x \max }}
$$

- People alive at the start of the interval will live about $e_{x \max }$ further years

Example with King Edward's children

x	n	ℓ_{x}	${ }_{n} q_{x}$	${ }_{n} d_{x}$	${ }_{n} a_{x}$	${ }_{n} L_{x}$	${ }_{n} m_{x}$	T_{x}	e_{x}	$x+e_{x}$
0	10	10	0.100	1	0.50	90.5	0.011	334	33.4	33.4
10	10	9	0.333	3	5.33	76.0	0.039	243	27.0	37.0
20	20	6	0.167	1	10.00	110.0	0.009	167	27.8	47.8
40	20	5	0.800	4	9.00	56.0	0.071	57	11.4	51.4
60	∞	1	1.000	1	1.00	1.0	1.000	1	1.0	61.0

Table 3.2 Children of King Edward III of England

$1330-1376$	Edward, The Black Prince
$1332-1382$	Isabel
$1335-1348$	Joan
$1336-$?	William of Hatfield (died young)
$1338-1368$	Lionel of Antwerp, Duke of Clarence
$1340-1398$	John of Gaunt, Duke of Lancaster
$1341-1402$	Edmund Langley, Duke of York
$1342-1342$	Blanche
$1344-1362$	Mary
$1346-1361$	Margaret
$1355-1397$	Thomas of Woodstock, Duke of Gloucester

Example

- Suppose King Edward III had bought annuities with a benefit of $£ 100$ a year for all five of his surviving children when they were age 40
- Interest per year $=10 \%=0.1$
$-{ }_{20} L_{40}=56 ; n=20$
$-{ }_{\infty} L_{60}=1 ; e_{x \max }=1$

$$
\frac{B_{n} L_{x}}{(1+i)^{n / 2}}+\frac{B_{n} L_{x+n}}{(1+i)^{n+e_{x \max }}}=\frac{B_{20} L_{40}}{(1+0.1)^{20 / 2}}+\frac{B_{\infty} L_{60}}{(1+0.1)^{20+1}}=
$$

$$
\frac{100 * 56}{(1.1)^{10}}+\frac{100 * 1}{(1.1)^{21}}=2,159+13=2,172
$$

Insurance policies

- Insurance policies resemble annuities
- But the company promises to pay an amount once when you die, not year by year when you are living
- The purchase price (P) is paid at the start
- All formulas are the same as for annuities
- Except that death to cohort members $\left({ }_{n} d_{x}\right)$ take the place of person-years lived $\left({ }_{n} L_{x}\right)$
- Today companies usually sell term insurance, where the benefit is paid only to cohort members who die in the next year (${ }_{1} d_{x}$)

Variations

- Annuities may be purchased at age x and start paying benefits only at some later age z
- This implies that the sum over terms ${ }_{n} L_{y}$ only starts at $y=z$
- Buyers may have a mix of ages
- Each age can be treated separately and results added together
- All these calculations require skills with lifetables

Mortality of the 1300s and 2000s

- The lifetable for Edward III's children is informative of mortality in England in the 1300s
- Even with small sample of unusual people
- Two anomalies of the data
- Low level of infant deaths (underregistered)
- Abbreviated life course after age 60
- But it shows early female mortality (medieval time)
- It is interesting to think about changes between the 1300s and 2000s...

Changes in infant and old mortality

- Infant and child mortality has dropped dramatically over the last hundred years
- Death of a baby has become an unusual event
- Life expectancies (affected by infant mortality) are no guide to maximum attained ages
- Edward III's children lifetable: $e_{0}=33.4$
- Edmund Langley lived past 60 (but this was rare)
- Today large numbers of people live active lives into their late 80s and 90s
- It changes attitudes about what it means to be old

References

Wachter KW. 2014. Essential Demographic Methods.
Cambridge: Harvard University Press. Chapter 3 (pp. 4878).

